
COMMUNICATIONS OF THE ACM March 2007/Vol. 50, No. 3 79

If conflict and argumentation are indeed signs of progress, the field of software
development must be advancing by leaps and bounds. In the past decade, there
has been much debate among software developers over contradictory perspec-
tives of the traditional plan-driven approaches vs. the agile philosophy of soft-
ware development. Conspicuously absent, however, are the rich perspectives on
similar shifts in patterns of thought in other disciplines and the articulation of
underlying conceptual assumptions built into today’s software designs. Here,
we identify theoretical and conceptual support for the emerging epistemol-
ogy—methods of searching for and validating basic knowledge—
of software practice epitomized in the principles of agile methodologies. Such

The traditional goal of optimization and control is
making way for learning and innovation.

Theoretical Reflections on
AGILE DEVELOPMENT

METHODOLOGIES

B y S r i d h a r N e r u r a n d Ve n u G o p a l B a l i j e p a l l y

support is important [4]. Foremost, it enriches
our understanding of the agile phenomenon by
examining its theoretical roots. It also enables
informed use of agile practices in appropriate sit-
uations; helps discover reasons for the success of
software practice in complex social situations;
and facilitates dissemination of agile concepts.

Software development is a complex undertak-
ing beset with many problems, called “wicked
problems” by Horst Rittel, an urban planner who
pioneered the concept of issue-based information

systems to facilitate the formulation and clarifica-
tion of complex administrative decisions [2].
These problems tend to be unique and difficult
to formulate, and solutions evolve continually as
the designer gains a greater appreciation of what
must be solved. The need to satisfy multiple con-
flicting viewpoints makes it difficult to devise a
test to determine the effectiveness of solutions.
“Argumentation,” according to [2], is critical in
solving such problems. It would appear that
modes of inquiry in software development are

strategy formulation (as an emergent process) is con-
stantly influenced by learning, which occurs during
implementation. Mintzberg, an early advocate of this
approach, conceptualizes strategy formulation as a
craft, likening strategists to craftspeople whose minds
work in concert with their hands as they learn and
improvise in shaping an artifact [7]. Effective strategies
evolve through a learning process involving skills, expe-
rience, and insights gained
through the dynamic
interplay among formula-
tion, implementation,
and critical reflection.
Thus, strategy is an emer-
gent process in which
strategy formulation and
implementation are insep-
arable [7].

Mintzberg’s “learning
school” reflects this view
of strategy making. In it,
the strategist is like
Schon’s “reflective practi-
tioners,” learning from
the context, “conversing”
with it, and being influ-
enced by their reflections
on the actions taken in the situation [11].

NEW DESIGN METAPHOR

Much can be learned about design efficacy by examin-
ing the patterns of inquiry in various disciplines. The
progression of thought in software development paral-
lels the maturation of design ideas in architecture and
strategic management. The traditional mechanistic
worldview is today being challenged by a newer agile
perspective that accords primacy to uniqueness, ambi-
guity, complexity, and change, as opposed to predic-
tion, verifiability, and control. The goal of optimization
is being replaced by flexibility and responsiveness.

The new design metaphor incorporates learning and
acknowledges the connectedness of knowing and doing
(thought and action), the interwoven nature of means
and ends, and the need to reconcile multiple world-
views. This approach is “substantially rational,” facili-
tating learning and adaptation through the constant
questioning of assumptions [9]. Constantly reexamin-
ing assumptions and evaluating discrepancies against
existing norms and values fosters double-loop learning
[1], which is “generative” by increasing both learning
and the ability to innovate and use change to one’s
advantage [12]. In contrast, the traditional school of
design is more in the spirit of single-loop learning [1],
or “adaptive learning” [12], in which routine problem-

solving parameters and preset rules, norms, and con-
trasts determine goal-seeking behavior [1, 8, 12].

The theoretical assumptions of the emerging practice
of design—intertwining thought and action, critical
reflection and learning after action, practicality, and sat-
isfying human needs through continuing inquiry—may
be traced to Action Learning Theory, Dewey’s pragma-
tism, and phenomenology [8, 9]. A deterministic and

rational approach based on
law-like, scientific methods
of inquiry is said to be
“functionally rational” with
roots in logical posi-
tivism—reasoning based
on observation and fact—
and scientific methods of
inquiry [9, 11]. The table
here outlines the distinc-
tions between these two
views of design; Figure 1
captures the shifts in design
thinking in architecture,
strategic management, and
software development.

Several characteristics of “design thinking,” accord-
ing to [5], may be gleaned from the conceptually
opposing strands of design in the table. Design think-
ing, according to [5], should be “synthetic” (integrating
multiple worldviews), “adductive” (imagining and
preparing for a preferred future state), “hypothesis-dri-
ven” (conceptually enacting “what-if” and “if-then” sce-
narios), “opportunistic” (alerting to evolving prospects),
“dialectical” (resolving conflicting views through argu-
mentation), and “inquiring and value-based” (ques-
tioning assumptions with openness while being
sensitive to the values of all stakeholders).

