118 Matthias Rauterberg; Oliver Strohm

ABOUT THE BENEFITS OF USER-ORIENTED REQUIREMENTS
ENGINEERING

Matthias Rauterberg & Oliver Strohm

Work and Organizational Psychology Unit, Swiss Federal Institute of Technology
Nelkenstr. 11; CH-8092 Ziirich, Tel: +41-1-632-7082

Abstract

The current state of traditional software development is surveyed and essen-
tial problems are investigated on the basis of empirical data and theoretical
considerations. The concept of optimisation cycle is proposed as a solution.
The relation of several different kinds of local optimisation cycles to the spe-
cifications, the communications, and the optimisation problem is intcgrated
into a concept of participatory software development. Software development
without integrated work and/or task organizational development is subopti-
mal. User participation and prototyping decrease significantly cost and time
exceedings. The more effort in early development stages, the less effort in
the maintenance phase.

1. Introduction

Analysis of current software development procedures brings to light a series of weak-
nesses and problems, the sources of which lie in the theoretical concepts applied, the
traditional procedures followed as well as in the use of inadequate cost analysis models.
These point to the significance of participation by all groups affected. Analysis of these
cases shows that there are three essential barriers to optimisation: the specification
barrier, the communication barrier and the optimisation barrier. Speaking quite general-
ly, one of the most important problems lies in coming to a shared understanding by all
the affected goups of the component of the worksystem to be automated — that is to
say, to find the answers to the questions of “if”*, “where™ and “how"” for the planned im-
plementation of technology, to which a shared commitment can be reached. An optimal
total system must integrate the social and the technical subsystem simultaneously.

2. Problems of Traditional Software Development

In order to arrive at the optimal design for the total working system, it is of paramount
importance to regard the social subsystem as a system in its own right, endowed with
its own specific characteristics and conditions, and a system to be optimised when
coupled with the technical subsytem. “Human resources are at the core of future growth
and Europe’s innovation capability”4. The work task plays a central role in this, being
as it is the “interface” between the organization and the individual.

In the context of the our research project the general software development processes of
different software companies (N=22) were analyzed as field studies by document analysis

Session 111 Structuring Requirements Engineering 119

and interviews. These ficld studies were carried out in firms that develop information
systems for offices and administration. Severa) other representative software projects
were analyzed only by questionnaires (N=83). The analysis was not only done with re-
gard to technical aspects, but also with regard to-work organization, use of methods,
user participation and the problems connected with different procedures. The whole
sample (N=105) consisted of companies with internal software development departments
regarding to software development activities alone (74%), to banks or insurance business
(15%), to industrial affairs (7%), or to other issues 4%).

The central problems of all software projects in our sample are organizational or metho-
dological aspects. strategical aspects, technical aspects, social aspects, qualificational
aspects, or other aspects!6. The main important topics are problems, which have orga-
nizational or methodical causes. One topic is the difficulty to define requirements, be-
causc users are not participated in this stage, the importance of this stage is underestima-
ted and/or there is a lack of adequate methods.

2. 1. The specification problem

The “specifications barrier” is a problem which is in the foreground even at a cursory
glance. How can the software developer ascertain that the client is able to speciliy the
requirements for the subsystem to be developed in a complete and accuratc way which
will not be modified while the project is being carried out? The more formal and dctailed
the medium used by the client to formulate requiremcnts, the easicr it is for the soltware
developer to incorporate these into an appropriate software system. But this presumes
that the client has command of a certain measure of expertise. Howevecr, the clicnt is not
prepared to acquire this before the beginning of the software devclopment process. It is
therefore necessary to find and implement other ways and means, using from informal
through semi-formal to formal specification methods. It would be a grave crror with dire
consequences to assume that clients — usually people from the middle and upper eche-
lons of management — are able to provide pertinent and adequate information on all re-
quirements for an interactive software system.

2. 2. The communication problem

The communications barrier between applier, user and end-user on the one hand and the
software developer on the other is essentially due to the fact that “technical intelligence"
is only inadequately imbedded in the social, historical and political contexts of tech-
nological development8. Communication between those involved in the development
process can allow non-technical facts to “slip through the conceptual net of specialised
technical language, which therefore restricts the social character of the technology to the
functional and instrumental”8, Every technical language not only dominates the concrete
process of communication in the speciality concerned, but also determines the cognitive
structures underlying it. The application-oriented jargon of the user flounders on the
technical jargon of the developer. This “gap” can only be bridged (o a limited extent by
purely linguistic means, because the fact that their semantics is conceptually bound
makes the ideas applied insufficiently sharp. To overcome this fuzziness requires
creating jointly experienced, perceptually shared contexts. Beyond verbal communi-
cation, visual means are the ones best suited to this purpose. The stronger the perceptual
experience one has of the scmantic context of the other, the easier it is to overcome the
communications barrier.

