Task Orientation and User-Oriented
Dialog Design

Eberhard Ulich
Matthias Rauterberg
Thomas Moll
Thomas Greutmann
Oliver Strohm

Swiss Federal Institute of Technology (ETH)
Nelkenstrasse 11

CH-8092 Zurich

Switzerland

Work psychologists have introduced a concept, in which dialog design is a
part of task design. A set of criteria of user-oriented dialog design is pre-
sented here. These criteria are consistently integrated into a control concept.
Empirical investigations on some of these criteria are then described. In an
experiment to prove the criterion transparency, a desktop interface (high
transparency) and a conventional menu selection interface (low transpar-
ency) were compared. The main result is the clear superiority of the user in-
terface with direct manipulation over the conventional user interface with
menu selection. Support is another of the criteria of user-oriented dialog de-
sign that was empirically investigated. The advantages of goal- and task-ori-
ented help messages are also described here. To make the criterion flexibility
and the criterion user-definability practicable, the implementation of a dialog
handler for user-tailorable systems is introduced. The criterion participation
was investigated in field studies. It will be shown that in projects with active
participation the costs were exceeded to a lesser degree than in projects with
passive participation and to a much lesser degree than in projects without
participation.

INTRODUCTION

Concepts of user-oriented dialog design are often limited to criteria as learning
time, error rate or “usability,” which are more or less precisely defined. In this
paper, user-oriented dialog design is embedded in the wider context of job and

International Journal of Human—Computer Interaction 3(2) 117-144 (1991)

118 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

task design. Concepts of task orientation and control are seen as the basis for a bet-
ter understanding of what the user really needs. The relevance of some of the de-
rived criteria is supported by current findings from our empirical research.

CONTROL, TASK ORIENTATION, AND DIALOG DESIGN

In his paper “Characteristics of Socio-Technical Systems,” Emery (1959; 1978, p. 78)
specified two prerequisites for the development of task orientation: “(a) the indi-
vidual should have control over the materials and processes of the task; and (b) the
structural characteristics of the task (should) be such as to induce forces on the in-
dividual toward aiding its completion or continuation.”

A further distinction is made between two functions or aspects of control: (1)
“all those elements in which choice of how to do a job was left to the person doing
it” and (2) “the extent to which an individual is free from intervention in the form
of inspection and supervisory check-up” (Emery, 1959; 1978, p. 79).

It becomes clear here that control in the psychological sense must be under-
stood as the possibility to choose, as well as an opportunity to exercise influence.
Emery (1959; 1978, p. 79) continues: “Thus, the knowledge that a skilled man
brings to a job enables him to make choices between alternative modes and rates of
operation that are not obvious to an unskilled man.” Reference to the “materials”
as well as the “alternative modes of operation” must relate to the use of the respec-
tive work means and tools.

If we try to apply this consideration to questions of dialog design as a part of
task design, the first question arises regarding the selection of dialog technique.
From the point of view of control, it is essential—and yet somehow trivial—to dis-
tinguish between three dialog forms. In computer-controlled dialogs, control rests
with the computer; there is no possibility for the user to select or in any way influ-
ence the dialog. In user-controlled dialogs, the user determines the procedure and
sequence of events, may choose between various alternatives, and, according to
Blumenfeld’s description of energy disposition (1932), is able to regulate his own
tempo and degree of effort. The third form can perhaps be labeled a hybrid dialog,
where control over certain segments of the task performance lies with the user, and
for others, with the computer. In the area of dialo g design, the application potential
of hybrid techniques of this kind has been conceptionally, yet scarcely elaborated
upon. Perhaps Kamoun, Debernard, and Millot (1988) addressed a similar issue in
their article “On Human Decision Making and Manual Control.”

Yet how should dialogs be designed? That is, which criteria must be met in
order to satisfy the demand for control? If we turn to the German Industrial Stand-
ard “Principles of Dialog Design” (DIN, 1988, p. 6), we find, to begin with, the ex-
tremely important hint “that the type of dialog cannot be designed independently
of the work task and the work organization.” This means that user interface design
is not simply a sub-problem that can be isolated and solved independently of the
user’s entire and overall task. An important contribution to a conceptual

Task Orientation and User-Oriented Dialog Design 119

framework we find, for example, in the draft for a regulation on “Software Er-
gonomics in Office Communication” of the German Association of Engineers
(VDD), in which the level of furthering competence and flexibility of action are
named as the main criteria for software ergonomic job design. As for the concept of
furthering competence,

Ergonomic software design of man-computer interaction should contribute to
making it possible for the user to have competent dealings with the system and
thereby promote his competence of action. Competence of action means that the
user has gained knowledge of the system and its organizational embedding, and
that he is able to relate this knowledge to the tasks to be completed....Maintenance
of and further improvement in competence of action presuppose the possibility of
successfully applying the acquired knowledge, depending upon the task and situa-
tion. It must be possible to carry acquired knowledge over to changed situations.
(VDI, 1988, p. 15)

Which requirements, however, should a user-controled dialog fulfill? At the
1986 IFIP Conference on System Design for Human Development and Produc-
tivity, a set of criteria that were unrelated to each other was presented (Ulich, 1987).
In the meantime, however, it can be shown that our criteria can be consistently in-
tegrated into a control concept. The result is outlined in Table 1.

Table 1. Concept of User-Oriented Dialog Design (from Ulich 1989).

User-Oriented Dialog

Task Orientation Calculability Control
as a Prerequisite
for Control
« Completeness « Transparency « Flexibility
+ Variety of Demands » Consistency - Individual
Selection

* Interaction « Compatibility Possibilities
Possibilities

« Support « User Definability
» Learning Potential

+ Feedback Participation

+ Autonomy

120 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O, Strohm

The control aspects of transparency and predictability referred to by Troy
(1980), Hacker (1986), and other authors are necessary, but in no way sufficient pre-
requisites for the possibility of realizing the specified control functions. In fact,
situational transparency and the possibility of predicting a situation’s outcome
(without being able to influence the situation and its outcome) can of course mean
even a total loss of control.

As in the diagram, and in concordance with Spinas (1987), the criteria of
transparency, consistency, compatibility, support, and feedback are assigned to the
orientation function here. Thus, with the fulfillment of each of these criteria, a con-
tribution is made to the calculability of the system’s behavior. This, however, as
previously mentioned, is not control in itself, but rather an indispensible prereg-
uisite for control. Control itself consists in the possibility to choose and in the pos-
sibility to exercise influence.

Thus, we have a meaningful classification of criteria for dialog design. We
should not, however, content ourselves with this, as the development of software for
dialog programs finally determines the division of functions between man and com-
puter. In this context, we find, in many articles on questions of user-friendliness, a
more or less elaborated concept of task appropriacy. In many cases, what is meant by
this is not at all defined. The German Industrial Standard “Principles of Dialog De-
sign” (DIN, 1988, p. 2) reads as follows: “A dialog is task appropriate if it supports
performance of the work task without unnecessarily burdening the user with the
characteristics of the dialog system.” Thinking further reveals that what a definition
of this kind really means is that a dialog can also be task-appropriate if the task itself
is neither humane nor corresponds with criteria of economic efficiency. And that is
why we should ask ourselves the question whether task appropriacy should be un-
derstood in a broader sense, namely as adequate support of tasks that correspond
with our criteria for task design. One attempt has been made to classify these cri-
teria—which essentially again lead back to Emery’s work—in order to come closer
to an overall concept of user-friendliness (see Table 1).