In today’s world of increasing social complexity soft-
ware engineers need a broader interpretation of the
metaphor of design than is generally accepted.

NEW CONCEPTUALIZATION OF SOFTWARE DEVELOPMENT

The trend in management thinking, moving from a
deterministic/mechanistic view of problem solving to a
dynamic process, characterized by iterative cycles and
the active involvement of all stakeholders, is reflected in
software development as well. The “emergent
metaphor of design” in the table is manifest in the agile
methods in today’s emerging software-development
thinking. Agile methods are people-centric, recognizing
the value competent people and their relationships
bring to software development. In addition, it focuses
on providing high customer satisfaction through three
principles: quick delivery of quality software; active par-
ticipation of concerned stakeholders; and creating and

COMMUNICATIONS OF THE ACM March 2007/Vol. 50, No. 3 8180 March 2007/Vol. 50, No. 3 COMMUNICATIONS OF THE ACM

beyond technical rationality based on observation and
facts, or logical positivism [11]. Emerging practices
(such as agile development) question the assumption
that change and uncertainty can be controlled through
a high degree of formalization. Proponents of agile
methods have discovered inadequacies in formal design
that follows systematic procedures dictated by rigid
processes. These insights have produced a more incisive
method of inquiry that departs from traditional
approaches to software development. This conceptual
shift and its resulting debates are hardly exceptional;
similar evolutionary shifts in thought and methods of
inquiry are also found in architecture and strategic
management.

Our discussion here is based on the development of
design concepts in architecture, as outlined in [2].
Briefly, Chris Alexander, a professor of architecture at
the University of California, Berkeley, pioneered in the
1970s work on patterns in architectural design that
inspired software design patterns, a conceptual break-
through that revolutionized the way software is built.
Design patterns are proven design experiences and best
practices for solving similar problems across domains.
Alexander’s early model conceived design as an instru-
mental process dictated by technical rationality [2]. It
aimed to identify the optimal means to a predictable
end by employing scientific methods used in problem
solving in the engineering disciplines [11]. This view
reduced design to a linear sequence of well-defined
steps, with analysis preceding synthesis [2]. Systematic
problem decomposition is the key activity in analysis, a
process reminiscent of hierarchical top-down func-
tional decomposition that dominated thinking in
structured software design in the years before object
orientation found favor among developers.

As early as 1963, continuous feedback among
phases, communication, and iterative cycles of analysis
and synthesis were recognized as key aspects of design
[2]. Inspired by work on wicked problems, argumenta-
tion involving stakeholders became an essential part of
the design process. Interestingly, Alexander abandoned
his early model in favor of a design process emphasiz-
ing “interaction between the source of knowledge and
experience, and the decision maker” [2]. The idea of
patterns is central to Alexander’s subsequent way of
approaching design.

While Rittel and Alexander both stressed the need
to integrate multiple viewpoints, their modes did not
explicitly include the concept of learning. In contrast,
[2] viewed design as a learning process in which the
solution evolves through repetitive cycles of problem
formulation, solution evaluation, and documentation.
Designers use their own personal expanding knowl-
edge to continually reframe the problem and devise an

appropriate solution. In the spirit of Donald Schon’s
reflection-in-action, the process involves repeated mod-
ifications of the practitioner’s design through insights
and knowledge gained from active interaction with the
problem situation [11]. The improvisations and learn-
ing resulting from this dynamic interplay (“conversa-
tions,” as Schon called it in [11]) between the designer
and the problem lead to a succession of updated prob-
lem representations.

The development of problem-solving ideas in archi-
tecture reveals several insights into the nature of design:

Complexity. Problems are recognized as wicked, or not
easily tractable;

Emergence. Design is conceived as a repetitive emer-
gent process interlacing argumentation, introspec-
tive reflection, learning, and continual problem and
solution refinement; and

Integrative. Integration of multiple perspectives is criti-
cal to problem resolution.

STRATEGIC THINKING

The shift from a mechanistic perspective to a perspec-
tive that acknowledges the existence of environmental
uncertainty and complexity is evident in today’s strate-
gic management thinking in organizational contexts.
Early on, the dominant paradigm for strategy formula-
tion was a formal process to identify the best fit
between an organization and its environment [6]. This
approach is predicated on the assumption of a foresee-
able and unchanging world, which, of course, it never
is. Moreover, this approach sought the best means to
achieve a predictable end thorough analysis and rea-
soning, concordant with functional/technical rational-
ity. According to Henry Mintzberg, a theorist in
management and organizational research, the design,
planning, and positioning schools of thought in strate-
gic management reflect this view and tend to be highly
prescriptive [7].

