| task analysis

| human-computer interaction
logfile recording
Petri-net

IPO~Center for Research on User-System In-
teraction Eindhoven University of Technology
(EUD), Eindhoven, The Netherlands

IHA-Institute for Hygiene and Applied Physio-
logy Swiss Federal Institute of Technology
(ETH), Ziirich, Switzerland

Summary

Task solving processes produced by computer
users (observed process) contain much informa-
tion about their mental task models; individual
problem solving strategy and underlying decision
structure for a given task. Our tool AMME analyses
observed processes and automatically extracts a
Petri net description of the task dependent deci-
sion' structure (logical task structure, device mod-
el, resp.). This: net was extended by goal setting
structures (modeling) and can be executed (simu-
lated process). The aim of simulation is functional
equivalence between observed and simulated pro-
cesses. Three modeling strategies, event-driven,
parallel goal setting, and regulation-driven goal
setting are presented and discussed. Regulation
driven goal setting leads to full functional equiva-
lence.

Zusammenfassung

Aufgabenanalyse in der Mensch-Com-
puter Interaktion — Bestitigung der
Handlungsregulationstheorie mittels
Simulation

Aufgabenanalyse / Mensch-Computer Interaktion /
Logfileaufzeichnung / Petri-Netz

Der unmittelbar beobachtbare und automatisch
protokollierbare Aufgabenbearbeitungsprozess in
der Mensch-Computer Interaktion enthilt sehr viel
Informationien iiber das mentale Aufgabenmodell
des jeweiligen Benutzers: {iber seine individuelle
Problemldsungsstrategie, sowie die zugrundelie-
genden kognitiven Entscheidungsstrukturen fur
die jeweilige Aufgabe. Das von uns entwickelte
Werkzeug AMME analysiert diese Art von proto-
kollierten Aufgabenbearbeitungsprozessen und
extrahiert automatisch die aufgabenabhingige
Entscheidungsstruktur (auch “logische Aufgabens-
truktur oder “Geritemodell“ genannt) in Form ei-
nes Petrinetzes. Dieses Petrinetz wurde nun um
Zielsetzungsstrukturen erginzt, sodass es im Rah-
men einer Simulation sinnvoll ausfiihrbar wird.
Diese Simulation erzeugt selbst wiederum einen
Aufgabenbearbeitungsprozess, der mit dem ur-
spriinglich empirisch beobachteten Prozess auf
funktionale Aquivalenz verglichen werden kann.
Um eine moglichst gute Ubereinstimmung zu er-
zielen, wurden drei verschiedene Modellierungs-
strategien eingesetzt: (1) Ereignis getriggert, (2)
Zielbildung als mental paralleler Prozess, und (3)
im Sinne der Handlungsregulationstheorie als
“vollstindige“ Aufgabe. Diese dritte Modellie-
rungsstrategie ergibt eine 100%ige funktionale
Aquivalenz zwischen beobachtetem und simulier-
tem Aufgabenbearbeitungsprozess.

From Matthias Rauterberg and Morten Fjel; |

1 Introduction

Tasks as goal oriented actions are one of
the most important aspects of Human-
Computer Interaction (HCD. We can hard-
ly think of any significant activity not
being goal related. Understanding how
people bring about their deliberate ac-
tions can hardly fail to have general, use-
ful value as well as intrinsic, scientific in-
terest. The development of tools to sup-
port the study of goal-directed tasks is in
the central focus of work psychology.

From former projects we can conclude
that it is possible to build tasks models
showing high functional equivalence with
the original task solving behaviour (Rau-
terberg 1993). In this paper different ana-
lysis and modeling approaches will be for-
mulated (event-driven, parallel and regu-
lation-driven goal setting strategies) and
Petri net models will be elaborated, exe-
cuted and discussed. The functional
equivalence is assured by means of a simi-
larity norm measuring the difference be-
tween model and real task solving beha-
viour. The similarity between model out-
put and real task solving behaviour varied
with the modeling approach, but seems to
be subject independent.

Our approach is founded on the tradition
of activity theory. Hence, the notion of
complete regulation respectively tasks, is
of crucial importance. With the regula-
tion-driven goal setting strategy, we man-
aged to analyse, model and simulate com-
plete tasks. We achieved a convincing si-
milarity between real and modelled task
solving behaviour.

The main goal of the presented work is to
offer work psychologists a powerful, ac-
cessible and user friendly modeling tool.
The tool shall offer suppert in the study of
goal-directed task solving behaviour by
generating executable, Petri net based,
task models.

Contrary to classical approaches, we sug-
gest . automatic logging of behavioural
data. This approach is well suited for the
context of HCIL. Each logfile contains the

152 Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulation

complete task solving process in form of:
an action sequence. This clear, objectiva’
way of data collection gives good reascy
to investigate task solving processes in the
HCI context. It is a frequent problem thy; -
sequential data sets are large and com.
plex. Therefore, our approach goes. fg
computer-based generation of task mod-
els, based on summaries of sequentig
data. Our concept has proven its strength
in building and using such models for ex:
isting HCI situations. i

Several methods are developed and used |
to study task solving processes in HCI: .
e questionnaires and interviews (Scott
Osgood & Peterson 1979),
e scoring rationale of observable beha
viour (McDaniel & Lawrence 1990),
e protocol analysis based on actions an
utterances (Ericsson & Simon 1984),
e formal models (Kieras & Polson 1985
and executable models (Ritter & Larkin:
1994).

The normal design cycle to construct-an’
executable model of human behaviour i
a task dependent top down approach (d
Haan, van der Veer & van Vliet 1991). Gi
ven a top down constructed model, it ha
to be validated with empirical dat '
(Schroder et al. 1990, Ritter & Larkin

1994).

1.1 On task models and modeling in
Human-Computer Interaction

Geoffrion (1989) describés modeling pro
cesses on four different levels:
modeling traditions,

e modeling paradigms,

e model classes, and

o specific models.

In the context of this project our modeling
tradition is cognitive ergonomics for the
design of interactive software systems
“Cognitive ergonomics is oriented ©
wards optimising human-machine Sys
tems, according to three types of criteri2
characteristics of human cognitive pro
cesses, software science knowledge, and

52 (24 NF) 1998/3 Z. Arb. Wiss

knowledge in diverse work domain tech-
gologies” (Green & Hoc 1991, p. 301).

All classes of task models describing
aser's goal-directed task solving beha-
yiour are our modeling paradigm. Activity
theory is our theoretical background to
Jook on human task solving behaviour-as
a goal-directed action sequence.

Al interactive processes generated by
users over different tasks with a concrete
interactive system forms our model class.
In our context a_specific model is a con-
crete user solving a specific task with a
real computer system (Peck & John 1992).

There are different formalisms for con-
structing models of cognitive processes:
different kinds of grammars BNF (Reisner
1981), EBNF (Reisner 1984), GOMS (Card,
Moran & Newell 1983), Cognitive Com-

“=plexity Theory (Kieras & Polson 1985),
and Soar (Newell 1990) etc. Most of these
methods have only a textual representa-
tion of the model’s content.

Using any of these methods the investiga-
tor must always design the pure (more or
less ’error free”) user and/or task model in
atop down approach based on a task ana-
lysis (Booth 1991, Ritter & Larkin 1994).
Then he can try to prove his process mod-
el step by step with ’error free’ data
(Churchill 1992). This is often difficult,
time consuming, and expensive (Kellog &
Breen 1990). To overcome these obstacles
Ritter and Larkin (1994) describe an ap-
proach for building process models that is
partially supported by software tools.

