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Abstract
A neuroscientific experiment typically generates a large amount of data, of which only a small
fraction is analyzed in detail and presented in a publication. However, selection among noisy
measurements can render circular an otherwise appropriate analysis and invalidate results. Here we
argue that systems neuroscience needs to adjust some widespread practices in order to avoid the
circularity that can arise from selection. In particular, “double dipping” – the use of the same data
set for selection and selective analysis – will give distorted descriptive statistics and invalid statistical
inference whenever the results statistics are not inherently independent of the selection criteria under
the null hypothesis. To demonstrate the problem, we apply widely used analyses to noise data known
not to contain the experimental effects in question. Spurious effects can appear in the context of both
univariate activation analysis and multivariate pattern-information analysis. We suggest a policy for
avoiding circularity.

Introduction
“Show me the data,” we say. But we don’t mean it. Instead of the numbers generated by
measurement – which can be billions for a single experiment – we wish to see results. This
frequent confusion illustrates an important point: We think of the results as reflecting the data
– so closely that we can disregard the distinction. However, interposed between data and results
is analysis; and analysis is often complex and always based on assumptions (Fig. 1a, top).

Ideally, the results reflect some aspect of the data without any distortion caused by assumptions
or hypotheses (Fig. 1a, bottom left). Consider the hypothesis that neuronal responses in a
particular region reflect the difference between two experimental stimuli. We might measure
the neuronal responses, average across repetitions, and present the results in a bar graph with
one bar for the response to each stimulus. The set of stimuli (or, more generally, experimental
conditions) is decided on the basis of assumptions and hypotheses, thus determining what bars
are shown. But the results themselves, i.e. the heights of the two bars, are supposed to reflect
the data without any effect of assumptions or hypotheses.

Untangling how data and assumptions influence neuroscientific analyses sometimes reveals
that assumptions predetermine results to some extent.1,2,3,4,5 When the data are altogether lost
in the process, the analysis is completely circular (Fig. 1a, bottom center). More frequently, in
practice, the results do reflect the data, but are distorted – to varying degrees – by the
assumptions (Fig. 1a, bottom right). Such distortions can arise when the data are first analyzed
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to select a subset, and then the subset is reanalyzed to obtain the results. In this context,
assumptions and hypotheses determine the selection criterion, and selection, in turn, can distort
the results.

In neuroimaging, an example of selection is the definition of a region of interest (ROI) by
means of a statistical mapping that highlights voxels more strongly active during one condition
than another. In single-cell recording, an example of selection is the restriction of in-depth
analysis to neurons with certain response properties. In electro- and magnetoencephalography,
an example of selection is the restriction to a subset of sensors or sources that show expected
responses.

In gene microarray studies, an example of selection is inferential analysis performed for a
statistically selected subset of genes.6

In behavioral studies, an example of selection is the division of a group of subjects into
subgroups based on task performance. Weighting and sorting of data can be construed as
variants of selection; and we will use the latter term in a general sense to refer to all three (Fig.
1b).

Selection can entail two distinct forms of bias: (1) selective reporting of accurate results and
(2) distortion of estimates and invalidation of statistical tests. Both forms deserve a wider
debate, but this paper focuses on the latter.

If selection were determined only by true effects in the data, there would be no distortion of
the results of the selective analysis. However, data are always a composite of true effects and
noise. Selection, thus, is affected by noise. In neuroimaging, for example, the voxels included
at the fringe of an ROI tend to reflect the noise to some extent – even if the ROI highlights a
truly active brain region (as in Example 2, below). When the selection process is based on the
design matrix, it creates spurious dependencies between the noise in the selected data and the
experimental design, thus violating the assumption of random sampling. This can bias selective
analysis.

Selective analysis is a powerful tool and perfectly justified whenever the results are statistically
independent of the selection criterion under the null hypothesis. However, “double dipping” –
the use of the same data for selection and selective analysis – will result in distorted descriptive
statistics and invalid statistical inference whenever the test statistics are not inherently
independent of the selection criteria under the null hypothesis. Nonindependent selective
analysis is incorrect and should not be acceptable in neuroscientific publications.