Consistent with early approaches to architectural
design, strategy formulation through logical thinking
and planning preceded implementation of strategic ini-
tiatives. Moreover, strategic management was the
exclusive province of top management, with little or no
involvement of the people who actually implement the
related strategies. While these planned-approach
schools historically exploited past experience, they
lacked focus on learning through exploration and were
inflexible and woefully ill-suited for agile response to
rapid environmental change [6, 7].

The conceptual appeal and practicality of incremen-
tal learning in turbulent and complex organizational
environments has led many strategists to reposition for-
mulation closer to implementation [6]. In this view,

Nerur fig 1 (3/07)

Iterative Problem
Solving with Single-

Loop Learning

Responsiveness

Goal of Problem Solving

View of Problem Nature

V
ie

w
of

E
nv

ir
on

m
en

t

N
at

ur
e

of
L

ea
rn

in
g

Optimization

Generative

Adaptive

WickedDeterministic

Stable

Unpredictable
Iterative Problem

Solving with Double-
Loop Learning

Linear Problem
Solving with

Single-Loop Learning

Figure 1. Evolutionary shifts in
design thinking.

strategy formulation (as an emergent process) is con-
stantly influenced by learning, which occurs during
implementation. Mintzberg, an early advocate of this
approach, conceptualizes strategy formulation as a
craft, likening strategists to craftspeople whose minds
work in concert with their hands as they learn and
improvise in shaping an artifact [7]. Effective strategies
evolve through a learning process involving skills, expe-
rience, and insights gained
through the dynamic
interplay among formula-
tion, implementation,
and critical reflection.
Thus, strategy is an emer-
gent process in which
strategy formulation and
implementation are insep-
arable [7].

Mintzberg’s “learning
school” reflects this view
of strategy making. In it,
the strategist is like
Schon’s “reflective practi-
tioners,” learning from
the context, “conversing”
with it, and being influ-
enced by their reflections
on the actions taken in the situation [11].

NEW DESIGN METAPHOR

Much can be learned about design efficacy by examin-
ing the patterns of inquiry in various disciplines. The
progression of thought in software development paral-
lels the maturation of design ideas in architecture and
strategic management. The traditional mechanistic
worldview is today being challenged by a newer agile
perspective that accords primacy to uniqueness, ambi-
guity, complexity, and change, as opposed to predic-
tion, verifiability, and control. The goal of optimization
is being replaced by flexibility and responsiveness.

The new design metaphor incorporates learning and
acknowledges the connectedness of knowing and doing
(thought and action), the interwoven nature of means
and ends, and the need to reconcile multiple world-
views. This approach is “substantially rational,” facili-
tating learning and adaptation through the constant
questioning of assumptions [9]. Constantly reexamin-
ing assumptions and evaluating discrepancies against
existing norms and values fosters double-loop learning
[1], which is “generative” by increasing both learning
and the ability to innovate and use change to one’s
advantage [12]. In contrast, the traditional school of
design is more in the spirit of single-loop learning [1],
or “adaptive learning” [12], in which routine problem-

solving parameters and preset rules, norms, and con-
trasts determine goal-seeking behavior [1, 8, 12].

The theoretical assumptions of the emerging practice
of design—intertwining thought and action, critical
reflection and learning after action, practicality, and sat-
isfying human needs through continuing inquiry—may
be traced to Action Learning Theory, Dewey’s pragma-
tism, and phenomenology [8, 9]. A deterministic and

rational approach based on
law-like, scientific methods
of inquiry is said to be
“functionally rational” with
roots in logical posi-
tivism—reasoning based
on observation and fact—
and scientific methods of
inquiry [9, 11]. The table
here outlines the distinc-
tions between these two
views of design; Figure 1
captures the shifts in design
thinking in architecture,
strategic management, and
software development.

Several characteristics of “design thinking,” accord-
ing to [5], may be gleaned from the conceptually
opposing strands of design in the table. Design think-
ing, according to [5], should be “synthetic” (integrating
multiple worldviews), “adductive” (imagining and
preparing for a preferred future state), “hypothesis-dri-
ven” (conceptually enacting “what-if” and “if-then” sce-
narios), “opportunistic” (alerting to evolving prospects),
“dialectical” (resolving conflicting views through argu-
mentation), and “inquiring and value-based” (ques-
tioning assumptions with openness while being
sensitive to the values of all stakeholders).

In today’s world of increasing social complexity soft-
ware engineers need a broader interpretation of the
metaphor of design than is generally accepted.