Ritter and Larkin (1994) present a metho-
dology for an iterative cyclic modeling
process and show how it can become
tractable, in particular, by means of good
computer tools. It is a methodology for
developing and using process models to
summarise sequential data, particularly
for HCI tasks. This methodology is called
Trace Based Protocol Analysis (TBPA). Rit-
ter and Larkin (1994) describe a prototype
environment to present Soar/Model-Test-
ing (SMT), giving integrated support to
_TBPA.

The similarity of a TBPA/SMT model with
the empirical data can be controlled by
the Dynamical Structure and the Process
Rate Graph tools. They both give an im-

mediate graphical impression of what

model parts are supported, and not, by
protocolled data and indicate where there
is potential for model improvement. On
the other hand there is little inherent
guide for improvement when inspecting
the model itself by the Graphic Model Dis-
play. Finally, TBPA/SMT offers no direct
metric for similarity but only graphical
Considerations. This most elaborated

LL 52 (24 NF) 1998/3 Z. Arb. wiss.

modeling approach in the context of Al is
only partially supported by software tools.

Oberquelle (1984) shows, that several no-
tions of 'model’ are in use:

(1D a model of an axiom system, (2) a
known system with structure and beha-
viour analogous to the system under con-
sideration, (3) a prototypical system in the
sense of 'model farm’, or (4) an abstract
description of the relevant aspects of a
system.

Class (1) models are normally given in
terms of mathematical formulas. A class
(2) model can be called an ’exact analogy’
in the sense of a special case of a meta-
phor (e.g., 'neural’ networks). Class (3)
models are developed in the context of tu-
torial systems (e.g., Schroder et al. 1990).
Class (4) models are useful to classify and
explain phenomena of the modelled sys-
tem. We present in this paper a method to
generate class (4) models (we call them
“tasks or mental models®).

Tasks models consist of different struc-
tures to represent knowledge (Dutke
1994). Following the concept of Rasmus-
sen (1986) we have to take into considera-
tion (1) a knowledge based, (2) a rule
based, and (3) a skill based level. Rasmus-
sen (1986, p.140) was not so much inter-
ested in the true description of some per-
son’s mental task models in some specific
situation, but rather in a useful description
of possible mental task models that can be
effective for persons in various tasks, and
therefore useful for system design and
evaluation.

In the context of research about goal di-
rected task solving behaviour, a quite si-
milar concept was developed, called ac-
tivity theory or action regulation theory
(von Cranach & Harré 1982, Frese & Sabi-
ni 1985, Hacker 1986, Volpert 1994).

1.2 Activity Theory—Action
Regulation Theory

Leontyev’s three-level schema (Leontyev
1978) describes the sphere of analysis and
directs the attention to the transformations
going on between three levels (Leontyev
1978, von Cranach 1982, Hacker 1986, En-
gestrom 1991):

(1) motive —> activity, (2) goal —> action,
and (3) instrumental conditions —> opera-
tions.

(Note the similarity to the model in (Ras-

mussen 1986): knowledge based, rule.

based, and skill based level.y

These three levels are organised in a hier-
archical structure where the top level of
activities includes several actions that are
performed by appropriate operations. In a
‘pure’ objective way only the operational
level can be observed and analysed. The
goal setting and motivational level must
be derived or investigated by indirect
methods (e.g., questionnaire, interview,
thinking aloud) based on the introspec-
tive observations of the investigated sub-
jects.

Action regulation theory (Hacker 1994) of-
fers a coherent body of principles for hu-
man-centred task and work design. For
Hacker (1986) the work task is “the cen-
tral category of psychological considera-
tion of activity..., as decisive specifications
for the regulation and organisation of the
activities occur with the ‘objective logic’ of
its contents“. Therefore, in the context of
action regulation theory, the task has
great importance for the behavioural ana-
lysis. The concept of complete task calls
for particular attention.

Hellpach (1922, p.27) described the task
concept as follows: “A task consists of
one’s own planning and design~if not de-
sign of the task, design of its solution, in-
cluding choice between various possibili-
ties, decision for one of these, taking re-
sponsibility for the decision, the ways of
performance, while completing the task
the constant, infinitesimal evaluation of
success related to the mentally repre-
sented goal, and finally, the belief that it
was well done“. Hellpach’s description al-
ready included the main elements of the
concept of the complete task as defined
by Tomaszewski (1981, p.23): “A com-
plete task contains three basic elements:
diagnosis of the starting situation, outline
(project) of a new situation and a program
of realizing activities. During the course of
the task performance, these three ele-
ments are supplemented by a continuous
diagnosis of the changing situation®
These are the basic constituents of Hack-
er’s concept of complete activity (Hacker

1986).

Characteristics of complete tasks are, ac-
cording to the concept of action regula-
tion theory presented here (Ulich et al
1991):

(A) Task dependent setting of (sub-)goals
which are embedded in the superimposed
task goal;

(B) Independent action preparation in the
sense of taking on planning functions;
and, selection of the means including the
necessary actions for goal attainment;

(C)Mental or physical performance func-
tions with feedback on performance per-
taining to possible corrections of actions;

Task Analysis in Human-Computer Interaction - supporting action regulation theory by simulation 153

(D) Control with feedback on results and
[the possibility of checking the results of
one’s own actions against the set (sub-)
goals.

Solving a task or problem—in the context
of action regulation theory—means that the
user has to follow four steps: (1) goal set-
ting, (2) planning and selection of means,
(3) perform the selected action, (4) check
the outcome against the intended goal.

Incomplete activities—or partialized ac-
tions—“lack, to a large extent, possibilities
for independent goal-setting and deci-
sion-making, for developing individual
work styles or sufficiently precise feed-
back® (Hacker 1987, p.35). Complete ac-
tivities (or tasks) offer the possibility of
setting goals and sub-goals, as well as of
offering decision-making possibilities dur-
ing the various phases of task completion,
and therefore provide latitude of activity
or action. Complete activities are there-
fore becoming fundamental for realising
the concept of action regulation. Goals
are organised in a hierarchical or heter-
archical tree structure (Hacker 1986).

In activity theory, task solving behaviour
can be treated at three hierarchical levels.
The conscious part takes part at the inter-
mediate action-level whereas the opera-
tion-level describes the automatic' se-
quences of behaviour. Both levels are em-
bedded in a context, the uppermost activ-
ity-level. Certain behaviour can merge be-
tween the action- and the operation-level,
called “focus shift* (Nardi 1996). The fo-
cus shift can either be seen as learning,
where behaviour that used to require con-
scious attention has been integrated by

the subject, and becomes an automatic -

operation. Such operations are performed
fluently without paying conscious atten-
tion. Or there’s the opposite shift, beha-
viour merging from the operation to the
action level, for instance ‘when a pre-
viously know behaviour has to be reacti-
vated. This effort can be required after sig-
nificant absence from practice but also
due to new, modified or erroneously de-
signed artefacts.

“Action Theory seems to be an integrative
long-term approach that is still developing
especially with the development of hier-
archically subordinate sub approaches.
Action Theory is still more a heuristic
broad-range framework than a final theo-
ry. ... The integrative power of Action
Theory will bridge some . interrelated
gaps: the gap between cognition (and
knowledge) and action, the gap between
cognition and motivation (see goal orien-
tation), and even the gap between basic
and more applied approaches ...“ (Hacker
1994, p.113). Our main research interest
is bridging both gaps.