Following, several of the criteria will be discussed in more detail. First the con-
cept of the complete task embedded in the tradition of the theory of action regula-
tion will be introduced. Then, several investigations pertaining to the dimension
calculability, specifically the criteria transparency and support, and to the dimension
control, specifically the criteria flexibility, user-definability, and participation, will be
presented.

Completeness—the first criterion named in the concept of user-oriented dialog

design—is in fact the most important. Itis, to a large extent, identical to the concept
of the complete task.

THE CONCEPT OF THE COMPLETE TASK

For Hacker (1986, p- 61), the work order, its interpretation or its acceptance asa work
task, is “the central category of psychological consideration of activity...,asdecisive

Task Orientation and User-Oriented Dialog Design 121

specifications for the regulation and organization of the activities occur with the ‘ob-
jective logic” of its contents.” For Volpert (1987, p. 14), “The character of a “point of
intersection” between the organization and the individual renders the work task the
psychologically most relevant part of the given work conditions.” Both quotations
make it clear that for work psychologists oriented in the activity or action theory, the
work task becomes the most important point of departure in job design. In this con-
text, great importance is attached to the concept of the complete task.

More than 50 years ago, the German psychologist W. Hellpach (1922, p.27)de-
scribed the task concept as follows:

A task consists of one’s own planning and design—if not design of the task, design
of its solution, including choice between various possibilities, decision for one of
these, taking responsibility for the decision, the ways of performance, while com-
pleting the task the constant, infinitesimal evaluation of success related to the men-
tally represented goal, and finally, the belief that it was well done.

Hellpach’s description already included the main elements of the concept of
the complete task as defined by Tomaszewski (1981, p. 23):

A complete task contains three basic elements: diagnosis of the starting situation,
outline (project) of a new situation and a program of realizing activities. During the
course of the task performance, these three elements are supplemented by a contin-
uous diagnosis of the changing situation.

These are the basic constituents of Hacker’s concept of complete activity
(Hacker, 1986), as well as Volpert’s concept of complete action (Volpert, 1987).

Characteristics of complete tasks, which must be taken into consideration
when designing tasks, are, according to the concept presented here:

1. independent setting of goals that are embedded in the superimposed goals;

2. independent action preparation in the sense of taking on planning functions;

3. selection of the means including the necessary interaction for goal attain-
ment;

4. performance functions with feedback on performance pertaining to possi-
ble corrections of actions;

5. control with feedback on results and the possibility of checking the results
of one’s own actions against the set goals.

Incomplete activities—or, according to Volpert (1974), partialized actions—
"lack, to a large extent, possibilities for independent goal-setting and decision-
making, for developing individual work styles or sufficiently precise feedback"
(Hacker, 1987, p. 35). Complete activities (or tasks) offer the possibility of setting
goals and sub-goals, as well as of offering decision-making possibilities during the
various phases of task completion, and therefore provide latitude of activity or
action. Complete activities are therefore becoming fundamental for realizing the
concept of user-definability (Ulich, 1987).

122 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm
DIRECT MANIPULATION: A SPECIAL CASE OF TRANSPARENCY

State of the Art

The advantages of direct manipulation seem to be so obvio‘us that th‘ere are hardly
any experimental studies investigating the superiority of d1rect. manipulation over
other styles of interaction (Shneiderman 1987; Smith & Mosier 1986); therefore
Hutchins, Hollan, and Norman (1986, p. 123) demand a more detailed empirical
evaluation of the interface with direct manipulation to bridge the “gulf of execu-
tion” and the “gulf of evaluation.” The importance of compatibility and transparency
to build this bridge was emphasized earlier (Ulich, 1987a) (see also Table 1).

Altmann (1987) compared one user interface with direct manipulation (MacWr-
ite) and another with command language (WordStar) with regard to how difficult it
was for novices to learn to handle them. Novices with MacWrite did considerably
better than novices with WordStar. Whiteside, Jones, Levy, and Wixon (1985) have
come to apparently opposite results. Margono and Shneiderman (1987) were able to
show the superiority of user interfaces with direct manipulation over user interfaces
with command languages.

Questions

As only insufficient and contradictory results are available so far, the following two
interaction styles must be compared within the framework of this study
(Rauterberg, 1989a, b). The first user interface is characterized by direct manipula-
tion (more precisely: a desktop interface), and the second user interface is typified
by conventional menu selection.

User interface with menu selection (“ascii”). The conventional, ascii-
oriented user interface—the dialog is carried out by means of function keys (in-
cluding cursor keys) and selection menus.

User interface with direct manipulation (“mouse”). The bit-mapped,
graphic-oriented user interface—the dialog is carried out with a mouse by clicking
into the mouse-sensitive areas of a desktop interface; most of the menu options of
this desktop interface could be chosen with function keys, as well.

The following two questions must be answered:

Question1. Is there an ergonomically relevant difference between these two
types of user interfaces with regard to task solving time?

Question2. Is there a significant interaction between the type of task and
the type of user interface? ;

Task Orientation and User-Oriented Dialog Design 123
Method

A relational database system with two selected user interfaces was available for ten
benchmark tasks, and exactly the same database machine served as the application
manager. '

Each time a key was pressed (or a mouse clicked) the keystroke and a
timestamp belonging to this keystroke was automatically recorded in a logfile.

A two-factorial variance analysis with repeated measurements for one factor
was used; the first factor was the “type of user interface” (“ASCII” on IBM-com-
patible PCs under MS-DOS vs. “MOUSE” on IBM-compatible PCs under GEM),
the second factor was the ten “benchmark tasks.” These two factors are two inde-
pendent variables. As a result, there are two independent samples (2+6 users = 12
N).

The dependent variables ascertained were: pure task solving time per task ac-
cording to the logfile record, excluding system response time (Usertime); the me-
dium reaction time per keystroke (Timelevel, sec/key) as the average value of all
time-stamps per task; the control variables (covariates) were: the self-reported num-
ber of hours of general previous experience with Electronic Data Processing (EDP)
and the self-reported number of hours of specific previous experience with the re-
spective user interface.

Description of the experimental subjects.

The 12 subjects who had been working for several years with the respective
user interface in their daily work were referred to as expert users; these experts re-
ceived no payment.

Sample 1 (expert, ascii). Average age of 38; 6 men; 8,750 hours of general previ-
ous experience with EDP (+ 5,100 hours; range: 4,080 hours - 17,580 hours); 1,740
hours of experience with specific user interface: “menu selection” (+ 1,600 hours;
range: 314 hours - 4,573 hours).

Sample 2 (expert, mouse). Average age of 38; 6 men; 3,690 hours of general pre-
vious experience with EDP (+ 3,440 hours; range: 876 hours - 9,920 hours); 1,500
hours of experience with specific user interface: “desktop” (+ 1,200 hours; range:
413 hours - 3,840 hours).

