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A cognitive model of social preferences in
group interactions
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Abstract. Modeling the interactions in groups is becoming increasingly important in many application domains such as the de-
sign of interactive systems and social robots. Since human interactants do not always make rational choices, a good model of their
social motivations is needed to explain the strategies of the interactants that are often influenced by social factors and preferences,
the feeling of fairness and understanding the need for cooperation. We propose a cognitive model of social preferences of three or
more interactants that are engaged in a collaborative game. The game strategies of the interactants are modeled with cooperation
ratios and utility functions. We developed a new generalized utility-based approach to model the cooperation and fairness in
multiplayer interactions, which uses three utility parameters. In two-person games, as it has been investigated by others, it is
impossible to distinguish between fairness and cooperation in the decisions of a given player. We show that in n-person games
(n > 2), and with the use of the proposed utility-based approach, it is possible to distinguish between fairness and cooperation.
This makes the proposed approach suitable for more detailed analysis of group interactions in a game setting, which can better
explain the social motivation of the interactants, than existing utility models and models that utilize on cooperation ratios. We
show that the proposed generalization makes the newly proposed utility function less sensitive to the payoffs of one player if the
size of the group grows, and test it with data from the MARS-500 isolation experiment.
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1. Introduction Empirical evidence of such altruistic behavior have
recently inspired development of models of “social
preferences” that assume that subjects are self-interest-
ed, but also are concerned about the effect of their de-
cisions on others. These models try to capture phenom-
ena as altruism [17], trust [6,26,29], cooperation [18],
to account for fairness, reciprocity, and ethics in deci-
sion making [30]. In emerging applications of human-
computer and human-robot interaction, it is becoming
increasingly important to understand and model the

Cognitive models of decision making in group in-
teractions have been proposed in economics, sociol-
ogy, game theory and biology, based on the assump-
tion that interactants are egoistic subjects/agents that
are driven by the motivation to maximize their own
benefit/payoff. Recent studies demonstrated that these
models cannot adequately explain many experimental

findings and that humans often are also motivated by “irrational” behavior of the participants in group inter-

social factors and preferences, the feeling of fairness . . . . ,
; i actions with the aim to ground these in agent’s behav-
and by understanding the need for cooperation. People ior [2.20.30]

choose actions that do not maximize their own payoff
when those actions affect the payoffs of other individ-
uals.

Among the models designed to capture the social
(no self-interested) behavior, three classes can be dis-
tinguished. The first class includes models that are
based on the fairness of the distribution of resources,

- — in particular, the fairness of the distribution of effort
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petition [11], the role of envy in the distribution [19].
The second class of models are driven by a concern for
reciprocity, including sequential reciprocity [8], also
tested in interaction between artificial agents [16] and
in human-robot interaction [2], and the impact of so-
cial preferences on reciprocity [22]. The third group of
models combine elements of both approaches [5,7,12].

The first two groups of models introduce a distri-
butional or reciprocal component in the utility (to ex-
plain these aspects in the strategy of the agent). The im-
pact of the distributional or reciprocal component de-
pends on the type of the situations that has to be mod-
eled. There are cases in which reciprocity cannot be
neglected. For instance, in proposer-responder type of
games, the responder needs to make a decision given
the decision of his/her co-player, who makes a pro-
posal. In this case, the kind/unkind actions of the pro-
poser are usually reciprocated by a reward or punish-
ment of the responder. To model the reciprocal behav-
ior of the responder, the following factors have to be
taken into account: the options available to the respon-
der, the option proposed by the proposer, the options
that could be proposed by the proposer and beliefs of
the responder about the intentions of the proposer.

There are also situations in which the reciprocal
behavior is not feasible. For instance, for the person
who makes the very first move in the game, the at-
tractiveness of the options depends solely on the ben-
efits/payoffs associated with the option itself. In this
case, only the distributional factors matter. Even for
this simple case, there is no consensus in the exist-
ing models about what is the correct way to model
preferences of the interactants. In the literature, several
alternative types of models have been proposed. For
instance, the difference-aversion models assume that
subjects are motivated to increase their personal bene-
fit and also to reduce the difference between their and
others’ payoffs, as proposed in the study of Fehr and
Schmidt [12].

In contrast, the social-welfare models assume that
subjects’ preferences consist of three components:
(1) a component responsible for an egoistic behavior,
(2) Hicks optimality component which is responsible
for a cooperative behavior, and (3) a fairness compo-
nent [5].

Although the inequity-aversion and social-welfare
utilities are based on different assumptions, it has been
shown in the literature that for the case of two subjects
they can be represented by the same simple equations
and the difference between the utilities appears only
because of different values of the utility parameters as
proposed by Charness and Rabin [5].

In this paper, we model the case of multiple (more
than two) interactants and show that for this case the
inequity-aversion and social-welfare utilities are differ-
ent. We argue that the form of utility that we propose
has several advantages in comparison with the earlier
proposed ways to describe the strategies of the inter-
actants. Moreover, we introduce an additional fairness
term. The purpose of this term is to model the decision
making process of the proposers if the proposition is
rejected. We argue that this additional fairness terms is
important part of an adequate model of the proposers’
behavior.

The construction of the proposed utility function
was driven by practical need to describe behavior of the
participants in a game used in the MARS-500 exper-
iment [3,15,24] to monitor interpersonal relationships
and eventual conflicts by astronauts that were a part of
this experiment [3,15,16,31].