NEW CONCEPTUALIZATION OF SOFTWARE DEVELOPMENT

The trend in management thinking, moving from a
deterministic/mechanistic view of problem solving to a
dynamic process, characterized by iterative cycles and
the active involvement of all stakeholders, is reflected in
software development as well. The “emergent
metaphor of design” in the table is manifest in the agile
methods in today’s emerging software-development
thinking. Agile methods are people-centric, recognizing
the value competent people and their relationships
bring to software development. In addition, it focuses
on providing high customer satisfaction through three
principles: quick delivery of quality software; active par-
ticipation of concerned stakeholders; and creating and

COMMUNICATIONS OF THE ACM March 2007/Vol. 50, No. 3 8180 March 2007/Vol. 50, No. 3 COMMUNICATIONS OF THE ACM

beyond technical rationality based on observation and
facts, or logical positivism [11]. Emerging practices
(such as agile development) question the assumption
that change and uncertainty can be controlled through
a high degree of formalization. Proponents of agile
methods have discovered inadequacies in formal design
that follows systematic procedures dictated by rigid
processes. These insights have produced a more incisive
method of inquiry that departs from traditional
approaches to software development. This conceptual
shift and its resulting debates are hardly exceptional;
similar evolutionary shifts in thought and methods of
inquiry are also found in architecture and strategic
management.

Our discussion here is based on the development of
design concepts in architecture, as outlined in [2].
Briefly, Chris Alexander, a professor of architecture at
the University of California, Berkeley, pioneered in the
1970s work on patterns in architectural design that
inspired software design patterns, a conceptual break-
through that revolutionized the way software is built.
Design patterns are proven design experiences and best
practices for solving similar problems across domains.
Alexander’s early model conceived design as an instru-
mental process dictated by technical rationality [2]. It
aimed to identify the optimal means to a predictable
end by employing scientific methods used in problem
solving in the engineering disciplines [11]. This view
reduced design to a linear sequence of well-defined
steps, with analysis preceding synthesis [2]. Systematic
problem decomposition is the key activity in analysis, a
process reminiscent of hierarchical top-down func-
tional decomposition that dominated thinking in
structured software design in the years before object
orientation found favor among developers.

As early as 1963, continuous feedback among
phases, communication, and iterative cycles of analysis
and synthesis were recognized as key aspects of design
[2]. Inspired by work on wicked problems, argumenta-
tion involving stakeholders became an essential part of
the design process. Interestingly, Alexander abandoned
his early model in favor of a design process emphasiz-
ing “interaction between the source of knowledge and
experience, and the decision maker” [2]. The idea of
patterns is central to Alexander’s subsequent way of
approaching design.

While Rittel and Alexander both stressed the need
to integrate multiple viewpoints, their modes did not
explicitly include the concept of learning. In contrast,
[2] viewed design as a learning process in which the
solution evolves through repetitive cycles of problem
formulation, solution evaluation, and documentation.
Designers use their own personal expanding knowl-
edge to continually reframe the problem and devise an

appropriate solution. In the spirit of Donald Schon’s
reflection-in-action, the process involves repeated mod-
ifications of the practitioner’s design through insights
and knowledge gained from active interaction with the
problem situation [11]. The improvisations and learn-
ing resulting from this dynamic interplay (“conversa-
tions,” as Schon called it in [11]) between the designer
and the problem lead to a succession of updated prob-
lem representations.

The development of problem-solving ideas in archi-
tecture reveals several insights into the nature of design:

Complexity. Problems are recognized as wicked, or not
easily tractable;

Emergence. Design is conceived as a repetitive emer-
gent process interlacing argumentation, introspec-
tive reflection, learning, and continual problem and
solution refinement; and

Integrative. Integration of multiple perspectives is criti-
cal to problem resolution.

STRATEGIC THINKING

The shift from a mechanistic perspective to a perspec-
tive that acknowledges the existence of environmental
uncertainty and complexity is evident in today’s strate-
gic management thinking in organizational contexts.
Early on, the dominant paradigm for strategy formula-
tion was a formal process to identify the best fit
between an organization and its environment [6]. This
approach is predicated on the assumption of a foresee-
able and unchanging world, which, of course, it never
is. Moreover, this approach sought the best means to
achieve a predictable end thorough analysis and rea-
soning, concordant with functional/technical rational-
ity. According to Henry Mintzberg, a theorist in
management and organizational research, the design,
planning, and positioning schools of thought in strate-
gic management reflect this view and tend to be highly
prescriptive [7].

Consistent with early approaches to architectural
design, strategy formulation through logical thinking
and planning preceded implementation of strategic ini-
tiatives. Moreover, strategic management was the
exclusive province of top management, with little or no
involvement of the people who actually implement the
related strategies. While these planned-approach
schools historically exploited past experience, they
lacked focus on learning through exploration and were
inflexible and woefully ill-suited for agile response to
rapid environmental change [6, 7].

The conceptual appeal and practicality of incremen-
tal learning in turbulent and complex organizational
environments has led many strategists to reposition for-
mulation closer to implementation [6]. In this view,

Nerur fig 1 (3/07)

Iterative Problem
Solving with Single-

Loop Learning

Responsiveness

Goal of Problem Solving

View of Problem Nature

V
ie

w
of

E
nv

ir
on

m
en

t

N
at

ur
e

of
L

ea
rn

in
g

Optimization

Generative

Adaptive

WickedDeterministic

Stable

Unpredictable
Iterative Problem

Solving with Double-
Loop Learning

Linear Problem
Solving with

Single-Loop Learning

Figure 1. Evolutionary shifts in
design thinking.

system’s responsiveness to changing environments and
complexity.

