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ABSTRACT

Decisions and actions produced by computer users (observed process) contain much information about their
mental models, individual problem solving strategy and underlying decision structure for a given task. Our tool
AMME analyses observed processes and automatically extracts a Petri net description of the task dependent
decision structure (logical structure). This net is extended by goal setting structures (modelling) and executed
(simulated process). The aim is functional equivalence between observed and simulated processes. Two modelling
strategies, event-driven and parallel goal setting, are presented.
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INTRODUCTION

What mental models are and how they work, is quite unclear. Most of the known modelling approaches are based
on the assumption that the "mental model maps completely to the relevant part of the conceptual model, e.g. the
user virtual machine (Carroll, et al., 1991). Unexpected effects and errors point to inconsistency between the
mental model and the conceptual model" (Van der Veer, et al., 1990). This one-to-one mapping between the men-
tal model and the conceptual model of the interactive system implies a positive correlation between the complex-
ity of the observable behaviour and the complexity of the assumed mental model. But this assumption seems to
be wrong.

Based on empirical results (Rauterberg, 1993), the complexity of observable novice behaviour is larger than that
of experts. Hence, the behavioural complexity is negatively correlated with the complexity of the mental model.
If the cognitive structure is too simple, the concrete task solving process must be filled up with heuristic or trial
and error behaviour. Learning how to solve a specific task with a given system means that the behavioural
complexity decreases and the cognitive complexity increases. Now, one of the central question is: What kind of
knowledge is stored in the cognitive structure?

THE MEASUREMENT OF COMPLEXITY

The symbolic representation of the machine system consists of the following elements: 1. objects (things to
operate on), 2. operations (symbols and their syntax), and 3. states (the 'system states'). The mental model of the
user can be structured in representing: objects, operations, states, system structure, decision and task structure. A
Petri net can be described as a mathematical structure consisting of two disjoint, non-empty sets of nodes, S-
elements (signified by a circle or an oval '( )') and T-elements (signified by a square '[ ]'), and a binary flow
relation F (signified by an arrow ‚->‘) (Petri, 1980). Bauman, et al. (1986) showed, that Petri nets are equivalent
to formalism based on production rules (like CCT of Kieras, et al. (1985)). In this sense, our approach can also
be subsumed under 'logic modelling'. The main operations (relations) between two Petri nets are abstraction,
embedding and folding (Genrich, et al., 1980).

The folding operation in the Petri-net theory is the basic idea of the approach presented in this paper. Folding a
process means to map S-elements onto S-elements and T-elements onto T-elements while keeping the F-
structure.

Each state corresponds to a system context, and each transition corresponds to a system action. This sequence is
called a 'process'. An example of the task solving process of an expert user is presented here (see also Fig. 1).
The user's task is to find out how many data records there are in a given data base (DB) consisting of file A, file
B and file C of a given database (DB). First, the system goes from (Main menu) to (Start menu) with system
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transition ['G_2'], where it opens the DB. Then the system goes back to the (Main menu) with ['M_3']. Now,
the user selects function key ['F_3'] and goes to the file selection menu, where he selects file A by pressing key
['1'], bringing him back to the (Main menu). Pressing ['I'] brings him to the (Info) module. Pressing ['d'], all DB
information is displayed sequentially on three different screens (3* ['M_22']) and the system automatically goes
to (Info) with ['M_11']. But part of the task relevant information is visible only on the first screen, which is
overwritten by the two following ones. Trying once more to see all information, the user tries ['d'] again, but the
same reoccurs. After a third time pressing ['d'], the user correctly follows up with a blank ['BL'] to interrupt the
scrolling. Hence, the first part of the task relevant information stays on the screen. Pressing ['F_10'], the rest of
the information is displayed (2* ['M_22']) and the system automatically goes to (Info) by ['M_11']. Pressing ['h']
twice brings the user to (Main menu) and then to (Start menu). Pressing ['F_10'] brings the user to (MsDOS).

The aim of the folding operation is to reduce the elements of an observed empirical decision process to the
minimum number of states and transitions, with the reduced number of elements being the 'logical decision
structure'. Folding a decision process extracts the embedded net structure and neglects the amount of repetitions,
sequential order, and temporal structure. The result of a folding operation applied to the behavioural sequence
(Fig. 1) is the Petri net given in Fig. 2.
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Fig. 1. Part of the original behavioural sequence of an expert with a relational database system (Rauterberg, 1992a).
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Fig. 2. Model-1: the pure 'logical structure' (the device model) of the logfile example sequence in Fig. 1.

Ccycle is the McCabe (1976) complexity measure (Formula 1), where F is the number of connections and [T+S]
the number of nodes. (Different quantitative measures are discussed by Rauterberg (1992b).) P is a constant to
correct the result of Formula 1 in the case of [F – (T + S) = -1]. In our context the value of P is 1.