2. Modelling proposer-responder behavior

To facilitate group interactions, we conducted the
following experiment, which was part of MARS-500
experiment [15,24,25,27]. MARS-500 was conducted
by the Institute for Biomedical Problems (IBMP) in
Moscow and the European Space Agency, performing
a full-scale ground-based simulation of a manned mis-
sion to Mars. Such a full-scale mission requires from
520 to 700 days of isolation. All key features expected
in such a flight were present, which ensured that the
psychological and physiological impacts of isolation
through such an extended period were simulated with
high fidelity.

To monitor the developments in the social relations
through games, we designed a modified version of the
Colored Trails (CT) game [15], to the original CT
game that was developed at Harvard University [14].
CT is a computer version of multiplayer negotiation
board game that combines social skills as negotiation
and logical reasoning. It creates situations in which
people have different goals and insufficient resources
to reach these goals. At the start of each game play-
ers are in different situations (starting positions on
the board and possession of chips) and, as a conse-
quence require different resources to reach their goals.
To come up to the new resources, the players can redis-
tribute these resources through negotiations with other
players. The game supports the analysis of the devel-
opment of social relations since it contains both com-
petitive and collaborative components. A snapshot of
the game is shown in Fig. 1.
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The game is played by three persons in the way ex-
plained in the caption of Fig. 1. Players can move their
chips horizontally or vertically to one of the neighbor-
ing squares if they have a chip of the same color as the
new square. The player than surrenders a chip of that
color. The goal of the player is to move as close as pos-
sible to the goal-square, spending a minimum number
of chips.

Before making their moves, players are allowed to
exchange some of their chips with another player if
both participants agree. For the Mars-500 experiment,
we proposed a generalization of the CT negotiation
scheme. In the generalized version of the CT game,
each player can take the role of a proposer and can
choose to whom to make a proposition. These modifi-
cations provide several advantages that makes possible
to generate more data from the same number of games.
An additional consequence from the changes is that we
increased the variety of situations in which responders
can be. This yields additional information about the so-
cial preferences in the group. Every player can poten-
tially receive a proposition and play the role of a re-
sponder. The responders can have up to three proposi-
tions and, in this way, they experience a broader range
of situations in comparison to the original version of
the game. Also, we added a phase to the game, that is
aimed to assess irrational preferences of the players.

3. Experimental setting for group interactions
3.1. Assumptions

We assume that proposers and responders value op-
tions based on the payoffs associated with each op-
tion provided by the game setting. Expressed in differ-
ent words, we assume that there is a utility function «
that is used by the players (explicitly or implicitly) to
estimate the attractiveness of different game options.
The proposer-responder interaction is therefore mod-
elled by a utility function. In the proposal phase, the
proposer chooses one option from a set of available op-
tions. Every option is characterized by two numbers:
p and r that represent the payoffs of the proposer and
responder, respectively. We assume that proposer uses
a utility function u that depends on p and r to esti-
mate the attractiveness of every option: v = u(p,r).
We also assume that the attractiveness of the options
depends on the default payoffs of the proposer and re-
sponder pg and ry (payoffs that will be given to the
proposer and responder in the case of no exchange):
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Fig. 1. A snapshot of the colored trails game. Three players’ form a
partner network are assigned to different squares of a colored board.
If a player has the chip with the same color as a neighboring square
on the board, then he can move to this square. Each player aims to
get as close as possible to the GOAL square. Every player can be
a proposer or responder — i.e., offer chips or ask for chips. On the
upper plot are shown the chips of two of the three players. If Player
1 receives blue and yellow chip from Player 3, he can move closer to
the goal state G, as visualized in the lower plot with arrows. Player
3 can help by exchanging these chips.

u = u(po, o, p, 7). In the case of egoistic proposition,
which tries to optimize only the payoff of the proposer,
the utility function is given by the following simple ex-
pressions: u(pg, ro,p,7) = p. The above egoistic util-
ity function is too simple to describe the behavior of
the proposer adequately. For example, the attractive-
ness of an option to the proposer might depend not only
on the payoff provided by the option to the proposer
but also on the probability that the considered option
will be accepted by the responder and this probability,
in its turn, depends on the payoff of the responder.

To describe preferences of subjects in simple test
games different utility functions have been proposed.
In this study we will consider simple utilities, the first
one is the inequity-aversion utility [12]. This model as-
sumes that subjects are motivated to increase their own
benefit while at the same time they are motivated to re-
duce the difference between their own and others pay-
offs. The second utility we consider is called the social-
welfare utility [S]. It assumes that the interactants are
motivated to increase their own benefit as well as the
social benefit, caring especially about helping those in-
dividuals who have a low payoff.

The utility based approach is more suitable for mod-
eling decisions in the proposition phase since in this
case the attractiveness of every option is completely
characterized by the payoffs associated with it. The
decisions of the responder are not entirely character-
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ized by the payoffs associated with the available op-
tions (for example accept and reject), so utility function
alone cannot model well the behavior of the responder.
In addition to the payoffs associated with different op-
tions, the responder is more likely to also take into ac-
count the payoffs of the options that could be proposed
by the proposer. For example, a responder might want
to reward or punish proposer depending on what pro-
posals he/she made (good one or bad one). This kind
of behavior is known as reciprocity and has been con-
sidered by many researchers [4,7-9].