Although the dangers of double dipping in the pool of data are well understood in statistics
and computer science, the practice is common in systems neuroscience, and in particular in
neuroimaging and electrophysiology. To assess how widespread nonindependent selective
analyses are in the literature, we examined all functional-magnetic-resonance-imaging (fMRI)
studies published in five prestigious journals (Nature, Science, Nature Neuroscience, Neuron,
Journal of Neuroscience) in 2008. Of these 134 fMRI papers, 42% (57 papers) contained at
least one nonindependent selective analysis (not considering supplementary materials).
Another 14% (20 papers) may contain nonindependent selective analyses, but the
methodological information given was insufficient to reach a judgment.

Are all these studies incorrect in their main claims? We do not think so. First, we counted any
study containing at least one nonindependent selective analysis. For a given paper, the overall
claim may not depend on the distorted result. Second, we have no way of assessing the severity
of the distortions. They might be small in many cases.
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If circularity consistently caused only slight distortions, one could argue that it is a statistical
quibble. However, the distortions can be very large (Example 1, below) or smaller, but
significant (Example 2); and they can affect the qualitative results of significance tests. In order
to decide which neuroscientific claims hold, the community needs to carefully consider each
particular case – guided by neuroscientific as well as statistical expertise. Reanalyses and
replications may also be required.

The problem arises so frequently, because the desired selection criterion is often identical with
or – however subtly – related to the desired results statistics for the selective analysis. In
neuroimaging, for example, we may hypothesize that there is a region responding more strongly
to stimulus A than B, select voxels showing this effect to define an ROI, and then selectively
analyze that ROI to test our hypothesis. One way to ensure statistical independence of the
results under the null hypothesis is to use an independent data set for the final analysis of the
selected channels (e.g. neurons or voxels).

Another way to ensure independence is to use inherently independent statistics for selection
and selective analysis. For example, we may select channels with a large average response to
stimuli A and B (contrast A+B) and test for a difference between the conditions (contrast A-
B). The contrast vectors ([1 1]T and [1 -1]T) are orthogonal. Unfortunately, contrast-vector
orthogonality, by itself, is not sufficient to ensure independence (see Supplementary
Information: A policy for noncircular analysis, Fig. S3). In practice, the same data are
frequently used for selection and selective analysis, even when the selection criteria are not
inherently independent of the results statistics. In that case, the results are questionable.

Distortions arising from selection tend to make results look more consistent with the selection
criteria, which often reflect the hypothesis being tested. Circularity therefore is the error that
beautifies results – rendering them more attractive to authors, reviewers, and editors, and thus
more competitive for publication. These implicit incentives may create a preference for circular
practices, as long as the community condones them.

Analyzing multiple channels and reporting results for a statistically selected subset is essential
in electrophysiology and neuroimaging. Neuroimaging is faced with even more parallel sites
than electrophysiology – typically on the order of 100,000 voxels within the measured volume.
However, selection is also an issue in electrophysiology and will gain importance as multi-
electrode arrays become more widely used. To its great credit, neuroimaging has developed
rigorous methods for statistical mapping from the beginning.7,8,9,10,11 Note that mapping the
whole measurement volume avoids selection altogether: We can analyze and report results for
all locations equally, while accounting for the multiple tests performed across locations.12 The
sense of discovery associated with brain mapping derives from this data-driven approach,
which avoids both the bias of selective reporting of accurate results and the circularity that can
invalidate nonindependent selective analyses. Despite the beauty and completeness of a
nonselective mapping analysis, selective in-depth analysis of ROIs can yield additional
insights.13

In this paper, we demonstrate the problem using two examples from neuroimaging (Figs. 2,
3). In each example, a widely accepted practice is applied to random data known not to contain
the experimental effect in question. This exercise reveals the distortion and spurious
significance that can arise in circular analysis. We view the problem from three perspectives:
as ‘selection bias’, as ‘exploration and confirmation using the same data’, and as ‘overfitting’.
These perspectives are elaborated on in the Supplementary Information, which also contains
further analyses and simulations (Figures S1-S4), and a comprehensive set of questions and
answers about circular analysis. Finally, we suggest a policy for noncircular analysis of brain-
activity data (Fig. 4, Supplementary Discussion).
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Example 1: Pattern-information analysis
In pattern-information analysis,14,15,16,17,18 the objective is to determine whether the pattern
of response in a brain region contains stimulus information. Considering pattern-information
analysis is relevant not only because this approach is gaining importance in systems
neuroscience, but also because it provides a powerful general perspective on circular analysis.
19,20

