
Chapter 11
Selecting Empirical Methods 
for Software Engineering Research

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, 
and Daniela Damian

Abstract Selecting a research method for empirical software engineering research 
is problematic because the benefits and challenges to using each method are not yet 
well catalogued. Therefore, this chapter describes a number of empirical methods 
available. It examines the goals of each and analyzes the types of questions each 
best addresses. Theoretical stances behind the methods, practical considerations 
in the application of the methods and data collection are also briefly reviewed. 
Taken together, this information provides a suitable basis for both understand-
ing and selecting from the variety of methods applicable to empirical software 
engineering.

1. Introduction

Despite widespread interest in empirical software engineering, there is little guid-
ance on which research methods are suitable to which research problems, and how 
to choose amongst them. Many researchers select inappropriate methods because 
they do not understand the goals underlying a method or possess little knowledge 
about alternatives. As a first step in helping researchers select an appropriate 
method, this chapter discusses key questions to consider in selecting a method, 
from philosophical considerations about the nature of knowledge to practical con-
siderations in the application of the method. We characterize key empirical methods 
applicable to empirical software engineering, and explain the strengths and weaknesses 
of each.

Software engineering is a multi-disciplinary field, crossing many social and 
technological boundaries. To understand how software engineers construct and 
maintain complex, evolving software systems, we need to investigate not just the 
tools and processes they use, but also the social and cognitive processes surround-
ing them. This requires the study of human activities. We need to understand how 
individual software engineers develop software, as well as how teams and organizations 
coordinate their efforts.

285

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008



286 S. Easterbrook et al.

Because of the importance of human activities in software development, many 
of the research methods that are appropriate to software engineering are drawn 
from disciplines that study human behaviour, both at the individual level (e.g. psy-
chology) and at the team and organizational levels (e.g. sociology).These methods 
all have known flaws, and each can only provide limited, qualified evidence about 
the phenomena being studied. However, each method is flawed differently 
(McGrath, 1995) and viable research strategies use multiple methods, chosen in 
such a way that the weaknesses of each method are addressed by use of comple-
mentary methods (Creswell, 2002).

Describing in detail the wide variety of possible empirical methods and how to 
apply them is beyond the scope of the chapter. Instead, we identify and compare 
five classes of research method that we believe are most relevant to software 
engineering:

● Controlled Experiments (including Quasi-Experiments)
● Case Studies (both exploratory and confirmatory)
● Survey Research
● Ethnographies
● Action Research

We describe the tradeoffs involved in choosing between these methods, but do not 
provide a recipe for building research strategies, as we doubt that such recipes exist. 
The selection of methods for a given research project depends on many local con-
tingencies, including available resources, access to subjects, opportunity to control 
the variables of interest, and, of course, the skills of the researcher.

To illustrate the steps involved in deciding which method or methods to use, we 
present two guiding examples. Two fictional software engineering researchers, Joe and 
Jane, will explore how the various research methods can be applied to their work:

● Jane is a new PhD student interested in the effectiveness of a novel fisheye-view 
file navigator. Her research is motivated by the fact that navigation is a primary 
activity of software developers requiring a lot of scrolling and many clicks to 
find files. “Fisheye-views” use a distortion technique that, if applied correctly, 
display information in a compact format that could potentially reduce the 
amount of scrolling required. Jane’s intuition is that the fisheye-view file navi-
gator is more efficient for file navigation, but critics argue that the more compact 
information is difficult to read and that developers will not adopt it over the tra-
ditional file navigator. Her research goal, therefore, is to find evidence that sup-
ports or refutes her intuition that fisheye-view file navigators are more efficient 
than traditional file navigators for navigation.

● Joe is a researcher in an industrial lab. His current interests are in understanding 
how developers in industry use (or not) UML diagrams during software design. 
This is because, as a student, his professors recommended UML diagrams be used 
during software design, but his recent exposure to industrial practices indicates 
that UML is rarely used. His research goal is to explore how widely UML 



11 Selecting Empirical Methods for Software Engineering Research 287

diagrams are used in industry, and more specifically how these diagrams are 
used as collaborative shared artefacts during design.

Throughout the remainder of the chapter, we explore how Jane and Joe develop 
research strategies for their projects. We begin with an analysis of the type of 
research question(s) they are asking, and the issue of what constitutes valid answers 
to them. To address the latter question, we tour the main philosophical stances that 
underpin empirical research. We then describe the five classes of research method, 
and introduce criteria for distinguishing between them. Along the way, we explore 
how Jane and Joe might use each method as part of their research strategies. We 
end the chapter with a look at the practical considerations that affect their 
choices.

2. What kind of Research Question are You Asking?

One of the first steps in choosing an appropriate research method is to clarify the 
research question. While Jane and Joe have identified the problems they wish to 
work on, neither has pinned down a precise question. In each case, they could focus 
on a number of different research questions, each of which leads to a different 
direction in developing research strategies. The classification of research questions 
we use in this section is adapted from Meltzoff (1998).