120 Matthias Rauterberg: Oliver Strohm

2. 3. The optimisation problem

As a rule, software development is a procedure for optimally designing a product with
interactive properties for supporting the performance of work tasks. Software develop-
ment is increasingly focussing attention on those facets of application-oriented software
which are unamenable to algorithmic treatment. While the purely technical aspects of a
software product are best dealt with by optimisation procedures attuned primarily to a
technical context, the non-technical context of the application environment aimed at re-
quires the implementation of optimisation procedures of a different nature. Optimisation
means ulilising all (even only limitedly available) means within the context of an eco-
nomical, technical and social process in such a way that the best result is achieved under
the given constraints. It would be false indeed to expect that at the outset of a larger re-
organization of a work system any single group of persons could have a complete, perti-
nent and comprchensive view of the ideal for the work system to be set up. Only during
the analysis, evaluation and planning processes can the people involved develop an
increasingly clear picture of what it is that they are really striving for. This is basically
why the requirements of the applier sometimes seem to “change™ — they do not really
change but simply bccome concrete within the anticipated boundaries. This process of
concretisation should be allowed to unfold as completely, as pertinently and as inexpen-
sively as possible. Completeness can be reached by making surc that each affected group
of persons is involved at least through representatives. Iterative, interactive progress
makes the ideal concept increasingly concrete.

% stage effort

35

30

25

20

15

0} % WAL
problem concep- specifi- program- test implemen-
analysis tion cation ming tation

Figuce 1: Mean effort in the different steps of software development process (N=79)

3. Analysis of Traditional Software Development Processes

3. 1. The development process: an overview

Software projects are often realized with structured, linear stagemodels and defined
milestones. The diffcrent tasks of software development can be assigned to the following
slages: problem analysis, conception, specification, programming, test and implemen-

Session 11 Structuring Requirements Enginecring 121

tation. The mean effort of each stage is estimated by the percentual portion to the whole
project effort without the maintenance phase (sce Figure 1).

3. 2. The ecarly stages: analysis, conception and specification

The early stages are frequently the most neglected activitics. This is essentially due to
the fact that methods and techniques need to be used primarily the way occupational and
organizational sciences have developed and applied them?. Inordinately high costs incur
from the troublcshooting required because the analysis was less than optimal. The time
has come to engage ocupational and organizational scienlists at the analysis stage who
have been specially trained for optimal software development! Introducing task orienta-
tion within the framework of socio-technological system conceplion makes the follow-
ing conditions indispensible!7: 1. The employees must have control over the work pro-
cess as well as the necessary means. 2. The structural features of the task must be such
as Lo releasc in the working person the energy for completing or continuing the work.
Task planning is therefore the focus of attention in the analysis phase. The five lcatures
“completencss”, “varicty of tasks”, “opportunity for social interaction”, “personal
autonomy” and *“opportunity for learning and development™ must be striven for in order
to suitably plan the tasks!7.

Once the analysis of the work system to be optimised has been completed. the next
stage is to mould the results obtained into implementable form. Mcthods of
specification with high communicative value are recommended here.

(1) The Specification of the Organizational Interface: The first thing is to determine “if

and “where” it makes sense to employ modern technology. Although the view is siill
widely held that it is possiblc to use technology to eliminate the deficiencies of an
organization without questioning the structures of the organization as a whole, the
conclusion is nevertheless usually a false one. It is important to understand the work
system as a living organization, as a self-sustaining organism, which must develop and
change in order to reach the organizational aims. The purpose of defining the
organizational interface, from this point of view, is to improve the viability of the
organization with the help of modern technology. An unavoidable conscquence is, that
the necessary measurcs must be taken in such a way that the casc with which the
cmployecs can assimilate and adapt to the type of the organization is maximised. The
effects of the organizational measures taken can be assessed, for example, by means of
the “Acli‘;'ity Evaluation System™!7 or “Activity Evaluation System for ‘Intcllectual
Work’.”17,

(2) Specification of the Tool Interface: The intended division of functions between man

and 1nachine is decided during the specification of the tool interface. The tasks which
remain in human hands must have the following characteristics18; 1. sufficient freedom
of action and decision-making; 2. adequate time available; 3. sufficient physical activity;
4. concrete contact with material and social conditions at the workplace activities; 5.
actual use of a variety of the scnses; 6. opportunities for variety when executing tasks;
7. task related communication and immediate interpersonal contact.