In contrast to the inexperienced subjects of the most published investigations
(e.g., Altmann, 1987), this previous experience with EDP and the specific interface
type is a valuable feature of the experimental subjects in this investigation.

Course of the investigation.

After the subjects had filled in a questionnaire about their previous experience
(four scales: programs, languages, computer systems, operating systems), they
began work on the tasks. At the end, every subject completed an evaluation ques-
tionnaire. The investigation lasted between 195 and 270 minutes per user (individ-
ual sessions).

All subjects (except for one) were able to finish the ten set tasks. The order of

124 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

tasks was the same for everybody. The subjects were only allowed to continue with
the next task (controlled by the investigator) when they had finished the previous

one.

Description of the ten benchmark tasks.

The ten tasks were selected according to whether they allowed the subjects to
use exactly the same functionality of the application manager under both types of
interfaces and to take those working steps which are most common in daily
database work. The test database consisted of three files, which contained the nec-
essary attributes to manage a camping place.

Tasks 9 and 10 were selected in order to test whether the design of the user in-
terface was appropriate for these types of tasks. The users of the interface with di-
rect manipulation were requested to make up a text document for Tasks 9 and 10
with an external text editor, according to the syntax of a given simple retrieval lan-
guage, whereas the users of the interface with menu selection were able to define
and make up the relations interactively in a “list” module.

The descriptions of the ten benchmark tasks (enclosed in “...”) and the solu-
tion for each task follows:

Task 1. “Find out, how many data records are in the file Address, in the file
Place, and in the file Group.”

Activating a certain menu option and reading the file size of each file: Address
= 280 records, Place = 17 records, Group = 27 records.

Task 2. “Delete only the last data record of the file Address, the file Place, and
the file Group (sorted by the attribute ‘name’).”

Opening (sorted according to a given key), selecting, and deleting the data re-
cord of each file: Address, Place, Group.

Tusk 3. “Search and select the data record with the key “D.8000C O M’ in the
file Address, and show the content of all attributes of this data record on the screen.
Correct this data record for the following attributes:

State: D; Place offer: 07; Remarks: The ATARI system dealer can give a demonstra-
tion of ADIMENS ST."

Selecting a certain data record (file: Place), correcting the data record with re-
gard to four attributes.

Task 4. “Select all data records with a valid content of the attribute ‘place no.’
in the file Address. Correct this attribute so that all selected data records afterwards
contain the place number ‘07.”

Selecting a number of data records (file: Address), correcting every data record
with regard to one attribute.

Task 5. “Define a filter for the file Place with the following condition: all
holidaymakers arrived on 02/07/87. Apply this filter to the file Place, and show
the content of all selected data records in the mask browsing mode on the screen.”

Task Orientation and User-Oriented Dialog Design 125

Defining a filter for one attribute (file: Place), applying the filter to the data re-
cords; displaying the content on the screen of the data records found.

Task 6. “Load the calculation program named “\DB-CAMP\END’ (menu in-
terface) or ‘PLAENDPR.CAL’ (desktop interface) respectively for the file Place and
apply this calculation to all data records on the file Place. Show the results on the
screen. Store the results permanently only for the data records of departed
holidaymakers.”

Loading a calculation program (file: Place), applying the calculation to all data
records, displaying the content of each data record on the screen and storing the re-
sults only for a selection of data records.

Task 7. “Make a list with the attributes ‘name’, ‘birth date’, and ‘national
status’ of all members of the group of ‘D.Trainer, Siegfried” of the file Group, and
show the results on the screen. Then subsequently print this list.”

Selecting a number of data records (file: Group), making up and printing out a
list for the data records found that consist of three attributes.

Task 8. “Prove the existence of the data record with the content
‘D.Verlingerungswunsch, Sonja’ of the attribute namekey in the file Address. Then
make a bill for the data record with the content ‘D.Verlangerungswunsch, Sonja’ for
the attribute namekey in the file Place; load the form document ‘PLARECHN.MIX'
after activating the icon ‘mixing’. Then subsequently print this bill.”

Seeking a (nonexistent) data record (file: Address); selecting a data record (file:
Place), loading the calculation program, mixing it with the data record, printing the
calculation made.

Task9. “Make a list including the attributes ‘place no.’, ‘last name’, ‘birthdate’,
‘citizenship’, and if need be the attribute ‘passport no.’ of the place tenant of all
present holidaymakers only. Then subsequently print this list.”

Selecting a number of data records (file: Group), making up and printing out a
list consisting of five attributes from file Place and Group (two-file relation).

Task 10. “Make a list including the attributes ‘place no.’, “first name’, and ‘last
name’ of all holidaymakers only, who are now staying at place ‘07" or have been at
any time at place ‘07". Subsequently print this list. Bear in mind, that correct data
records can exist in all three files.”

Selecting a number of data records (file: Place and Address), making up and
printing out a list consisting of three attributes from file Place, Address, and Group
(three-file relation).

Results

First, the results were analyzed from the point of view of a two-factorial design
across all ten tasks (factor “task” and factor “interface”) with repeated measure-
ments for the factor “task.” The mean and standard deviation of the two
dependent variables are given in the Tables 2 and 3. In the last columns of Tables 2

126 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

Table 2. The mean and the standard deviation of the task-solving time and the ratiog
of “mouse”-solving time to “ascii”-solving time (variable USERTIME) for the ten

benchmark tasks

Task No. “mouse” Interface “ascii” Interface Ratios
(N=6) (N=6) “mouse”Mascii"

(s) (s) (%)
1 53+ 23 197+ 66 27
2 125+ 52 3204200 39
3 155+ 47 3461182 45
4 154+ 61 4451206 35
5 114+ 44 200+162 57
6 4161156 6981256 60
7 180+ 62 409+ 98 44
8 412+ 93 693189 59
9 1591+564 12611415 126
10 9294165 15681477 59

Table 3. The mean and the standard deviation of the medium reaction time per key-
stroke and the ratios of “mouse” reaction time to “ascii” reaction time (variable
TIMELEVEL) for the ten benchmark tasks

Task No. “mouse” Interface “ascii” Interface Ratios
(N=6) (N=6) “mouse”Mascii"
(s/key) (s/key) (%)
1 4.0+1.2 9.1+1.0 44
2 3.2£1.0 5.320.7 60
3 1.3+0.4 2.240.8 59
4 4.5+1.8 3.0+0.6 150
5 3.311.3 3.3+1.2 100
6 4.6+1.2 4.611.4 100
7 33405 3.0+1.0 110
8 3.5£1.5 2.840.5 125
9 49+1.6 5.0+1.1 98
10 6.7£1.9 59+1.3 114

and 3, the ratios of task solving time of the desktop interface and of the conven-
tional interface are given.

On the average, users of the interface with direct manipulation (“mouse”
needed only 55% of the task solving time (USERTIME; see Table 2) required for the
users of the interface with menu selection (“ascii”). Only in Task 9 was this ratio re-

versed in favor of the interface with menu selection (126%, see Table 2; see also Fig-
ure 1).

