International Journa. cf

Industrial
Ergonomics

ALV 4

ELSEVIER

International Journal of Industrial Ergonomics 16 (1995) 391-410

Benefits of user-oriented software development based on an
iterative cyclic process model for simultaneous engineering

Matthias Rauterberg *, Oliver Strohm, Christina Kirsch
Work and Organisational Psychology Unit, Swiss Federal Institute of Technology (ETH), Nelkenstr. 11 CH-8092 Ziirich, Switzerland

Abstract

The current state of traditional software development is surveyed and essential problems are investigated on the
basis of empirical data and theoretical considerations. The concept of optimisation cycle is proposed as a solution for
simultaneous engineering. The relationships of several different kinds of local optimisation cycles to the specifica-
tions, the communications, and the optimisation problem are integrated into a concept of participatory software
development. Software development without integrated work- and task-organisational development is sub-optimal.
User participation and prototyping significantly decrease cost and time over-runs. Process moderation methods (e.g.
workshops) are time effective and lead to best results for the analysis of requirements.

Relevance to industry

There is a growing realisation that the construction, implementation and performance of modern software
products crucially depends on getting the social and organisational issues right. The user-oriented approach outlined
in the paper explicitly aims to present a process model that incorporates method and techniques for the
requirements analysis. The practical problems of this iterative cyclic process model are discussed and recommenda-
tions are made to guide industrial managers, engineers and human factor specialists involved in the process of
simultaneous production.

Keywords: User-oriented requirements analysis and data modelling; Human-centred technology; Simultaneous
software engineering; Social and organizational issues; Iterative cyclic process model; Industrial practice

1. Introduction lowed as well as in the use of inadequate cost

analysis models (Yeh, 1991). These aspects point

Analysis of current software development pro-
cedures brings to light a series of weaknesses and
problems. Some reasons lie in the theoretical
concepts applied, the traditional procedures fol-

" Corresponding author. Tel.: +41-1-632-7082; Fax: +41-1-
632 1186; E-mail: rauterberg@ifap.bepr.ethz.ch

to the significance of participation by all groups
involved in the development process (cf. Rauter-
berg et al., 1994). Analysis of these cases shows
that there are three essential barriers to optimisa-
tion: the specification barrier, the communication
barrier and the optimisation barrier. Generally,
one of the most important problems lies in com-
ing to a shared understanding by all the affected

0169-8141 /95 /$09.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI 0169-8141(95)00021-6

392 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

groups in the component of the work system to
be automated. That is to say, to find the answers
to the questions of ‘if’, ‘where’ and ‘how’ for the
planned implementation of technology, to which
a shared commitment can be reached. An opti-
mal total system must integrate the social and the
technical subsystems simultaneously. “The most
appropriate way to engender a Concurrent Engi-
neering culture is by forming crossfunctional
teams. However, simply placing people from dif-
ferent departments together in the same room
will not overcome these deeply ingrained cultural
barriers. It the benefits of Concurrent Engineer-
ing are to be maximised, management must re-
view the entire product introduction process and
adopt radical changes to long established proce-
dures” (Tucker and Leonard, 1994, p. 67). An
iterative-cyclic process model for software devel-
opment with several, simultaneous optimisation
cycles is presented, and the strengths and weak-
nesses of user-oriented methods are introduced.

2. Problems of traditional software development

To arrive at the optimal design for the total
working system, it is of paramount importance to
regard the social subsystem as a system in its own
right, endowed with its own specific characteris-
tics and conditions, and as a system to be opti-
mised when coupled with the technical subsys-
tem. “Human resources are at the core of future
growth and Europe’s innovation capability”
(C.E.C., 1989). The work task plays a central role
in this, since it is the ‘interface’ between the
organisation and the individual.

In the context of the our research project the
general software development processes of differ-
ent software companies (N = 22) were analysed
as field studies by document analysis and inter-
views. These field studies were carried out in
firms that develop information systems for offices
and administration. Several other representative
software projects were analysed only by question-
naires (N = 83). The analysis considered not only
technical aspects, but also work organisation, use
of methods, user participation and the problems
connected with different procedures. The whole

Table 1
Actual problems in software development projects (N = 75)
N
Organisational / methodological aspects
Requirements analysis 17
Project complexity 13
Changes of requirements 11
Project management 6
Communication 3
Total 50
Strategic aspects
Keeping of term 17
Keeping of costs 8
Total 25
Technical aspects
Software engineering environments 15
Hardware constraints 7
Total 22
Social aspects
Continuity of project members 8
Motivation of project members 2
Total 10
Qualification aspects N
Qualification of project members 9
Total 9
Other aspects
Software quality 6
External influences 4
Total 10

sample (N = 105) consisted of companies with
internal software development departments fo-
cussed either on general software development
activities (74%), or on banks or insurance busi-
ness (15%), or industrial affairs (7%), or to other
issues (4%).

The central problems of all software projects
in our sample are organisational or methodologi-
cal aspects, strategical aspects, technical aspects,
social aspects, qualificational aspects, or other
aspects (see Table 1). The most important topics
are problems which have organisational or me-
thodical causes. One topic is the difficulty to
define requirements. Because users usually do
not take part in this stage, the importance of this

M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 393

stage is underestimated and /or there is a lack of
adequate methods. A field experiment was con-
ducted as a ‘real-life’ software project in a Ger-
man organisation to test and to compare the
effectiveness and usability of specified communi-
cation methods for user participation.

2.1. The specification problem

The ‘specification barrier’ is a problem that is
in the foreground even at a cursory glance. How
can the software developer ascertain that the
client is able to specify the requirements for the
subsystem to be developed in a complete and
accurate way that will not be modified while the
project is being carried out? The more formal
and detailed the medium used by the client to
formulate requirements, the easier it is for the
software developer to incorporate these into an
appropriate software system. But this presumes
that the client has command of a certain measure
of expertise. However, the client is not prepared
to acquire this before the beginning of the soft-
ware development process. It is therefore neces-
sary to find and implement other ways and means,
using informal through semi-formal to formal
specification methods. It would be a grave error
with dire consequences to assume that clients —
usually people from the middle and upper eche-
lons of management — are able to provide perti-
nent and adequate information on all require-
ments for an interactive software system.

The integration of various distributed informa-
tion systems or databases, as in the case of com-
puter-integrated manufacturing (CIM), requires
an integrated and consistent data model. This is
necessary to assure a ‘mutually agreed’ basis for
further specifications and a universal, reliable
glossary of terms for the co-ordination and accu-
racy of all data entries, as well as updates and
exchanges. The independent design of data mod-
els as a stable form of the logical representation
of data has been recommended as a possible
solution.

Hence, the process of data modelling is be-
coming increasingly important for the construc-
tion of database systems (Martin, 1989, p. 57).
The quality of these data models is a critical

factor for further stages of the design process.
The first step in data modelling is information
analysis, which attempts to analyse, clarify and
define the terms of entity types used in an organi-
sation or in a specified business area. An entity
type is anything which an organisation usually
stores information about, such as customer, sup-
plier, machine tool, etc. For each entity type
certain attributes are stored. Applications or pro-
cedures that use the entity types are constructed
on the basis of the data model and change fre-
quently, whereas the data model remains stable
over time. Systems are easier to build and cheaper
to maintain when thorough data modelling has
been carried out (Martin, 1989, p. 73).

The business perspective on the ‘“‘semantic
universe” of the organisation of different users
has much overlap, but divergences in corporate
language invariably occur, referred to as “multi-
ple vocabularies” (Shlaer and Mellor, 1988, p. 2).
These inconsistencies — synonyms, homonyms or
vagueness — have to be eliminated in the mutual
efforts of the user, considered as an ‘insider’
(work expert) and the information engineer, as an
‘outsider’ (design expert) (see Udris and Ulich,
1987, p. 65).

2.2. The communication problem

The communications barrier between cus-
tomer, user and end-user on the one hand and
the software developer on the other is essentially
because ‘technical intelligence’ is only inade-
quately embedded in the social, historical and
political contexts of technological development
(Mai, 1990). Communication between those in-
volved in the development process can allow
non-technical facts to “slip through the concep-
tual net of specialised technical language, which
therefore restricts the social character of the
technology to the functional and instrumental”
(Mai, 1990).