According to Ashby’s law of requisite variety, a sys-
tem’s internal variety should at least match the variety
and complexity of the environment with which it is
confronted [4, 8]. The diversity (such as active stake-
holder participation) and redundancy of skills (such as
interchangeable roles) built into integrated self-organiz-
ing agile teams amplify the variety within the system.
This variety enables agile teams to respond with mini-
mal delay to the changing environment.

The notion of minimum critical specification refers
to the identification of the smallest set of requirements
to initiate a project. Defining all specifications at an
early stage, some of which may be speculative, can con-
strain the inventiveness of team members to be locally
responsive to opportunities that unfold in the problem-
solving context. Minimum critical specification is
therefore required to provide an organizational climate
conducive to innovation and creativity. Agile team
members are relatively diversified autonomous parts of
a heterarchy, not subject to the rules and dictates that
normally constrain actions in a hierarchical organiza-
tion [9, 10]. Managers in agile teams lend focus to team
members’ actions, facilitating a thriving self-organizing
environment. Managers who avoid extensive up-front
planning and design while emphasizing design simplic-
ity are consistent with the principle of minimum criti-
cal specification. Just as strategic intent guides thought
and action throughout the process of strategy emer-
gence, defining architectural intent may serve as a min-
imum critical specification.

Agile approaches encourage change and question
assumptions, as reflected in, for example, the “specu-
late-collaborate-learn” cycle of Highsmith’s Adaptive
Software Development, stressing the importance of
flexible/adaptive planning, extensive collaboration, and
learning in achieving agility [3]. Practices include con-
tinuous code integration, refactoring to improve design
and code, reflection workshops and stand-up meetings
to determine what worked and what didn’t, and instant
feedback from participating stakeholders. These prac-
tices facilitate double-loop learning, supporting the
principle of “learning to learn” [8]. The agile approach
to software development appears to align itself with the
principles of holographic organization theory (see Fig-
ure 2).

CONCLUSION

The tenets of agile methods depart from the traditional
orthodoxy of software development. This shift in phi-
losophy is not unusual, as similar patterns of intellec-
tual evolution have emerged in other disciplines. A look
at architecture and strategic management reveals that

the progression of ideas in them is remarkably similar
to conceptual pattern shifts in software design. Even a
quick look broadens our horizons and enriches our
inquiry into the evolutionary nature of software
methodologies.

An expansive metaphor of design [5] and the theory
of holographic organization [8, 9] offer a strong theo-
retical basis for the conceptual foundation of agile
methods. Efforts to understand the theoretical roots of
software development practices by examining the evo-
lution of design ideas in architecture, strategic manage-
ment, and other disciplines are even more relevant as
system domains extend beyond simpler needs (such as
technical functionality) to the complex social aspects of
software applications (such as aesthetics, values, human
judgment, morals, and ethics).

References
1. Argyris, C. and Schon, D. Organizational Learning: A Theory of Action Per-

spective. Addison-Wesley, Reading, MA, 1978.
2. Bazjanac, V. Architectural design theory: Models of the design process. In

Basic Questions of Design Theory, W. Spillers, Ed. North-Holland Publish-
ing Co., Amsterdam, 1974, 3–19.

3. Highsmith, J. Agile Software Development Ecosystems. Addison-Wesley,
Boston, MA, 2002.

4. Jackson, M. Systems Methodology for the Management Sciences. Plenum Press,
New York, 1991.

5. Liedtka, J. In defense of strategy as design. California Management Review
42, 3 (Spring 2000), 8–30.

6. Mintzberg, H., Ahlstrand, B., and Lampel, J. Strategy Safari: A Guided
Tour Through the Wilds of Strategic Management. The Free Press, New
York, 1998.

7. Mintzberg, H. Crafting strategy. Harvard Business Review 65, 4 (July-Aug.
1987), 66–75.

8. Morgan, G. Images of Organization. Berrett-Koehler Publishers, Inc., San
Francisco, 1998.

9. Morgan, G. and Ramirez, R. Action learning: A holographic metaphor for
guiding social change. Human Relations 37, 1 (Jan. 1984), 1–28.

10. Ngwenyama, O. Developing end users’ systems development competence.
Information & Management 25, 6 (Dec. 1993), 291–302.