Task Orientation and User-Oriented Dialog Design 127

Task solving .
time (sec. significant interaction between
(sec.) mouse the factors "task® and “interface”
1600 =

1400

1200

1000

800

600

400

200

Task
1 2 3 4 5 6 7 8 9 10 No.

Figure 1. Task solving time (variable USERTIME; excluding the system response
time) of the sample with the desktop interface (“mouse”) and the sample with the
menu selection interface (“ascii”) divided in the ten benchmark tasks (“Task No.”).

The subjects with the direct manipulative interface needed only 374 seconds +
481 seconds (on the average of all ten tasks) compared with the subjects with menu
selection: 581 seconds + 467 seconds. This difference in task-solving time between
the two groups is significant (main effect of factor “interface”: p = 0.001, or 0.001;
see Table 4).

On the whole, there is no difference (main effect of factor “interface”) in the re-
action time per keystroke (TIMELEVEL: p=0.708, resp. 0.312; see Table 5). Particu-

Table 4. Results of the two-factorial variance analysis of the task-solving time (vari-
able USERTIME in sec.) for the ten benchmark tasks

Covariate: Covariate:

“general experience with EDP” “specific interface experience”
Two-factorial VA df F r af F 14
factor “interface” 1 16.78 0.001 1 24.3 .001
factor “task” 9 46.43 0.001 9 46.3 .001
factor “interface”®“task” 9 298 0.004 9 3.0 003

Dependent variable: USERTIME.

128 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

Table 5. Results of the two-factorial variance analysis of the medium reaction time
per keystroke (variable TIMELEVEL in sec./key) for the ten benchmark tasks

Covariate: Covariate:

“general experience with EDP” “specific interface experience.”
Two-factorial VA df F 4 af E P
factor “interface” 1 0.14 708 1 1.04 312
factor “task” 9 4.00 .001 9 3.75 001
factor “interface”®"task” 9 1.75 .088 9 1.60 126

Dependent variable: TIMELEVEL.

larly remarkable, however, is the relatively long reaction time by the users of the in-
terface with menu selection in Task 1 on one hand (“mouse:ascii”=44%; see Table 3)
and on the other, by the users of the interface with direct manipulation in Task 4
(“mouse:ascii”=150%); see Table 3).

For all tasks except Task 9, the experts with the direct manipulative interface
needed less time to solve the tasks than the experts with the menu selection inter-
face (see Figure 1). This effect can also be shown in the significant interaction of fac-
tor “interface” ® “task” (p = 0.004, resp. 0.003; see Table 4). Remarkable is that all
users virtually never used the online help function.

Discussion

Although the subjects of the interfaces with menu selection had more than twice as
much experience with EDP and more specific experience with their interface (see
above: “Method”), a clear superiority of the user interface with direct manipula-
tion over the conventional user interface with menu selection can be shown. There-
fore, the answer to Question 1 “Is there an ergonomically relevant difference be-
tween these two types of user interfaces with regard to task solving time?” is Yes.
The user interface with direct manipulation makes it possible to reduce the prob-
lem-solving time by a factor of 2. This clear difference in task-solving time cannot
be explained by the different reaction time per keystroke, because obviously the
users of the interface with direct manipulation on the whole found it necessary to
press fewer keys to finish each task (the continuous “mouse” movements of the
‘users of the desktop interface are not included in this result). This result is an effect
of the high transparency of the direct manipulative interface and not only an effect
of the different dialog structures of the two interfaces. The users of the menu selec-
tion interface type needed several unnecessary keystrokes to make sure that they
were in an appropriate solution state.

It is not enough, however, simply switching over from menu selection to di-
rect manipulation (Task 9!): Careful, appropriate dialog design must be made for

Task Orientation and User-Oriented Dialog Design 129

each type of task (Question 2: “Is there a significant interaction between the type of
task and the type of user interface?” Answer: Yes). Once the experts in direct ma-
nipulation had found a solution scheme for Task 9 (definition of a two-file rela-
tion), they were able to apply it profitably to the more complex Task 10 as well.
This suggests that the user interface with direct manipulation promotes learning.

Contrary to the often-voiced opinion that direct manipulation of the user in-
terface is good for beginners only, it is the experts of direct manipulation who are
the real “winners” of this comparative study. This can be explained by the fact
that the relevant dialog context of the user interface with menu selection gives
too little or insufficient direct feedback about the state of the dialog and applica-
tion manager.

On the whole, it can be emphasized that the user interface with direct ma-
nipulation (using the “mouse”) is clearly superior as a general element of inter-
action to the conventional user interface with menu selection (using “function
keys”). This is particularly true for users with long previous experience in EDP
work.

SUPPORT

Support is another of the criteria of user-oriented dialog design, which our research
group is empirically investigating. In spite of the fact that most guidelines for user-
oriented software design include recommendations concerning user support, onl-
ine assistance, or online help (Smith & Mosier, 1986, Ulich, 1987a), there is little em-
pirical knowledge about the effectiveness of different forms of online help, and
there are discrepancies in the sparse results reported from empirical research on
the utility of help systems. Because more investigation needs to be carried out in
order to determine what forms of online assistance will support users, we have
been analyzing, evaluating, and developing online support since 1985.! First, we
evaluated a context-specific online help system written by software designers. Pro-
ceeding from our empirical data of this study (Moll & Sauter, 1987), we then devel-
oped and evaluated an online tutorial that should support users in real problem
situations by handling complete working tasks (Moll & Fischbacher, 1989).

Different Forms of Support

According to our concept of user-oriented dialog design (see Table 1) based on the
concepts of task orientation and control, support should facilitate the user’s orien-
tation. The aim of developing and designing support systems is to provide users
with the information they need to render software more transparent (information

! These investigations were carried out and financed in cooperation with the software company
MECASQFT S.A., Switzerland.

130 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

on important relations, explanations of events, the consequences of actions, etc.), in
addition to providing them with information that would enable them tf’ anticipate
events (forming hypotheses and making predictions) as well as allowing them to
exercise influence in keeping with their own goals.

Nievergelt (1982, p. 203) pointed out that most difficulties encountered by nov-
ices are connected with questions that we refer to as problems of orientation. Pro-
viding information regarding answers to questions as Where am I?, What can I do
here?, How did I get here? and Where else can I go and how to I get there? is a first and
important step toward user support.

Support of this type can be found in context-specific help systems. In the help
system we evaluated (implemented in the interactive numerical control program-
ming system MECANIC), a context-specific help message was assigned to each
menu element and systems prompt. At every dialog point users receive informa-
tion regarding the questions: “What can I do now?” and “What are the input
rules?” (see Figure 2).

From the work psychology point of view, concepts of task orientation and con-
trol are the basis for an understanding of the function of support. User support
must go beyond providing information that relates to the dialog context and soft-
ware. We attach great importance in this context to the concept of the complete task.
Online support should support users in successful handling of complete job tasks.
This is illustrated in the following example:

After defining geometric elements, writing a machining program, and inputting the
necessary technical commands, a user wants to generate a program with which he
can cut a die at wire cut electro-discharge machining. In order to reach his task re-
lated goal, he must select Postprocessor from a specific menu and then select PP Run

HELP REGARDING THE QUESTION

Axis (Line) on which the geometrical element will be
reflected.