Every technical language not only dominates
the concrete process of communication in the
speciality concerned, but also determines the cog-
nitive structures underlying it. The application-
oriented jargon of the user flounders on the
technical jargon of the developer. This ‘gap’ can

394 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

only be bridged to a limited extent by purely
linguistic means. To overcome this fuzziness re-
quires the creation of jointly experienced, percep-
tually shared contexts. Beyond verbal communi-
cation, visual means are the ones best suited to
this purpose. The stronger the perceptual experi-
ence one has of the semantic context of the other,
the easier it is to overcome the communications
barrier.

Because the languages of users and software
engineers are quite different, techniques are
needed to improve their communication. These
communication techniques can be categorised as
presentation techniques (natural language, for-
malised language, diagrams, etc.) and collection
techniques (document analysis, questionnaire, in-
terview, etc.). Abundant formalised models for
the reproduction and visualisation of the id-
iomatic universe of an organisation as data mod-
els exist, e.g., Entity-Relationship (E-R) model,
or Object-type model. However, which method is
the most effective means to collect the informa-
tion needed for entity analysis is a point in ques-
tion.

2.3. The optimisation problem

As a rule, software development is a proce-
dure for optimally designing a product with inter-
active properties for supporting the performance
of work tasks. Software development is increas-
ingly focusing attention on those facets of appli-
cation-oriented software that are unamenable to
algorithmic treatment. While the purely technical
aspects of a software product are best dealt with
by optimisation procedures attuned primarily to a
technical context, the non-technical context of
the targeted application environment requires the
implementation of optimisation procedures of a
different nature. Optimisation means the usage
of all methods and techniques (even those of
limited availability) within the context of an eco-
nomical, technical and social process in such a
way that the best result is achieved under the
given constraints.

It would be false indeed to expect that at the
outset of a larger reorganisation of a work system

any single group of persons could have a com-
plete, pertinent and comprehensive view of the
ideal for the work system to be set up. Only
during the analysis, evaluation and planning pro-
cesses can be the people involved develop an
increasingly clear picture of what it is that they
are really striving for. This is basically why the
requirements of the customer sometimes seem to
‘change’ ~ they do not really change but simply
become concrete within the anticipated bound-
aries. This process of concretisation should be
allowed to unfold as completely, as pertinently
and as inexpensively as possible. Completeness
can be reached by making sure that each affected
group of persons is involved at least through
representatives. Iterative, interactive progress in
cross-functional teams makes the ideal concept
increasingly concrete.

3. Analysis of traditional software development
processes

3.1. The development process: An overview

Software projects are often realised with struc-
tured, linear stage models and defined mile-
stones. The different tasks of software develop-
ment can be assigned to the following stages:
problem analysis, conception, specification, pro-
gramming, test and implementation. Data mod-
elling is accomplished during the early stages of
the software development process, in the require-
ment specification or analysis phase. The mean
effort of each stage is estimated by the percent-

% stage effort

35
30

problem concep- specifi- implemen-

program- test
analysis tion cation ming tation

Fig. 1. Mean effort in the different steps of software develop-
ment process (N = 79).

M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 395

age proportion to the whole project effort with-
out the maintenance phase (see Fig. 1).

3.2. The early stages: Analysis, conception and
specification

The early stages are frequently the most ne-
glected activities. This is essentially because
methods and techniques need to be used primar-
ily in the way occupational and organisational
sciences have developed and applied them
(Macaulay et al., 1990). Inordinately high costs
are incurred from the troubleshooting required
because the analysis was less than optimal. The
time has come to engage occupational and organ-
isational consultants at the analysis stage who
have been specially trained for optimal modera-
tion of software development processes. Introduc-
ing task orientation within the framework of so-
cio-technological system conception makes the
following conditions indispensable (Ulich, 1994):
(1) The employees must have control over the

work process as well as the necessary re-
sources.

(2) The structural features of the task must be
such as to release in the working person the
energy for completing or continuing the work.

Task planning is therefore the focus of atten-
tion in the analysis phase. The five features,
Completeness, Variety of tasks, Opportunity for
social interaction, Personal autonomy, and Op-
portunity for learning and development, must be
addressed to plan the tasks suitably (Ulich, 1994).

Once the analysis of the work system to be
optimised has been completed, the next stage is
to mould the results obtained into implementable
form. Methods of specification with high commu-
nicative value are recommended here.

(i) The specification of the organisational inter-
face: The first thing is to determine ‘if’ and
‘where’ it makes sense to employ modern tech-
nology. Although the view is still widely held that
it is possible to use technology to eliminate the
deficiencies of an organisation without question-
ing the structures of the organisation as a whole,
the conclusion is nevertheless usually a false one.
It is important to understand the work system as
a living organisation, as a self-sustaining organ-

ism, which must develop and change to reach the
organisational aims. The purpose of defining the
organisational interface, from this point of view,
is to improve the viability of the organisation with
the help of modern technology. An unavoidable
consequence is that the necessary measures must
be taken in such a way that the ease with which
the employees can assimilate and adapt to the
type of the organisation is maximised. The effects
of the organisational measures undertaken can be
assessed, for example, by means of the ‘Activity
Evaluation System’ or ‘Activity Evaluation Sys-
tem for Intellectual Work” (Ulich, 1994).

(it) Specification of the tool interface: The in-
tended division of functions between human and
machine is decided during the specification of the
tool interface. The tasks that remain in human
hands must have the following characteristics
(zolch and Dunckel, 1991):

(1) sufficient freedom of action and decision-
making;

(2) adequate time available;

(3) sufficient physical activity;

(4) concrete contact with material and social con-
ditions at the workplace activities;

(5) actual use of a variety of the senses;

(6) opportunities for variety when executing tasks;

(7) task-related communication and immediate
interpersonal contact.

(iii) Specification of the input / output interface:
Once those concerned are sufficiently clear about
which functions are amenable to automation, the
next step that should be taken is to develop and
test the screen layouts on the end-users with
inexpensive, hand-drawn sketches. The use of
prototyping tools is frequently inadvisable, be-
cause tool-specific presentation offers too restric-
tive a range of possibilities. The effect of the
design decisions taken can be assessed with the
help of discussion with the end-users, or by means
of checklists.

(iv) Specification of the dialogue-interface: The
use of prototypes to illustrate the dynamic and
interactive aspects of the tools being developed is
indispensable for specifying the dialogue inter-
face. But prototypes should only be used very
purposefully and selectively to clarify special as-
pects of the specification, and not indiscrimi-

396 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

nately. Otherwise there looms the inescapable
danger of investing too much in the production
and maintenance of ‘display goods’. A very effi-
cient and inexpensive variation is provided by
simulation studies, for example, with the use of
hand-prepared transparencies, cards, etc. which
appear before the user in response to the action
taken (Karat, 1990).

More and more companies try to practice user
participation in the software development pro-
cess. Statements of software engineers like “we
must have the participation of the users” or
“without users it does not work” and the selec-
tion of the users to participate in the project
because of their professional background show
that user participation as a necessity is becoming
more and more accepted. Primarily, this concerns
projects in which the system implementation is
combined with greater organisational changes of
the work system. The development of the data
model especially requires the co-operation of
software engineers and the employees of an or-
ganisation as potential users to analyse the partic-
ular business terms, to specify the names of the
entity types and to create the definitions for the
data elements. The participation of users in the
information analysis phase is crucial for the ade-
quacy of entity type definitions and later accep-
tance of the data model.

We differentiate user participation into three
categories: active or passive participation, or
without any participation. Further and more de-
tailed analysis of our data show the following
results (Strohm, 1991; Strohm and Ulich, 1991).
In 29% of the projects (N = 83) active user par-
ticipation was practised. This means that the users
had decision possibilities, were frequently con-
sulted regarding problems of task design, func-
tionality, dialogue design, etc., and were involved
in the early stages. In 57% of the projects a
passive form of user participation was practised.
This means that the users gave information, eval-
uated the ideas of the software engineers, but
were not so deeply involved in the early stages.
Fourteen per cent of all projects were realised
without any kind of user participation.