(3) Specification of the Input/Output Interface: Once those concerned are sufficiently

clear about which functions are amenable to automation, the next step which should be
taken is to test the screen layout on the end-users with the extremely inexpensive hand-

122 Matthias Rauterberg; Oliver Strohm

drawn sketches. The usc of prototyping tools is frequently inadvisable, because tool-spe-
cific presentation offers a 100 restrictive range of possibilities. The effect of the design

decisions taken can be assessed with the help of discussion with the end-users, or by
means of checklists.

(4 Specification of the Dialogue-Interface: The use of prototypes to illustrate the dyna-
mical and interactive aspects of the tools being developed is indispensible for specifying
the dialogue interface. But prototypes should only be used very purposefully and selec-
tively to clarify special aspects of the specification, and not indiscriminately. Otherwise
there looms the inescapable danger of investing too much in the production and main-
tcnance of “display goods™. A very efficient and inexpensive variation is provided by
simulation studies, for cxample, with the use of hand prepared transparencies, cards, etc.
which appear before the user in response to the action takenS.

% cost- % cost-
exceedings exceedings
100 100
90T - 90
80 ¢ 80
70 + 70
603 p<0.03 60
50 50
40 40
%] Y 30
201} 20
10 ¢ 10
0 - - 0
active passive no yes no
(N=18) (N=33) (N=8) (N=31) (N=28)
user participation (N=59) prototyping (N=59)

Figure 2: The relation of cost exceedings with user participation and prototyping;
“cost exceeding” is the percentual cost portion of total project budget.

More and more companies try to practice user participation in the software development
process. Statements of software engineers like "we must participate the users” or “with-
out users it does not work" and the selection of the users for the participation in the pro-
ject with regard to their professional background show, that user participation as one ne-
cessity becomes more and more accepted. First of all this concems to projects in which
the system implementation is combined with greater organizational changes of the work
system.

We differentiate user participation into three categories: active or passive participation,
or without any participation. Further and more detailed analysis of our datal5.16 show
the following results. In 29% of the projects (N=83) active user participation was prac-
ticed. This means, that the users had have decision possibilities, were frequently asked to
problems of task design, functionality, dialogue design, etc., and were involved in the

Session Il Structuring Requirements Engineering 123

early stages. In 57% of the projects a passive form of user participation was practiced.
This means, that the users gave informations, evaluated the ideas of the software

engineers, but did not be so deeply involved in the carly stages. 14% of all projects were
realized without any kind of user participation.

Software developer put prototyping as one useroriented method more and more into
practice. The prototyping method was used in 55% of the projects (N=83). Of all pro-
jects with prototyping (N=46) the most software engineers evaluate this procedure as
"very useful” (59%) or "useful” (33%). These software engineers say, that prototyping is

first of all a good method to support the cooperation and communication with the users.

Active user participation decreasc significantly the cost exceeding portions (active vs. no
p<0.03, one-tail T-test; N=59: see Figure 2), as well as the time exceedings portion
(active vs. no p<0.02, one-tail T-test; N=59: see Figure 3). The usage of prototyping
decrease significantly cost exceedings (p<0.04, onc-tail T-test; N=59; see Figurc 2), as
well as time exceedings (p<0.05, one-tail T-test: N=66; see Figure 3).

Figure 3 and 4 show, that there are significantly advantages in projects with active user
participation and with usage of prototyping. We can not find a significant correlation be-
tween the catcgory of user participation [“active", "passive”, "no"] and the project size
("small”: "<5 man ycars", "big": “>6 man years"] (CHI2-Test, df=2, p< 0.18); there is
also no significant correlation between prototyping ["yes", "no") and project size (CHI2-
Test, df=2, p< 0.84).