OPERATIONAL HELP:

Enter the name from the keybord or enter X and Y

coordinates of one point and an angle in the
following way:

L (XY, a).

Figure 2. Exampleofa context-specific help message

Task Orientation and User-Oriented Dialog Design 131

from the subsequent menu. Assuming that he does not select Postprocessor but a
different menu item and consequently encounters another selection on the ensuing

. menu, he finds himself in an area of the dialog in which he can no longer reach his
task-related goal.

In such situations (which, according to our investigations, are typical of nov-
ices), system-related information of the type “What can I do here?” is of no further
help to users. Rather, users need task-related messages from which they can de-
duce what they must do in order to carry out their job task.

Task-oriented support must take into consideration Troy’s (1986) distinction
(on the basis of Rice, 1958) between primary tasks and secondary tasks. Whereas
closer dealings with software (e.g., particular menu selections) are construed as
secondary tasks, the primary task is understood as the actual job task itself. Techni-
cal problems originate from the primary task (from producing a matrix at a wire
cut electro-discharge machining, for example). These problems would also arise if
the task were carried out without a computer. Interaction problems originate from
the secondary task (i.e., from interaction with the software). This can, for example,
arise from incorrect understanding of the syntax. Evaluations of thinking errors in
real work situations have established that these constitute mostly a mixture of
problems related to both tasks (Zapf & Frese, 1989, 211). From this, we can deduce
the dictate that support must always relate to primary and secondary tasks.

Meca-Teach: Task-oriented Support in a Learning Environment

During the last two years, we have been developing a learning environment for a
Numeric Control (NC) programming system, which meets the aforementioned
support requirements. This learning environment is more fully described in this
section.

Once users have started MECANIC (the NC Programming System), they can
access a learning environment (Meca-Teach) by simply pressing a function key. By
doing so, a tutorial window will appear on the righthand side of the screen. Func-
tion keys will appear in the lower section of this window, tutorial messages in the
upper sections. Users can then begin to work on an exercise.

The exercise (a standard task for which the tutorial messages were written) is
an example of a typical and complete task as these will later come up at the pro-
gramming work place. Users receive a drawing of a tool and must define the geo-
metric elements as well as input a graphics application program including the nec-
essary technical commands. After completing this sequence of subtasks, they can
generate an NC program that could be used for cutting dies with wire cut electro-
discharge machining. The tutorial window messages that they receive while pro-
gramming in the normal system refer not only to the secondary task (in addition to
stating in the dialog why the user should perform certain operations), but also refer
to their primary task and specify what would happen at the machine if they actu-
ally ran their program (see Figure 3).

132 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

So that the tool does not slip through
during die erosion, the machine must
be stopped at some point so that the

loose part can be fastened.

Figure 3. Online tutorial message relating to the user’s primary task

If users come up against a problem situation while working on their exercise
with the online tutor, the tutor will first send a general message to stimulate their rea-
soning processes (see Figure 4).

If, after reconsideration, users still do not know how and where to input their
information, they can request operational help that relates to their particular prob-
lem situation. If users do not know, for example, which NC machine command in-
dicates where the wire should be threaded, they receive information as in Figure 5.

Because conveying background information (i.e., knowledge about why cer-
tain operations are carried out) can lead to improved learner programming perfor-
mance, users of the MECANIC learning environment have the option of asking
why they should carry out particular operations (see Figure 6).

In addition, users can at any time actively request tutorial support. If users
press the tutorial function key What next?, the tutor will suggest subgoals on how
to proceed (taking into account what users have already done). If users wish to
reach a particular goal and see no solution of how to attain it, they find themselves
again in a problem situation and can request support for the questions How can [
reach this? and Why must I do that? It was deducted from the principle of differential
and dynamic work design (Ulich, 1987b) that users should not be forced into the
“one best way” approach when working on exercises. When users work on exer-
cises in our learning environment, they have access to all of the available functions

Think again: Where should the wire be threaded?

Change your program so that the wire can be threaded
in the right place.

Figure 4. Online tutorial message stimulating the user’s reasoning processes

Task Orientation and User-Oriented Dialog Design 133

Add command

>dra anf

after line

gn p1 eil

Figure 5. Online tutorial message response to the question of how a particular goal
can be reached.

in the program. Users work on an exercise completely (i.e., they independently plan
how to go about solving the task, decide on a possible solution utilizing the
software’s total flexibility)—(for which no single alternative is prescribed), write
their program, and then check whether it corresponds with the set task.

Users can benefit from the application program’s available flexibility and are
able to solve the task in several different ways. If they are still uncertain, they may
enter into a dialog and have their questions answered; or, they may choose to by-
pass the dialog completely and simply type in the necessary data on one line in ab-
breviated form. The online tutor will only intervene when users have carried out
an operation that no longer relates to the task.

Evaluation of Different Forms of Online Support

In two field studies, we evaluated the effectiveness of different forms of online sup-
port. The real behavior of end users of the NC programming system was studied
by means of a combination of methods (standard task, logfile recording, thinking
aloud, video self-confrontation; Moll, 1987). Users had 30 minutes to work on the
standard task. We analyzed situations in which users called the context-specific

Drilling takes place inside the contour at the starting
point. The wire can only be threaded there.

Figure 6. Online tutorial response to the question of why a particulal operation must
be carried out at a particular place.

134 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

help or interacted with the online tutor. We observed and analyzed the behavior of
24 end users (tool and die makers) interacting with the context-specific help Sys-
tem, and investigated the interaction between the onl.ine tutor and 9‘subje‘cts. What
happened after a help call or interaction with the online tutor was listed in the fol-

lowing categories:

1. Reaches goal: The user has a problem, gets a help message, types in the next
input, and reaches his goal immediately.

2. Reaches goal in a roundabout fashion: The user has a problem, gets a help
message, reads it, first carries out wrong or unnecessary operations, but fi-
nally types in the right input and reaches his goal.

3. Changes goal: The user has a problem, gets a help message, reads it, types
in the wrong input, fails to reach his goal, and then types in input which
brings him to a goal different from his first intended goal.

4. No solution: The user has a problem, gets a help message, readsit, and tries
again and again to reach the goal, but cannot find a solution to complete the
subtask.

Table 6 shows that users of the context-specific help system were able to solve
their problems after reading a context-specific help message in only 37% of the
cases. The users had problems exploring the right goals and subgoals for solving
the task, did not have the necessary dialog- and application-oriented background
knowledge to understand the system’s messages, lost orientation in the system,
and carried out operations that had no connection with their goals.

In contrast to this result, our analysis indicates that computer novices profit
from goal- and task-oriented messages. They were able to solve their problems
after reading task-oriented messages in the learning environment in 82% of the cases.
After reading the task-oriented help messages, the users were able to reach solu-
tions to their problems more frequently than after reading the system-oriented
help messages. To conclude, online support must be goal- and task-oriented, and
should relate to the user’s primary, as well as secondary, task.