One popular approach to pattern-information analysis is to attempt to decode the stimulus from
the response pattern with a pattern classifier.21,22,23 If we can “predict” the stimuli from the
response patterns significantly above chance level, then the patterns must contain information
about the stimuli. The most common method is linear classification, where a linear decision
boundary (i.e. a hyperplane) is placed in response-pattern space to discriminate the stimuli.
After training the classifier to discriminate example patterns, we can determine its accuracy
(percentage of correct classifications). However, if we used the training data to assess the
accuracy, we would overestimate the accuracy and conclude that there is stimulus information
even if there is none. The reason for this is a phenomenon known as “overfitting”: A model
will capture the noise to some extent as its parameters are fitted to the data. A more flexible
model (i.e. one with many parameters) will tend to be more susceptible to overfitting. However,
even the fitting of a one-parameter model (e.g. a mean) is affected by noise to some extent.
When thinking about fitting a linear decision boundary, we tend to imagine a line separating
two clouds of points in a plane. When there are many points (much data) and few dimensions
(e.g. two dimensions: a plane), overfitting may be negligible. However, response-pattern space
has as many dimensions as there are response channels (e.g. neurons or voxels); and a linear
decision boundary has as many parameters as there are dimensions. Counter to the intuitive
simplicity and rigidity of a planar decision boundary, fitting a hyperplane in a 100 dimensional
space in order to separate 100 data points is like separating two points on a plane by a line:
separation is always perfect – even if the points are drawn from identical distributions
(Supplementary Information: Overfitting of model parameters). Separability, thus, provides
no evidence for separate distributions.

Using the same data to train and test a linear classifier can lead us to believe that there is
information about the stimulus in regions where actually there is none. In this context, double
dipping entails extreme distortions and is widely understood to be unacceptable. We are not
aware of examples of this error in the systems neuroscience literature. However, the error here
is fundamentally the same as that of nonindependent selective analysis. Linear classification
is based on a weighted sum of the responses. Weighting can be construed as a continuous
variant of selection. Conversely, we can think of selection as binary weighting, a special case.

Can selection produce similar distortions as continuous weighting in the context of pattern-
information analysis? In order to test this possibility, we performed a classifier analysis on
human inferior-temporal response patterns measured with fMRI while subjects viewed object
images.2 The experiment had two independent variables: object category and task (Fig. 2a). In
task 1, subjects judged whether the object presented was animate or inanimate. In task 2, they
judged whether the object was pleasant or unpleasant. The experiment can reveal to what extent
inferior-temporal activity patterns reflect stimulus category and task.

We first analyzed all experimental runs together to define an ROI. We included all inferior-
temporal voxels for which any two-sided t test for a pairwise condition contrast was significant
at p<0.001 (uncorrected). We then cleanly divided the data into independent training and test
sets by designating all odd runs as training data and all even runs as test data. For training and
test set separately, we computed the average activity pattern for each condition (combination
of task and stimulus category). For each pair of conditions, we decoded a given test pattern by
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assigning the condition label of the training pattern more similar to the test pattern.14 This
nearest-neighbor method is a linear classifier, because the condition-average patterns are used.
Pattern similarity was measured by the Pearson correlation across voxels. For each subject,
decoding accuracy was computed (a) for each pairwise task comparison within each stimulus
category and (b) for each pairwise stimulus-category comparison within each task (chance
level: 50%). Task decoding accuracies were averaged, first within subjects and then across
subjects. Stimulus-category decoding accuracies were averaged in the same way. Similar
methods are widespread in the literature.

This analysis suggested that both stimulus category and judgment task can be decoded with
accuracies above 90% and significantly better than chance (Fig. 2b, top left). So we would
conclude that the task as well as the stimulus category is strongly reflected in inferior-temporal
response patterns.

However, when we applied the same analysis to data generated with a Gaussian random
generator, we obtained equivalent results (Fig. 2b, top right). The random data are known not
to contain any information about either task or stimulus category, so any correct analysis should
indicate decoding accuracies whose deviations from 50% are within the margin of error and
come up significant in only 5% of the cases. This demonstrates that selection of ROI voxels
using all data can strongly bias estimates of decoding accuracy and yield spuriously significant
test results.

The cause of the distortion is the selection of voxels whose time series, by chance, exhibit some
consistency between training and test set in the way they are related to the experimental
conditions. For the selected voxel set, thus, training and test data sets are no longer independent.