Often, the most obvious question is not the best choice for a starting point. 
Jane’s first attempt to formulate her research question is “Is a fisheye-view file 
navigator more efficient than the traditional view for file navigation?”, while Joe 
asks “how widely are UML diagrams used as collaborative shared artifacts during 
design?”. Both questions are vague, because they make assumptions about the 
phenomena to be studied, and kinds of situation in which these phenomena occur. 
For example, Jane’s question only makes sense if we already know that some 
people (who?) need to do file navigation (whatever that is?), under some circum-
stances (which are?), and that efficiency (measured how?) is a relevant goal for 
these people (how would we know that?). Joe’s question presupposes that we know 
what a “collaborative shared artifact” is, and can reliably identify one, and even 
reliably say which things are UML diagrams. Defining the precise meaning of 
terms is a crucial part of empirical research, and is closely tied with the idea 
of developing (or selecting) an appropriate theory.

In the early stages of a research program, we usually need to ask exploratory 
questions, as we attempt to understand the phenomena, and identify useful 
distinctions that clarify our understanding. Suitable research methods for explor-
atory questions tend to be those that offer rich, qualitative data, which help us to 
build tentative theories. Unless they are building on existing work that already 
offers clear definitions, both Jane and Joe need to formulate exploratory ques-
tions, such as:



288 S. Easterbrook et al.

● Existence questions of the form, “Does X exist?” Jane might need to ask, “Is 
file navigation something that (certain types of programmers) actually do?” 
and, “Is efficiency actually a problem in file navigation?” Joe might need to ask, 
“Do collaborative shared artifacts actually exist?”

● Description and Classification questions such as, “What is X like?”, “What 
are its properties?”, “How can it be categorized?”, “How can we measure it?”, 
“What is its purpose?”, “What are its components?”, “How do the components 
relate to one another?”, and “What are all the types of X?” Jane might ask, “How 
can we measure efficiency for file navigation?” and Joe might ask, “What are 
all the types of collaborative shared artifacts?”

● Descriptive-Comparative questions of the form, “How does X differ from Y?” 
investigate similarities and differences between two or more phenomena. Jane might 
ask, “How do fisheye views differ from conventional views?” and Joe might ask, 
“How do UML diagrams differ from other representations of design information?”

The answers to these questions result in a clearer understanding of the phenomena, 
including more precise definitions of the theoretical terms, evidence that we can 
measure them, and evidence that the measures are valid. In exploring these ques-
tions, Jane and Joe will refine their ideas about the nature of the phenomena they 
are studying. It is possible that there are already good answers to these questions in 
the published literature. Jane and Joe must still ask these questions. But a literature 
survey, instead of an empirical study, may answer them.

Once we have a clearer understanding of the phenomena, we may need to ask 
base-rate questions about the normal patterns of occurrence of the phenomena. If 
we fail to ask base-rate questions, then we have no basis for saying whether a par-
ticular situation is normal or unusual. Example base-rate questions include:

● Frequency and distribution questions such as, “How often does X occur?” 
and, “What is an average amount of X?” Often, these questions can be answered 
in terms of a standard distribution of a characteristic within a well-defined popu-
lation. Joe’s original question appears to be a frequency question, but there are 
many ways for him to formulate it more precisely. For example, he might ask, 
“How many distinct UML diagrams are created in software development 
projects in large software companies?” and he might discover the results follow 
some standard statistical distribution.

● Descriptive-Process questions of the form, “How does X normally work?”, 
“What is the process by which X happens?”, “In what sequence do the events of 
X occur?”, “What are the steps X goes through as it evolves?”, “How does X 
achieve its purpose?”. For example, Jane might ask, “How do programmers 
navigate files using existing tools?”

Often, we are interested in the relationship between two different phenomena, and 
specifically whether occurrence of one is related to occurrence of the other. Hence 
we need to formulate some:

● Relationship questions such as, “Are X and Y related?” and, “Do occurrences 
of X correlate with the occurrences of Y?” For example, Jane might ask, “Does 



11 Selecting Empirical Methods for Software Engineering Research 289

efficiency in file navigation correlate with the programmer’s familiarity with the 
programming environment?” Joe might ask, “Do managers’ claims about how 
often they use UML correlate with the actual use of UML?”

Once we have established that a relationship exists between two phenomena, it is 
natural to try to explain why the relationship holds by attempting to identify a cause 
and effect. It is a common mistake to confuse correlation with causality. In general 
it is much harder to demonstrate causality than to show that two variables are cor-
related. If high values of X correlate with high values of Y, it may be because X 
causes Y, or because Y causes X. But it is also possible that X and Y share some 
common cause and neither causes the other. Or perhaps they co-evolve in complex 
ways so that there is no clear cause-and-effect. Causality questions include:

● Causality questions of the form, “Does X cause Y?” and “Does X prevent Y?” 
Plus the more general forms: “What causes Y?”, “What are all the factors that 
cause Y?”, “What effect does X have on Y?” In software engineering we often 
ask whether using a particular tool or technique causes an improvement in qual-
ity, speed, and so on. Jane’s initial question appears to be of this type: “Do 
fisheye-views cause an improvement in efficiency for file navigation?”