Table 6. Comparison of Different Forms of Support

Reaches Reaches Goal Changes Goal No Solution
Goal in a Roundabout
Fashion

Context-specific 30% 7% 17% 46%
Helpsystem
(System-oriented)
Online Tutorial 73% 9% 14% 4%
(Task-oriented)

% =65.80; df=1; p<0.0001,

Task Orientation and User-Oriented Dialog Design 135

IMPLEMENTATION OF FLEXIBLE AND USER-TAILORABLE
DIALOG SYSTEMS

As stated in Table 1, dialog systems should offer the user alternative procedures for
accomplishing his or her goals (flexibility) and allow the user to tailor the system
according to his or her needs (user-definability). These criteria take into account
both inter-individual and intra-individual differences of the users. In this chapter
we will show how these global objectives can be translated into specifications for a
user-tailorable dialog handler.

The Dialog Handler for User-tailorable Systems

We are currently developing a concept for a portable dialog handler that should
support the designer in several aspects:

1. Skeletons of new applications should be easy to develop to allow rapid
prototyping.

2. Possibilities for user-tailoring should be included into the dialog handler as
far as possible to facilitate the development of tailorable interfaces.

3. The portation of application systems between very different environments
should be facilitated. This requires a special architecture for the dialog
handler.

In this article we will restrict ourselves to the user-tailoring facilities of the dia-
log handler.

Possible Ways of Individual System Tailoring

User tailorizations are possible on different levels and with different properties and
consequences, ranging from simple window rearrangements on a desktop inter-
face, to complex end-user programming with 4th-generation languages. There is
also a variety of methods for accomplishing user tailorizations, including single
commands embedded in the application, as well as textual user profiles where
complex modifications and macros are formulated by means of a'special syntax.

For the discussion of the properties, we have classified the different possibili-
ties using a matrix scheme. The modified system components are listed in the col-
umns; the rows of the matrix consist of the different tailorization methods.

The modified system components are classified into six categories (C1-C6):

C1. Input device: The input device can be selectable (e.g., mouse or keyboard).
C2. Physical screen layout: Size, positions, colors, etc. of windows, menus, texts,
etc. can be modified.

136 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

C3. Datadisplaymode: The display information can be changed qualitatively. In-
formation can be shown or hidden, alternative display modes (text/
graphic) are selectable. .

C4. Scope of commands: Commands can be included or excl.uded from a pre-
defined repertoire, but the definition of new commands is not possible.

C5. Command structure: New commands can be developed (e.g., by means of a

macro facility).
C6. Individual applications: New applications with dialog structures can be de-

veloped.

The methods for accomplishing the individual modifications can be classified
into four categories (M1-M4):

M1. Selectable alternatives: Different procedures for accomplishing a goal are im-
plemented into the system in a parallel fashion and can be selected (but not
modified) by the user.

M?2. Online configuration commands: User tailorizations can be accomplished by
means of special commands included in the applications.

M3. Configuration program: The modifications can be accomplished interactively
by means of a special program or module outside the application.

M4. Configuration file: The modifications can be accomplished by editing a spe-
cial configuration textfile with a text editor.

Basically any of the six different system components can be modified using
any of the four methods. Thus, 24 different categories of user modifications are
listed in the classification matrix (although some are not meaningful). It is now in-
teresting to analyze which of the 24 categories are suitable under which circum-
stances. This question will be addressed below.

Necessary Knowledge for individual System Modifications

It was stated before that in order to influence (modify) a dialog system, the system
must be — as necessary preconditions — transparent and predictable for the user
(control concept). For individual user-tailoring, this means that the user must have
acquired a relatively deep understanding of the system before he is able to modify
the system properly. Thus, individualizations that require a modification of the
system by the user (methods M2, M3, and M4) should be provided only for experi-
enced users, typically regular users. For users with less experience (casual users),
individualizations should be provided by predefined alternatives that can be se-
lected by the user (method M1). This way, the user does not have to learn how to
muodify the system, he must simply be aware of the possible selections.

The necessary knowledge for user-tailoring a dialog system can be analyzed in
more detail using the matrix classification scheme. In Table 7 the necessary system
knowledge is listed for each of the 24 individualization categories.

Task Orientation and User-Oriented Dialog Design 137

Table 7. Necessary System Knowledge for Each of the 24 Individualization
Categories

C1 C2 C3 C4 C5 Cé
Input Screen Data Scope of Com- Indiv.
Device Layout Display Com- mand Appli-
Mode mands Structure cations
M1
Selectable ALTER ALTER ALTER ALTER e b
alternatives
M2 ALTER ALTER ALTER ALTER ALTER it
On-line MCMD MCMD MCMD MCMD MCMD
commands
M3 ALTER ALTER ALTER ALTER ALTER ALTER
Configur. CONP CONP CONP CONP CONP CONP
program PLSYN
M4 ALTER ALTER ALTER ALTER ALTER ALTER
Configur. PLSYN PLSYN PLSYN PLSYN PLSYN PLSYN
file TXTED TXTED TXTED TXTED TXTED TXTED

Abbreviations:

ALTER: The existing alternatives must be known.

MCMD: The modification command must be known.

CONP: The use of the configuration program must be known.

PLSYN: The syntax of a programming language or a description language must be known.
TXTED: The use of a text editor must be known.

** This category is not meaningful.

Table 7 shows that method M1 (selectable alternatives) requires no special
knowledge about individualization procedures and is therefore most suitable for
casual users, as has already been claimed. More interesting is the distinction be-
tween methods M3 and M4 (configuration program/configuration file), since
these methods offer the same possibilities (a high degree of freedom), but require
different knowledge. Table 7 shows that a special syntax in addition to the use of a
text editor must be known for the configuration file method M4.

Method M3 requires only knowledge about a special configuration program
and will therefore be easier to understand. Although we explicitly do not promote
“ease of learning” as a design criterion, a system should be easy to understand
(“transparent”) when it is only occasionally used. This assumption is supported by
an experimental investigation (Greutmann, Ackermann, & Krebs, 1988). Since
user-tailoring is typically not the main part of the user’s job, configuration pro-
grams or configuration files will only be occasionally used. In this case, a configu-
ration program is superior to a configuration file that rather prevents than encour-
ages the user from tailoring his system.

138 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

However, this superiority will not hold if the user creates his'or ber own appli-
cation programs (modification of component C§). Here user-tailoring .becomes a
dominant part of the user’s job and will be carried out regularly In this case (see
Table 7) the benefits of a configuration program are 1.not obwou§ and the method of
a configuration textfile has to be considered as a suitable solution that could even
be more flexible than a configuration program. However, end-user programming
is a very special case of user-tailoring and should be analyzed separately.

Constraints of User-tailoring

Table 1 shows that user-definability is an aspect of control. If a designer wants to
provide this aspect, he must make sure that other aspects (e.g., transparency, con-
sistency) that are prerequisites for control are not negatively affected. By means of
a systematic analysis procedure (Greutmann & Ackermann, 1989), we tried to ex-
clude such negative backward effects.