When we corrected the error of nonindependent voxel selection, decoding accuracies dropped
to chance level for the Gaussian random data (Fig. 2b, bottom right). For the actual
experimental data, task decoding accuracy dropped to chance level, whereas stimulus-category
decoding accuracy dropped to about 75% but remained significant (Fig. 2b, bottom left). The
latter result replicates a previous study.14

Beyond neuroimaging, pattern-information analyses are increasingly used in invasive and scalp
electrophysiology. Circularity will cause similar distortions when cells or sensors are
preselected by nonindependent criteria.

We conclude that selection of response channels can strongly inflate estimates of decoding
accuracy and misleadingly suggest substantial amounts of information in a brain region, where
actually there is none. We can avoid such spurious results by performing selection using data
independent of the test data.

Example 2: Regional activation analysis
A widespread approach to neuroimaging analysis is to perform a statistical mapping, followed
by a selective activation analysis of one or more ROIs. The ROIs are typically defined by the
mapping; and their analysis is often based on the same data. In many cases, the conclusion that
the ROI analysis serves to support is directly or indirectly related to the mapping contrast. Is
this a valid approach?

Let us assume that the ROI is defined by a valid statistical mapping analysis with adequate
correction for multiple tests. (If the statistical mapping were not performed correctly, one could
argue that whatever problem arises thereafter is not caused by nonindependent selection, but
by the inadequate statistical mapping.) We further assume that the mapping analysis
successfully localizes a truly active region. (The alternative case that the mapping falsely

Kriegeskorte et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2010 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



highlights a region, will be rare – it will have a probability of 0.05 or less under the null
hypothesis, since the mapping is assumed to be correct. If the mapping did not highlight any
region, then there would be no ROI to selectively analyze.)

In order to assess whether an ROI analysis can be distorted by selection under these
assumptions, we simulated a neuroimaging data set of 30 by 30 by 20 voxels and 200 time
points. The simulated experiment was a block design with four conditions (A, B, C, D). We
placed a 100-voxel activation (5 by 5 by 4 voxels) at the center of the volume. The region was
simulated to be active during conditions A and B, but not C and D (Fig. 3a, left). The resulting
spatiotemporal data set was added to independent spatiotemporal Gaussian noise and spatially
smoothed by convolution with a 3-voxel-wide cubic kernel. The data were analyzed by means
of a general linear model using the same design matrix as used to simulate the effects, with
one predictor per condition. We mapped the data set by voxelwise univariate linear modeling
using the contrast A-D (Fig. 3a, top). We thresholded the resulting t map using a primary
threshold corresponding to p<0.0001, uncorrected. We then assessed the size of each
contiguous cluster exceeding this primary threshold and highlighted all clusters whose size
exceeded a cluster-size threshold that controlled the familywise error rate at p<0.05, thus
correcting for multiple tests. (The cluster-size threshold was determined by simulating the map-
maximum-cluster-size distribution under the null hypothesis by running the above simulation
1000 times for the same contrast without any effect placed in the data.)

The ROI defined by the mapping analysis (Fig. 3a, magenta contour) correctly highlights the
activated region (blue contour). However, the ROI is somewhat affected by noise in the data
(difference between blue and magenta contours). Some voxels at the fringe of the ROI (white
arrows) will be included because their noise component makes them look as though they
conformed slightly better to the selection criterion; others will be excluded because their noise
makes them look as though they did not conform as well to the selection criterion (magenta
contour and map in the background). This can be interpreted as overfitting of the ROI.

We now average all time courses within the ROI (same data as used for mapping) and fit the
linear model. The resulting bar graph (Fig. 3a, bottom right) reflects the activation of the region
during conditions A and B as well as the absence of activation during conditions C and D.
However, it is substantially distorted by the nonindependent selection: Recall that the mapping
was based on the contrast A-D (Fig. 3a, top). Although the region is equally activated during
conditions A and B, it appears to be more activated during condition A than B; and this effect
is significant (p<0.01 in the particular example run shown). When we use independent data to
define the ROI (green contour), no such distortion is observed (Fig. 3a, top right).

In order to assess the proportion of cases, in which the contrast A-B would yield a spuriously
significant result caused by non independent voxel selection, we repeated the simulation 100
times. The one-sided t test for the ROI contrast A-B (whose ground-truth value is zero in the
simulation) was significant in 20 of the 100 simulations for p<0.05 and in 9 of the 100
simulations for p<0.01. These false-positives rates are significantly larger than for a correct
test (p=0.00005, χ2 test for the null hypothesis that the proportion of p<.05-significant results
is 0.05). We conclude that nonindependent selection can distort the results of selective analyses,
even when rigorous statistical tests are used during selection.