Software developers put prototyping as one
user-oriented method more and more into prac-

% time- % time-
exceeding exceeding
100 100
%t %
80 t 80
0T 70
60 T 60
50 50
40 ¥ p<0.02 p<0.04 p<0.05 40
30 -r -y - 30
20 20
10 10
0 0

active passive no yes no

=21 @36 (N=9) ®=35) N=31)

user participation (N=66) prototyping (N=66)

Fig. 2. The relation of cost over-runs with user participation
and prototyping; ‘cost exceeding’ is the percentage cost pro-
portion of total project budget.

tice. The prototyping method was used in 55% of
the projects (N = 83). Of all projects with proto-
typing (N = 46), most software engineers evalu-
ated this procedure as ‘very useful’ (59%) or
‘useful’ (33%). These software engineers said that
prototyping is primarily a good method to sup-
port the co-operation and communication with
the users.

Active user participation decreases signifi-
cantly in relation to the cost over-run portions
(“active’ versus ‘no participation’ p < 0.03, one-tail
T-test; N =159; see Fig. 2), as well as the time
over-run portions (‘active’ versus ‘no participa-
tion’ p < 0.02, one-tail T-test; N = 59; see Fig. 3).
The usage of prototyping decreases significantly
with cost over-run (p < 0.04, one-tail 7-test; N =

% cost- 9% cost-

exceeding exceeding
100 100
%0 + 90
80 + 80
70 70
60 T 60
50 } 50
w0t 40
30+ 30
20+ 20
10 ¢ 10
0 0

active passive no

yes no
=3 (N28)
prototyping (N=59)

Q=18) (=33 (NB)
user participation (N=59)

Fig. 3. The relation of time over-runs with user participation
and prototyping; ‘time exceeding’ is the percentage elongation
as a proportion of the total project time.

M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 397

59; see Fig. 2), as well as time over-run (p < 0.05,
one-tail 7-test; N = 66; see Fig. 3).

Fig. 2 and Fig. 3 show that there are significant
advantages in projects with active user participa-
tion and with usage of prototyping. We could not
find a significant correlation between the cate-
gory of user participation (‘active’, ‘passive’,
‘none’) and the project size (‘small’: <5 man
years, ‘big’: > 6 man years; ytest, df=2, p <
0.18); there is also no significant correlation be-
tween prototyping (‘yes’, ‘no’) and project size
(x*test, df =2, p < 0.84).

We distinguish among four project types of
software developments (Strohm, 1991): Type A is
a singular software product by in-house develop-
ment for a specific in-house department; Type B
is a singular software product for external cus-
tomers; Type C is a trade product for external
companies; Type D is standard software for un-
known users. Active user participation seems to
be typical for project type A, passive user partici-
pation for project type C and no participation for
project types B and D (y>-test, df = 6, p < 0.07).

3.3. The programming and implementation stages

The programming stage is made up of the

following three steps (Boehm et al., 1981):

(1) design of the program architecture;

(2) design of the individual program modules (ob-
ject classes, etc.);

(3) coding and debugging.

The distinction between design and specifica-
tion is important. During specification, all rele-
vant properties of the technical subsystem are
defined as precisely as possible. In the program-
ming stage all care must be taken to ensure that
the technical subsystem being developed exhibits
these properties to the greatest possible extent. It
is pure software expertise that is of primary im-
portance here. The implementation phase is
characterised by the first tests of the software
system in the concrete working context.

Once a working version is available, it can be
put to test in usability studies (‘user-oriented
benchmark tests’, see Rauterberg, 1991) in con-
crete working situations. This is the first place
where it is possible to clarify the problems with

the actual organisational and technical environ-
ment. In contrast with laboratory studies, field
studies take into account the aspect of ‘ecological
validity’ (Karat, 1990). Trials with real work tasks
make it possible to check and assess the degree to
which the planned organisational ideal has been
reached. Although video is the data-recording
medium preserving the most information, a com-
bination of log-files and direct protocol capture
makes a good compromise between performance
and economy.

3.4. The maintenance phase

The mean effort for maintenance is 20% (N =
55). 33% of the maintenance effort is spent on
debugging; hence 67% of the maintenance effort
is needed for changing the systems (e.g. changed
requirements caused by users). The cumulated
effort for the early stages ‘problem analysis’,
‘concept’ and ‘specification’ has a significant,
negative correlation (r= —0.32, p<0.05, N=
55) with the effort for maintenance. This means
that adequate effort in the early stages reduces
the cost-and time-intensive repair and correction
tasks in the maintenance phase (see also Boehm,
1981).

4, Communication methods for user participation

Ample evidence is available that shows the
importance of user participation in software de-
velopment. However, which method is the most
effective means to collect the information re-
quired is a point in question. Questionnaires,
interviews or workshops can be used as empirical
techniques to improve the communication be-
tween software specialists and work experts. Fi-
nancial and time constraints often force the de-
signer to communicate with the end-users through
interviews or questionnaires (Shlaer and Mellor,
1988, p. 86). These methods are characterised by
the fact that they create as many differing defini-
tions as the number of end-users involved. Work-
shops are recommended by many information
engineering specialists (e.g. Oppermann, 1983;
Martin, 1989), but are difficult to establish be-

398 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

cause at first glance they may seem to be time-
consuming and a waste of personnel resources.
Their advantage is that the inter-user communi-
cation reveals inconsistencies and vagueness in
the use of the business terms and leads to a
‘mutually agreed’ definition of the entity types.
This also prevents the engineers from exerting
too much influence on the definition of entity
types that could result in reduced acceptance of
the semantics by the users. The purpose of this
study was to investigate which of these informa-
tion collection techniques provides the best means
to improve the collaboration.

4.1. User participation in data modelling: A field
experiment

In a co-project at Lufthansa AG (Germany)
one researcher and two software engineers were
entrusted with the design of a data model for
specific business areas (personnel administration
and office communication). To accomplish this
task, three different communication techniques
(questionnaire, interview and workshop) were
used concurrently in three user groups for the
information and requirement analysis. The goal
was to empirically investigate and compare the
efficiency of the above methods. As a first step in
information analysis, a list of business terms ex-
tracted by a document analysis was scrutinised.
The task was to determine whether each term
was an entity, an attribute or a value of an
attribute. Then the participants had to clarify and
determine the definitions of the entity types and
integrate them into a consistent and reliable data
model.

A total of 18 employees from the participating
departments were selected as users. They had
comparable qualification levels and their tasks
were related to the semantic world that was to be
designed as a data model. With each method, six
randomly assigned employees from the participat-
ing departments accomplished the same analysis
task. During information analysis the motivation
of the participating users, the amount of time
spent on the analysis as well as the rating of the
effort needed for preparation, execution and
completion, were monitored.

As representation technique ‘OrgMap’ (Kirsch,
1992, p. 70) — a combination of a simplified data
model and Metaplan technique — was used for
visualisation. Hand drawn diagrams are difficult
to revise and change, hence are not favoured as a
communication means for the mutual analysis
process. E-R-diagrams, on the other hand, im-
pose additional cognitive strain on the participat-
ing users who are already concerned with the task
of analysing and defining the corporate language.
The demand of communicating in a highly stylised
and unaccustomed language can lead to cognitive
overload and interfere with the primary task.

The statements for the entity type definitions
collected by the three groups constituted the ba-
sis for the construction of the data model by the
engineers. The data model was designed as an
E-R model, with the ICASE-Too! Information
Engineering Workbench (IEW). The engineers
graded all the statements as being either correct,
incorrect, or a contribution to the detection of
defective business terms (e.g. synonyms,
homonyms, etc.). The final data model was then
evaluated by the employees of the participating
departments.