● Causality-Comparative questions investigate relationships between different 
causes: “Does X cause more Y than does Z?” or, “Is X better at preventing Y 
than is Z?” Unless Jane has good base-rate data for existing file navigation tools, 
Jane’s causality question would be better formulated as “Do fisheye-views cause 
programmers to be more efficient at file navigation than conventional views?”

● Causality-Comparative Interaction questions investigate how context affects 
a cause–effect relationship: “Does X or Z cause more Y under one condition 
but not others?” If Jane’s initial studies reveal a factor (e.g., distractions) that 
affects causality, she might ask “Do fisheye-views cause programmers to be 
more efficient at file navigation than conventional views when programmers 
are distracted, but not otherwise?”

The classes of research question above are all knowledge questions focused on the 
way the world is. Empirical research in software engineering addresses these types 
of questions. In contrast, most non-empirical research in software engineering 
focuses on a very different type of question concerned with designing better ways 
to do software engineering (Simon, 1996):

● Design questions of the form, “What’s an effective way to achieve X?” or, 
“What strategies help to achieve X?” For example, Joe’s research might lead 
him to ask, “What is an effective way for teams to represent design knowledge 
to improve coordination?”

These types of question are necessary when the goal is to design better procedures 
and tools for carrying out some activity or to design suitable social or regulatory 
policies. Such questions presuppose that the associated knowledge questions have 
already been addressed so that we have enough information about the nature of the 
design problem to be solved. In practice, a long term software engineering research 



290 S. Easterbrook et al.

program involves a mix of design questions and knowledge questions as the 
researchers investigate specific problems, how best to solve them, and which solu-
tions work best (Wieringa and Heerkens, 2006).

3. What will You Accept as an Empirical Truth?

Having specified the research question(s), it is worth considering what to accept as 
valid answers. Different people make different assumptions about scientific truth. 
Take, for example, Jane’s causal question: “Do fisheye-views cause an improvement 
in efficiency for file navigation?” Jane’s PhD advisor insists that the only trustworthy 
evidence to answer this question comes from experiments conducted under controlled 
laboratory conditions, pointing out that the only conclusive way to prove that 
A causes B is to manipulate A in a controlled setting, and measure the effect on B. 
However, another member of Jane’s thesis committee is an experienced software 
practitioner and he claims that laboratory experiments are useless, as they ignore the 
messy complexity of real software projects. He points out that judgments about 
“improvements” to file navigation are subjective, and contextual factors such as dis-
tractions have a major impact. He suggests that Jane should conduct her research in 
the field, investigating what developers actually do on real projects

The different advice Jane receives reflects major differences in opinion over the 
nature of truth, and how we arrive at it through scientific investigation. The con-
flicting advice arises from the different philosophical stances adopted by members 
of Jane’s committee. To understand the different stances, it helps to know that phi-
losophers make a distinction between epistemology (the nature of human knowl-
edge, and how we obtain it) and ontology (the nature of the world irrespective of 
our attempts to understand it). This separation helps us discuss what we accept as 
scientific knowledge separately from debates about the content of that knowledge 
(Chalmers, 1999).

Plato originally defined knowledge as justified true belief. In other words, to 
know something, you must believe it to be true, and have a clear justification for 
believing it to be true. However, epistemologists have argued for centuries about 
what form that justification should take. Empiricists argue that all knowledge is 
derived from our experiences and observations of the world, while rationalists 
argue that some part of our knowledge is innate, hence not derived from experi-
ence. Constructivists argue that we cannot separate knowledge from the language 
we use to express it – because the meanings of words are constructed by social 
convention, so is our knowledge.

In this chapter we characterize four dominant philosophical stances (Creswell, 
2002). The stance you adopt affects which methods you believe lead to acceptable 
evidence in response to your research question(s). Being explicit about your stance 
also helps when talking and writing about research. You might not be able to con-
vince other people to change their stance, but you will be able to argue cogently for 
why you chose the methods you did.



11 Selecting Empirical Methods for Software Engineering Research 291

● Positivitism states that all knowledge must be based on logical inference from 
a set of basic observable facts. Positivists are reductionist, in that they study 
things by breaking them into simpler components. This corresponds to their 
belief that scientific knowledge is built up incrementally from verifiable obser-
vations, and inferences based on them. Positivism has been much attacked over 
the past century due to doubts about the reliability of our observations of the 
world, and the complication that scientific “fact” built up in this manner some-
times turns out to be wrong. While positivism still dominates the natural sci-
ences, most positivists today might more accurately be described as 
post-positivists, in that they tend to accept the idea (due to Popper) that it is more 
productive to refute theories than to prove them, and we increase our confidence 
in a theory each time we fail to refute it, without necessarily ever proving it to 
be true. Positivists prefer methods that start with precise theories from which 
verifiable hypotheses can be extracted, and tested in isolation. Hence, positivism 
is most closely associated with the controlled experiment; however, survey 
research and case studies are also frequently conducted with a positivist stance. 
Note that a belief in reductionism is needed to accept laboratory experiments as 
valid in software engineering – you have to convince yourself that the phenom-
enon you are interested in can be studied in isolation from its context.