3.2. Utility functions for two interactants for both
utilities

3.2.1. The inequity-aversion utility
For the case of two players it has the following sim-
ple form:

Uia(p,7) =p—amax(r—p,0)—Bmax(p—r,0) (1)

This utility function has a simple interpretation. The
first term represent egoistic preferences of the players.
It was assumed that people do not like situations in
which one of the players receives more than another
one, i.e., do not like unequal distribution of the pay-
offs and have aversion to inequality. The second and
third term, therefore, model this inequity aversion [12].
It was also assumed that the degree of the dislike of
an inequity depends not only on the amount of the in-
equity but also who is receiving more (me or my co-
player). The last assumption explains why the utility
function has two terms in addition, compared to the
egoistic utility.

3.2.2. The social-welfare utility

Charness and Rabin [5] proposed the social-welfare
utility function which, for the case of two subjects, has
the following form:

Usw(p7 ’I") = (1 - A)p + /\[(1 - 5)(]) + 7")
+ 0 min(p, )] )

As can be seen in Eq. (2), the social-welfare utility
combines the egoistic preferences (the first term) with
the social preferences (the second term). If the param-
eters )\ is equal to zero, the subject is absolutely ego-
istic. If A is equal to one, then the subject cares only
about fairness, i.e., the social utility. The social term,
in its turn, consists of the Hick optimality term and the
maximin fairness. The Hick optimality corresponds to

the maximization of the total benefit while the max-
imin fairness motivates the subject to increase the low-
est payoff.

We can show that the inequity-aversion utility
(1) coincides with the social-welfare utility (2) for the
case of two subjects. For that, we need to find an ex-
plicit relation between the parameters of the inequity
aversion (1) and social welfare (2) utility functions
written for two subjects. To accomplish that we need
to ensure that both utility functions are “normalized”
in the same way. In other words, we need to remove
the ambiguity in the definition of a utility function that
can arise from the fact that a decision maker is invari-
ant with respect to the multiplication of the underly-
ing utility by a positive number. To do that we consider
both utilities for the case p = r. In this case, the in-
equity aversion utility is equal to p while the social-
welfare utility is equal to p(1 + A — AJ).

In this form the two considered utility functions are
different. We can easily see that this difference can be
removed if we slightly modify the original social wel-
fare utility function in the following way:

Unalp.r) = (1= N+ A 51 = 6)(p+ )
+ d min(p, r)} 3)

The term representing the Hick optimality (cooper-
ative term) is divided by two, and with this modifica-
tion, the social-welfare utility function will be equal to
p for p = r. This modification can be done by redefi-
nition of the parameters A and J in the expression, and
it does not change the meaning of the parameters. As
before, A represents the portion of the egoistic and so-
cial terms in the utility. The A equal to 1 represents a
subject who does not care about the personal benefit.
In contrast, A equal to O represents the totally egoistic
subject. The ¢ gives the balance between the Hick op-
timality and maximin fairness. The meaning of § equal
to 1 is that the player does not try to cooperate and
cares only about the fairness of the outcome. The
equal to 0, in contrast, represents cooperative players
who do not care about the fairness of the outcome.

To demonstrate that the utilities (1) and (3) are the
same we will analyze them for two different cases: r <
p and r > p. For the » > p the inequity aversion and
the modified social welfare functions are equal:

Uia(p,7) =p(1 + ) —ar 4
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Uss(p,7) = [1 + %(5 _ 1)} o %(5 “ 1) (5)

For the case of » < p we have the following expres-
sions for the two utility functions:

Uia(p,7) = p(1 = B) + Br (6)

Usw(p,r) = {1 + %(5—1— 1)} p+ %(5—1— Dr (7)

The relation between the inequity-aversion and the
social-welfare utilities is easy to be seen if both utilities
are represented by two linear functions one of which is
valid for the region r > p while the one is valid for the
region r < p. It means that both utilities can be written
in the following form:

P>
Ulp,r) =1 —p)p+pr if r<p, ®)

where o and p are some real constants. This way
of representing the utility functions was proposed by
Charness and Rabin [5]. In this form, the utility func-
tion has a clear interpretation, and the different types of
the utility functions correspond to different ranges of
the parameters o and p. The inequity-aversion utility is
valid in the range: 0 < 0 < p < 1, while the social-
welfare utility corresponds to the following range of
the parameters: 1 > p > o > 0.

A competitive player will have p in the range: o0 <
p < 0. This implies that this player always optimizes
own profit. A graphical representation of the relations
between the parameters o and p is given in the Fig. 2.

In Fig. 2, in addition to the regions corresponding to
the three classes of the utility functions are seen four
points corresponding to the four special utility func-
tions. The left most point corresponds to the egoistic
utility which describes subjects who care only about
their own benefit. The cooperative utility corresponds
to the subjects who are equally concerned about the
payoff of each player. These players try to maximize
the total benefit. The sacrificing utility corresponds to
an altruistic player, who cares only about the payoff of
another subject. And finally, the maximin fairness util-
ity describes subjects who care only about the fairness
of the outcome.

3.3. Utility functions for more than two interactants

The generalization of the utility functions for more
than two subjects has been already studied by other
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Fig. 2. Regions of the parameters o and p corresponding to different
classes of the utility functions.

researchers. In particular in the work of Fehr and
Schmidt [12] which introduces the inequity aversion
utility function (1), a form applicable to more than two
players is:

_ P Zmax(mi—xj,()) )

Charness and Rabin [5], who introduce the social-
welfare utility function, also give the generalization of
the function in the case of more than two players:

UsY = (1— \)z; + A

(1—5) i:lfﬂi

+ dmin(zq, zg, . . . ,xn)l (10)

As we have demonstrated, in the case of two subjects
the inequity aversion and social-welfare utility func-
tions coincide but it is not clear if they are generalized
to the case of many players in the same way. We will
propose a way to make this generalization that provides
a more adequate description of the behavior of the
players. First, we formalize the procedure that is used
to generalize the inequity aversion function. Second,
we apply this procedure to the social-welfare utility
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function for two subjects to make it more obvious that
the many-subjects inequity aversion utility functions
differs from the many-subjects social-welfare function.
Third, we examine the logic behind the two ways to
make the generalization to the many-subjects case and
present a new way to make this generalization that does
not suffer from the above mentioned drawback.