4.2. Efficiency of communication methods for user
participation

The developed data model - a collection of
definitions of entity-types, their attributes and
relationships — was used to evaluate the results of
the information analysis. The workshop led to the
best results especially when — besides the quality
of the entity type definitions — the effort for
information analysis is taken into account. The
motivation of the participating users was highest
in the workshop and lowest with the question-
naire. However, the results of the evaluation
questionnaire are difficult to interpret because of
possible bias due to a low proportion of returns.
Only users who were experts in the specific busi-
ness area responded to the written questionnaire.
Inference statistics were not administered be-
cause of the restricted sample and scope of the
investigation.

The results of the evaluation of the business
term definitions are shown in Fig. 4. The number

M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 399

percentage (%)
80 1
70 68

63

’“ w

Q1 W QI W
definitibn denition e and pest
definition

Fig. 4. Quality of entity type definitions by method (Question-
naire (Q), Interview (I), Workshop (W)). Percentage of miss-
ing definitions, incorrect definitions, correct definitions and
detected defects.

of missing or incorrect definitions was smallest in
the workshop group and highest in the interview
group. As was hypothesised, correct definitions
and detected defective terms were higher in the
workshop group than in the interview or ques-
tionnaire groups.

The time invested in information analysis for
the compared communication methods is listed in
Fig. 5. On average, for all the participants -
engineers and users - there is no significant

time- effort (min)
600
540 540

QI w

QI w

QI W
users engineers average
®=6) =2) por perton

Fig. 5. Time effort required for information analysis. Average
in minutes by communication method (Questionnaire (Q),
Interview (I), Workshop (W)) used in the specific group for all
group members (average) and for the subgroups of employees
(user) and data administrators (engineer). [‘average =
(‘users’ + ‘engineers’) /N, + N,)).

Table 2

Motivation of the employees for participation. Self-rating
scales from none (0) —low (1) —middle (2) — high (3). Sum (¥
motivation) and average (¢ motivation) for each method is
listed

Method N 3 motivation @ motivation
Questionnaire 6 2 0.33
Interview 6 14 2.33
Workshop 6 18 6.00

difference in the amount of time that was needed
to analyse the business terms.

A more differentiated comparison shows dif-
ferences in the amount of time for users and
engineers — workshops requiring more hours by
users, less by engineers and questionnaires vice
versa. Subjective ratings of motivation to partici-
pate were highest in the workshop and lowest in
the questionnaire group (see Table 2).

As a communication method for the collabora-
tion of users and engineers in information analy-
sis, the workshop is to be recommended. It re-
quires the least effort, resolves conceptual dis-
crepancies quickly and evolves valid and best
definitions. Motivation of the participating em-
ployees and later acceptance of the entity type
definitions is highest. Interviews find partially
overlapping semantic perspectives with separate
and sometimes conflicting vocabularies. Differ-
ences must be resolved with additional effort.
Questionnaires are characterised by low motiva-
tion for usage.

5. An iterative-cyclic process model for software
development

Sufficient empirical evidence has accumulated
by now to show that task- and user-oriented pro-
cedures in software development not only bring
noticeable savings in costs, but also significantly
improve the software produced (Boehm et al.,
1981; Karat, 1990; Peschke, 1986; Rauterberg,
1991; Spinas and Ackermann, 1989). How then,
can the problems mentioned above be solved?

400 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

5.1. The concept of optimisation cycles

Systems theory distinguishes between ‘control’
(i.e. ‘feed forward’ or ‘open loop’ control sys-
tems) and ‘regulation’ (i.e. ‘feedback’ or ‘closed
loop’ control systems). The following are mini-
mum conditions in the case of ‘control’ for the
output to adjust as intended to the reference
input:

“(1) precise knowledge of the response of the
system being controlled, i.e. of the relation
between the controller output on the one
hand and the output and interference -
such as changes in the specifications — on
the other;

(2) precise knowledge of those quantities whose
effect on the system is detrimental to the
intended influence (interference or pertur-
bance, such as technical feasibility, etc.); if
the system has a response delay, then a
prognosis is needed for these interferences
at least for the period of the delay;

(3) knowledge of procedures for deriving con-
troller output from such information.

These conditions are hardly ever met in practice.

That is why it is constantly necessary to supple-

ment or replace control by regulation” (Schie-

menz, 1979, p. 1024).

Floyd and Keil (1983, p. 144) and Peschke
(1986, pp. 143ff.) come to the same conclusion in
the context of software development procedures.

The application of the highly effective ‘regu-
lation’ control principle actually only requires a
knowledge of those controller outputs which steer
the output in the desired direction: “In regula-
tion, the control apparatus takes into account the
results of the control procedure. There is thus a
feedback from the output of the regulated system
to the input of the regulating one” (Schiemenz,
1979, p. 1024).

It is already quite common to prescribe feed-
back between two successive phases (Sommer-
ville, 1989, p. 10; Boehm, 1988).

The distinction between boundary constraints
on the one hand and interference on the other is
that the boundary constraints are deliberately
and purposefully set (e.g. development costs, du-
ration of project, etc.), whereas interference is

Interferences,
Constrains

Goal, Task,

Boundary

Conditions, Test

Optimisation Optimised Outcome
Criteria T

Interferences,
Constrains

Fig. 6. The optimisation cycle in the context of an iterative
cyclic concept for software development (see also Peschke,
1986, pp. 143ff. and Deming, 1989).

unintentional and unanticipated (see Fig. 6). We
designate the ‘Action-Test-Cycle’ as an optimisa-
tion cycle (see also Deming, 1989; AMI, 1992;
Rauterberg, 1992). An important dimension of
the optimisation cycle is its length, i.e. the time
required to complete the cycle once. Depending
on the nature of the activity and the testing, the
length can be anything from a matter of a few
seconds to up to possibly several years. The longer
this period is, the more costly is the optimisation
cycle. It is the aim of user-oriented software
development to incorporate an optimisation cycle
that is as efficient as possible into software devel-
opment procedures (Nielsen, 1989, 1990; Karat,
1990).

If the general scheme of regulation is applied
to software development, then the individual
components of regulation are assigned as illus-
trated in Fig. 6. The optimisation criteria are all
relevant technical and social factors. Testing as-
certains the extent to which the optimisation cri-
teria are met, subject to the boundary constraints.
The action taken could come from a range of
extremely different procedures, methods or tech-
niques. All of this depends on the nature of the
work output. Interference could come from the
three barriers discussed above as well as from
technical and/or social problems in realising the
project.

Of course current software development also
avails itself of the principle of ‘regulation’ in
various places. What we have in mind here are
decisions made and directives issued by the client,

M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 4m

Maintenance Quadrant : IV

@

I : Analysis Quadrant

@

. . Statistics,
Discussions, Work-S L o e
Protocals) | Division of P T Interview nbitty Tew, [®
between Humans, Global [€~ As"f:‘“’-) enied
Task Analysis smen Uacronen
Results Benchmark
Test
Assessment
Results
Operation and
Maintenance
Human-Machine
Evaluation of | | Division of Functions,
Simulation Feasibility Studies .
Deliverable
Version
Usability Test,
; Integration Test
Production of
Simulations Beta Test
Optimised / /Rﬂm
- Definition of Running
Requirements \T/
Alpha-Test of
Test
Results
Preparation of Formal
Specifications Module or
Object Oriented
i 'ngh' Programming "Bug”
- Explorative Studies

II : Specification Quadrant Programming Quadrant : III

Fig. 7. Flow chart for a participatory software development model! showing the local optimisation cycles within and between
individual quadrants (I-1V).

402 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

the project management or other bodies as a
consequence of experience, ignorance, exercise of
power or purely and simply the pressure of time.
“It is frequently the case that control systems
operate more economically than (even possible)
regulation systems” (Buhr and Klaus, 1975, p.
1035) — but only if the conditions mentioned
above prevail! This is also the important reason
why the attempt is made to come as close as
possible to a particular control system, namely
the ‘Waterfall Model’. If, however, the barriers
discussed above are taken seriously, then we must
determine those places in software development
procedures at which optimisation cycles are indis-
pensable (see also Peschke, 1986, pp. 143ff.; Ret-
tig, 1991).