● Constructivism, also known as interpretivism (Klein and Myers, 1999), rejects 
the idea that scientific knowledge can be separated from its human context. In 
particular, the meanings of terms used in scientific theories are socially con-
structed, so interpretations of what a theory means are just as important in judg-
ing its truth as the empirical observations on which it is based. Constructivists 
concentrate less on verifying theories, and more on understanding how different 
people make sense of the world, and how they assign meaning to actions. 
Theories may emerge from this process, but they are always tied to the context 
being studied. For example, an anthropologist studying the culture of a software 
design team might seek to find out how different members of the team think 
about and use the tools they have available, and build local theories that explain 
why this particular team uses tools in the way that they do. This stance is often 
adopted in the social sciences, where positivist/reductionist approaches have 
little to say about the richness of social interactions. Constructivists prefer 
methods that collect rich qualitative data about human activities, from which 
local theories might emerge. Constructivism is most closely associated with 
ethnographies, although constructivists often use exploratory case studies and 
survey research too.

● Critical Theory judges scientific knowledge by its ability to free people from 
restrictive systems of thought (Calhoun, 1995). Critical theorists argue that 
research is a political act, because knowledge empowers different groups within 
society, or entrenches existing power structures. Critical theorists therefore 
choose what research to undertake based on whom it helps. They prefer partici-
patory approaches in which the groups they are trying to help are engaged in the 
research, including helping to set its goals. Critical theorists therefore tend to 
take emancipatory or advocacy roles. In sociology, critical theory is most 



292 S. Easterbrook et al.

closely associated with Marxist and feminist studies, along with research that 
seeks to improve the status of various minority groups. In software engineering, 
it includes research that actively seeks to challenge existing perceptions about 
software practice, most notably the open source movement, and, arguably, the 
process improvement community and the agile community. Critical theorists 
often use case studies to draw attention to things that need changing. However 
it is action research that most closely reflects the philosophy of critical 
theorists.

● Pragmatism acknowledges that all knowledge is approximate and incomplete, 
and its value depends on the methods by which it was obtained (Menand, 1997). 
For pragmatists, knowledge is judged by how useful it is for solving practical 
problems. Put simply, truth is whatever works at the time. This stance therefore 
entails a degree of relativism: what is useful for one person to believe might not 
be useful for another; therefore truth is relative to the observer. To overcome the 
obvious criticisms, many pragmatists emphasize the importance of consensus – 
truth is uncovered in the process of rational discourse, and is judged by the par-
ticipants as whatever has the better arguments. Pragmatism is less dogmatic than 
the other three stances described above, as pragmatists tend to think the researcher 
should be free to use whatever research methods shed light on the research 
problem. In essence, pragmatism adopts an engineering approach to research – it 
values practical knowledge over abstract knowledge, and uses whatever methods 
are appropriate to obtain it. Pragmatists use any available methods, and strongly 
prefer mixed methods research, where several methods are used to shed light on 
the issue under study.

Although there are examples of research from each of these stances in the software 
engineering literature, the underlying philosophies are never mentioned. We 
believe this has contributed to confusion around the selection of empirical methods 
and appropriate evaluation of empirical research. In particular, it is impossible to 
avoid some commitment to a particular stance, as you cannot conduct research, and 
certainly cannot judge its results, without some criteria for judging what constitutes 
valid knowledge.

4. The Role of Theory Building

A distinguishing feature of scientific study is the development of theories that 
explain how and why certain phenomena occur, and allow predictions to be made. 
Theories are therefore the building blocks of scientific knowledge. The different 
philosophical stances differ in their ideas about the role of theory (Gregor, 2006). 
To the positivist, science is the process of verifying theories by testing hypotheses 
derived from them. To the constructivist, science is the process of seeking local 
theories that emerge from (and explain) the data. To the critical theorist, theories 
are assertions of knowledge (and therefore power), to be critiqued in terms of how 



11 Selecting Empirical Methods for Software Engineering Research 293

they shape that power. To the pragmatist, theories are the products of a consensual 
process among a community of researchers, to be judged for their practical utility.

A scientific theory identifies and defines a set of phenomena, and makes asser-
tions about the nature of those phenomena and the relationships between them. 
A good theory precisely defines the theoretical terms, so that a community of 
scientists can observe and measure them. A good theory also explains why certain 
relationships occur. Positivists expect their theories to have strong predictive 
power, and so look for generalized models of cause-and-effect as the basis for 
theories. In contrast, constructivists expect theories to strengthen their under-
standing of complex situations, and so tend make more use of categorizations and 
analogies. Theories are also judged for aesthetic value. Often there is more than 
one theory that explains empirical observations, so the theories that are simpler, 
or more elegant are preferred (LittleJohn and Foss, 2004).