To demonstrate that inequity aversion utility func-
tion for multiple interactants (Eq. (9)) can be obtained
from the two-subjects utility function (Eq. (1)), we use
the following generalization to multiple players:

(n) ‘ _ 2)
U/ (21, Ty ooy T, _n—IZU (x5,

J#z
(11)

If we apply this procedure to the modified social-
welfare utility function (Eq. (3)), we will get the fol-
lowing equation:

1 < 1
— > =N+ )\[2(1 — &) (s + x5)
=1
g
+ 5min(xi,x]—)} =({1-Nz; + Mfﬁz (12)
1 AM1-06) — DU
+ ET Z.’Ej + m me(mi,x]—)
Jj=1 Jj=1
i i

The structure of the above Eq. (12) is different from
those of the social-welfare function proposed by Char-
ness and Rabin [5], in spite of the fact that we started
from the two-subjects social-welfare function (Eq. (3)).

The difference between the above Eq. (12) and the
many-subject social-welfare function Eq. (10) is as fol-
lows. The utility function Eq. (12) is very similar if
the inequity aversion utility is written in a different
way, does contain some terms that could be associated
with the egoistic preferences, Hick optimality (cooper-
ativeness) and the maximin utility. However, there are
some differences; the first one is that the cooperative
term (the third term) in the Eq. (12) does not contain
the contribution from the subject for whom the utility
is given. Moreover, it is divided by the number of in-
teractants. In other words, the above inequity aversion
utility function uses the average payoff of the players
while the social-welfare utility uses the total payoff of
the players. To make the above expression closer to
the social-welfare function we will remove the n — 1

term from the expression. In this case the second term
can go under the sum of the third term and we will get
the same Hick optimality terms as in the social-welfare
utility function:

; 1-9) Zwﬂ—éZmln (@i, 25)

3751
(13)

The Eq. (13) is similar to the original social welfare
utility function Eq. (10). The 1/2 coefficient in the front
of the Hick optimality term is there just because we
used the modified version of the social-welfare func-
tion Eq. (3) instead of the original one Eq. (2).

3.4. Alternative generalization procedure

The only difference between the last expression
Eq. (13) and the original social-welfare function is the
maximin fairness term. In the case of the social- wel-
fare function the fairness is calculated as the minimal
payoff in the group. In Eq. (13) a player compares him-
self with all other subjects in the group and for ev-
ery comparison, the fairness is calculated and is added
to the total fairness. This difference demonstrates that
there could be different ways to calculate the total fair-
ness, i.e., there could be different ways to generalize
the maximin fairness from the two-subjects case to the
more than two-subjects case. We argue that using the
term proposed in the original social-welfare function
is problematic. This can be illustrated with the fol-
lowing example. A player needs to choose between
two situations. In the first situation, 50 subjects get
11 points, other 50 subjects get 9 points, and 1 sub-
ject gets 7 points. In the second situation, 50 subjects
get 12 points, other 50 subjects get 8 points, and one
subject gets 7 points. Transition from the first case to
the second one seems to make the distribution of points
less fair since the rich subjects start to get even more
and poor subjects start to get even less. However, ac-
cording to the expression used in the social-welfare
function, the fairness of both situations is the same (it
is equal to 7, the minimal payoff in the group). To re-
solve this problem, we propose to calculate the fair-
ness of the payoffs distributions for all possible pairs
of players and sum the values up:

n
Z min(zy, ;) (14)

k,l=1
k£l
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In addition, we have to decide how the weighting
factor in front of this expression should depend on the
number of the interactants in the group. This is chal-
lenging since in the Hick optimality terms there are n
summands while in the maxim in that we have just in-
troduced the number of terms is n square —n. As a
result, the fairness terms will dominate the coopera-
tion term if n is large enough. To resolve this problem,
we propose to calculate the average fairness. For that,
we divide the total fairness by number of terms under
the sum n(n — 1). This quantity should not grow as
n grows. Since the Hick optimality is proportional to
n, we multiply the average fairness of the distribution
by n. This way to combine the maximin fairness and
Hick optimality ensures that none of this terms will
dominate another one for large n. In summary, we pro-
pose to use the following utility function for the case
of more than two subjects:

U=(1-Nx; + A

1 " 1 6
(1 — PR
5 5);$J+2n—1

Z min(azi,xj)] (15)
k=1
k#l

For the two players, the above utility function is the
same as the inequity-aversion and the social-welfare
utilities functions. For the case of more than two play-
ers, all the three utilities functions are different.