C cycle = F – (T + S) + P (1)

The Ccycle value of the model-1 in Fig. 2 is [30-25+1=6]; the complexity of the net shown in Fig. 2 is six.
McCabe (1976) interprets Ccycle as the number of linear independent paths through the net. Other interpretations
of Ccycle are number of holes in a net or number of alternative decisions carried out by the users.

Observing the behaviour of people solving a specific problem or task, is our basis for estimating 'model
complexity‘ (Ccycle). The cognitive structures of users are not directly observable. Therefore, we need a theory
with a method to estimate Ccycle, based upon observed behaviour. We call the complexity of the observable
behaviour the 'behavioural complexity'. This behavioural complexity can be estimated by analysing the recorded
concrete task solving process.

RECONSTRUCTION OF THE MENTAL MODEL

We carried out an empirical investigation to compare different types of interfaces (Rauterberg, 1992a). For the
reconstruction of user's mental models we used the behavioural sequences of five different expert users, all
solving the previously described DB task. The sequences were automatically recorded in ‚log files‘ by an
interactive software program.

The logged sequence contains three different types of knowledge: (1) the pure logical structure (or device model)
(Fig. 2) of the task, (2) the sequential structure of all goals, and (3) the temporal structure of all actions.

Action regulation theory (Hacker, 1994) offers a coherent body of principles for human-centred task and work
design. For Hacker (1986) the work task is "the central category of psychological consideration of activity..., as
decisive specifications for the regulation and organisation of the activities occur with the 'objective logic' of its
contents". Therefore, in the context of action regulation theory, the task has great importance for the behavioural
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analysis. The concept of complete task calls for particular attention. Each complete task and action cycle starts
with a goal setting part. In the analysis and design of human activities, the following characteristics of complete
tasks  must be taken into consideration:

(A) Task dependent setting of subgoals which are embedded in the superimposed task goal;

(B) Independent action preparation in the sense of taking on planning functions; and, selection of the means
including the necessary actions for goal attainment;

(C) Mental or physical performance functions with feedback on performance pertaining to possible corrections
of actions;

(D) Control with feedback on results and the possibility of checking the results of one's own actions against the
set (sub-)goals.

Following the theoretical implications of action regulation theory, we can differentiate between (1) the action
level (corresponding to C), (2) the goal instanciation level (corresponding to B), and (3) the cognitive level with
the mental goal setting processes (corresponding to A). In the context of this paper we did not take into
consideration the control and feedback level (D), but we plan to do this in our future work.
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Model-2 (first part): Event-driven goal setting strategy Model-3 (first part): Parallel goal setting strategy
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Fig. 3. a) Model-2: this Petri-net is equivalent to model-1 with added structure to model event-driven goal setting.
b) Model-3: this Petri-net is equivalent to model-1 with added structure for parallel driven goal setting.

Model-1: The pure logical structure is automatically extracted with our tool AMME (Rauterberg, 1993, 1996)
from the ‚log files‘. This net is called model-1 (see Fig. 2). Model-1 does not contain any knowledge about goals
and time. It is a subset of the complete system description (S-, T-, and F-rules: the rule base to describe the
whole interactive system behaviour as part of AMME (Rauterberg, 1996)). However, we know that a mental
process takes place at a cognitive level. So we have to find a way to model these mental processes by adding
structure to model-1. Petri nets enable us to do this in a unified way: any further levels can be described and
modelled with the same elements as at the action level.

All observed actions (e.g. ['G_2'] and ['M_3']) that are automatically carried out by the system itself, are
primarily not part of the cognitive level. Therefore, the system level must be a part of our model. Although the
user cannot control the system level actions, he can take them into consideration. So, at the goal instanciation
level a selected action is either set from the cognitive or from the system level.

In a first modelling approach, event-driven goal setting , we added a minimal structure to model-1, to increase the
functional equivalence between the simulated, new model and the original behavioural sequence. This new model,
based on model-1, we called model-2. In a second approach, parallel goal setting , we elaborated model-3.

Model-2: Our event-driven goal setting  example is given in Fig. 3a. Each action (or event) at the action level
directly activates a mental process at cognitive level or a system action at system level. For the next action to
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take place, a mental process or system action instanciates a corresponding goal at the goal instanciation level.
Hence, there is an upward, direct synchronisation from action to cognitive and system level and a downward syn-
chronisation via the goal instanciation to the action level.

Model-3: The parallel goal setting process (see Fig. 3b) was introduced by von Cranach's discussion of plans,
'anticipating representations', and intention (von Cranach, et al., 1982). For each goal at the goal instanciation
level to be set, an anticipated counterpart must be set beforehand at the cognitive or system level. Parallel goal
setting means that the mental goal setting process is running parallel to the action level, where the dialogue
actions are executed. Hence, there is no upward synchronisation from action to cognitive or system level, only
downward via goal instanciation to action level.