% time- % time-
exceedings exceedings
100 100
92 + 90
80 T 80
70 4 70
60 4 60
50 50
40 4 40
p<0.02 p<0.04 p<0.05
304 - == 30
2 § B 20
10 4 10
0 " . 0
active passive no yes no
(N=21) (N=36) (N=9) (N=35) (N=31)
user participation (N=66) prototyping (N=66)

Figure 3: The relation of cost exceedings with user participation and prototyping;
“time exceeding" is the percentual elongation part of the total project time.

We distinguish between four project types of software developments!3: type A is a sin-
gular software product by inhouse development for a specific inhouse department; type B
is a singular software product for external customers; type C is a trade product for ex-

124 Matthias Raulefberg; QOliver Strohm

ternal companies; type D is standard software for unknown users. Active user participa-
tion seems to be typically for project type A, passive user participation for project type
C and no participation for project type B and D (CHI2-Test, df=6, p< 0.07).

3. 3. The programming and implementation stages

The programming stage is made up of the following three steps!: 1. design of the pro-
gramme architecture; 2. design of the individual programme modules (object classes,
ctc.); 3. coding and debugging. The distinction between design and specification is im-
portant. During specification, all relevant properties of the technical subsystem are
defined as precisely as possible. In thc programming stage all care must be taken to
ensure that the technical subsystem being developed has these properties to the greatest -
possible extent. It is pure software expertise which is of primary importance here. The
implementation phase is characterized by the the first tests of the software sytem in the
concrete working context. .

Once a working version is availablc, it can be put to test in usability studies (“use-ori-
ented benchmark tests”11) in concrete working situations. This is the first place where it
is possible to clarify the problems with the actual organizational and technical environ-
ment. By contrast to laboratory studies, field studies take into account the aspect of
“ecological validity”. Trials with real work tasks make it possiblc to check and assess
the degree to which the planned organizational ideal has been rcached. Although video is
the data recording medium preserving the most information, a combination of log-files
and direct protocolling makes a good compromise between performance and economy.

30 T % maintenance-
effort
25 %
201
154
10 4
54
0 - ' s '
high medium low
"2 50%" "49% - 31%" "<30%"
(N=15) (N=22) (N=18)

Figure 4 The relation of maintcnance effort with the comulated effort of early
softwarc development stages “problem analysis". "conception” and "specification”
(N=55).

Session Il Structuring Requirements Engineering 125

3. 4. The maintenance phase

The mcan cffort for maintenance is 20% (N=55). 33% of the maintenance effort is spent
for debugging, 67% of the maintenance effort therefore is needed for changing the
systems (c.g. changed requircments caused by users). The cumulated effort for the carly
stages "problem analysis”, “concept” and "specification" correlates significantly negative
(r= -0.32, p<0.05, N=55) with the effort for maintenance. This means, that adequate

cffort in the early stages reduces the often cost- and timeintensive repair and correction
tasks in the maintenance phase (see Figure 4).

4. An Iterative-Cyclic Software Process Model

Sufficient empirical evidence has accumulated by now to show that task and user ori-
entcd procedures in softwarc development not only bring noticeable savings in costs, but
also significantly improve the software produced!. 6. 10, 11, 14, How then, can the
problems mentioned above be solved?

4. 1. Embarking on the global optimisation cycle

The type of software to be developed has proved to be one of the essential factors gover-
ning software development. The global optimisation cycle begins at Start-A of Fig. 5
when developing completely new software and at Start-B in the case of further develop-
ment and refinement of existing software. Different concept-specilic local optimisation
cycles arc used to optimise specific work tasks, depending on the particular type of the
project at hand. It is up to the project management to scttle on the actual procedure and
this decision is reflected in the development form chosen.

4. 2, Global and local optimisation cycles

The usc of optimisation cycles in software development procedures depends on the follo-
wing conditions being met!0: “1. A modified project management model, which gua-
rantecs above all communication between those concerned and the developers. 2. Comp-
uter supported version and documentation management, which includes also the results
of evaluation and current criticism. 3. Informing all those involved about the project's
aims and the peculiarites of Lhe procedure, as well as training the employees concerned.
4. The fundamental willingness of the developers to produce incomplete software and to
accept critique of it. 5. The expansion of the expertise of the developer beyond purely
data processing technology as regards measures in work structuring. 6. The use of a
largely integrated software tool environment, which supports the developer in repeated
preparation and modification of the sofiware. 7. The preparedness of all persons involved
to learn throughout the course of the project.”