As an example, Joe might develop a theory around the use of UML diagrams as 
a stylized form of external memory. According to his theory, UML diagrams are 
used to summarize the results of meetings and discussions, to remind participants 
of a shared understanding that they have already developed. Joe’s theory must pre-
cisely define the meaning of terms such as “diagram,” “participants,” “discus-
sions,” in order to identify them in any studies performed. Joe’s theory should also 
explain why people choose to use UML in some circumstances but not others, and 
why they include certain things in their diagrams and exclude others. And finally, 
it should be able to predict qualities of the diagrams that a software team might 
produce based on certain factors.

It is important to understand that in any empirical study, theories have a strong 
impact on how things are observed and interpreted. The theory becomes a “lens” 
through which the world is observed. This happens whether or not theories are 
explicitly acknowledged, because real-world phenomena are simply too rich and 
complex to study without a huge amount of filtering. In quantitative research 
methods, the theoretical lens is used explicitly to decide which variables to isolate 
and measure, and which to ignore or exclude. In qualitative methods, the theoretical 
lens is often applied after data is collected, to focus the process of labeling and 
categorizing (“coding”) the data.

Few scientists give thought to how theories are created. A notable exception is 
Grounded Theory, a technique for developing theory iteratively from qualitative 
data (Glaser and Strauss, 1967). In grounded theory, initial analysis of the data 
begins without any preconceived categories. As interesting patterns emerge, the 
researcher repeatedly compares these with existing data, and collects more data to 
support or refute the emerging theory. Despite its close association with the con-
structivist stance, Grounded Theory probably approximates how most scientists end 
up developing theories. The difference is that Grounded Theory makes the process 
explicit and systematic.

Theories also play a role in connecting research to the relevant literature. By 
defining the key terms, the results of empirical studies can be compared. 
Furthermore, theories support the process of empirical induction because an indi-
vidual study can never offer conclusive results. Each study adds more evidence for 



294 S. Easterbrook et al.

or against the propositions of the theory. Without the theory, we have no way of 
making sense of the accumulation of empirical results.

Software Engineering researchers have traditionally been very poor at making 
theories explicit (Jørgensen and Sjøberg, 2004). Many of the empirical studies 
conducted over the past few decades fail to relate the collected data to an underly-
ing theory. The net result is that results are hard to interpret, and studies cannot be 
compared.

5. Selecting Methods

A method is a set of organizing principles around which empirical data is collected 
and analyzed. A variety of methods can be applied to any research problem, and it is 
often necessary to use a combination of methods to fully understand the problem. The 
choice of methods depends upon the theoretical stance of the researcher(s), access to 
resources (e.g., students or professionals as subjects/participants) and how closely the 
method aligns with the question(s) that have been posed. Research Design is the proc-
ess of selecting a method for a particular research problem, tapping into its strengths, 
while mitigating its weaknesses. The validity of the results depends on how well the 
research design compensates for the weaknesses of the methods.

Below we describe in more detail the methods most likely to be applied in soft-
ware engineering contexts. Because these methods are adapted from a number of 
different fields, there is no consistent terminology to describe them and even a lack 
of consensus on how to distinguish these methods from one another. We have cho-
sen terms that should be familiar to software engineers and offer definitions and 
distinctions that capture the spirit of the methods.

5.1. Controlled Experiments

A controlled experiment is an investigation of a testable hypothesis where one or 
more independent variables are manipulated to measure their effect on one or more 
dependent variables. Controlled experiments allow us to determine in precise terms 
how the variables are related and, specifically, whether a cause–effect relationship 
exists between them. Each combination of values of the independent variables is a 
treatment. The simplest experiments have just two treatments representing two 
levels of a single independent variable (e.g. using a tool vs. not using a tool). More 
complex experimental designs arise when there are more than two levels or more 
than one independent variable is used. Most software engineering experiments 
require human subjects to perform some task. We measure the effect of the treat-
ments on the subjects.

A precondition for conducting an experiment is a clear hypothesis. The hypothesis 
(and the theory from which it is drawn) guide all steps of the experimental design, 



11 Selecting Empirical Methods for Software Engineering Research 295

including deciding which variables to include in the study and how to measure them. 
For example, Jane might decide to run an experiment to test the hypothesis that fish-
eye views cause more efficient file navigation than traditional file tree explorer 
views. This hypothesis is drawn from a theory that explains the effect. The theory is 
that fisheye views correspond well to the way that people see and navigate in the 
world, by offering more detail of a specific area of focus, together with a less detailed 
overview of the peripheral regions, and a smooth way of moving the focus of atten-
tion. The theory suggests that less time spent scrolling and fewer clicks should reduce 
navigation time. This suggests the treatments should be the type of file explorer view 
used: fisheye view versus the traditional scrolled view, and the dependent variable 
should be the length of time to navigate to a file.