5.2. Embarking on the global optimisation cycle

The type of software to be developed has
proved to be one of the essential factors govern-
ing software development. The global optimisa-
tion cycle begins at Start-A of Fig. 7 when devel-
oping completely new software and at Start-B in
the case of further development and refinement
of existing software. Different concept-specific
local optimisation cycles are used to optimise

Table 3

specific work tasks, depending on the particular
type of the project at hand. It is up to the project
management to settle on the actual procedure
and this decision is reflected in the development
form chosen.

5.3. Global and local optimisation cycles

The use of optimisation cycles in software de-
velopment procedures depends on the following
conditions being met (Peschke, 1986): “(1.) A
modified project management model, which guar-
antees above all communication between those
concerned and the developers. (2.) Computer
supported version and documentation manage-
ment, which includes also the resuits of evalua-
tion and current criticism. (3.) Informing all those
involved about the project’s aims and the pecu-
liarities of the procedure, as well as training the
employees concerned. (4.) The fundamental will-
ingness of the developers to produce incomplete
software and to accept critique of it. (5.) The
expansion of the expertise of the developer be-
yond purely data processing technology as re-
gards measures in work structuring. (6.) The use
of a largely integrated software tool environment,

Survey of different methods of user-participation in the framework of optimisation cycles

Method

Action

Test

QOutcome

Cycle-length

Discussion-I
Discussion-II

Simulation-1

Simulation-II

Prototyping-I
Prototyping-I1
Prototyping-111
Versions-1

Versions-11

Verbal communication
Meta-plan, Flip-charts, etc.

Sketches, scenarios,
‘Wizard of Oz, etc.
Draughting of structural
blueprints, etc. with
(semi)-formal methods, ¢.g.
‘OrgMap’

Horizontal prototyping

Partial vertical prototyping

Complete vertical prototyp-
ing

First run through entire de-
velopment cycle
Consecutive run through
entire development cycle

Verbal interpretation
Visual and verbal inter-
pretation

Visual and verbal inter-
pretation

Visual and verbal inter-
pretation with suitable
qualification

‘Thinking aloud’,
‘Walk-through’
Heuristic evaluation

Task-oriented bench-
mark tests

Formative usability tests
Summative usability
tests

Global design decisions
Specific design deci-
sions

Specification of the in-
put/output interface
(Semi)-formal descrip-
tive documents. data
modelling

Specification of dia-
logue component
Partial specification of
application component
Specification of applica-
tion component

First largely complete
version

Several largely com -
plete versions

Seconds-minutes

Minutes—hours
Minutes—days

Hours-days

Days—weeks
Days-weeks
Weeks—months
Months-years

Months—years

M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 403

which supports the developer in repeated prepa-
ration and modification of the software. (7.) The
preparedness of all persons involved to learn
throughout the course of the project”.

Even if we assume that all the conditions listed
are more or less fulfilled, there still remains the
question of how to actually carry out the software
development project. To reach the goals of a
work-oriented design concept the first project
phases (requirement’s analysis and definition;
Quadrant-I in Fig. 7) should be replete with a
range of optimisation cycles.

6. Methods for user-participation

Simple and fast techniques for involving users
include discussion groups with various communi-
cation aids (Meta-plan, layout sketches, ‘screen-
dumps’, scenarios, etc.; see Spinas and Acker-
mann, 1989; Ehn and Kyng, 1991), workshops for
determining the attitudes, opinions and require-
ments of the users, the ‘walk-through’ technique
for systematically clarifying all possible work
steps, as well as targeted interviews aimed at a
concrete analysis of the work environment
(Grudin et al., 1987; Macaulay et al., 1990). Very
sound simulation methods (e.g., scenarios,
‘Wizard of Oz’ studies) are available for develop-
ing completely new systems without requiring any
special hardware or software. Spencer (1985) pre-
sents a summary of techniques for the analysis
and evaluation of interactive computer systems
(see also Crellin et al., 1990). Comparative stud-
ies, e.g. user-oriented benchmark tests (Lewis et
al., 1990; Rauterberg, 1991) and usability studies
(Dumas and Redish, 1993), can be undertaken
after the second time though, when working with
a version concept, for then there are at least two
versions available.

We used systems-theoretical considerations to
explain how each optimisation cycle consists of an
action and a test component that are suitably
coupled (Fig. 6). Each component can be of a
widely varying nature. Table 3 provides an
overview of the main focus of effort, of the nature
of activity, and of the tests, the outcome and the
expected range for the length of the cycle. The

shorter an optimisation cycle is, the more rapidly
— and therefore the more often — it can be used
to reach a truly optimal result.

A major problem in assuring adequate mesh-
ing of different, concurrent optimisation cycles is
synchronisation (see also Stovsky and Weide,
1991). If several optimisation cycles are simulta-
neously active at different places in the iterative-
cyclic process model (Fig. 7), then these concur-
rent cycles must be suitably synchronised. This is
particularly important, being the only way to min-
imise inconsistencies within the overall develop-
ment process. If, for example, there are addi-
tional consultations with the user and if specifica-
tion analyses are undertaken parallel to the im-
plementation phase, then it could easily happen
that the programmers end up writing programs
for the wastepaper basket because they are work-
ing to specifications that are superseded. This
problem is caused by the differing lengths of the
optimisation cycles involved and it becomes very
evident whenever the separate optimisation cy-
cles have not been adequately synchronised.

By the functional synchronisation principle we
mean fixing the sequence of the individual opti-
misation ‘quadrants’ in the sense of a functional
phase distribution. This principle is used primar-
ily in the Waterfall Model (the ‘milestone’ con-
cept) and leads necessarily to a dramatic increase
in the total length of the cycle when applied
exclusively to the version concept.

One way to at least partly overcome this draw-
back is to use the informational synchronisation
principle — appropriate information links are es-
tablished between the various optimisation cycles,
so that every person in each cycle is kept in-
formed about the current state of the cycles that
are active in parallel (Mambrey et al., 1986, pp.
791f.). This can be achieved using such simple
aids as document folders at a fixed location and
regular conference times. But technical support
can also be used (mailboxes, version data banks,
information repositories, etc.) (Jones, 1987, p.
193). Recent results from research into com-
puter-supported co-operative work (CSCW) can
be applied to the work environment of the devel-
oper (Brothers et al., 1991).

Another important synchronisation principle is

404 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

to ensure that participation in the different opti-
misation cycles is by the same set of people (see
also Floyd and Keil, 1983, pp. 171ff.). However,
this principle often flounders on organisational
forms based on the division of labour, which is
frequently encountered in software companies.
These software development divisions require a
reorganisation according to the occupational psy-
chological criterion of ‘completeness’ of work
tasks (Ulich, 1994). Since nobody can be in two
places simultaneously, we call this principle the
personal synchronisation principle.

6.1. Strengths and weaknesses of user-oriented
methods

We list some further aspects to be considered
when applying the various participatory methods,
going beyond their influence on the length of the
cycle. A method is fast, if the time to execute a
complete cycle is short (‘length of the cycle’).

Discussion methods I and II

Discussion is the method most frequently used,
because it is fast, familiar and to a certain extent
informative (see the ‘Communications barrier’
section). An optimisation cycle in the discussion
method is limited to communicative units such as
‘statement-counterstatement’, ‘question-—
answer’, etc. But because it rests essentially on
purely verbal communication, a series of misun-
derstandings can arise which often never come to
light or only do so when it is already too late.
Discussion must therefore be supplemented with
methods using visual communications techniques.

Simulation methods I and 11

Simulation methods comprise all techniques
that illustrate the work system to be optimised in
as realistic, visually perceivable a way as possible.
These range from simple, quickly completed
sketches, through template layouts (Ackermann,
1987, Ehn and Kyng, 1991) and semi-formal
methods (Kirsch, 1992) to formal description
techniques (SADT: Ross, 1977, RFA nets:
Oberquelle, 1987; SA /SD: Yourdon, 1989; Mar-
tin and McClure, 1985, and Boose, 1989, give an
overview of other techniques).