Even if we assume that all the conditions listed are more or less fulfilled, there still
remains the question of how to actually carry out the software development project. In
order to reach the goals of a work-oriented design concept the first project phases (requi-
rements analysis and definition; Quadrant-1 in Figure 5) should be replete with a range of
optimisation cycles.

Simple and fast techniques for involving users are discussion groups with various com-
munication aids (metaplan, layout sketches, “screen-dumps”, scenarios, etc.14), questi-

126 Matthias Rauterberg: Oliver Strohm

onnaires for determining the attitudes, opinions and requirements of the users, the *“walk-
through” technique, as well as targeted interviews aimed at a concrete analysis of the
work environment. Very sound simulation methods (e. g. scenarios, “Wizard of Oz"
studies) are available for developing completely new systems without requiring any spe-
cial hardware or software.

5. Conclusion

One of the principal problems of traditional software development lies in the fact that
those who have been primarily involved in software development to date have not been
willing to recognise that software development is, in most cases, mainly a question of-
task, job and/or organizational planning. Were software development to be approached
from such a perspective, it would be planned from the beginning to engage experts in
occupalional and organizational planning in the process of software design. The global
optimisation cycle can be subdivided into four regions: the region where requirements
are determined (Quadrant I), the region of specification (Quadrant II), the region of im-
plementation (Quadrant III) and the region of application and maintenance (Quadrant IV).

An appropriatc investment in optimisation in Quadrants I and II not only helps to reduce
the total cost (devclopment costs and application costs), but also leads to optimally
adapted hardwarc and software solutions. This is due to the fact that all subsequent users
are involved at least through representatives, and can therefore incorporate their relevant
knowledge into the design of the work system. As more effort is expended on optimisa-
tion in the first quadrants, so less is needed in Quadrant IV. But first and foremost, we
must start Icarning to plan jointly technology, organization and the application of
human qualification. Technology should be viewed as one way of providing the oppor-
tunity to organise our living and working environments in a manner which is better
suited to human needs.

Acknowledgements

The preparation of this paper was supported by the German Minister of Research and
Technology (BMFT. AuT programme) grant number 01 HK 706-0 as part of the BOSS "User
oriented Software Development and Interface Design"” research project.

Session 111

Structuring Requirements Engineering

I : Analysis Quadrant

127

Maintenance Quadrant: IV

i N Statistics, "Final
Discussions, Work-Shops,) ™
Division of Functions i Interview Usability Test, Version®
Resuits,
between Humans, Global .
Taskh Amalysis Assessment usevoriented
Results Benchmark Tes:
[End] User Uperation and %
Requirements Maintenance
Human-Machine
Evaluation of| | Division of Functions, >
Simulation Feasibility Studies

FFoemal

Specificatio

Provisional Definition
of Requirements

Production of
Simulitions

Optimised

S
e

Deliverable
Version

Benchmark Test
Beta Test

Definition of
Requirements

1

/‘R:;ning

!’“T"io_n/

_ Alpha-Test of
] Detailed Task Correctness,
77 Analyis Perfonnance. etc.

Provisional

Test
“Release” Results
Preparation of Formal
Specifications Module or
Object Oriented
Prototypes for Programming “Bug”
- “Walk-Through”,
- Explorative Studies

II : Specification Quadrant Programming Quadrant : II1

Figure 5 Flow chart for a participatory software development model showing the
local optimisation cycles within and between individual quadrants (I - IV)3. S,

128 Matthias Rauterberg; Oliver Strohm

References

{
1. B.W. Boehm, T. Gray and T. Seewaldt, "Prototyping versus specifying: a multipro-
ject experiment”, IEEE Transactions on SE 10(3), 224-236 (1981).

2. B.W. Boehm, "Software Engineering Economics", Englewood (1981).

3. B.W. Boehm, "A spiral model of software development and enhancement", Computer
(May), 61-72 (1988).

4. C.E.C. Commission of the European Communities, "Science, Technology and So-
cieties: European Priorities. Results and Recommendations of the FAST II Program-
me", Summary Report. Directorate-General Science, Research and Development,
Brussels (1989).

5. J. Grudin, S.F. Ehrlich and R. Shriner, "Positioning Human Factors in the User In-

terface Development Chain", Proceedings of CHI + GI (Toronto, 5th - 9th April
1987). New York, 125-131 (1987).