1.3 The task domain in HCI

A user of a computer system must learn
the "language’, i.e., a set of symbols, their
syntax, and operations connected to
them, to evoke [inter-Jaction sequences
(the interactive ’processes’) related to task
and sub task functions. So, the user repre-
sentation of a system structure is a model
of a virtual machine. A *virtual machine’ is
defined as a representation of the func-
tionality of a system (functional units and
their behaviour). The most important
point for the user is the relation between
task and machine, and not so much the
internal structure of the machine’s system.
Consequently, the task for the human fac-
tors engineer is to model a suitable inter-
face as a representation of the virtual ma-
chine which can serve as a possible men-
tal representation for the user.

The symbolic representation of the ma-
chine system consists of the following ele-
ments: 1. objects (things to operate on), 2.
operations (symbols and their syntax),
and 3. states (the ’system states’). The
mental model of the user can be struc-
tured in representing: objects, operations,
states, system structure, decision and task
structure.

In the context of human-computer inter-
action we have to operationalize the theo-
retical terms: (1) activity is a task like
'writing a letter’, (2) action is an instruc-
tion to the computer to do something
(e.g., create a new document), and (3) op-
erations are a sequence of steps to per-
form an action (e.g., input of the com-
mand ’p’, T, T, ‘0, ’t’, 'CR). A task solu-
tion is g1ven in form of a sequential order
of operations. All related operations can
be grouped to actions. The complexity of
a task depends on the number of different
actions/operations, the length of the goal-
directed sequence, and the size of the ac-
tion/operation space (number of possible
actions/operations in a given system
state).

In the context of human-computer inter-
action a sequence of operations can easily
be described as linear state-transition dia-
gram: s1 —> tl —> s2 —> 12 —> etc. To mod-
el the user’s knowledge with finite state-
transition nets, Sanderson, Verhage and
Fuld (1989) showed that a state space ap-
proach works well for the domain of pro-
cess control. The most powerful environ-
ment to simulate state-transition diagrams
is a Petri net simulator.

1.4 Modeling with Petri nets

A net can be described as a mathematical
structure consisting of two non-empty dis-
joint sets of nodes (S-elements and T-ele-
ments), and a binary flow relation (F)

154 Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulation

(Peterson 1981). The flow relation |
only different node types and leaveg’
node isolated (Petri 1980). Petri nets
be interpreted in our context by usj,
suitable pair of concepts for the segg
(signified by a circle *()) and T (signjf
by a square [1) and a suitable interpye
tion for the flow relation F (signified by
arrow "->").

1-save Petri nets consist of the three 1
elements (S, T, F) and can be interprey
as causal nets, modeling causal relatg
only. If we want to simulate dynamic pro,
cesses in time, we need a new element ¢,
signify activities. This additional elemem
is called a roken.

Condition-event nets run with unmarked
tokens. An event occur if certain precg
ditions are fulfilled and after the occyy
rence, certain post conditions hold. A g
ken in the circle of an S-element meapns
that the corresponding condition holds_[f
we need a distinction between differen;
types of token, we mark them in a charac.
teristic way.

Place-transition nets run with marked to-
kens.

These three net types are all designated
Petri nets. Torn (1985) gives us an over
view of four important advantages of Petri
nets: :
e Petri nets are theoretically well foun:
ded. ;
e Petri nets are well suited for describirig
asynchronous concurrent processes.
® A Petri net simulator tool is simple and
easy to learn.
e Both top down and independent mode:
ling (including validation) is possible. ~

The means-activity interpretation allows
one to describe the static structure of 2
system with several active and passive
functional components: means (S) = rea
or informational entity, and activity [T] =
(repeatable) interaction with or action of 4
system. The flow relation F means: [a] ->
(m), the activity /a/ (e.g., a user action):
produces means (m) (e.g., a system state)
(m) -> [al, activity [a/ uses means ()
(Oberquelle, Kupka & Maass 1983).

The classification of Petri nets starts from
three basic net types (Bernadillo & De

Cindio 1992): !
o Petri Net systems of type-1 are characte
rised by ’boolean tokens’, i.e. places ar
marked by at most 1 unstructured token.
@ Petri Net systems of type-2 are characte
rised by ’integer tokens’, i.e. places ar¢
marked by several unstructured tokens =
they represent counters.
® Petri Net systems of type-3 are characté
rised by high-level tokens, i.e. places 4
marked by structured tokens where mef
mation is attached to them.

52 (24 NF) 1998/3 Z. Arb. Wis5

quman and Turano (1986) showed, that
; Petﬂ' nets of type-1 are equivalent to ana-
Jysis and modeling approaches based on

roduction rules (like CCT of Kieras &
polson 1985). In this sense, the presented
ap roach can be subsumed under ‘logic

modeling’, too.

2 The user driven task analysis
approach

The current state of our own work can be
described as a new, partially automatic,
pottom up approach to construct a formal
description of user task and problem sol-
ving behaviour. Our methodology gener-
ates task and mental models in a clear, ob-
jective way. The formalism we use is the
net theory. Our method is strictly based
on objective recorded, goal-directed ac-
tion sequences. Figure 1 gives a good
overview of our modeling strategy: (1
Collect behavioural data (generated by an
unknown cognitive task structure), (2)
generate a device model of the behaviour-
al sequence, (3) add goal setting structure,
(4) add sequential and temporal informa-
tion from the behavioural sequence, (5)
execute the generated model, and (6) vali-
date functional equivalence between the

original behavioural sequence and the
model sequence.

The developed method is an integrated
modeling environment supported by the
tool kit AMME. The automatic and there-
fore highly objective way of collecting be-
havioural data can be done in the context
of human-computer interaction with the
method ’logfile recording’. To record a
user’s goal-directed action sequence the
investigator needs a specially prepared in-
teractive software product (or additional
recording software; e.g., the LOG soft-
ware of Regenass 1995).

2.1 The basic idea

The main operations (relations) between
two Petri nets are abstraction, embedding
and folding (Genrich et al. 1980). The
Jolding operation is the basic idea of the
approach implemented in AMME. Folding
a process means to map S-elements onto
S-elements and T-elements onto T-ele-
ments while keeping the F-structure. The
result is a device model (Figure 1, step 2).
Each state corresponds to a system con-
text, and each transition corresponds to a
user’s action or operation.

The aim of the ’folding’ operation is to re-
duce the elements of an empirically ob-
served task solving process to the mini-
mum number of states and transitions,
with the reduced number of elements
being the logical 'task structure’ or 'device
model’ (as a part of the whole dialog and
system structure of the interactive soft-
ware). Folding a task solving process ex-
tracts the embedded net structure and
neglects the amount of repetition, the se-
quential action order and the temporal
structure of the process.

2.2 Complete versus incomplete
logfiles

Recording the observable behaviour in
form of a complete ...-> (state) -> [transi-
tion] > (state) - >... process description
makes the analysis and construction of the
net structure very simple: You have only
to count the number of all different states
and transitions used, or to mark on a list
the frequencies of each state and transi-
tion used in the recorded process.

But, if the observable behaviour can only
be recorded in an incomplete (e.g., ...=>
(state) -> [transition] -> [transition] ->... or
..=> (state) > (state) -> [transition] ->...)

e N ~

Human mental model

?

- Adding goal
setting
structure

Device model

Observation
of human
behaviour

O

Adding sequential
and temporal
information

Automatic
transition

Automatic
transition

. G2 M3 F3
- -Gl

1ORS

(" Reconstructed
mental task model

Model
execution

User
key press Automatic

transition

original behavioural sequence

a2 3 ' M3
G N D

User Automatic

key press transition

OF

simulated behavioural sequence

Validation of the functional equivalence,
computed by the similarity ratio (SR)

Figure 1: The six steps in our task analysis and modeling concept.