Independence of the selective analysis could have been ensured either by using independent
test data (Fig. 3a, top right) or by using selection and test statistics that are inherently
independent. For the contrasts used (selection contrast: A-D, test contrast: A-B), the inherent
dependence is obvious: Voxels with higher signals during condition A are more likely to be
selected by chance using contrast A-D; thus test contrast A-B will be biased. However, selection
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bias can arise even for orthogonal contrast vectors (Supplementary Information: A policy for
noncircular analysis, Fig. S3).

Nonindependent selection causes bias, because the selection is somewhat affected by the noise
(difference between blue and magenta ROIs, Fig. 3a), even when the statistical criterion is
stringent and the ROI highlights a truly activated region. Our statistical selection method
controls the familywise error rate; it does not ensure that the ROI perfectly captures the shape
of the region. The ROI will be overfitted to the data to some extent – just like the weights of
a linear classifier.

To temper this conclusion, we note that overfitting will typically be less severe in fitting an
ROI than in fitting a linear classifier with continuous weights: The restriction to binary weights
and the constraint of selecting a contiguous set of voxels effectively regularize an ROI fit. By
contrast, discontiguous selection (as in Example 1, above) and data sorting can be extremely
susceptible to overfitting. (For two simple simulations on sorting effects, see Fig. S2.)

In practice, statistical mapping for ROI definition is not always performed with rigorous
correction for multiple tests as assumed here. Many studies rely on a threshold of p<.001,
uncorrected. The selective analysis of the same data is then sometimes interpreted as though
it confirmed the effect selected for. While it does not confirm the effect, the selective analysis
effectively serves to help us forget about the multiple-testing problem during selection. The
inadequacy of the inference during selection will compound the circularity of the selective
analysis and strong biases as well as large false-positives rates are to be expected.

Although the example here concerns the selection of voxels in a neuroimaging experiment, the
same caution should be applied in analyzing other types of data. In single-cell recording, for
example, it is common to select neurons according to some criterion (e.g. visual responsiveness
or selectivity) before applying further analyses to the selected subset. If the selection is based
on the same data set as used for selective analysis, biases will arise for any statistic not
inherently independent of the selection criterion. For neurons as well as voxels, selection should
be based on criteria independent of any selective analysis.

In sum, Example 2 shows that nonindependent selective analysis can cause significant biases,
even when selection is performed with rigorous statistical inference correcting for multiple
tests.

A policy for noncircular analysis
One possible policy that ensures correct inference and undistorted descriptive statistics is
summarized by the flow diagram of Fig. 4. The core of our policy is as follows: we first consider
a nonselective analysis (e.g. brain mapping with correction for multiple comparisons). If
selective analysis is needed, we next assess whether the results statistics are independent of
the selection criterion under the null hypothesis. If this has been explicitly demonstrated, then
all data are used for selective analysis. Otherwise, an independent data set is used for the
selective analysis to ensure independence of the results under the null hypothesis and prevent
circularity. Each of these steps is explained in detail in the Supplementary Information under
A policy for noncircular analysis.