VALIDATION OF COGNITIVE GOAL SETTING STRATEGIES

To validate the different goal setting strategies, a simulation study of model-1,-2 and -3 was carried out. We
modelled the task solving processes of five expert users, all solving the same task, as pure logical structure
(model-1), with event-driven goal setting structures (model-2) and with parallel goal setting structures (model-3).
With the Petri-net simulator PACE all the models (5(#subjects)*3(model-1,2,3)=15) were implemented and
simulated. We generated six different task solving sequences with each model, giving a total of 90 simulated
sequences. Each simulation stopped either because the net was dead or Nsim=Norg.

To estimate the similarity between the original sequence (e.g. Fig. 1) and each simulated sequence, we used the
following procedure that guarantees a functional equivalence strictly based only on (re-)produced actions:

1. Number all transitions ['G_2' = '1', 'M_3' = '2', 'F_3' = '3', …, 'F_10' = '25'] in Fig. 1 consecutively. The
number R is the rank-position of each transition [t] in the original behavioural sequence.

2. Assign these numbers to all generated transitions [t] of each simulated sequence. For example, one of the
shortest simulated sequences we found, was generated with model-1: ['F_3', '1', 'G_2', 'F_10']. The rank
positions R of these four transitions are: ['3', '4', '1', '19']. In general, if a transition appears m times in a
original sequence and n times in the simulated sequence, the rules are as following: For the case n<=m, the
simulated transitions get the ranks of the corresponding original transitions. For the case n>m, the first
elements are handled as in the first case, whereas the rank of the elements m+1..n is m.

3. Calculate a 'similarity ratio' (SR; see Formula 2). SR is a sufficient measure for the similarity between the
simulated sequence and the original sequence. N is the number of all fired transitions in a sequence. The
maximum of Rorg is equal to Norg (Norg in Fig. 1 is 25). SR is only valid for simulated sequences that fulfil
the following condition: Nsim ≤ Norg. SR of the above example ['F_3', '1', 'G_2', 'F_10'] is 13%.

SR = 1 − org,tR − sim,tR + max orgR( )
sim+1N

orgN
∑

t =1

simN
∑












org

2N












*100% (2 )

4. Average the similarity ratios of all simulated sequences per model (see Table 1). The results in Table 1 show
that with increasing complexity of the mental model (Ccycle), the similarity ratio (SR) tends to 100%. We can
also see that the standard deviation of SR decreases continually with increasing Ccycle.

Table 1. The model complexity (Ccycle) and similarity ratio (SR) of model-1, -2, and -3.

M o d e l - n o . 1 2 3

Ccycle: mean ± standard deviation 13 ± 5 43 ± 17 57 ± 25

Ccycle: min…max. 6…18 22…68 30…97

SR: mean % ± standard deviation 41 ±  28 66 ±  21 88 ±  11

SR: min…max. % 3…79 36…98 67…100

# simulated sequences 30 30 30

Three analysis of variances were done with StatView 4.02 (1993). Independent variables were model (1..3) and
subject (1..5), dependent variable was similarity ratio (SR). Model was the only significant main effect
(ANOVA, F=38.743, p<0.001), whereas subject (ANOVA, F=0.564, p≤0.690) and subject model interaction
(ANOVA, F=1.068, p≤0.395) both were non-significant. So the similarity ratio increases from model-1 to
model-3 and seems to be subject independent. We have not tested whether our results are task dependent. We got
a clear, positive correlation between model complexity (Ccycle) and similarity ratio (SR) (R=0.660, 95% interval
[0.524…0.763], p<0.001). The same analysis split by subject also gave a weaker, but still significant
correlation (R=0.532, 95% interval [0.365…0.665], p<0.001).
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From this outcome we can conclude that (1) model-2 is better than model-1, and model-3 is better than model-2,
but (2) even the most elaborated model-3 can not guarantee a SR of 100%.

DISCUSSION

In the original sequence there was a cyclic behaviour (Rauterberg, et al., 1997). The user tried twice to see the
task relevant information, but without success. The third time he succeeded. This is a typical learning effect
based on trial and error. Analysing learning effects with Petri nets was achieved with other strategies (Rauterberg,
et al., 1995). It seems to be difficult to simulate learning effects with event-driven goal setting, because repeated
behaviour cannot be integrated in that modelling concept. For the parallel goal setting approach though, repeated
behaviour is reflected in the model, with improved results from one to the next repetition. However, since there
is no bi-directional synchronisation between the cognitive and the action level for the parallel goal setting
approach, the similarity is still less than 100%. An integration of the advantages of both strategies will be a
possible target for our further research.

CONCLUSION

We can conclude from the validation results that the SR value is considerably higher for the models with added
goal setting (model-2 and model-3) than for the pure logical structure (model-1). So it seems to be possible to
develop a completely automatic modelling tool based on a bottom up approach. Moreover, we see that with
increasing model complexity (Ccycle), the mean value of SR increased and the standard deviation got smaller.
Parallel goal setting performed better than event-driven goal setting. With the parallel goal setting strategy, we
were able to include learning effects from the real task solving process.
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