5224 NF) 1998/3 Z. Arb. wiss. Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulation 155

process description, then the analysis and
construction of the net structure is diffi-
cult. You have to find out the correct state
(transitions, resp.) between both transi-
tions (states, resp.). Unfortunately, this is
the most frequent case in practice, be-
cause most of all existing interactive soft-
ware products do not have a complete in-
ternal representation of all possible sys-
tem states or transitions.

For all interactive software products with
no internal state representation we need
automatic tool support. For these cases
we developed the tool kit AMME, that
gives us the possibility to analyse any pro-
cesses with an incomplete process de-
scription, that are generated by finite state
transition nets. The price we have to pay
is the definition of a complete state transi-
tion list of all relevant transitions before-
hand (= the complete internal state-transi-
tion representation of the software pro-
duct).

2.3 The tool AMME

The current stage of development of our
tool AMME can be described as follows;
the whole system AMME consists of seven
different sub-programs .(see Rauterberg
1993, 1996b, Rauterberg & Fjeld 1997):

(1) An interactive dialog system with a log-
ging feature, generating the task solving
process description. This description
should be automatically transformed to a
logfile ‘with an appropriate syntactical
structure. However, a logfile can also be
hand written by -the investigator (e.g.
based on protocols of observations).

(2) The net generation program AMME,
analysing the interactive process se-
quence, extracting the minimal net struc-
ture (device modeD) and calculating differ-
ent quantitative measures of the gener-
ated net. AMME needs three input files: (D
a complete system description on an ap-
propriate level of granularity, (i) the inter-
active process description, and (iiD) a sup-
port file for the graphic output (“de-
faultp.ps“ is part of the tool kit). AMME
produces five different output files: (D a
protocol file (*.pro*) with different quanti-
tative measures of the process and of the
extracted net, (i) a Peiri net description
file (“* net*) in a readable form for the Pet-
ri net simulator PACE, (i) a plain text file
(“*.ptf) with the conmectivity matrix for
KNOT, (iv) a plain text file (“*.mkv) with
the probability matrix for the Marcov
chain analysing software SEQUENZ, and
(v) a PostScript file (“*.ps*) to print the net
grapbic for pattern matching *by hand’.

(3) The Petri net simulator PACE is imple-
mented in Smalltalk 80 and consists of a
graphical editor and an interactive simulator

with graphical animation. PACE can deal
with hierarchical nets, refinement of T- and
S-elements, timed Petri nets as well as sto-
chastic Petri nets. Smalltalk 80 standard
classes are available for token attributes.

(4) The net analysing program KNOT,
computing the similarity between pairs of
nets. With the multidimensional . scaling
(MDS) module of KNOT (Kruskal non-
metric MDS algorithm) we can compute a
MDS solution for any set of nets.

(5 The Marcov analysing software SE-
‘QUENZ, offering a method to compare
user triggered sequences. These se-
quences are transformed into first-order
Marcov-chains. Similarity between such
lattices can be directly obtained by sum-
mation of the differences between lattice-
cells. Also the resulting distances provide
an input to the MDS models.

(6) Any Postscript interpreter (e.g., Ghost-
script) that can read and print the output
file *.ps.

(7) Any text processing software can han-
dle the pure ASCII files, *.pro.

The current version of AMME is restricted
to process descriptions that can be traced
in a finite, discrete state space with an
upper limit of different states. A further re-
striction is the constrained syntax of the
logfiles that serve as input for AMME. To
transform a given logfile to the appropri-
ate form, several tools can be applied; like
Coco/R, YACC, or any other tool that can
convert text strings into other formats.
The actual version of AMME is freeware
and available for IBM or compatible PCs
(with MsWindows =3.0) via Internet.

2.4 Measuring task complexity

Measurable features of the task solving

process are: task solving time (#TST), total

number of states (#AS) and of transitions
#TT) used (see Rauterberg 1992a, 1995b,
19962). These measurements can be easily
done based on the analysis of the logfile
itself. But, logfiles must be analysed with
a tool like AMME to get the following two
metrics: (1) number of different states
(#DS) and (2) number of different transi-
tions (#DT). These both numbers are the
basis to calculate net complexity. We in-
vestigated in (Rauterberg 1992a) the ad-
vantages and disadvantages of four differ-

ent quantitative metrics. With the Ccycle _

metric we found a useful quantitative me-
tric to measure complexity.

The complexity measured with Ccycle is
defined by the difference of the total num-
ber of connections (#T: transition) and the
total number of states (#S: state). The
parameter P is a constant to correct the re-
sult of Formula 1 in the case of a se-

156 Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulation

quence #T — #S = -1); the value of p
our context is one.

Ccycle = #T —#S + P
with #S = #T and P=1
(Formula 1)

We interpret Ccycle as the number of
ar independent paths through the p
Other interpretations of Ccycle are ny
ber of boles in a net or number of altery,
tive decisions carried out by users. If #g
bigger than #T then we have to calcyly
Ccycle in a slightly different form. #F
the number of arrows in the net.

Ccycle = #F —(#T + #S) + P
with #S > #T and P=1
(Formula 2)

In the investigation of Rauterberg (19923
novices and experts were classified and.
selected by their amount of expertise with:
electronic data processing. This expertise |
was measured with an 115-item question-
naire and with structured interviews. The p
novice group (N=6) was instructed for 15
hours in handling the database system.
The expert group (N=6) had 1,740 hours
of experience in operating the same data-
base system. Their total computer experi-
ence of about 7,500 hours was the result:
of their daily work using different types of
computers and software systems. The
duration of the actual task solving session
was about 30 minutes. Each keystroke
with a time stamp was recorded in a log-
file. Each user needed about 50 minutes
for the whole task solving process (4
tasks, individual sessions). The behaviour
al complexity (#BC) of each completed
task solving process is measured as fol
lows:

#BC = Ccycle(complete task solution)
(Formula 3)

A significant difference in #BC between
novices and experts was found (N =24,
#BCnov = 17 + 6, #BCexp = 12 £ 5; df=1,F-
=10.3, p < .003). This important resultin-~
dicates, that the complexity of the obset-
vable behaviour correlates negatively with
the complexity of the cognitive structure
(the ’mental model”). We explain this ré-
sult as follows: If the cognitive structure i
too simple, then the concrete task solving
process must be filled up with a lot Of_
heuristics or trial and error strategies:
Learning how to solve a specific task with
a given system mean, that #BC decreases
and the complexity of the mental model
increases (Rauterberg 1993, Rauterberg &
Aeppli 1995).

2.5 Measuring ’routinization’

A routine task can be identified by a large
process -description (= long logfile; €&

52 (24 NF) 1998/3 Z. Arb. wiss:

G_2 M_3 F_3 1 i d
T 2 p & Ce 0=
file
marked Automatic Automatic User User User User
transition transition key press key press key press key press
M_22 M_22 M_22 M_11 d
DB content DB content DB content Automatic User
display display display fransition key press
M_22 M_22 M_22 M_11 d
DB content DB content DB content Automatic User
display display display transition key press
M_22 BL F_10 M_22 M_22
connues. Ao DG = ~
" fopped
DB content User User DB content DB content
display key press key press display display
M_11 h - h F_10
Automatic User User User
transition key press key press key press

Figure 2: The original task solving sequence of an expert with a relational database system.

#TT»10) and a small size of the em-
bedded net structure (e.g. #DT < 10) (see
Rauterberg 1993): The user is always run-
ning in loops and using the some system
operations to solve the task; we designate
this kind of tasks 'routine tasks’. The ratio
of the total number of transitions in the
process description (length of the logfile =
#TT) to the number of different transitions
in the folded net (#DT) is a good measure
of the “degree of routinization* (#R).