The unequivocal advantage of formal analyti-
cal and descriptive tools is that they force one to
perform a thorough and detailed investigation of
the domain to be described. The analysis focuses
on different aspects, depending on the particular
procedure involved. However, the concrete work
environment of the end-user is almost completely
neglected by most descriptive techniques. An-
other caveat: “The more detailed this specifica-
tion is, the more incomprehensible it becomes
(not only for Electronic Data Processing (EDP)
amateurs)” (Budde et al., 1986, p. 201). The more
formal the method of representation, the more
time consumed by its preparation. This is partly
due to the fact that when users participate, first
they need adequate training in operating and
interpreting such methods. Unfortunately this cir-
cumstance is often used to justify steering clear of
user participation when using formal methods of
representation.

Prototyping methods I, II and II1

As has already been mentioned, prototyping
methods make it possible to acquaint end-users
with the procedural character of the system being
developed. “Prototyping is about adequately
imaging a part of or the entire application system
in a working model for the future user to be able
to grasp the way the planned system works”
(Riiesch, 1989, p. 49). It is in this sense that
prototyping provides a particularly effective
method of communication between the user and
the developer: “The possibility of economically
applying prototyping in applications development
nevertheless requires three tools:

— a non-procedural language
- a data bank management system and
— a data dictionary” (Riiesch, 1989, p. 49).

Since the use of prototypes is always within the
test component of some optimisation cycle, they
must be readily modifiable: “Thus the period
elapsed between the suggestion by the user for
modification and his assessment of the modified
prototype must be as short as possible, for other-
wise motivational problems arise” (Kreplin, 1985,
p. 75).

Two kinds of prototypes can be distinguished:
the vertical and the horizontal. Horizontal proto-

M. Rauterberg et al. / international Journal of Industrial Ergonomics 16 (1995) 391-410 405

types contain only a very small number of applica-
tion-oriented functions from the end-product, the
emphasis being mainly on the presentation of the
sequence of templates incorporated in a dialogue
structure (Friedman, 1989, p. 291). Vertical proto-
types, on the other hand, go deeper. In a partial
vertical prototype only a few applications func-
tions are implemented and only in a rather rudi-
mentary fashion, whereas a complete vertical pro-
totype implements nearly every application func-
tion. This last procedure comes closest to the
traditional notion of what a prototype is (see also
Pomberger et al., 1987, pp. 20-21). This is the
very reason why Pomberger et al. (1987) prefer to
speak of a pilot system, even in the case of a
complete vertical prototype. As the vertical pro-
totype becomes complete, so does the distinction
from a version become more and more slurred.

The disadvantages of prototyping lie in the
fact that the prerequisites — the developer must
produce incomplete software (‘rapid prototyping’)
and then deal with critiques from the users — are
difficult if not impossible to meet. Another aspect
is that the traditional industrial notion of a ‘pro-
totype’ refers to a fully functional product. But in
the context of software development, this is more
properly called an ‘end-product’ and not a pre-
liminary variant: “The sad truth is that as an
industry, data processing routinely delivers a pro-
totype under the guise of a finished product”
(Boar, 1984).

Both of these aspects support the observation
that when prototyping is adopted, “the best pro-
totype is often a failed project” (Curtis et al.,
1987); “The fundamental idea of prototypes is to
iterate the design, not to FREEZE it” (Jorgen-
sen, 1984, p. 287).

Several authors place great value on simpler
and quicker user-oriented techniques to amelio-
rate this danger (Grudin et al., 1987; Nielsen,
1989, 1990; Ehn and Kyng, 1991).

The method of prototyping in the context of
an optimisation cycle faces the peril of leading to
an inadequate optimum. One reason for this is
the fact that being occupied with a concrete pro-
totype can blind one to fundamentally different
alternatives (Floyd, 1984, p. 15). One remedy is to
precede prototyping with, and to superimpose,

suitable optimisation cycles aimed primarily at
application contexts (see Fig. 7). Nevertheless,
there is no guarantee that the user is also a good
designer. One possible consequence of this is that
only less than optimal solutions end up being
produced iteratively (Jorgensen, 1984, p. 287).
Industrial norms and standards, and design crite-
ria for interactive software can be of assistance
here. “Prototyping is undoubtedly helpful but
there are practical limitations to its applicability.
In many cases it is essential to build a complete
system to create the necessary interaction before
judging a prototype” (Sutcliffe, 1988, p. 182).

Versions methods I and 11

As vertical prototyping is extended by increas-
ingly enriching the prototype with programmed
functionality, it undergoes a smooth metamor-
phosis mto the version method (Floyd et al,
1990). This procedure gained in significance in
the 80’s (Frihauf and Jeppesen, 1986; Friedman,
1989, p. 297) because it clearly best matches the
Waterfall Model in a software life cycle. The
version cycle as a global optimisation cycle is seen
here in the proposed participatory development
concept in the feedback between the application
phase and the prescription phase (Quadrant IV
and Quadrant I in Fig. 7). Floyd and Keil (1983)
describe a compatible process-oriented proce-
dure. Some authors speak of ‘evolutionary’ soft-
ware development in this context (Lehman and
Belady, 1985).

The basic advantage of the global optimisation
cycle lies unequivocally in the fact that it provides
the first opportunity to determine and test all
interactions between the usability and practicality
of each version within the context of the concrete
work environment. If the system being developed
is sufficiently complex, then certain flaws in its
design can only be detected in the real-life situa-
tion of the implementation phase (Quadrant IV
in Fig. 7). To keep to a minimum the modifica-
tions required, the system must be developed
from its very inception according to modern pro-
gramming concepts (documentation, modular
structure, object-oriented programming, etc.).

Repeatedly running through the global optimi-
sation cycle makes it impossible to avoid a certain

406 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

measure of upwards compatibility. It is therefore
necessary to include preceding optimisation cy-
cles in Quadrant I and Quadrant Il to minimise
the risk of fundamental design flaws (Peschke,
1986, p. 161). Peschke (1986) also correctly points
out that the very substantial cycle length in the
version method can lead to a breakdown in con-
tact between developer and user.

6.2. User-developer distance for participatory meth-
ods

Users cannot be adequately involved in partici-
patory software development without a whole
range of aspects being given serious consideration
(Vartiainen, 1989). The aspects we discuss here
can be brought together in the six-dimensional
umbrella concept of ‘user—developer distance’.
The user—developer distance varies according to
the type of project, so that different methods
become necessary to realise participation.

The application-related distance: This refers to
the extent to which the concrete application con-
text is known. Thus, for example, users might be
‘unloaded’ from their sections for the participa-
tion because their unsatisfactory qualification
renders them dispensable, or because they only
acquire the technical qualifications required dur-
ing their ‘participation period’. A serious prob-
lem arises from the fact that the application
context is still largely unknown, or is extremely
heterogeneous. This is especially true in the case
of the development of basically new, universal or
standard software.

The qualification distance: Whenever analytical
and descriptive techniques are used whose appli-
cation requires special training, all those who
come into contact with these techniques in their
regular routine must be suitably qualified. Fruit-
ful communication between user and developer
also requires that the developer be sufficiently
acquainted with the occupational activities of the
user to be able to ask the right questions. If users
are involved only to an insufficient extent, then
the developer will be faced with the problem of
acquiring the technical expertise himself. But
within the constraints of a development project
this is anything but an optimal path.

The organisational distance: If the development
department and the contracting department be-
long to the same organisation, then it is fre-
quently possible to come to a less formal contrac-
tual agreement than when they are parts of com-
pletely different organisations. The greater the
organisational distance the more extensive are
the contractual agreements needed to secure the
project.

The motivational distance: If users are insuffi-
ciently informed about the current stage of devel-
opment, if they have no opportunity for direct
influence, or if they lack the requisite qualifica-
tion, then serious motivational disturbances can
arise which hinder further co-operation. In par-
ticular, motivational distance can grow if the users
gain the impression that rather than having their
work burden alleviated, they could be falling vic-
tim to rationalisation measures.

The geographical distance: This always becomes
an important aspect whenever the workplace of
the users is at a substantial distance from the
location of the software development depart-
ment. It can prove to be extremely useful to carry
out as much of the development as possible in the
same building as the users to facilitate the quick-
est possible communication between users and
developer.