Such effects can arise when the same dialog system is used by several users. If
modifications of one user affect the work of other users, the system behavior is no
longer transparent to those users (e.g., Microsoft Word on PC). It must therefore be
guaranteed that the modifications of one user do not affect other users. This can be
accomplished by means of “login” facilities or some other suitable identification
system. :

The system behavior will also neither be transparent to a user if his system
modifications have been carried out erroneously or wrongly. The user must there-
fore be provided with an overview facility showing all his modifications (“central
switchboard”) and a “reset” facility that sets the system in a well-defined state.

Summary of Specifications. for User-tailoring

The specifications for dialog systems with user-tailoring facilities can be summa-
rized as follows:

* For casual users, user-tailorable systems are not useful. Flexible systems that
offer different possibilities to choose from are more suitable.

* For regular users of a dialog system, user-tailoring should be provided by
means of commands embedded in the system or by a special tailoring mod-
ule that can be called from the dialog system. Textual configuration files are,
in most cases, not favorable.

* Textual configuration files can be useful for users who write their own appli-
cation programs (end-user programming).

* System modifications made by the users should not negatively affect the

transparency and predictability of the system behavior. This would be
counter-productive.

Task Orientation and User-Oriented Dialog Design 139

PARTICIPATION

Participation is the criterion of user-oriented dialog design, which refers to the
users’ participation in the development and installation of their dialog system. In
accordance with the concept of control, there should be the possibility for the user
to choose and to influence. This can be managed by involving the user as an expert
in his work very early in the process (Gould & Lewis, 1984). Hence, in another
project of our research group, models and methods for participative software
development are to be developed and evaluated empirically.

As a basis for this, software projects were analyzed. This was not done with
regard to technical aspects of software development, but with regard to work orga-
nization, use of methods, user participation, and the problems connected with
different procedures.

Sample, Methods, and Approach

The field studies were carried out in Swiss and German firms that develop infor-
mation systems for offices and administration. The sample consisted of software
firms (75%) as well as banks, insurance companies, industrial plants, etc. with in-
ternal software development departments.

The following research methods were used:

1. In one step, different documents of several firms (n=12) in the form of or-
ganigrams, handbooks for project management, etc. were analyzed.

2. The general procedure of software development was analyzed in semi-
structured interviews (n=22).

3. In a questionnaire, the subjects described a concrete, representative soft-
ware project, which had been finished (n=540 were asked; n=80 firms an-
swered; return rate=15%).

One or more of the following persons of the firms were involved: director,
head of software development, project leader, software ergonomics or product
manager.

Results

The following passages refer to the main results of the study that concern the ques-
tion of user participation (Strohm, 1990).

Intensity of User Participation. The data of the study show that willingness
on the part of software engineers to involve users in software development has be-
come greater. Statements from the subjects such as “We must involve the user” or
“Without the user it doesn’t work” verifies this.

140 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

Figure 7 contains the frequency of active, passive, anq no participaﬁ(?n in the
analyzed projects. The classification in the active and passive f(?rm of participation
was done according to Degree, Content, and Time of Participation.

Projects with active participation are characterized by the following compo-

nents:

Degree. The involved users participated in determining functionality, data struc-
tures, and interface.

Content. The users realized ideas and had decision possibilities.

Time. The users were already involved in the first step of the project (problem anal-
ysis).

In projects with a passive form of participation, the users brought information
and/or evaluated the ideas of the software engineers (mainly interface design).
They were mainly involved in the test phases.

The Attitude Toward User Participation among Software Engineers.
The following advantages and disadvantages of user participation were most
frequently named by the subjects:

Advantages
1. Adequate consideration of the users’ needs
2. Receiving relevant information
3. Higher acceptance
4. Lower expenditure for training

15%
No

Participation 25%
Active

Participation

60%
Passive
Participation

Figure 7. Frequency of active, passive, and no participation (n=79).

Task Orientation and User-Oriented Dialog Design 141

Disadvantages
1. Time consuming
2. Conflicting opinions among the users
3. Lack of the user’s computery
4. Communication difficulties
5. Lack of motivation among the users

However, a quantitative evaluation of user participation resulted in some dif-
ferences in dependence of intensity of participation. In projects with active partici-
pation, communication** and cooperation* with the users as well as motivation**
of the users was rated better by the subjects than in projects with passive participa-
tion (*p<0.05, *p<0.1). This implies that projects with active participation go more
smoothly (i.e., function more optimally).

Participation and Economic Data. The economic data of the study show
that software projects are often confronted with economic risks. In the analyzed
cases the costs were exceeded on an average of 45% (minimum: 0%, maximum:
400%). Figure 8 shows the exceeded costs dependent on intensity of participation.

From Figure 8 it becomes apparent that in projects with active participation the
costs were exceeded to a lesser degree than in projects with passive participation
and to a much lesser degree than in projects without participation. Thus, participa-
tion can also avoid economic risks in software development.

Discussion

The results of our study show that there are stronger attempts towards user
participation in software development practice. Nevertheless, from a work

80
80
70

60

., 50
70 40

30
20
10

B

Active Passive No
Participation Participation Participation

Figure 8. Exceeded costs in dependence of active, passive and no participation.
(n=70; p<0.05; one-factorial analysis of variance).

142 E. Ulich, M. Rauterberg, T. Moll, T. Greutmann, and O. Strohm

psychological point of view, inadequate forms (no or passive participation) are still
being practiced.

The data of the study verify the fact that active and early pax:ticipatipn can be
more successful. Projects with active participation were realized with fewer

problems and economic risks.

GENERAL CONCLUSIONS

There exist serious gaps in the area of basic research on user-oriented dialog de-
sign. Future research should follow a sequential strategy, based on knowledge
from general and work psychology. Task orientation and control belong to the rele-
vant concepts, as the demands set on people are not determined exclusively or pre-
dominantly by technology, but to a high extent, by organization apd work structur-
ing. As a consequence, the predominant direction of the desxgn process must
change: Instead of following tool design, task design must come first.

REFERENCES

Altmann, A. (1987). Direkte Manipulation: empirische Befunde zum Einfluss der
Benutzeroberfldche auf die Erlernbarkeit von Textsystemen. Zeitschrift fiir Arbeits- und
Organisationspsychologie, 31 (N.E.5) 3,108-114.

Blumenfeld, W. (1932). Uber die Fraktionierung der Arbeit und ihre Beziehung zur Theorie
der Handlung. In Bericht iiber den XII. Kongress der Deutschen Gesellschaft fiir Psychologie
(pp. 291-294). Jena.

Deutsches Institut fiir Normung DIN. (1988). Grundsitze ergonomischer Dialog-gestaltung.
Berlin: Beuth. '

Emery, F (1959). Characteristics of socio-technical systems. Tavistock Institute of Human
Relations, Document 527.

Emery, F. (1978). Characteristics of socio-technical systems (An abridged version of TIHR Doc.
527). In F. Emery (Ed.), The emergence of a new paradigm of work. Canberra: Centre for
Continuing Education, Australian National University.