6. C-M. Karat, "Cost-Benefit Analysis of Iterative Usability Testing", Human-
Computer Interaction - INTERACT '90. (D. Diaper et al., ed.) Amsterdam, 351-356
(1990).

7. L. Macaulay, C. Fowler, M. Kirby and A. Hutt, “USTM: a new approach o require-
ments specification”, Interacting with Computers 2(1), 92-118 (1990).

8. M. Mai, "Sprache und Technik", Zeitschrift des Vereins Deutscher Ingenieure fiir Ma-
schinenbau und Metallbearbeitung 132(7), 10-13 (1990).)

9. 1. Nielson, "Big paybacks from ‘discount' usability engineering”, IEEE Software
7(3), 107-108 (1990).

10. H. Peschke, "Betroffenenorienticrte Systementwicklung”, Europiische Hochschul-
schriften Reihc XLI Informatik Bd./Vol.1, Frankfurt Bern New York (1986).

11. M. Rauterberg, "Benutzungsorientierte Benchmark-Tests: eine Methode zur Benut-
zerbeteiligung bei Standardsoftwareentwicklungen®, Reports of the German Chapter of
the ACM, vol. 33 "Software-Ergonomie '91", (D. Ackermann and E. Ulich, eds.)
Stuttgart, 96-107 (1991).

12. M. Rauterberg, "Optimisation Cycle: a Concept for Optimal Software
Development”, Cybernetics and System Research, vol.1 (R. Trappl, ed.), Singapore
London, 279-286 (1992).

13. B. Schiemenz, "Kybernetik", Handwdrterbuch der Produktionswissenschaft (W.
Kern, ed.), Stuttgart, 1022-1028 (1979). _

14. P. Spinas and D. Ackermann, "Methods and Tools for Software Development: Re-
sults of Case Studies”, Man-Computer Interaction Research MACINTER-I], (F. Klix,
N. Streitz, Y. Waern and H. Wandke, eds.) Amsterdam, 511-521 (1989).

15. O. Strohm, "Arbeitsorganisation, Methodik und Benutzerorientierung bei der Soft-
ware-entwicklung", Software fiir die Arbeit von morgen, (M. Frese, Chr. Kasten, C.
Skarpelis and B. Zang-Scheucher, eds.) Berlin Heidelberg New York, 431-441 (1991)

16. O. Strohm and E. Ulich, "Arbeitsteilung und Benutzerorientierung bei der Software-
Entwicklung", Multidimensionales Software-Projektmanagement, (F. Elzer, ed.) Hall-
bergmoos, 261-289 (1991)

17. E. Ulich, “Arbeitspsychologie”, Stuttgart, Poeschel (1991).

18. M. Zdlch and H. Dunckel, "Erste Ergebnisse des Einsatzes der 'Kontrastiven Aufga-
benanalyse™, Reports of the German Chapter of the ACM, Vol. 33 "Software-Ergo-
nomie ‘91", (D. Ackermann and E. Ulich, eds.) Stuttgart, 363-372 (1991).

AACHENER BEITRAGE ZUR INFORMATIK

Proceedings of the
First International Workshop on
Requirements Engineering:
Foundation of Software Quality

REFSQ ’94

Utrecht, Netherland, 6-7 June, 1994

Eds.:
Klaus Pohl, Gernot Starke, Peter Peters

AACHENER BEITRAGE ZUR INFORMATIK

Herausgeber der Reihe:

Prof. Dr rer. nat. Klaus Indermark, Lehrstuhl fiir Informatik 11
Prof. Dr -Ing Manfred Nagl, Lehrstuhl fiir Informatik 11
Prof Dr. rer. nat. Otto Spaniol, Lehrstuhl fur Informatik 1V

Hrsg.:
Pohl, Klaus - Peters, Peter - Starke, Gernot

First International Workshop on Requirements Engineering
Foundation of Software Quality - REFSQ "94

Utrecht. Netherland. 6-7 Junc. 1994

1. Auflage Aachen:

Verlag der Augustinus Buchhandlung, 1994

(Aachener Beitrige zur Informatik, Band 6)

1SBN 3-86073-142-4

© 1994 bei den Autoren

Verlag der Augustinus Buchhandlung
PontstraBe 66/68

52062 Aachen

Druck: Copy Team, Aachen
Gedruckt auf chlorfrei gebleichtem Papier