11. Schon, D. The Reflective Practitioner: How Professionals Think in Action.
Basic Books, New York, 1983.

12. Senge, P. The leader’s new work: Building learning organizations. Sloan
Management Review 32, 1 (Fall 1990), 7–23.

Sridhar Nerur (snerur@uta.edu) is an assistant professor of
information systems in the Department of Information Systems and
Operations Management in the College of Business Administration at
the University of Texas at Arlington, Arlington, TX.
VenuGopal Balijepally (vebalijepally@pvamu.edu) is an
assistant professor of information systems in the Department of
Accounting, Finance & MIS in the College of Business at Prairie
View A&M University, Prairie View, TX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/0300 $5.00

c

COMMUNICATIONS OF THE ACM March 2007/Vol. 50, No. 3 83

leveraging change [3]. Big upfront designs/plans and
extensive documentation are of little value to practi-
tioners of agile methods. Important features of this
approach include evolutionary delivery through short
iterative cycles—of planning, action, reflection—
intense collaboration, self-organizing teams, and a high
degree of developer dis-
cretion.

Erstwhile software
development practices
reflected the principles of
traditional design out-
lined in the table. The
nature of the related
problem solving involved
analysis, prediction, veri-
fiability, control, and
optimization. Design was
construed as a sequence
of well-articulated steps
aimed at choosing the
best option to satisfy a
predetermined end.
Careful planning and
early baseline definitions
for a robust architecture
were seen as ways to anticipate and control variations in
processes, but it lacked the active participation of cus-
tomers throughout the development process. These
traditional practices reflected a hierarchy involving a
command-and-control style of management with clear
separation of roles.

The emerging agile philosophy heralds a new epis-
temology of software development. Its value depends

largely on an organization’s ability
to nurture learning, teamwork,
self-organization, and personal
empowerment. Responsiveness
and flexibility are achieved
through a “heterarchy” character-
ized by self-organizing teams
whose members collaborate,
improvise according to problem
context, and use their ingenuity to
solve problems [8, 9]. The theoret-
ical principles of holographic orga-
nizations hold considerable
promise in explaining the concep-
tual underpinnings of agile prac-
tices that share many of the
characteristics of the Collaborative
Action Learning method
described in [10].

HOLOGRAPHIC ORGANIZATION

The metaphor of the holographic
organization draws its inspiration

from the fact that every fragment or piece of a broken
holographic film contains the information required to
completely construct the image represented in the

whole film [8, 9]. That is,
what is in the whole holo-
gram can be accessed
through any of its parts, as
each one is a reflection of
the whole. Evidence sug-
gests that the brain’s mem-
ory, intelligence, and
functionality are distributed
across its parts such that
damage to some of the parts
does not result in complete
loss of the overall function-
ality [9]. This redundancy
of functions within parts,
coupled with the capacity

to learn, provides for flexibility and responsiveness—
characteristics critical for survival in a complex and tur-
bulent world.

The agile philosophy facilitates formation of holistic
teams through a culture that encourages the inter-
changeability of roles or jobs based on autonomy. It
builds both specialized and generalized skills among
members so they become multifaceted and exhibit
overlapping knowledge so they can self-organize in
response to emergent requirements. The team’s redun-
dant skills enable it to function even when multiple
members are missing. Such redundancy enhances the

82 March 2007/Vol. 50, No. 3 COMMUNICATIONS OF THE ACM

Nerur fig 2 (3/07)

Agile
Software Teams
as Holographic
Organizations

Learning to Learn
• Refactoring
• Reflection workshops
• Standup meetings
• Pair programming
• Experimentation
• Iterative development

Minimum Critical
Specification
• Heterarchy/teams
• Higher decision
 latitude
• Minimalist design/

documentation

Requisite Variety
• Interchangeable roles
• Multiple viewpoints
 (customer, developers,

other stakeholders)

Redundancy of Functions
• Interchangeable roles
• Code ownership
 (shared understanding)
• Pair programming

Building Whole Into
the Parts
• Multiple skills
• Self-organizing teams
• Test-driven development

Figure 2. Alignment of agile
practices with holographic

principles (adapted from [8]).

Nerur table (3/07)

Emergent Metaphor of Design

Design process

Goal

Problem-solving
approach

View of the environment

Type of learning

Key characteristics

Rationality

Theoretical and/or
philosophical roots

Emergent, iterative and exploratory,
knowing and action inseparable, beyond
formal rules

Adaptation, flexibility, responsiveness

Learning through experimentation and
introspection, constantly reframing the
problem and its solution

Turbulent, difficult to predict

Double-loop/generative

Collaboration and communication –
integrates weltanschauungs, or worldviews

Embraces conflict and dialectics

Encourages exploration and creativity
and is opportunistic

Manager is facilitator

Design and implementation are
inseparable and evolve iteratively

Substantial

Action learning theory, Dewey’s
pragmatism, phenomenology

Traditional View of Design

Deliberate and formal, linear sequence
of steps, separate formulation and
implementation, rule-driven

Optimization

Selection of best means to
accomplish a given end through
well-planned, formalized activities

Stable, predictable

Single-loop/adaptive

Control and direction

Avoids conflict
Formalizes innovation

Manager is controller
Design precedes implementation

Technical/functional

Logical positivism, scientific method

Traditional and
emerging perspectives
of design.

system’s responsiveness to changing environments and
complexity.