Conclusion
In order to learn about brain function, systems neuroscience needs to apply complex selective
and recurrent analyses to high-dimensional brain-activity data. One challenge this poses is to
avoid circularity. A circular analysis is one whose assumptions distort its results. We have
demonstrated that practices widespread in neuroimaging are affected by circularity. In
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particular, data weighting, sorting, and selection can distort results and invalidate tests when
preceding nonindependent further analyses. Similar practices are common in other fields of
systems neuroscience including electrophysiology. The distortions may be small in many cases.
However, they can be large and can qualitatively affect results. We conclude that some common
practices need to be adjusted. In particular, selection criteria should be demonstrated to be
independent of further analyses. A simple way to ensure independence is to use independent
data for selection and selective analyses. Immanuel Kant24 observed that Reason, in science,
will not be led on by Nature, but rather forces her to answer specific questions. Circular analysis
goes one step further, enforcing specific answers as well (or biasing results in their favor) –
one step too far in our opinion.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Intuitive diagrams for understanding circular analysis
(a) The top row serves to remind us that our results reflect our data indirectly: through the lens
of an often complicated analysis, whose assumptions are not always fully explicit. The bottom
row illustrates how the assumptions (and hypotheses) can interact with the data to shape the
results. Ideally (bottom left), the results reflect some aspect of the data (blue) without distortion
(although the assumptions will determine what aspect of the data is reflected in the results).
But sometimes (bottom center) a close inspection of the analysis reveals that the data get lost
in the process and the assumptions (red) predetermine the results. In that case the analysis is
completely circular (red dotted line). More frequently in practice (bottom right), the
assumptions tinge the results (magenta). The results are then distorted by circularity, but still
reflect the data to some degree (magenta dotted lines). (b) Three diagrams illustrate the three
most common causes of circularity: selection (left), weighting (center), and sorting (right).
Selection, weighting, and sorting criteria reflect assumptions and hypotheses (red). Each of the
three can tinge the results, distorting the estimates presented and invalidating statistical tests,
if the results statistics are not independent of the criteria for selection, weighting, or sorting.
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Fig. 2. Example 1: Data selection can bias pattern-information analysis
(a) In order to assess to what extent human inferior-temporal activity patterns reflect bottom-
up sensory signals and top-down task constraints, we measured activity patterns with fMRI
while subjects viewed object images of different categories and judged either whether the
object shown was “animate” (task 1) or whether it was “pleasant” (task 2).2 (b) We selected
all inferior-temporal voxels for which any two-sided t test contrasting two conditions was
significant at p<0.001 (uncorrected for multiple tests). We then cleanly divided the data by
using odd runs for training and even runs for testing. We used a linear classifier to determine
whether the activity pattern would allow us to decode the stimulus category (light gray bars)
and the judgment task (dark gray bars). Results (top left) suggested that both stimulus and task
can be decoded with high accuracy, significantly above chance. However, application of the
same analysis to Gaussian random data (top right), also suggested high decoding accuracies
significantly above chance. This shows that spurious effects can appear when data from the
test set is used in the initial data-selection process. Such spurious effects can be avoided by
performing selection using data independent of the test data (bottom row). Error bars indicate
+/−1 across-subject standard error of the mean. For details on experiment and analysis, see
Example 1: Pattern-information analysis.
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Fig. 3. Example 2: ROI definition can bias activation analysis
A simulated fMRI block-design experiment demonstrates that nonindependent ROI definition
can distort effects and produce spuriously significant results, even when the ROI is defined by
rigorous mapping procedures (accounting for multiple tests) and highlights a truly activated
region. Error bars indicate +/− 1 standard error of the mean. (a) The layout of this panel matches
the intuitive diagrams of Fig. 1a: The data in Fig. 1a correspond to the true effects (left); the
assumptions to the contrast hypothesis (top), and the results to ROI-average activation analyses
(right). A 100-voxel region (blue contour in central slice map) was simulated to be active during
conditions A and B, but not during conditions C and D (left). The t map for contrast A-D is
shown for the central slice through the region (center). When thresholded at p<0.05 (corrected
for multiple tests by a cluster threshold criterion), a cluster appears (magenta contour), which
highlights the true activated region (blue contour). The ROI is somewhat affected by the noise
in the data (difference between blue and magenta contours). The noise pushes some truly
activated voxels below the threshold and lifts some nonactivated voxels above the threshold
(white arrows). This can be interpreted as overfitting. The bar graph for the overfitted ROI
(bottom right, same data as used for mapping) reflects the activation of the region during
conditions A and B as well as the absence of activation during conditions C and D. However,
in comparison to the true effects (left) it is substantially distorted by the selection contrast A-
D (top). In particular, the contrast A-B (simulated to be zero) exhibits spurious significance
(p<0.01). When we use independent data to define the ROI (green contour), no such distortion
is observed (top right). For details on the simulation and analysis, see Example 2: Regional
activation analysis in the text. (b) The simulation illustrates how data selection blends truth
(left) and hypothesis (right) by distorting results (top) so as to better conform to the selection
criterion.
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Fig. 4. A policy for noncircular analysis
This flow diagram suggests a procedure for choosing an appropriate analysis that avoids the
pitfalls of circularity. Considering the most common errors (bottom left, red letter references)
can help recognize circularity in assessing a given analysis. The gist of the policy is as follows:
We first consider performing a nonselective analysis only. If selective analysis is needed and
we can demonstrate that the results are independent of the selection criterion under the null
hypothesis, then all data are used for selective analysis. If we cannot demonstrate this, then a
split-data analysis can serve to ensure independence. (For details, see Supplementary
Information, A policy for noncircular analysis.)
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