The temporal distance: This embraces all those
problems originating in the fact that the user’s
time is precious. Even when the user is in close
proximity, extensive feedback can be hindered by
the fact that the user may not be able to find the
time to participate in intensive discussions about
specifications. This problem frequently arises in
projects aimed at providing EDP support for
technically highly specialised users.

7. Conclusion

One of the principal problems of traditional
software development lies in the fact that those
who have been primarily involved in software
development to date have not been willing to
recognise that software development is, in most
cases, mainly a question of task, job and/or or-
ganisational planning. Were software develop-

M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 407

ment to be approached from such a perspective,
it would be planned from the beginning to engage
experts in occupational and organisational plan-
ning in the process of software design. This, how-
ever, would require interdisciplinary co-operation
between occupational and organisational experts
on the one hand and software development ex-
perts on the other. The extensive qualification
required in each of these fields makes it virtually
impossible to dispense with such interdisciplinary
co-operation.

We have presented here an iterative-cyclic
process model that integrates solution proposals
developed to date for overcoming the specifica-
tion, communication and optimisation barriers on
the basis of the notion of an optimisation cycle.
This consists of an action and a test component,
coupled to each other by feedback. The feedback
loops recommended at various places in the liter-
ature have been incorporated into a global cycle
as local optimisation ones. The global optimisa-
tion cycle can be subdivided into four regions: the
region where requirements are determined
(Quadrant I), the region of specification
(Quadrant II), the region of implementation
(Quadrant III) and the region of application and
maintenance (Quadrant IV).

Different aspects of the work system to be
designed can be progressively optimised as one
moves from quadrant to quadrant. The various
perspectives of the ideal sought take on progres-
sively more concrete form. An appropriate invest-
ment in optimisation in Quadrants I and II not
only helps to reduce the total cost (development
costs and application costs), but also leads to
optimally adapted hardware and software solu-
tions. This is because all subsequent users are
involved at least through representatives, and can
therefore incorporate their relevant knowledge
into the design of the work system.

As more effort is expended on optimisation in
the first quadrants, less is needed in Quadrant
IV. The amount of effort required for optimisa-
tion in the second and third quadrant depends in
essence upon the complexity of the work system
to be designed. The investment in Quadrant II
can be minimised for example with the help of
modern prototyping tools and specification meth-

ods which the user finds easy to understand.
Employing powerful development environments
and suitably qualified software developer min-
imises the investment in Quadrant III. Simultane-
ous engineering with cross-functional teams is
one important factor to increase productivity in
terms of cost- and time-reduction. Another im-
portant factor is the adequate synchronisation of
concurrent processes to avoid waste and conflicts.

Simultaneous software engineering discussed
in this paper is a systematic approach to the
integrated concurrent design of a software prod-
uct and its related processes. The presented iter-
ative-cyclic process model is intended to cause
the developers, from the outset, to consider all
elements of the software product life cycle. But
first and foremost, we must start learning to plan
jointly technology, organisation and the applica-
tion of human qualification. Technology should
be viewed as one way of providing the opportu-
nity to organise our living and working environ-
ments in a manner that is better suited to human
needs.

Acknowledgements

The preparation of this paper was supported
by the German Secretary of State for Research
and Technology (BMFT, AuT programme) grant
number 01 HK 706-0 as part of the BOSS ‘User
oriented Software Development and Interface
Design’ research project.

References

Ackermann, D., 1987. Handlungsspielraum, Mentale Repra-
sentation und Handlungsregulation am Beispiel der Men-
sch—Computer-Interaktion. Doctoral Thesis, Zurich: Work
and Organisational Psychology Unit, Swiss Federal Insti-
tute of Technology.

AMI, 1992. A quantitative approach to software management.
Centre for Systems and Software Engineering, South Bank
University, 103 Borough Road, London SE1 0AA, UK.

Boar, B.H., 1984. Application Prototyping: A Requirements
Definition Strategy for the 80s. John Wiley, New York.

Boehm, B.W., Gray, T. and Seewaldt, T., 1981. Prototyping
versus specifying: A multiproject experiment. IEEE Trans-
actions on SE, 10(3): 224-236.

408 M. Rauterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410

Boehm, B.W., 1981. Software Engineering Economics. Pren-
tice Hall, Englewood Cliffs, NJ.

Boehm, B.W., 1988. A spiral model of software development
and enhancement. Computer, May: 61-72.

Boose, J.H., 1989. A survey of knowledge acquisition tech-
niques and tools. Knowledge Acquisition, 1: 3-37.

Brothers, L., Sembugamoorthy, V. and Muller, M., 1991.
ICICLE: Groupware for code inspection. Proceedings of
the Conference on Computer-Supported Cooperative
Work. Association for Computing Machinery, New York,
pp. 169-181.

Budde, R., Kuhlenkamp, K., Sylla, K.H. and Zillighoven, H.,
1986. Prototypenbau bei der Systemkonstruktion -
Konzepte der Systementwicklung. Angewandte Infor-
matik, 5: 198-204.

Buhr, M. and Klaus, G., 1975. Philosophisches Worterbuch,
Das Europaische Buch, Berlin.

C.E.C. Commission of the European Communities, 1989. Sci-
ence, technology and societies: European priorities. Re-
sults and recommendations of the FAST II programme,
Summary Report. Directorate—General Science, Research
and Development, Brussels.

Crellin, J., Horn, T. and Preece, J., 1990. Evaluating evalua-
tion: A case study of the use of novel and conventional
evaluation techniques in a small company. In: D. Diaper,
G. Gilmore, G. Cockton and B. Shackel (Eds.), Human-
Computer Interaction — INTERACT ’90. Elsevier Science,
Amsterdam, pp. 329-335.

Curtis, B., Krasner, H., Shen, V. and Iscoe, N., 1987. Initial
results from a field study of large software development
projects. Unpublished manuscript (Reference in: J. Grudin,
S.F. Ehrlich and R. Shriner).

Deming, W.E., 1989. Out of the Crisis. Massachusetts Insti-
tute of Technology, Cambridge, MA.

Dumas, J.S. and Redish, J.C,, 1993. A Practical Guide to
Usability Testing. Ablex, Norwood, NJ.

Ehn, P. and Kyng, M., 1991. Cardboard computers: Mocking-
it-up or hands-on the future. In: J. Greenbaum and M.
Kyng (Eds.), Design at Work: Cooperative Design of Com-
puter Systems. Lawrence Erlbaum, Hillsdale, NJ, pp. 169-
195.

Floyd, C., 1984. A systematic look at prototyping. In: R.
Budde, K. Kuhlenkamp, K.H. Sylla and H. Zillighoven
(Eds.), Approaches to Prototyping. Springer, Berlin, pp.
1-15.

Floyd, C. and Keil, R., 1983. Adapting software development
for systems design with user. In: U. Briefs, C. Ciborra and
L. Schneider (Eds.), System Design for, with, and by the
Users. North-Holland, Amsterdam, pp. 163-172.

Floyd, C., Mehl, W.M., Reisin, FM. and Wolf, G., 1990.
Projekt PETS - partizipative Entwicklung transparen-
zschaffender Software fiir EDV-gestitzte Arbeitsplitze.
Technical Report, Department of Computer Science,
Technical University of Berlin.

Friedman, A.L., 1989. Computer Systems Development -
History, Organization and Implementation. John Wiley,
Chichester.

Frithauf, K. and Jeppesen, K.J., 1986. Software development:
The staircase approach. In: IFAC Experience with the
Management of Software Projects, Heidelberg, pp. 115~
123.

Grudin, J., Ehrlich, S.F. and Shriner, R., 1987. Positioning
human factors in the user interface development chain.
Proceedings of CHI+ GI '87. Association for Computing
Machinery, New York, pp. 125-131.

Jones, T.C., 1987. Effektive Programmentwicklung. McGraw-
Hill, Hamburg.

Jorgensen, A.H., 1984. On the psychology of prototyping. In:
R. Budde, K. Kuhlenkamp, K.H. Sylla and H. Ziillighoven
(Eds.), Approaches to Prototyping. Springer, Berlin, pp.
278-289.