According to Ashby’s law of requisite variety, a sys-
tem’s internal variety should at least match the variety
and complexity of the environment with which it is
confronted [4, 8]. The diversity (such as active stake-
holder participation) and redundancy of skills (such as
interchangeable roles) built into integrated self-organiz-
ing agile teams amplify the variety within the system.
This variety enables agile teams to respond with mini-
mal delay to the changing environment.

The notion of minimum critical specification refers
to the identification of the smallest set of requirements
to initiate a project. Defining all specifications at an
early stage, some of which may be speculative, can con-
strain the inventiveness of team members to be locally
responsive to opportunities that unfold in the problem-
solving context. Minimum critical specification is
therefore required to provide an organizational climate
conducive to innovation and creativity. Agile team
members are relatively diversified autonomous parts of
a heterarchy, not subject to the rules and dictates that
normally constrain actions in a hierarchical organiza-
tion [9, 10]. Managers in agile teams lend focus to team
members’ actions, facilitating a thriving self-organizing
environment. Managers who avoid extensive up-front
planning and design while emphasizing design simplic-
ity are consistent with the principle of minimum criti-
cal specification. Just as strategic intent guides thought
and action throughout the process of strategy emer-
gence, defining architectural intent may serve as a min-
imum critical specification.

Agile approaches encourage change and question
assumptions, as reflected in, for example, the “specu-
late-collaborate-learn” cycle of Highsmith’s Adaptive
Software Development, stressing the importance of
flexible/adaptive planning, extensive collaboration, and
learning in achieving agility [3]. Practices include con-
tinuous code integration, refactoring to improve design
and code, reflection workshops and stand-up meetings
to determine what worked and what didn’t, and instant
feedback from participating stakeholders. These prac-
tices facilitate double-loop learning, supporting the
principle of “learning to learn” [8]. The agile approach
to software development appears to align itself with the
principles of holographic organization theory (see Fig-
ure 2).

CONCLUSION

The tenets of agile methods depart from the traditional
orthodoxy of software development. This shift in phi-
losophy is not unusual, as similar patterns of intellec-
tual evolution have emerged in other disciplines. A look
at architecture and strategic management reveals that

the progression of ideas in them is remarkably similar
to conceptual pattern shifts in software design. Even a
quick look broadens our horizons and enriches our
inquiry into the evolutionary nature of software
methodologies.

An expansive metaphor of design [5] and the theory
of holographic organization [8, 9] offer a strong theo-
retical basis for the conceptual foundation of agile
methods. Efforts to understand the theoretical roots of
software development practices by examining the evo-
lution of design ideas in architecture, strategic manage-
ment, and other disciplines are even more relevant as
system domains extend beyond simpler needs (such as
technical functionality) to the complex social aspects of
software applications (such as aesthetics, values, human
judgment, morals, and ethics).

References
1. Argyris, C. and Schon, D. Organizational Learning: A Theory of Action Per-

spective. Addison-Wesley, Reading, MA, 1978.
2. Bazjanac, V. Architectural design theory: Models of the design process. In

Basic Questions of Design Theory, W. Spillers, Ed. North-Holland Publish-
ing Co., Amsterdam, 1974, 3–19.

3. Highsmith, J. Agile Software Development Ecosystems. Addison-Wesley,
Boston, MA, 2002.

4. Jackson, M. Systems Methodology for the Management Sciences. Plenum Press,
New York, 1991.

5. Liedtka, J. In defense of strategy as design. California Management Review
42, 3 (Spring 2000), 8–30.

6. Mintzberg, H., Ahlstrand, B., and Lampel, J. Strategy Safari: A Guided
Tour Through the Wilds of Strategic Management. The Free Press, New
York, 1998.

7. Mintzberg, H. Crafting strategy. Harvard Business Review 65, 4 (July-Aug.
1987), 66–75.

8. Morgan, G. Images of Organization. Berrett-Koehler Publishers, Inc., San
Francisco, 1998.

9. Morgan, G. and Ramirez, R. Action learning: A holographic metaphor for
guiding social change. Human Relations 37, 1 (Jan. 1984), 1–28.

10. Ngwenyama, O. Developing end users’ systems development competence.
Information & Management 25, 6 (Dec. 1993), 291–302.