In the proposer-responder settings, the decisions of
the proposer (which option will be proposed) depend
not only on the payoffs of the options but also on the
payoffs of the default option [21]. By the default op-
tion, it should be understood the option which will be
implemented if proposer did not propose anything or if
the responder rejects the proposed option. In particular,
we can assume that the subjects care not only about the
absolute payoffs associated with the options but also
about the gain in the payoff that an option provides in
addition to the default score. In other words, we as-
sume that the subjects perceive the payoffs of the de-
fault option as something that they already have since
the proposer and the responder can always get the de-
fault option, if they want, independently of the actions
of the co-player. As a consequence, we could assume
that the players judge all other options by the amount
of points that these options give in addition to what
they already can gain from the default option. We will
call this amount gain from the option. By introducing
this gain, we can assume that it is treated in the same
way as the absolute payoff of the option, i.e., that the

players might want to maximize their own gain or the
total gain of all the players. However, utilities of this
kind do not add anything new to the above considered
utilities since a maximization of their gain is equiva-
lent to the maximization of the absolute payoff. The
same is valid for the total gain and the total absolute
payoff. In contrast, the maximum fairness of the gain
is not identical to the maximin fairness calculated for
the absolute score. This means that the extended social-
welfare utility function taking into account gains from
the options can be written in the following way:

Usw(p,7) = p+ we(p + 1) + wymin(p, r)
+wgy min(p — po,r — 70) (16)

where w,, wy, and w, are weighting factors that repre-
sent the importance of cooperation and the two differ-
ent kinds of fairness to the given player, respectively.
The first term p models the egoistic preferences. It has
no coefficient (weighting factor) in front because the
utility function is invariant with respect to a positive
scaling factor and, as a consequence, we can always
choose such a scaling factor that makes the coefficient
in front of the egoistic term equal to zero. This normal-
ization is convenient since in this case the importance
of other factors will be defined relative to the impor-
tance of the own benefit of the player.

3.5. Fair gain and more than two interactants

The above proposed utility models make it possible
to calculate fairness with respect to the final score. It
is possible that the decisions of the players are based
on how a certain choice is better than the one that the
player will have by the default option. To generalize
the above function to include fairness with respect to
the gain we need to add one more term to the utility
function:

n

Z min(z; — 2,2, — .’L‘;—l), (17

k=1

k£l
where ¢ denotes the default score of the player 4. This
generalization will introduce ambiguity to the utility
function, meaning that different values of the utility pa-
rameters could give the same utility function. To re-
solve this problem, we should take the two-subjects
utility function with the removed ambiguity and gener-
alize it to the case of more than two players. To do so
we have to formalize the generalization procedure — we
have to find the procedure that transforms the modified
social welfare utility (3) to the desired many-subject
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utility functions Eq. (14). After we find this procedure,
we can apply it to the two-subjects utility with removed
ambiguity and, in this way, we should obtain the many-
subject utility without ambiguity.

Let us first take the two-subject utility (3) and sum
it up for all possible pairs of subject and then divide by

the number of the considered pairs:
n

ﬁ Z {(1>\)xk+ (18)

k=1
k#l

A {;(1 — 8) (g + 1) + 6 min(as, wz)} }

The above equation can be transformed to the fol-
lowing form:

(1—=XNa; + 19)
1 n 5 n '
A[(l—é)n2$j+w Z mln(xkaxl)]
Jj=1 k];;;é:ll

If we compare the above Eq. (19) and the earlier
proposed Eq. (15), we can see that the Eq. (15) can
be obtained from the Eq. (18) if the following substi-
tution A — An/2 before the social term is used. In
other words, the generalization of the two-subject case
(3) can be done if we replace A by nA/2 and average
this two-subjects utility for all possible pairs of players.
Now we can apply this procedure to the two-subjects
utility which incorporates the two kinds of fairness and
in which the ambiguity in the parameters is removed,
by unifying the parameters for cooperation and differ-
ent kinds of fairness and cooperation and expressing
these through w.

sy 2 ((w+f)max(p—r,0)
2(n—1) )
o

+(w — f)min(p — r,0)] — ﬁ

Usr(p,7) =p —

i [(w+ g) max(Ap — Ar,0)
kI;l;é:ll
+(w — g) min(Ap — Ar,0)]  (20)

4. Testing the method in real-world interactions
within MARS-500 and an online game

We showed that in group interactions we can distin-
guish between fairness and cooperation-motivated be-
haviors of the players. In this section, we will briefly
show how to apply this method for analyzing the inter-
actions and therefore show its validity.

4.1. Evolutionary algorithm for choosing games with
the desired properties

To apply this method to real-world problems we
need to generate games in the way that the participants
will be forced to make the decisions that will expose
their motivation to behave in a certain way. Because
of that, we use an Evolutionary algorithm to generate
the optimal sequences of games. There are other pos-
sible methods to find the optimal sequence of games,
however, the choice of the method cannot impact the
answer of the main research question of this paper.

We want to use games in which the sets of the payoff
options, corresponding to different predefined strate-
gies, do not overlap with each other. This property al-
lows us to derive a strategy from the decisions of the
players. We have found that only a very small percent-
age of games have such property. A random search
for the games with this property would be too time-
consuming.

To overcome this problem, an evolutionary search
was performed. We needed to create games with sev-
eral restrictions: (1) the chips of the game should stay
on relatively small field; (2) two players were not al-
lowed to occupy the same square; (3) the number of
chips owned by one player should be between three
and five; (4) the game should remine interesting for all
players independent of who negotiates with whom. Be-
cause of the first two restrictions cross-over operations
will be less efficient than mutations with one position
or change to another color from the few options.