Karat, C.M., 1990. Cost—benefit analysis of iterative usability
testing. In: D. Diaper, G. Gilmore, G. Cockton and B.
Shackel (Eds.), Human-Computer Interaction — INTER-
ACT °90. Elsevier Science, Amsterdam, pp. 351-356.

Kirsch, C., 1992. Evaluation der Erhebungsmethoden zur Be-
nutzerbeteiligung bei der Datenmodellierung aus psychol-
ogischer Sicht, Unpublished Diploma Thesis at the Uni-
versity of Konstanz, Germany.

Kreplin, K.D., 1985. Prototyping - Softwareentwicklung fir
den und mit dem Anwender. Handbuch der Modernen
Datenverarbeitung, 22(126): 73-126.

Lehman, M.M. and Belady, L.A., 1985. Program Evolution -
Processes of Software Change. Academic Press, London.

Lewis, J.R., Henry, S.C. and Mack, R.L., 1990. Integrated
office software benchmarks: A case study. In: D. Diaper,
G. Gilmore, G. Cockton and B. Shackel (Eds.), Human—
Computer Interaction — INTERACT *90. Elsevier Science,
Amsterdam, pp. 337-343.

Macaulay, L., Fowler, C., Kirby, M. and Hutt, A., 1990.
USTM: A new approach to requirements specification.
Interacting with Computers, 2(1); 92-118.

Mai, M., 1990. Sprache und Technik. Zeitschrift des Vereins
Deutscher Ingenieure fiir Maschinenbau und Metallbear-
beitung, 132(7): 10-13.

Mambrey, P., Oppermann, R. and Tepper, A., 1986. Com-
puter und Partizipation. Westdeutscher Verlag, Opladen.

Martin, J., 1989. Information Engineering, Book I: Introduc-
tion. Prentice Hall, Englewood Cliffs, NJI.

Martin, J. and McClure, C., 1985. Diagramming Techniques
for Analysts and Programmers. Prentice Hall, Englewood
Cliffs, NJ.

Nielsen, J., 1989. Usability engineering at a discount. In: G.
Salvendy and M.J. Smith (Eds.), Designing and Using
Human-Computer Interfaces and Knowledge Based Sys-
tems. Elsevier Science, Amsterdam, pp. 394-401.

Nielsen, J., 1990. Big paybacks from ‘discount’ usability engi-
neering. IEEE Software, 7(3): 107-108.

Oberquelle, H., 1987. Sprachkonzepte fiir benutzergerechte
Systeme (Informatik-Fachberichte, No. 144). Springer,
Berlin.

Oppermann, R., 1983. Forschungsgegenstand und Perspek-
tiven partizipativer Systementwicklung. Oldenbourg,
Miinchen.

M. Rawterberg et al. / International Journal of Industrial Ergonomics 16 (1995) 391-410 409

Peschke, H., 1986. Betroffenenorientierte Systementwicklung
(Europaische Hochschulschriften, Reihe XLI, Informatik,
Vol. 1.1). Peter Lang, Frankfurt.

Pomberger, G., Bischofberger, W., Keller, R. and Schmidt,
D., 1987. Prototypingorientierte Softwareentwicklung, Teil
1. Technical Report No 87.05, Department of Computer
Science, Winterthurerstrasse 190, CH-8057 Zurich.

Rauterberg, M., 1991. Benutzungsorientierte Benchmark-
Tests: eine Methode zur Benutzerbeteiligung bei Stan-
dardsoftwareentwicklungen. In: D. Ackermann and E.
Ulich (Eds.), Software-Ergonomie *91 (Reports of the Ger-
man Chapter of the ACM, Vol. 33). Teubner, Stuttgart,
pp. 96-107.

Rauterberg, M., 1992. Optimisation cycle: A concept for opti-
mal software development. In: R. Trappl (Ed.), Cybernet-
ics and System Research, Vol. 1. World Scientific, Singa-
pore, pp. 279-286.

Rauterberg, M., Spinas, P., Strohm, O., Ulich, E. and Wae-
ber, D., 1994. Benutzerorientierte Softwareentwicklung ~
Konzepte, Methoden und Vorgehen zur Benutzerbeteili-
gung. Teubner, Stuttgart.

Rettig, M., 1991. Testing made palatable. Communications of
the ACM, 34(5): 25-29.

Ross, D.T., 1977. Structured analysis (SA): A language for
communicating ideas. IEEE Transactions on Software En-
gineering, SE 3(1): 16-34.

Riiesch, P., 1989. Entwicklungsumgebung. Output, 11: 45-51.

Schiemenz, B., 1979. Kybernetik. Handworterbuch der Pro-
duktionswissenschaft. Poeschel, Stuttgart.

Shlaer, S. and Mellor, S.J., 1988. Object-Oriented Systems
Analysis: Modeling the World in Data. Prentice Hall,
Englewood Cliffs, NJ.

Sommerville, 1., 1989. Software Engineering. Addison Wesley,
Wokingham.

Spencer, R.H., 1985. Computer Usability Testing and Evalua-
tion. Prentice Hall, Englewood Cliffs, NJ.

Spinas, P. and Ackermann, D., 1989. Methods and tools for
software development: Results of case studies. In: F. Klix,
N. Streitz, Y. Waern and H. Wandke (Eds.), Man—Com-
puter Interaction Research, MACINTER-II. North-Hol-
land, Amsterdam, pp. 511-521.

Strohm, O., 1991. Arbeitsorganisation, Methodik und Be-

nutzerorientierung bei der Software-entwicklung. In: M.
Frese, C. Kasten, C. Skarpelis and B. Zang-Scheucher
(Eds.), Software fir die Arbeit von morgen. Springer,
Berlin, pp. 431-441.

Strohm, O. and Ulich, E., 1991. Arbeitsteilung und Benutze-
rorientierung bei der Software-Entwicklung. In: F. Elzer
(Ed.), Multidimensionales Software-Projektmanagement.
Hallbergmoos, pp. 261-289.

Stovsky, M.P. and Weide, B.W., 1991. Access control strate-
gies for coordinating teams of software engineers. Interna-
tional Journal of Software Engineering and Knowledge
Engineering, 1(1): 57-73.

Sutcliffe, A., 1988. Human-Computer Interface Design.
Macmillan, London.

Tucker, D.E. and Leonard, R., 1994. Overcoming the cultural
barriers to implementing concurrent engineering. In: P.
Kidds and W. Karwowski (Eds.), Advances in Agile Manu-
facturing. IOS Press, Amsterdam, pp. 67-70.

Udris, I. and Ulich, E. 1987. Organisations-und Tech-
nikgestaltung: ProzeB und partizipationsorientierte Ar-
beitsanalysen. In: K. Sonntag (Ed.), Arbeitsanalyse und
Technikentwicklung — Beitrige fir Einsatzmdoglichkeiten
arbeitsanalytischer Verfahren bei technischorgan-
isatorischen Anderungen. Wirtschaftsverlag Bachem, Kéin,
49-68.

Ulich, E., 1994. Arbeitspsychologie (3rd edition). Poeschel,
Stuttgart.

Vartiainen, M., 1989. Participation: Planning for themselves
or planning for others? Psychological task analysis, design
and training in computerized technologies. Technical Re-
port No. 113, Helsinki University of Technology, Otakaari
4 A, SF-02150 Espoo, Finland, pp. 121-135.

Yeh, R.T., 1991. System development as a wicked problem.
International Journal of Software Engineering and Knowl-
edge Engineering, 1(2): 117-130.

Yourdon, E., 1989. Modern Structured Analysis. Prentice-
Hall, Englewood Cliffs, NJ.

Zo6lch, M. and Dunckel, H., 1991. Erste Ergebnisse des Ein-
satzes der ‘Kontrastiven Aufgabenanalyse’. In: D. Acker-
mann and E. Ulich (Eds.), Software-Ergonommie '91. (Re-
ports of the German Chapter of the ACM, Vol. 33).
Teubner, Stuttgart, pp. 363-372.