11. Schon, D. The Reflective Practitioner: How Professionals Think in Action.
Basic Books, New York, 1983.

12. Senge, P. The leader’s new work: Building learning organizations. Sloan
Management Review 32, 1 (Fall 1990), 7–23.

Sridhar Nerur (snerur@uta.edu) is an assistant professor of
information systems in the Department of Information Systems and
Operations Management in the College of Business Administration at
the University of Texas at Arlington, Arlington, TX.
VenuGopal Balijepally (vebalijepally@pvamu.edu) is an
assistant professor of information systems in the Department of
Accounting, Finance & MIS in the College of Business at Prairie
View A&M University, Prairie View, TX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/0300 $5.00

c

COMMUNICATIONS OF THE ACM March 2007/Vol. 50, No. 3 83

leveraging change [3]. Big upfront designs/plans and
extensive documentation are of little value to practi-
tioners of agile methods. Important features of this
approach include evolutionary delivery through short
iterative cycles—of planning, action, reflection—
intense collaboration, self-organizing teams, and a high
degree of developer dis-
cretion.

Erstwhile software
development practices
reflected the principles of
traditional design out-
lined in the table. The
nature of the related
problem solving involved
analysis, prediction, veri-
fiability, control, and
optimization. Design was
construed as a sequence
of well-articulated steps
aimed at choosing the
best option to satisfy a
predetermined end.
Careful planning and
early baseline definitions
for a robust architecture
were seen as ways to anticipate and control variations in
processes, but it lacked the active participation of cus-
tomers throughout the development process. These
traditional practices reflected a hierarchy involving a
command-and-control style of management with clear
separation of roles.

The emerging agile philosophy heralds a new epis-
temology of software development. Its value depends

largely on an organization’s ability
to nurture learning, teamwork,
self-organization, and personal
empowerment. Responsiveness
and flexibility are achieved
through a “heterarchy” character-
ized by self-organizing teams
whose members collaborate,
improvise according to problem
context, and use their ingenuity to
solve problems [8, 9]. The theoret-
ical principles of holographic orga-
nizations hold considerable
promise in explaining the concep-
tual underpinnings of agile prac-
tices that share many of the
characteristics of the Collaborative
Action Learning method
described in [10].

HOLOGRAPHIC ORGANIZATION

The metaphor of the holographic
organization draws its inspiration

from the fact that every fragment or piece of a broken
holographic film contains the information required to
completely construct the image represented in the

whole film [8, 9]. That is,
what is in the whole holo-
gram can be accessed
through any of its parts, as
each one is a reflection of
the whole. Evidence sug-
gests that the brain’s mem-
ory, intelligence, and
functionality are distributed
across its parts such that
damage to some of the parts
does not result in complete
loss of the overall function-
ality [9]. This redundancy
of functions within parts,
coupled with the capacity

to learn, provides for flexibility and responsiveness—
characteristics critical for survival in a complex and tur-
bulent world.

The agile philosophy facilitates formation of holistic
teams through a culture that encourages the inter-
changeability of roles or jobs based on autonomy. It
builds both specialized and generalized skills among
members so they become multifaceted and exhibit
overlapping knowledge so they can self-organize in
response to emergent requirements. The team’s redun-
dant skills enable it to function even when multiple
members are missing. Such redundancy enhances the

82 March 2007/Vol. 50, No. 3 COMMUNICATIONS OF THE ACM

Nerur fig 2 (3/07)

Agile
Software Teams
as Holographic
Organizations

Learning to Learn
• Refactoring
• Reflection workshops
• Standup meetings
• Pair programming
• Experimentation
• Iterative development

Minimum Critical
Specification
• Heterarchy/teams
• Higher decision
 latitude
• Minimalist design/

documentation

Requisite Variety
• Interchangeable roles
• Multiple viewpoints
 (customer, developers,

other stakeholders)

Redundancy of Functions
• Interchangeable roles
• Code ownership
 (shared understanding)
• Pair programming

Building Whole Into
the Parts
• Multiple skills
• Self-organizing teams
• Test-driven development

Figure 2. Alignment of agile
practices with holographic

principles (adapted from [8]).

Nerur table (3/07)

Emergent Metaphor of Design

Design process

Goal

Problem-solving
approach

View of the environment

Type of learning

Key characteristics

Rationality

Theoretical and/or
philosophical roots

Emergent, iterative and exploratory,
knowing and action inseparable, beyond
formal rules

Adaptation, flexibility, responsiveness

Learning through experimentation and
introspection, constantly reframing the
problem and its solution

Turbulent, difficult to predict

Double-loop/generative

Collaboration and communication –
integrates weltanschauungs, or worldviews

Embraces conflict and dialectics

Encourages exploration and creativity
and is opportunistic

Manager is facilitator

Design and implementation are
inseparable and evolve iteratively

Substantial

Action learning theory, Dewey’s
pragmatism, phenomenology

Traditional View of Design

Deliberate and formal, linear sequence
of steps, separate formulation and
implementation, rule-driven

Optimization

Selection of best means to
accomplish a given end through
well-planned, formalized activities

Stable, predictable

Single-loop/adaptive

Control and direction

Avoids conflict
Formalizes innovation

Manager is controller
Design precedes implementation

Technical/functional

Logical positivism, scientific method

Traditional and
emerging perspectives
of design.