Greutmann, T., & Ackermann, D. (1989). Zielkonflikte bei Software-Festaltungs-kriterion. In
S. Maass & H. Oberquelle (Eds), Software-Ergonomie ‘89. Aufgabenorientierte
Systemgestaltung und Funktionalitit (pp. 144-152). Stuttgart: Teubner.

Greutmann, T., Ackermann, D, & Krebs, M. (1988). Easy to learn or easy to use?
Consequences for the development of competence. To appear in Proceedings of the 7th
Eurogear; E1;18111111111 Conference on Human Decision Making and Manual Control, Paris, October
18-20,1988.

Gould,].D., & Lewis, C. (1984). Designing for usability — Key principles and what designers

think. In A. Janada (Ed.), Human factors in computing systems. Proceedings of the CHI'83
(pp. 50-53). Amsterdam: Elsevier.

Hacker, W. (1986). Arbeitspsychologie, Bern: Huber.

Task Orientation and User-Oriented Dialog Design 143

Hacker, W. (1987). Software-Gestaltung als Arbeitsgestaltung. In K.-P. Fihnrich (Ed.),
Software-Ergonomic. State of the Art 5 (pp. 29-42). Miinchen: Oldenbourg.

Hellpach, W. (1922). Sozialpsychologische Analyse des betriebstechnischen Tatbestandes
‘Gruppenfabrikation’. In R. Land & W. Hellpach (Eds.), Gruppenfabrikation (pp. 5-86).
Berlin: Springer-Verlag.

Hutchins, E.L., Hollan,].D., & Norman, D.A. (1986). Direct manipulation interfaces. In D.A.
Norman & S.W. Draper (Eds.), User centered system design (pp. 87-124). Hillsdale, NJ:
Erlbaum.

Kamoun, A., Debernard, S., & Millot, P. (1988). Implicit dynamic allocation of tasks between
man and computer based on the optimal command. In Proceedings of the 7th European
Conference “On Human Decision Making and Manual Control” (pp. 55-62).

Margono, S., & Shneiderman, B. (1987). A study of file manipulation by novices using
commands vs. direct manipulation. In Proceedings of the 26th Annual Technical Symposium
of the Washington D.C. Chapter of the ACM. Gaithersburg, MD.

Moll, T. (1987). On methods of analysis of mental models and the evaluation of interactive
computer systems. In M. Frese, E. Ulich, & W. Dzida (Eds.), Psychological issues of
human-computer interaction in the work place (pp. 403-417). Amsterdam: North Holland.

Moll, T., & Fischbacher, U. (1989). Uber die Verbesserung der Benutzerunterstﬁtzung durch
ein Online-Tutorial. In S. Maass & H. Oberquelle (Eds.), Software-Ergonomics ‘89.
Aufgabenorientierte Systemgestaltung und Funktionalitit (pp. 223-323). Stuttgart: Teubner.

Moll, T., & Sauter, R. (1987). Uber den Gebrauch eines kontext-spezifischen Help-systems. In
W. Schonpflug & M. Wittstock (Eds.), Software-Ergonomie '87: Niitzen Informationssysteme
dem Benutzer? (pp. 408-416). Stuttgart: Teubner.

Nievergelt, J. (1982). Errors in dialog design and how to avoid them. In Proceedings of the 1982
International Zurich Seminar on Digital Communications (IEEE Catalog No. 82 CH1735-0)..

Rauterberg, M. (1989a). MAUS versus FUNKTIONSTASTE: Ein empirischer Vergleich einer
desktop- mit einer ascii-orientierten Benutzungsoberfliche. In . Maass & H. Oberquelle
(Eds.), Software-Ergonomie '89. Aufgabenorientierte Systemgestaltung und Funktionalitiit
(pp. 313-323). Stuttgart: Teubner.

Rauterberg, M. (1989b). Ein empirischer Vergleich einer desktop- mit einer mentiorientierten
Benutzungsoberfldche fiir ein relationales DBMS. In M. Paul (Ed.), GI-19. Jahrestagung
Band 1. Computergestiitzter Arbeitsplatz (pp. 243-258). Berlin: Springer-Verlag.

Rice, A.K. (1958). Productivity and social organization: The Ahmedabad experiment. London:
Tavistock.

Shneiderman, B. (1987). Designing the user interface. Amsterdam: Addison-Wesley.

Smith, S.L., & Mosier,]N. (1986). Guidelines for designing user interface software (U.S.
Department of Commerce “National Technical Information Service.” Report-No.
AD-A177 198). Bedford: MITRE-Corporation.

Spinas, P. (1987). Arbeitspsychologische Aspekte der Benutzerfreundlichkeit won Bildschirm
systemen. Doctoral dissertation, Bern.

Strohm, O. (1990). Benutzerorientierung und Probleme bei der Software-Entwicklung.
Output, 7, 27-31.

Tomaszewski, T. (1981). Struktur, Funktion und Steuerungsmechanismen menschlicher
Tatigkeit. In T. Tomaszewski (Ed.), Zur Psychologie der Titigkeit (pp. 11-33). Berlin:
Deutscher Verlag der Wissenschaften.

Troy, N. (1980). Zur Bedeutung der Stresskontrolle: Experimentelle Untersuchungen ii)ber
Arbeit unter Zeitdruck. Zeitschrift fiir Arbeitswissenschaft 34,103-108.

Troy, N. (1986). Die Funktionsweise von ‘intelligenten’ Maschinen in der Vorstellung ihrer Benutzer.
Unpublished diploma thesis, University of Ziirich.

144 E. Ulich, M. Rauterberg, T. Mall, T. Greutmann, and O. Strohm

Ulich, E. (1987). Some aspects of user-oriented dialogue design. In P. Docherty, K,
Fuchs-Kittowski, P. Kolm, & L. Matthiassen (Eds.), System design for human development
and productivity: Participation and beyond (pp- 33-47). Amsterdam: Elsevier.

Ulich, E. (1989). Regarding computers as tools and the consequences for human-centered work
design. Paper presented to the 3rd International Conference on Human—Computer
Interaction, Boston.

Verein Deutscher Ingenieure VDI. (1988). Software-Ergonomie in der Biirokommunikation.
Richtlinienentwurf. Berlin: Beuth.

Volpert, W. (1974). Handlungsstrukturanalyse als Beitrag zur Qualifikationsforschung. Kéln:
Pahl-Rugenstein.

Volpert, W. (1987). Psychische Regulation von Arbeitstitigkeiten. In U. Kleinbeck & J.
Rutenfranz (Eds.), Arbeitspsychologie (pp. 1-42). Géttingen: Hogrefe.

Whiteside, J., Jones, S., Levy, P.S., & Wixon, D. (1985). User performance with command,
menu, and iconic interfaces. In L. Borman & B. Curtis (Eds.), Human factors in computing
systems-II (pp. 185-191). Amsterdam: North-Holland.

Zapf, D., & Frese, M. (1989). Benutzerfehler im Kontext von Arbeitsaufgabe und
Arbeitsorganisation. In S. Maass & H. Oberquelle (Eds.), Software-Ergonomie ‘89,
Aufgabenorientierte Systemgestaltung und Funktionalitdt (pp. 211~222). Stuttgart: Teubner.