We started from a randomly generated game. Each
game was generated for 3 players. The state of the
field, the positions of players and the goal, as well as
redistribution of chips, was done randomly. The only
restriction that was applied is that every player can
have from three to five chips. Then we started an iter-
ative process in which either the state of the field or
the position of the player or the location of the goal,
or the set of the chips was modified. During the mod-
ification of the field, we randomly changed the color
of a randomly chosen square. Changing a position of
a player or of the goal we made one horizontal or ver-
tical step to one of the neighboring squares (under the
obvious restriction that the chips in the game should
stay on the field). In addition, two players were not al-
lowed to occupy the same square. By modifying the set
of chips, a player was chosen at random, and for this
player, a chip of a randomly chosen color was added
or removed. Doing that, we kept the restriction that the
number of chips owned by one player should be be-
tween three and five.
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On every step, we calculated the overlap between
sets of options representing different strategies. The
size of the overlap was calculated for every potential
pair of players, and the total size of the overlap was
taken into account. In this way, we could guarantee that
the game will be interesting independent of who nego-
tiates with whom. A considered mutation was accepted
only if it decreases the overlap. The mutation process
was continued until no overlaps were found for any
pair of players.

4.2. Analysis of the decisions of the players

In this Section, we apply the model-based approach
to calculate the utility parameters of different partici-
pants based on their proposals made in the CT game.

The data were collected during two game interac-
tions: an online (web based) experiment as reported
in [15] and the dataset that we collected during MARS-
500 isolation experiment. We collected three kinds of
data: behavior in a cooperative computer game, self-
assessment questionnaires, and video records of facial
expressions during game play [3]. In the web based ex-
periment, 27 participants took part. Nine teams con-
sisting of 3 players were formed. The teams played
different numbers of games (ranging from 4 to 18).
In total 93 games were played. The second data set
was collected during the Mars-500 isolation experi-
ment from six participants over a period of 520 days.
Every second week, the participants were required to
interact with each other through a computer environ-
ment for approximately 30 min as a part of our exper-
iment. They played 65 games in total during these ses-
sions; the participants were seated in front of the com-
puters, performing different learning tasks and playing
the modified CT game with each other [3].

We have calculated the utility parameters of 21 play-
ers (7 teams including 2 teams from the MARS-500 ex-
periment). Two teams from the online experiment were
discarded since the players performed too few games.
In the Figs 3-5, we show the calculated utility parame-
ters. Since every utility function is given by three util-
ity parameters (w, f, and g), the utility function of each
player can be presented as a point in the 3D space of
the utility parameters. To present the utility parameters
of the considered players we use 3 different 2D pro-
jections of the 3D utility space — we project the points
into the (w, f), (w, g) and (f, g) subspaces.

In Figs 3-5 we can see the following properties of
the utility parameters. First, the values of the utility pa-
rameter w, which is responsible for the cooperation, are
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Fig. 3. Utility parameters of players shown in terms of the coopera-
tiveness w and fairness with respect to the final score f. This is a plot
of 2 out of the 3 dimensions for these participants. Each participant
is visualized with a different figure (color or shape). The smaller val-
ues of w indicate that a subject cares more about his/her own benefit
than the benefit of his/her opponent.
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Fig. 4. Utility parameters of players shown in terms of the coopera-
tiveness w and fairness with respect to the gain g. Each participant
is visualized with a different figure (color or shape). The parameter
w close to zero means an absolutely egoistic player, who does not
care about payoff of his/her opponent at all. w > 0.5 which corre-
sponds to an absolutely altruistic player who cares only about payoff
of his/her opponent and does not care about his/her own payoff.

distributed around the value corresponding to optimal
cooperation (0.25).

The smaller values of w indicate that a subject cares
more about his/her own benefit than the benefit of
his/her opponent. The values which are larger than 0.25
mean that subject cares more about the benefit of the
opponent than about his/her own benefit. The parame-
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Fig. 5. Utility parameters of players shown in terms of the fairness
of two different types (f and g). Mostly, the value of the parame-
ters corresponding to the two different kinds of are larger than zero,
which means that most of the players do care about fairness of the
proposals.

ter w equal to zero means an absolutely egoistic player,
who does not care about payoff of his/her opponent
at all. Another extreme case corresponds to w = 0.5,
which corresponds to an absolutely altruistic player
who cares only about payoff of his/her opponent and
does not care about his/her own payoff. In this context,
it is interesting to notice that in all cases w was larger
than 0.1 and in most of the cases it was smaller than
0.35.

This means that most of the players balance between
their own payoffs and payoffs of their opponents. The
two exceptions, corresponding to extremely large val-
ues of omega are most likely to be explained by in-
accuracy of the values of the parameters. Another ob-
servation is that in most of the cases the value of the
parameters corresponding to the two different kinds of
fairness (f and g) are larger than zero. It means that
most of the players do care about fairness of the pro-
posals. It is also interesting to notice that players tend
to care about fairness of the gain slightly more than
about fairness of the final score. For such players, it is
less important how much everyone will have after an
exchange. For them, it is more important how much
everyone gets in addition to what everyone already had
before the exchange. Finally, it should be noticed that
the range of the distribution for all three parameters is
approximately the same (about 0.5).

As can be seen in the Figs 3-5 the values of the util-
ity parameters form a quite homogeneous cluster. In
particular, a clear relation between the utility param-
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Fig. 6. Distribution of the percentage of cases in which the distance
between the fake utility parameters has been smaller than the dis-
tance between the real utility parameters of two given players.

eters cannot be seen. For example, it cannot be said
that a cooperative player tends to care about fairness
less. This distribution of the values, as well as a rather
small number of games per player, raises the question
if the observed difference between the utility parame-
ters of the players is statistically significant or if it is
just noise.