#R=#TT / #DT
(Formula 4)

This measure combines the information of
the total amount of repetition of each tran-
sition (#TT) with the information of all ne-
cessary transitions (#DT). The information
of the sequential order of all transitions is
neglected.

2.6 Measuring *personality styles’

To measure the dimension of ’action ver-
sus state orientation’ all users filled out a
personality questionnaire (see Rauterberg
1992a, 1994). The independent variables
were (1) the level of expertise (novices
versus experts) and (2) the four different
tasks. All user actions were protocolled
with time stamps in logfiles. With AMME
we could extract all task dependent dialog
states from 48 logfiles. The dependent
variables are: (1) total task solving time
(#TST) and (2) number of different states

52 (24 NF) 1998/3 Z. Arb. wiss:

per Petri net (#DS). The ratio of #TST di-
vided by #DS is the mean duration time
per state. This average of the duration or
dwell time per state can be interpreted as
user’s thinking time (#MTT) to plan the
next action (see Formula 5).

#MTT = #TST / #DS
(Formula 5)

We aggregated all #MTT’s over the four
tasks and correlated this global value of
#MTT per user with all scale scores of the
‘action versus state orientation’ question-
naire. We found a negative correlation be-
tween #MTT and scale-1: ’success leads to
action orientation in thinking’ (see Kuhl
1981). This significant correlation (R = —
.75; p < .005; N=12) means, that users with
high scores in "action orientation in think-
ing’ caused by success have a short dwell
time per state, and vice versa. Experts
are-measured with the questionnaire—
more ’action oriented’ than novices
(N=12, df=1, F=11.40, p <.007). We can
conclude that state oriented persons
need-on average-more time per dialog
state, than action oriented persons.

3 Reconstruction of the mental
task model
3.1 Observation of human behaviour

Based on the data of the empirical investi-
gation of Rauterberg (1992b), we used log

files of five different expert users solving
the same task to reconstruct human men-
tal models (see step 1 in Fig. 1). The user’s
task was to find out how many data re-
cords there are in a given data base con-
sisting of file A, file B and file C.

An example of the task solving process of
an expert user is presented here (Fig.2).
First, the system goes from (Main menu)
to (Start menu) with system transition
[G_27], where it opens the database and
automatically returns to the (Main menu)
with 'M_3]. Now, the user selects func-
tion key ['F_3’] and goes to the file selec-
tion menu, where he selects file A by
pressing key ['1’], bringing him back to the
(Main menu). Pressing ['T] brings him to
the (Info) module. Pressing ['d’], all data-
base information is displayed sequentially
on three different screens (3* 'M_22"]) and
the system automatically goes to (Info)
with [M_11’]. But part of the task relevant
information is visible only on the first
screen, which is overwritten by the two
following ones. Trying once more to see
all information, the user tries ['d’] again,
but the same reoccurs. After a third time
pressing ['d’], the user correctly follows up
with a blank [BL] to interrupt the scrol-
ling. Hence, the first part of the task rele-
vant information stays on the screen.
Pressing [F_10’], the rest of the informa-
tion is displayed (2* 'M_22"D) and the sys-
tem automatically- goes to (Info) by
[M_17]. Pressing [h’] twice brings the
user to (Main menu) and then to (Start

Task Analysis in Human-Computer Interaction — supporting action reguiation theory by simulaton 157

Action leve}

Figure 3: The device model of the task solving sequence in Fig. 2.

menu). Pressing ['F_10"] brings the user to
(MsDOS).

The logged sequence contains three dif-
ferent types of knowledge: (1) the pure
logical structure of the task (the device
model; see Fig. 3), (2) the sequential struc-
ture of all goals, and (3) the temporal
structure of all actions.

Following the theoretical implications
from the action regulation theory we can
differentiate between (1) the cognitive le-
vel with the mental goal setting processes
(corresponding to A; see characteristics of
complete tasks, chapter 1.2. Activity Theo-
ry), (2) the goal instanciation level (corre-
sponding to B), (3) the action level (cor-
responding to C), and (4) the feedback
level (corresponding to D).

All observed actions (e.g. 'G_21 and
M_3") that are automatically carried out
by the system itself, are primarily not
part of the cognitive level. Therefore, a
system level must be a part of our mod-
el. Although the user cannot control the
system level actions, he can take them
into consideration. So, on the goal in-
stanciation level a selected action is
either set from the cognitive level or
from the system level.

3.2 Folding

Modeling approach-1: The pure logical
structure is- automatically extracted with
our tool AMME (see step 2 in Fig.1). This
net is called device model (see Fig. 3). The
device model does not contain any
knowledge about goals and time. It is a
subset of the content of the complete sys-
tem description file (S-, T-, and F-rules:
the rule base to describe the whole inter-
active system behaviour as part of
AMMBE). This device model represents the
action level (see Fig. 4).

But, we know that a mental process
takes place at a cognitive level. So we
have to find a way to model these men-
tal processes by adding structure to the
device model. Petri nets allow us to do
this in a unified form: All the other le-
vels above can be described and mod-
elled with the same Petri net elements as
the action level.

3.3 -Adding goal setting task structure,
sequential and temporal information

In a first modeling approach, event-driven
goal setting, we added a minimal structure
to the device model, to increase the func-
tional equivalence between the simulated
behavioural sequence and the original be-
havioural sequence (see step 3 and 4 in
Fig. 1).

Modeling approach-2: Each action (event,
resp.) on the actionlevel directly activates
a mental process on the cognitive level.
The mental process sets on the goal in-
stanciation level the corresponding ’goal’
for the next action. There is a direct syn-
chronisation between the action level and
the upper levels.

A big problem of this modeling approag
is the impossibility to differentiate p,
tween at least two different subsequey
goals from the same dialog state; this g
tuation is always given if the user is going
through a loop on the action level, cop:
ing back to the same dialog state, by
going on in a different way than the lag
time.

Modeling approach-3: The parallel goy
setting process was introduced by vo
Cranach’s discussion of plans, ‘anticipat.
ing representations’, and intention (Cra.
nach & Harré 1982). For each goal at the
goal instanciation level to be set, an antic:
pated counterpart must be set beforehand
on the cognitive level. Parallel goal setting
means that the mental goal setting process

I Model-4 (first part): Regulation-driven goal setting I

1
|oA| WIRSAS I|e/\e| anubon

P
/

l

L]

|

| |ene] |

uoljeloueisul
leon

>0
>
>0
>0
29,

1oA9| uonoy

Figure 4: Regulation-driven goal setting: this Petri-net is equivalent to parallel goal setting with ad
structure for feedback from action level to higher levels.

158 Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulation

ded

52 (24 NF) 1998/3 Z. Arb Wi

s running parallel to the action level, on
wthh the dialog actions are executed.
There is nO synchronisation from the ac-
ton level upwards to the cognitive level,
only from the cognitive level via the goal
instanciation level downwards to the ac-
tion level. This downward structure guar-
antees a partial synchronisation between
the cognitive planning processes and the
actions carried out. The cognitive plan-
ping process is always faster than the ob-
servable behaviour on the action level.
This lack of synchronicity can lead to
omission errors on the action level: slips
and oversights occur and reduce the func-
tional equivalence of this modeling ap-

proach.