The theory also helps to decide who the subjects are, and what the tasks should 
be. To ensure the results of the experiment are valid, the subjects should be drawn 
from a well-defined population – the idea is to demonstrate that the hypothesis 
applies to the whole population by testing it on a representative sample. For her 
experiment, Jane recruits computer science grad students as subject programmers, 
and screens them to select subjects with lots of programming experience. In SE, it 
is common to recruit students as subjects. This makes it easier to recruit a large 
group of subjects, but reduces external validity – an analytical argument is needed 
for why results on students might still apply to software developers in industry.

Control is important – variables other than the chosen independent variables 
must not be allowed to affect the experiment. In Jane’s case, differences in skill 
levels of her subjects may affect the experiment, so she might first divide her sub-
jects into groups (or blocks) according to their skill level, and randomly assign 
subjects from each block to the two treatments, for a “between subjects design.” An 
alternative is to use a “within subjects design,” in which each subject uses all treat-
ments; however this might introduce learning effects from one treatment to the 
next, so this needs to be accounted for in the design. Jane needs to decide which 
confounding factor is more important to control.

The experimental method is closely tied to the positivist stance. This is because 
experiments are essentially reductionist – they reduce complexity by allowing only 
a few variables of interest to vary in a controlled manner, while controlling all other 
variables. If critical variables are ignored or controlled, the experimental results 
might not generalize to real world settings. For example, in choosing to focus on 
efficiency as a dependent measure, Jane ignores other possible measures, such as 
awareness of the file structure that may result from other navigation techniques. 
The reduction can also mask critical interaction effects, such as the interaction 
between expertise and preferred navigation environment. For these reasons, if 
Jane’s experiment confirms her hypothesis, it means she has evidence that fish-eye 
views are more efficient (as she defines efficiency), but it doesn’t necessarily mean 
that fisheye views are better suited to navigation!

The fact that experiments are theory-driven is both a strength and a weakness. 
It is a strength because basing analysis on hypotheses derived from theories reduces 
problems of “fishing for results”: some correlations occur by chance, and if we look 
for long enough we’ll find them. On the other hand, being theory-driven forces us 



296 S. Easterbrook et al.

to decide in advance which variables to ignore, and they might turn out to be 
 important outside the laboratory setting.

Variants on experiments are possible and can be used in circumstances where a 
true experiment is not possible. For example, in quasi-experiments the subjects are 
not assigned randomly to the treatments. Quasi-experiments may be used, for 
example, when, for ethical reasons, subjects must be allowed to choose their treat-
ment. Quasi-experiments are also used in the field. For example if an experiment is 
performed in a company, there may be constraints on which employees can work 
on which tasks. In time-series experiments, the effect of a treatment is measured in 
discrete time steps over a period of time. These variations are less powerful than 
true experiments, and require more careful interpretation.

5.2. Case Studies

There is much confusion in the SE literature over what constitutes a case study. The 
term is often used to mean a worked example. As an empirical method, a case study 
is something very different. Yin (2002) introduces the case study as “an empirical 
inquiry that investigates a contemporary phenomenon within its real-life context, 
especially when the boundaries between phenomenon and context are not clearly 
evident.” Case studies offer in-depth understanding of how and why certain phe-
nomena occur, and can reveal the mechanisms by which cause–effect relationships 
occur Flyvbjerg (2006). Exploratory case studies are used as initial investigations 
of some phenomena to derive new hypotheses and build theories, and confirmatory 
case studies are used to test existing theories. The latter are especially important for 
refuting theories: a detailed case study of a real situation in which a theory fails 
may be more convincing than “failed” experiments in the lab. The detailed insights 
obtained from confirmatory case studies can also be useful for choosing between 
rival theories.

A precondition for conducting a case study is a clear research question con-
cerned with how or why certain phenomena occur. This is used to derive a study 
proposition that states precisely what the study is intended to show, and to guide 
the selection of cases and the types of data to collect. As an example, imagine that 
Jane is upset as her tool is not adopted by developers after her experiment. She 
noticed in the post-experiment interviews that subjects frequently mentioned using 
additional advanced features for navigation that do not involve the file explorer (the 
only navigation tool available in the experiment). Hence, she poses the research 
question “How do developers use navigation tool support for large systems under 
development?”, and decides to focus on a specific proposition suggested by the 
post-experiment interviews that “expert developers use many different strategies 
for navigation, and move between them very rapidly.” This leads her to choose a 
local company with several very experienced developers as her case, and to focus 
on observational rather than interview data, to find out what the developers actually 
do at a fine grain of detail.