To answer this question, a pair-wise comparison of
all players has been made. For every pair of players,
the difference between the utility parameters that de-
scribes their play behavior have been calculated. The
difference has been calculated as Euclidian distance
between the two points representing the utility param-
eters of two players in the 3D utility space. After that,
for a given pair of players, their decisions have been
put in one set, shuffled these decisions and split the
combined set into two subsets of the same sizes as the
original two subsets. For the two new subsets of deci-
sions, the utility parameters, as well as the difference
between them, have been calculated. For a given pair
of players, this procedure was repeated many times to
find out in what percentage of cases the difference be-
tween the two “fake” utility parameters is smaller than
the original distance between the real utility parame-
ters of the two considered players. This percentage has
been calculated for all possible pairs of players. The
distribution of the values of these percentages is shown
in Fig. 6.

As we can see from the distribution shown in Fig. 6,
the larger values of the percentage are populated more
than the smaller values. It means that there is a ten-
dency for the pairs of the real utility parameters to be
more distant from each other than pairs of fake util-
ity parameters. In case if there is no difference be-
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tween the players regarding the utility parameters the
distribution shown in Fig. 6 has to be homogeneous.
To draw a solid conclusion, we have calculated the p-
value of the null hypothesis assuming that the players
are not distinguishable in terms of the utility parame-
ters and the given deviation of the distribution from the
homogeneous one is obtained just by chance. The cal-
culated p-value was found to be extremely small (less
than 10~19). From that outcome, we can conclude that
players differ from each other regarding the utility pa-
rameters that characterize their play behavior.

Finally, we would like to emphasize that the differ-
ence between the players, for which the statistical sig-
nificance has been calculated, is cumulative. In other
words, we have calculated the p-value of null hypoth-
esis assuming that all the players are the same. If we,
instead, try to compare a pair of players, we will find
out that in many cases the difference between them is
statistically insignificant. We can see this from the dis-
tribution in Fig. 6. For a larger portion of the pairs of
players, the distance between their utility parameters
can be as large as it is (or even larger) just by chance.

5. Conclusions

This work reports the development and validation
of a cognitive model of social preferences of three or
more interactants that are engaged in a collaborative
game. We hypothesized that the proposed new gener-
alized utility-based approach would model the cooper-
ation and fairness in multiplayer interactions, and thus
will give a better understanding of the motivation of
the players. In this way, it might help monitoring the
long-term interactions between individuals for moni-
toring of the interpersonal relations in isolated, goal-
oriented teams. The interpersonal relations are inferred
from measuring fairness and cooperation in game be-
havior. In two-person games, as it has been investigated
by others, it is impossible to distinguish between fair-
ness and cooperation in the decisions of a given player.
Although the existing approaches could explain some
experimental data from real-life experiments, we pro-
vide a model for analyzing when the person in a group
interaction was motivated by its feeling of fairness or
the rules of cooperation. In this work, we have com-
pared the inequity-aversion and social-welfare utility
functions.

We have demonstrated that, despite the fact that the
two considered utility functions are identical for the
case of two subjects, their generalizations to the case
of more-than-two subjects are different.

The generalization procedures have been compared
and analyzed. As a result, we have proposed a new
generalization procedure that is different from the gen-
eralization procedures applied to the inequity-aversion
and social-welfare utility functions. The proposed way
to generate utility functions for more than two sub-
jects provides several advantages. First, the fairness
of the payoff distributions is calculated by consider-
ing all possible pairs of interactants. This is differ-
ent from the calculation of fairness prescribed by the
inequity-aversion functions in which only pairs con-
taining the decision-making subjects are considered.
Second, the importance of the social contribution to
the utility functions, as compared to the egoistic con-
tribution, grows as the size of the group grows. The
inequity-aversion utility does not have this property.
Third, the utility proposed for the case of more-than-
two subjects becomes less sensitive to the payoff of a
single subject as the size of the group grows. This is
different from the social-welfare utility which could be
very sensitive to the payoff of one player even for huge
groups. Finally, we have proposed an additional max-
imin fairness term to the utility function to capture the
fact that proposers can behave differently depending
on how many points the default option gives to the pro-
poser and responder. In summary, we have proposed a
many-subjects utility function that can explain egois-
tic, cooperative and fair behavior of different kinds in
the proposer-responder setting.

The main conclusion of applying the method is that
the values of the utility parameters of any two play-
ers are not accurate enough to be compared with each
other and analyzed in detail. However, the accuracy
is good enough to draw conclusions about collective
properties (distribution) of the values for the consid-
ered group of players. In particular, we can get a good
idea about the expected values of the utility parameters
as well as how broadly they are distributed and what is
the shape of the distribution. Moreover, we have a con-
vincing reason to believe that players differ from each
other in terms of their utility parameter and, as a con-
sequence, these parameters can be used to characterize
players in a meaningful way.

For a practical application of this model in real life
scenarios, we need to consider several factors, such as
working with unbalanced datasets [13] and using an
evolutionary strategy to generate sequences of games
in which the social motivation of the interactants will
be quickly captured. We showed how the proposed
model can be applied to real-life data from MARS-500
experiment.



196

R.D. Gorbunov et al. / A cognitive model of social preferences in group interactions

Acknowledgments

The research reported in this paper is supported
by NWO User Support Program Space Research. The
project number is ALW-GO-MG/07-13.

References

(1]
(2]

(3]

(4]

(5]

(6]
(71

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

Akerlof GA, Yellen JL. Fairness and unemployment. The
American Economic Review. 1988; 78: 44-49.