Modeling approach-4: Regulation-driven
goal setting aims to reach a complete syn-
chronisation between the action level and
the cognitive level. We added feedback
Joops to the modeling approach-3 (see
Fig.4). This upward directed structure
guarantees that the cognitive goal setting
level can not be faster than the observable
action process on the action level.

The modeling approach-4 generates the
most complex model compared with the
other ones. Figure 5 shows that it imple-
. ments a complete activity cycle. The feed-
back level is responsible for the fact that
the cognitive process can not be faster
than the observable action process (as we
have seen with parallel goal setting: mod-
eling approach-3). The next step is to find
out which model approach can reach the
maximum of 100% in functional equiva-
lence with the original behavioural se-
quence generated by a human expert.

A pseudocode modeling algorithm for the
implementation of regulation-driven goal
setting can be described as follows:

behavioural_sequence :=
GENERATE_SEQUENCE MODEL (logfile);
device_model := GENRATE_DEVICE_MODEL
(logfile);
FOR EVERY transition IN device_model DO
INSERT input_place;
INSERT output_place;
CONNECT input_place TO transition;
CONNECT transition TO output_place;
END;
FOR transition := FIRST_TRANSITION
(behavioural_sequence) TO
* LAST_TRANSITION
(behavioural_seguence) DO
_ next_transition :=
NEXT_ TRANSITION_IN_BEHAVIOURAL_SEQUENCE
(trangition) ;
device_transition :=
EQUIVALENT_TRANSITION_IN_DEVICE_MODEL
(transition);
CONNECT actual_transition TO
INPUT_PLACE_OF
(device_transition);
CONNECT QUTPUT_PLACE_OF
(device_transition) TO
next_transition;
END;
first_state := FIRST_STATE
(behavioural_sequence) ;
INSERT_TOKEN IN first_state;
INSERT_TOKEN IN EQUIVA~
LENT STATE_IN_DEVICE_MODEL
(first_state);

52 (24 NF) 1998/3 Z. Arb. wiss.

task

description »

cognitive process

|
|

feedback

|
1
|eas} aaubod

1eA8|
oeqpesd

goal
instanciation

[oAs)|
uonBIoUBISUl

{205

observable action

oAg] uolOY

Figure 5: A complete activity cycle as the theoretical framework for regulation-driven modeling.

3.4 Task model execution

To validate the different goal setting stra-
tegies, a simulation study of the model-
ing approache-1, -2, -3 and -4 was car-
ried out (see step 5 in Fig.1). We mod-
elled the task solving processes of five
expert users, all solving the same task,
as device model (modeling approach-1),
with event-driven goal setting structures
(modeling approach-2), with parallel
goal setting structures (modeling ap-
proach-3) and with regulation-driven
goal setting structures (modeling ap-
proach-4). With the Petri-net simulator
PACE all the models (5(#subjects) *
4(model-1, -2, -3)=20) were implemen-
ted and simulated. We generated six dif-
ferent simulated behavioural sequences
with each model, giving a total of 120
sequences. FEach simulation stopped
either because the net was dead or
Nsim=Norg.

3.5 validation of the functional
equivalence

To estimate the similarity between the ori-
ginal sequence (see step 6 in Fig.1) and
each simulated sequence, we used the fol-
lowing procedure that guarantees a func-
tional equivalence strictly based only on
(re-)produced actions:

1. Number all transitions 'G_2’ ='1’, 'M_3’
=2 'F_3 ="% .. F_10' = 25] in Fig.2
consecutively. The number R is the rank-

position of each transition [t] in the origi-
nal behavioural sequence.

2. Assign these numbers to all generated
transitions ft] of each simulated sequence.
For example, one of the shortest simu-
lated sequences we found, was generated
with modeling approach-1: [F_3", 1,
’G_2, '’F_10']. The rank positions R of
these four transitions are: ['3’, '4’, '1’, ’19].
In general, if a transition appears m times
in a original sequence and n times in the
simulated sequence, the rules are as fol-
lowing: For the case n<=m, the simu-
lated transitions get the ranks of the corre-
sponding original transitions. For the case
n>m, the first elements are handled as in
the first case, whereas the rank of the ele-
ments m+1..n is m.

3. Calculate a ’similarity ratio’ (SR; see For-
mula 6). SR is a sufficient measure for the
similarity between the simulated se-
quence and the original sequence. N is
the number of all fired transitions in a se-
quence. The maximum of Rorg is equal to
Norg (Norg in Fig. 2) is 25). SR is only va-
lid for simulated sequences that fulfil the
following condition: Nsim < Norg. SR of
the above example [F_3’,’1’,’G_2’, 'F_10"]
is 139%.

4. Average the similarity ratios of all simu-
lated sequences per model (see Table 1).
The results in Table 1 show that with in-
creasing complexity of the mental task
model (Ccycle), the similarity ratio (SR)
tends to 100%. We can also see that the

sxm

SR -

1 2 Rou Rm,l+2max(ng) N,

+100 %

Slm+1

Formula 6

Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulaton 159

Table 1: The model complexity (Ccycle) and similarity ratio (SR) of the modeling approaches-1, -2, -3 and -4 [std:=standard deviation].

modeling modeling modeling modeling

approach approach approach approach

no. 1 no. 2 no. 3 no. 4
Ccycle: (mean = std): 135 43+17 57+25 101£43
Ccycle: (min...max.): 6...18 22...68 30...97 55_170
SR (mean % + std): 41+28 66 + 21 88+ 11 100+ 0
SR (min...max. %): 3...79 36...98 67...100 100...100
simulated sequences 5*6=30 5*6=30 5*6=230 5*6=30

standard deviation of SR decreases conti-
nually with increasing Ccycle.

An analysis of variances was done with
StatView 4.02 (1993). Due to lack of var-
iance we excluded the results of modeling
approach-4 from the statistical analysis.
The independent variables were model-
ing type (modeling approach-1, 2, and 3)
and test person (1..5). The dependent
variable was the similarity ratio (SR). The
only main effect that was significant was
that of modeling type (ANOVA, df=2,
F=38.743, p £0.001). The other main ef-
fect, test person (ANOVA, df=4, F=0.564,
p<0.690), and the interaction between
person and model type (ANOVA, df=8,
F=1.068, p < 0.395) were both not signifi-
cant. So the similarity ratio increases from
modeling approach-1 to modeling ap-
proach-3, and this seems to be indepen-
dent of the test person. We have not as yet
tested whether our results depend upon
task type. Furthermore, we got a clear cor-
relation between model complexity
(Ccycle) and similarity ratio (SR) (R=0.660,
95% interval [0.524...0.763], p < 0.001).

4 Discussion and Conclusion

From the outcomes of our statistical analy-
sis we can conclude two results: (1)
event-driven goal setting is better than the
pure device model, and parallel goal set-
ting is better than event driven goal set-
ting, and (2) the most elaborated task
modeling approach, regulation-driven
goal setting, can guarantee a SR of 100%.
This result seems to be an interesting con-
firmation for the theoretical power of the
action regulation theory (Hacker 1994).

In the original sequence (Fig. 2), there is a
cyclic behaviour with a learning effect.
The user tried twice to see the task rele-
vant information, but without success.
The third time he succeeded. This is a ty-
pical learning effect based on trial and er-
ror. Analysing learning effects with Petri
nets was achieved with other strategies
(Rauterberg & Aeppli 1995). It seems to
be difficult to simulate learning effects
with event-driven goal setting, because re-

peated behaviour cannot be integrated in
that modeling approach. For the parallel
goal setting and regulation driven ap-
proach though, repeated behaviour is re-
flected in the model, with improved re-
sults from one to the next repetition.