11 Selecting Empirical Methods for Software Engineering Research 297

The selection of cases is a crucial step in case study research. Case study 
research uses purposive sampling rather than random sampling. The aim is to select 
cases that are most relevant to the study proposition. Sometimes a single case is 
sufficient. This might be because it is a critical case for testing a well-formulated 
theory: if the theory holds for this case, it is likely to be true for many others. Or it 
might be an extreme or unique case that is expected to yield interesting insights 
about what happens under extreme conditions, such as a crisis. Sometimes it is suf-
ficient to identify a typical case to gain more insight into common situations. 
However, a multiple case design usually offers greater validity. The different cases 
are best thought of as replications, rather than members of a sample. For confirma-
tory case studies, these can be chosen as literal replications, where each case 
is expected to show the same results, or as theoretical replications, where cases are 
expected to show contrasting results for predictable reasons. An example of 
the latter would be if Jane’s theory predicted that experienced developers do file 
navigation differently from novices. A multiple case study could include both 
experts and novices, to confirm that the theory adequately explains both.

A variety of different data sources are typically used in case study research. 
Qualitative data, including interviews and observation, play a central role, as these 
offer rich insights into the case. Data collection is always performed with respect 
to a well-defined unit of analysis. In software engineering, the unit of analysis 
might be a company, a project, a team, an individual developer, a particular episode 
or event, a specific work product, etc. Choosing an appropriate unit of analysis is 
important, to ensure the study focuses on the intended phenomena. In Jane’s case, 
she chooses the individual developer as her unit of analysis, allowing her to focus 
on personal style of different developers. Other choices would lead the case study 
in different directions. For example, choosing a project as the unit of analysis 
would allow her to identify whether project teams develop shared navigational 
styles, but would offer less insights into individual styles. Note that Jane’s case (a 
company) has multiple embedded units of analysis (the developers). In some stud-
ies, the case is the same as the unit of analysis.

Case study research is most appropriate for cases where the reductionism of 
controlled experiments is inappropriate. This includes situations where the context 
is expected to play a role in the phenomena (for example if the stresses of a real 
project affect developers’ behaviour), or where effects are expected to be wide 
ranging, or take a long time (e.g. weeks, months, years) to appear.

The major weakness of case studies is that the data collection and analysis is 
more open to interpretation and researcher bias. For this reason, an explicit frame-
work is needed for selecting cases and collecting data. Although an individual case 
study often reveals deep insights, the validity of the results depends on a broader 
framework of empirical induction. For example, in confirmatory case studies, evi-
dence builds when subsequent case studies also support the theory and/or fail to 
support rival theories.

Case studies can be applied within all four philosophical stances, although different 
stances affect the way in which cases are selected and the data analysis is performed. 
For example, confirmatory case studies draw on the positivist perspective of 



298 S. Easterbrook et al.

theory-driven research, but positivists also use exploratory case studies to develop 
new theories [see Kitchenham et al. (1995), for an brief tutorial of software engi-
neering case study research using a primarily positivist perspective]. Constructivists 
use exploratory case studies to investigate the differences of culture and perspective 
in various settings. Critical theorists use both types of case study to draw attention 
to situations that are regarded as problematic, selecting cases that are politically 
important, or for which the participants themselves can be most expected to benefit. 
The criteria for assessing the validity of a case study depends on which philosophi-
cal stance is taken.

5.3. Survey Research

Survey research is used to identify the characteristics of a broad population of 
individuals. It is most closely associated with the use of questionnaires for data 
collection. However, survey research can also be conducted by using structured 
interviews, or data logging techniques. The defining characteristic of survey 
research is the selection of a representative sample from a well-defined population, 
and the data analysis techniques used to generalize from that sample to the popula-
tion, usually to answer base-rate questions.

A precondition for conducting survey research is a clear research question that 
asks about the nature of a particular target population. Because it is usually infeasible 
(and unnecessary) to poll every member of that population, survey research first 
identifies a representative subset as the sample, and determines how to reach that 
subset for data collection. Identifying the unit of analysis is important for determining 
an appropriate sampling technique. For example, if the research question is about 
software companies, then sampling over individual developers may give a biased 
sample, with some companies being over-represented because several developers 
from the same company were included. Furthermore, simple random sampling of 
the population might also be inadequate. For example, if our unit of analysis is 
individual developers, a random sampling might end up with most or all of 
respondents working at a single, dominant company. In such a case, stratified 
sampling techniques would be used, to identify subgroups within the population, so 
that we can sample within each subgroup.

As an example, recall that Joe wished to understand more about how UML is 
used in industrial settings, and how UML supports collaborative design. He con-
ducts a survey of software companies across the country to ask them whether they 
use UML, and if so how. He decides to use individual developers as his unit of 
analysis, so that he can focus on how different developers perceive the utility of 
UML. He posts his survey to a number of carefully selected developer email lists, 
and has a response rate of 10%. The results from the survey are interesting. He 
discovers that only about 20% of the respondents use UML, and that the diagrams 
are rarely used in shared settings. He also learns that class diagrams are the 
most frequently used diagram, with sequence diagrams a close second.



11 Selecting Empirical Methods for Software Engineering Research 299

Joe could choose from a number of different designs for his study. For exam-
ple, if he just wishes to establish how widely UML is used, then he would use a 
cross-sectional design to obtain a snapshot of participants’ current activities. In 
contrast, a case-control design asks each participant about several related issues in 
order to establish whether a correlation exists between them, across the popula-
tion. Joe might use this design if he wishes to explore whether there is a relation-
ship between, say, how long developers have used UML and how much they use 
it for information sharing. A cohort study tracks changes over time for a group of 
participants. Joe might use such a design, for example, to determine whether use 
of UML changes over the life of development project, perhaps with “projects” as 
his unit of analysis.