Barakova EI, De Haas M, Kuijpers W, Irigoyen N, Betancourt
A. Socially grounded game strategy enhances bonding and
perceived smartness of a humanoid robot. Connection Sci-
ence. 2018; 30(1): 81-98.

Barakova EI, Gorbunov R, Rauterberg M. Automatic interpre-
tation of affective facial expressions in the context of inter-
personal interaction. IEEE Transactions on Human-Machine
Systems. 2015; 45: 409-418.

Bolton GE, Ockenfels A. ERC: A theory of equity, reci-
procity, and competition. American Economic Review. 2000;
166-193.

Charness G, Rabin M. Understanding social preferences with
simple tests. The Quarterly Journal of Economics. 2002; 117:
817-869.

Cho J-H, Chan K, Adali S. A Survey on Trust Modeling. ACM
Comput. Surv. 2015; 48(2): 1-40.

Cox JC, Friedman D, Gjerstad S. A tractable model of reci-
procity and fairness. Games and Economic Behavior. 2007;
59: 17-45.

Dufwenberg M, Kirchsteiger G. A theory of sequential reci-
procity. Games and Economic Behavior. 2004; 47: 268-298.
Falk A, Fischbacher U. A theory of reciprocity. Games and
Economic Behavior. 2006; 54: 293-315.

Fehr E, Kirchsteiger G. Insider power, wage discrimination,
and fairness. The Economic Journal. 1994; 571-583.

Fehr E, Kirchsteiger G, Riedl A. Gift exchange and reci-
procity in competitive experimental markets. European Eco-
nomic Review. 1998; 42: 1-34.

Fehr E, Schmidt KM. A theory of fairness, competition, and
cooperation. The Quarterly Journal of Economics. 1999; 114:
817-868.

Fernandez A, Carmona CJ, delJesus MJ, Herrera F. A pareto-
based ensemble with feature and instance selection for learn-
ing from multi-class imbalanced datasets. International Jour-
nal of Neural Systems. 2017; 27.

Gal Ya, Grosz BJ, Kraus S, Pfeffer A, Shieber S. Col-
ored trails: A formalism for investigating decision-making in
strategic environment in Proceedings of the 2005 IJCAI work-
shop on reasoning, representation, and learning in computer
games. 2005; 25-30.

Gorbunov R, Barakova EI, Ahn RM, Rauterberg M. Moni-
toring interpersonal relationships through games with social
dilemma. In Proc. IJCCI (ECTA-FCTA). 2011; 5-12.

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Gorbunov R, Barakova E, Rauterberg M. Design of social
agents. Neurocomputing. 2013; 114: 92-97.

Hetzer M, Sornette D. An Evolutionary Model of Cooper-
ation, Fairness and Altruistic Punishment in Public Good
Games. PLOS ONE. 2013; 8(11): €77041.

Huskens B, Palmen A, Werff MVD, Lourens T, Barakova E.
Improving collaborative play between children with autism
spectrum disorders and their siblings: The effectiveness of a
robot-mediated intervention based on Leg0® therapy. Jour-
nal of Autism and Developmental Disorders. 2015; 45: 3746-
3755.

Kirchsteiger G. The role of envy in ultimatum games. Journal
of Economic Behavior & Organization. 1994; 25: 373-389.
Lowe R, Almér A, Billing E. Yulia Sandamirskaya Christian
Balkenius, Affective — associative two-process theory: a neu-
rocomputational account of partial reinforcement extinction
effects. Biological Cybernetics. 2017.

Marzo F, Gal YA, Grosz B. A Pfeffer, in Fourth Conference
in Collective Intentionality. 2005; 452-458.

Rabin M. Incorporating fairness into game theory and eco-
nomics. The American Economic Review. 1993; 1281-1302.
Morais H, Sousa TM, Santos G, Pinto T, Praca I, Vale Z.
Coalition of distributed generation units to virtual power
players-a game theory approach. Integrated Computer-Aided
Engineering. 2015; 22: 297-3009.

Cohen I, Braber ND, Smets NJJM, van Diggelen J, Brinkman
W-P, Neerincx MA. Work content influences on cognitive
task load, emotional state and performance during a simu-
lated 520-days’ Mars mission. Computers in Human Behav-
ior. 2016; 55: 642-652.

Pol4tkova Solcovd 1, Solcovi I, Stuchlikova I, Mazeh6ova Y.
The story of 520 days on a simulated flight to Mars. Acta
Astronautica. 2016; 126: 178-189.

Rishwaraj G, Ponnambalam SG, Loo CK. Heuristics-based
trust estimation in multiagent systems using temporal dif-
ference learning. IEEE Transactions on Cybernetics. 2017;
47(8): 1925-1935.

Rauterberg M, Neerincx M, Tuyls K, Loon JV. Entertainment
computing in the orbit. New Frontiers for Entertainment Com-
puting. 2008; 59-70.

Segal U, Sobel J. Tit for tat: Foundations of preferences for
reciprocity in strategic settings. Journal of Economic Theory.
2007; 136: 197-216.

Vanderelst D, Ahn RM, Barakova EI. Simulated trust: a
cheap social learning strategy. Theoretical Population Biol-
ogy. 2009; 76: 189-196.

Vanderelst D, Winfield A. An architecture for ethical robots
inspired by the simulation theory of cognition. Cognitive Sys-
tems Research. 2017.

Voynarovskaya N, Gorbunov R, Barakova E, Ahn R, Rauter-
berg M. Nonverbal behavior observation: Collaborative gam-
ing method for prediction of conflicts during long-term mis-
sions. Entertainment Computing-ICEC. 2010; 103-114.