Event-driven goal setting assures good
synchronisation between action level and
cognitive level. Although the knowledge
about how to solve the task is included in
the model, it tells nothing about learning
effects. The parallel goal setting approach
supports modeling of learning effects. An
integration of the advantages from each of
the strategies can be reached with the reg-
ulation-driven goal setting approach (see
modeling approach-4).

We can conclude from the validation re-
sults that the SR value is considerably high-
er for the models with added goal setting
(modeling approach-2, -3, and -4) than for
the pure logical structure (device model).
So it seems to be possible to develop a
completely automatic task modeling tool
based on a bottom up-approach. More-
over, we see that with increasing task mod-
el complexity (Ccycle), the mean value of
SR increased and the standard deviation
got smaller. Again, parallel goal setting
performed better than event-driven goal
setting, and regulation-driven goal setting
performed better than parallel goal setting.
With the parallel and regulation-driven
goal setting strategies, we were able to in-
clude learning effects from the real task
solving process. Regulation-driven goal
setting seems to be the most promising
task analysis and modeling approach and
should be the basis of further develop-
ments.

5 References

Ackermann, D. (1987) Handlungsspielraum, Men-
tale Reprisentation und Handlungsregulation am
Beispiel der Mensch-Computer-Interaktion. PhD
Thesis (Univ. of Bern). :

AMME- (1996) Download address: URL: hitp: //
www.ifap. bepr.ethz.ch/~rauter/amme.html
Bauman, R. & Turano, T.A. (1986) Production ba-
sed language simulation of Petri nets, Simulation,
47:191-198. S

160 Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulation

Bernardinello, L. & De Cindio, F. (1992) A Survey
of Basic Net Models and Modular Net Classes In:
W. Bauer, Ed., Lecture Notes in Computer Science
609 (Springer).

Booth, P.A. (1991) Errors and theory in humgy,
computer interaction. Acta Psychologica, 78:69.9¢,

Card, SK., Moran, T.P. & Newell, A. (1983) Tpe
psychology of human computer interaction. (gy.
Ibaum).

Churchill, E. (1992) The formation of mental mq.
dels: are "device instructions’ the source?. In: G.C,
van der Veer, M.J. Tauber, S. Bagnara & A. Antal.
ovits, Eds., Human-Computer Interaction: Tasks
and Organisation (CUD, pp. 3-16).

Cranach, von M. & Harré, R. (1982, eds.) The ana-
lysis of action (Cambridge University Press)

de Haan, G., van der Veer, G.C. & van Vliet, J.C,
(1991) Formal modeling techniques in human-
computer interaction. Acta Psychologica, 78:27-67,

Dutke, S. (1994) Mentale Modelle: Konstrukte des
Wissens und Verstehens (Arbeit und Technik Band
4) (Verlag fur Angewandie Psychologie).

Engestrom, Y. (1991) Activity Theory and Indivi-
dual and Social Transformation. Activity Theory 7/
8:6-17.

Ericsson, K.A. & Simon, H.A. (1984) Protocol ana-
lysis (MIT Press).

Frensch, P. & Funke, J. (1995, eds.) Complex Pro-
blem Solving: The European Perspective (Er-
Ibaum).

Genrich, HJ., Lautenbach, K. & Thiagarajan, P S.
(1980) Elements of general net theory. In: W. Bau-
er, Ed., Lecture Notes in Computer Science 84 'Net
Theory and Applications’ (Springer, pp. 21-163)

Geoffrion, AM. (1989) Integrated modeling sy-
stems. Computer Science in Economics and Mana-
gement, 2:3-15.

Green, T.R.G. & Hoc, J.M. (1991) What is cognitive
ergonomics?. Le Travail humain, 54:291-304.

Hacker, W. (1986) Arbeitspsychologie (FHuber).

Hacker, W. (1987) Software-Gestaltung als Arbeits-
gestaltung. In K.-P. Fihnrich (ed.) Software-Ergo-
nomie. State of the Art 5 (Oldenbourg, pp. 29-42)-

Hacker, W. (1994) Action regulation theory and 0¢-
cupational psychology. Review of German empiri
cal research since 1987. The German Journal of
Psychology 18(2):91-120.

Hoffmann, J. & Rauterberg, M. (1994) From novic¢
to expert decision behaviour: an automatic mode-
ling approach with Petri nets. In: K. Pawlik (Hrsg)
Abstracts des 39. Kongref der Deutschen Gesell
schaft fiir Psychologie in Hamburg 1994. (Band L
S.294-295), (Hogrefe).

Hoppe, H.U. (1988) Task-oriented parsing -2 di-
gnostic method to be used by adaptive system:
In: Proc. of CHI'88, ACM: Washington, pp- 241-
247.

52 (24 NF) 1998/3 Z. Arb. Wis>.

Jink, Inc. (1991) The KNOT software (P.O.

te
glox 4086 UPB, Las Cruces, NM 88003, USA).

ohnson, S. C. (1975) YACC — yet another com-
compiler, Technical Report No. 32 (Bell Labo-

plier-
ra[on‘es).

ones, C- (1993) An integrated modeling environ-
ment based on attributed graphs and graph-gram-
[mers. Decision Support Systems, 10, 255-275.

gellog, W.A. & Breen, TJ. (1990) Using Pathfinder
1o evaluate user and system models. In: R. W.
schvaneveldt, Ed., Pathfinder Associative Net-
works (Ablex, pp. 179-195).

Kieras, D.E. & Polson, P.G. (1985) An approach to
the formal analysis of user complexity. Internatio-
qal Journal of Man-Machine Studies, 22, 365-394.

Kuhl, J. (1981) Motivational and functional hel-
plessness: the moderating effect of state vs. action
orientation, Journal of Personality and Social Psy-
chology 40:155-170.

Leontyev, A.N. (1978) Activity, consciousness, and
personality (Prentice Hall).

McDaniel, E. and Lawrence, C. (1990) Levels of
cognitive complexity: an approach to the measu-
. rement of thinking (Springer).

Mossenbdck, H. (1990) Coco/R — a generator for
fast compiler front-ends, Technical Report No. 127
(Computer Science Department of the ETH Zi-
rich).

Nardi, B. (1996) Context and Consciousness, Acti-
vity Theory and Human-Computer Interaction
(MIT Press).

‘Newell, A. (1990) Unified Theories of Cognition.
(Harvard University Press).

Oberquelle, H. (1984) On models and modeling in
human-computer co-operation. In: G.C. van der
Veer, M. J. Tauber, TR.G. Green & P. Gorny, Eds.,
Lecture Notes in Computer Science 178 'Readings
on Cognitive Ergonomiics’ (Springer, pp. 26-45).
Oberquelle, H., Kupka, I. & Maass, S. (1983) A
view of human-machine communication and co-
operation. International Journal of Man-Machine
Studies, 19:309-333.

PACE (1997) Distributor address: IBE Ingenieurbi-
10, Software und Simulation Engineering, Postfach
1142, D-85623 Glonn Germany.

Peck, V.A. & John, B.E. (1992) The Browser mo-
del: A computational model of a highly interactive
task. Proceedings of the CHI'92 Conference on
Human Factor in Computing Systems (ACM,
pp.165-172).

Peterson, J.L. (1981) Petri net theory and the mo-
deling of systems (Englewood Cliffs).

Petri, C.A. (1980) Introduction to general net theo-
ry. In: W. Bauer, Ed., Lecture Notes in Computer
Science 'Net Theory and Applications’ (Springer,
pp.1-19).

Polson, P.G. & Kieras, D:E. (1985) A Quantitative
Model of the Learning and Performance of Text
Editing Knowledge, In: Borman, L. & Curtis, B.
(Eds.), Human Factors in Computing Systems: CHI
85, pp. 207-212

Rasmussen, J. (1986) Information Processing and
Human-Machine Interaction (North-Holland).

Rauterberg, M. & Aeppli, R. (1995) Learning in
man-machine systems: the measurement of beha-
vioural and cognitive complexity. In: Proceedings
of IEEE International Conference on Systems, Man
and Cybernetics TIntelligent Systems for the 21st
Century’. (Vol. 5, IEEE Catalog No. 95CH3576-7,
Pp. 4685-4690).

Rauterberg, M. & Aeppli, R. (1996) How to measu-
re the learning process in man-machine systems.
In: A, Ozok & G. Salvendy (eds.) Advances in
Applied Ergonomics. (USA Publishing, pp.312-
315).

52 (24 NF) 1998/3 Z. Arb. wiss.

Rauterberg, M. & Fjeld, M. (1997): An Analysing
and Modelling Tool Kit for the Human-Computer
Interaction. In M.J. Smith, G. Salvendy & RJ. Kou-
bek (Eds.), Design of Computing Systems: Social
and Ergonomic Considerations (HCI'97) (Advan-
ces in Human Factors/Ergonomics, Vol. 21B),
pp.- 589-592. Amsterdam: Elsevier.

Rauterberg, M. (1992a) A method of a quantitative
measurement of cognitive complexity. In: G. van
der Veer, M. Tauber, S. Bagnara & M. Antalovits
(Eds.) Human-Computer Interaction: Tasks and
Organisation. Roma: CUD, pp. 295-307.

Rauterberg, M. (1992b) An empirical comparison
of menu-selection (CUD and desktop (GUD com-
puter programs carried out by beginners and ex-
perts. Behaviour and Information Technology
11:227-236.

Rauterberg, M. (1993) AMME: an Automatic Mental
Model Evaluation to analyze user behaviour traced
in a finite, discrete state space. Ergonomics
36(11):1369-1380.

Rauterberg, M. (1994) Action vs. state orientation:
an empirical validation in man-computer interacti-
on. In: K. Pawlik (Hrsg.) Abstracts des 39. Kon-
gre der Deutschen Gesellschaft fir Psychologie
in Hamburg 1994. (Band 1; S.551), (Hogrefe).

Rauterberg, M. (19952) Human information pro-
cessing in man-machine interaction. In: A. Grieco,
G. Molteni, E. Occhipinti & B. Piccoli (Eds.) Work
with Display Units 94. (North-Holland, pp.221-
226).

Rauterberg, M. (1995b) From novice to expert de-
cision behaviour: a qualitative modeling approach
with Petri nets. In: Y. Anzai, K. Ogawa & H. Mori
(Eds.) Symbiosis of Human and Artifact: Human
and Social Aspects of Human-Computer Interacti-
on. (Advances in Human Factors/Ergonomics, Vol.
20B), (Elsevier, pp. 449-454).

Rauterberg, M. (1995¢) About a framework for in-
formation and information processing of learning
systems. In: E. Falkenberg, W. Hesse & A. Olive
(eds.) Information System Concepts — Towards a
consolidation of views. (Chapman&Hall, pp.54-
69.

Rauterberg, M. (1996a) How to measure cognitive
complexity in human-computer interaction. In: R.
Trappl (ed.) Cybernetics and Systems 96 (Vol. 2).
(Austrian Society for Cybernetic Studies, pp.815-
820).

Rauterberg, M. (1996b) A Petri net based analyzing
and modeling tool kit for logfiles in human-com-
puter interaction. In: H. Yoshikawa & E. Hollnagel
(eds.), Proceedings 'Cognitive Systems Enginee-
ring in Process Control — CSEPC'96 (Kyoto Univer-
sity, pp. 268-275).

Regenass, A. (1995) LOG version 5.1 (Universitit
Bern, Institut fiir Psychologie).

Reisig, W. (1992) A Primer in Petri Net Design
(Springer).

Reisner, P. (1981) Formal grammar and human fac-
tors design of an interactive graphics system. IEEE
Transactions on Software Engineering, SE-7:229-
240.

Reisner, P. (1984) Formal grammar as a tool for
analyzing ease of use. In: J.C. Thomas & M.L.
Schneider, Eds., Human Factors in Computing Sy-
stems (Ablex, pp. 53-78).

Ritter, F. & Larkin, J. (1994) Developing process
models as summaries of HCI action sequences.
Human-Computer Interaction 9:345-383.

Sanderson, P.M., Verhage, A.G. & Fuld, R.B. (1989)
State-space and verbal protocol methods for stu-
dying the human operator in process control. Er-
gonomics, 32:1343-1372.

Schiele, F. & Hoppe, H.U. (1990) Inferring task
structures from interaction protocols, In: D. Diaper
& al. (Eds.), Human-Computer Interaction — IN-
TERACT ’90, Elsevier Science Publishers B.V.
(North-Holland), pp. 567-572.

Schmid, U. & Meseke, B. (1991) Deskription und
Analyse komplexer Verhaltenssequenzen: Benut-
zerstrategien beim Arbejten mit CAD-Systemen,
Zeitschrift fir experimentelle und angewandte
Psychologie, 38:307-320.

Schroder, O., Frank, K.-D., Kohnert, K., Mébus, C.
& Rauterberg, M. (1990) Instruction-based know-
ledge for a functional, visual programming langua-
ge. Computers in Human Behavior 6(1):31-49.

Schvaneveldt, R.W. (1990, Ed.) Pathfinder associa-
tive net works — studies in knowledge organizati-
on (Ablex Publ)

Scott, W.A., Osgood, D.W. & Peterson, C. (1979)
Cognitive structure: theory and measurement of
individual differences (Wiley).

Tomaszewski, T. (1981). Struktur, Funktion und
Steuerungsmechanismen menschlicher Tatigkeit.
In T. Tomaszewski (ed.) Zur Psychologie der Ti-
tigkeit (Deutscher Verlag der Wissenschaften,
pp-11-33).

Toérn, A.A. (1985) Simulation nets, a simulation
modeling and validation tool, Simulation, 45:71-
75.

Trompedeller, M. (1995) A Petri Net Classification
and related Tools (URL http:// www.dsi.unimi.it/
Users/ Tesi/ trompede/ petri/ home.html)

Ulich, E. (1994, 3rd edition) "Arbeitspsychologie
(PoescheD.

Ulich, E., Rauterberg, M., Moll, T., Greutmann, T.
& Strohm, O. (1991) Task orientation and user-
oriented dialog design. International Journal of
Human-Computer Interaction 3(2):117-144.

Volpert, W. (1985) Epilogue-system models- and
process models. In: M. Frese & J. Sabini (eds.)
Goal directed behaviour: the concept of action in
psychology (Lawrence Erlbaum, pp.357-365).

Volpert, W. (1994) Wider die Maschinenmodelle
des Handelns-Aufsitze zur Handlungsegulations-
theorie (Pabst).

Adresses of the autors:

Matthias Rauterberg

IPO-Center for Research on User-System Inter-
action, Eindhoven University of Technology (EUT),
Den Dolech 2, 5600 MB Eindhoven,

The Netherlands

Morten Fjeld o

THA-Institute for Hygiene and Applied Physiology,
Swiss Federal Institute of Technology (ETHD,
Clausiusstrasse 25, 8092 Zirich, Switzerland

Task Analysis in Human-Computer Interaction — supporting action regulation theory by simulation 161