A major challenge in survey research is to control for sampling bias. Sampling 
bias causes problems in generalizing the survey results, because the respondents to 
the survey may not be representative of the target population. Low response rates 
increase the risk of bias. For example, if the 10% who responded to Joe’s survey 
were the least busy of his targeted developers, it may be that the survey missed the 
most skilled, or most senior developers. Or perhaps only people who are frustrated 
with UML answered his survey. In general, it is hard to obtain high response rates 
unless significant inducements can be offered for participation, although it is some-
times possible to contact non-respondents to assess whether a systematic response 
bias has occurred.

An even harder challenge is to ensure that the questions are designed in a way 
that yields useful and valid data. It can be hard to phrase the questions such that all 
participants understand them in the same way, especially if the target population is 
diverse. Also, it is possible that what people say they do in response to survey ques-
tions bears no relationship to what they actually do, because they are unable to 
introspect reliably on their work practices.

It is instructive to compare survey research with other empirical methods. In 
Joe’s case, the survey research design is concerned with establishing what is true 
of developers in general. If instead he wishes to gain deeper insights into 
how developers actually use UML, or why they don’t, he might be better off 
conducting a case study. This would sacrifice claims of representativeness 
(because case studies do not use representative sampling) in return for deeper 
insights into what happens in a small number of selected cases. On the other 
hand, if he’s more interested in how UML changes how developers share infor-
mation, he might design an experiment or quasi-experiment to test for a causal 
relationship.

Survey research falls almost exclusively into the positivist tradition. The desire 
to characterize an entire population via sampling techniques requires a belief in 
reductionism, and a concern with generalizable theories. If Joe is more interested 
in understanding the culture of information sharing within development teams, he 
might instead adopt a constructivist stance, and use ethnography or action 
research.

Kitchenham and Pfleeger (Chap. 3) provide more detailed information on 
conducting surveys.



300 S. Easterbrook et al.

5.4. Ethnographies

Ethnography is a form of research focusing on the sociology of meaning 
through field observation. The goal is to study a community of people to under-
stand how the members of that community make sense of their social interac-
tions (Robinson et al., 2007). For software engineering, ethnography can help 
to understand how technical communities build a culture of practices and com-
munication strategies that enables them to perform technical work collabora-
tively. An ethnography might focus on a broad technical community (e.g. java 
programmers in general), or a small, closely knit community (e.g. a single 
development team).

One notable feature of ethnography is that it avoids imposing any pre-existing 
theories, but instead focuses on how the members of the community themselves 
make sense of their social and cultural setting. The researcher explicitly considers 
his/her own pre-conceptions and how they influence understanding of the studied 
community. For example, the researcher might focus on phrases used by the com-
munity that seem strange to him, to discover how community members use lan-
guage to create categories that are meaningful to them. The result of an ethnographic 
study is usually a rich description of the community being studied that helps to 
build a detailed picture of that community’s culture.

The preconditions for an ethnographic study include a research question that 
focuses on the cultural practices of a particular community, and access to members 
of that community. Because of the focus on “member’s own categories,” the precise 
boundaries of the community to be studied might not be known in advance, and 
indeed the very notion of membership, and the idea of becoming a member, may be 
important things to investigate. Using chain sampling, informants within the com-
munity are asked to identify representative members of the community, who identify 
other members of the community, and so on.

As an example, consider the results of the survey that Joe conducted in the previ-
ous section. One conclusion from his study is that people don’t seem to use UML 
in the way Joe expected. An ethnography would allow Joe to understand more 
about how developers use and share UML. He identifies a development team that 
allows him to observe design meetings for several weeks. He supplements his notes 
on what he observes with a series of individual and group interviews to further 
explore how well UML tools match the team’s design practices, and why some 
groups in the company do not use UML.

A special form of ethnography is participant observation, where the researcher 
becomes a member of the community being studied for a period of time. Here, the 
researcher is not trying to understand the community via the observations of an 
outsider, but rather through the privileged view that comes from membership. For 
this to work, the researcher must be accepted by the community as one of them, 
which may require a much longer duration for the study than “just a few weeks.” In 
software engineering research, becoming a member might only be possible if the 
researcher has the right technical background.



11 Selecting Empirical Methods for Software Engineering Research 301

Ethnographic research takes an explicit constructivist stance. Underlying ethno-
graphic research is the idea that members of a community construct their social and 
cultural practices on the fly, and their perceptions of those structures also define 
them. Because of that stance, ethnographic researchers don’t seek to prove hypoth-
eses and theories, but rather create local theories to improve understanding. This 
philosophical stance distinguishes ethnography from case studies, surveys and field 
experiments.

The biggest challenge in ethnographic research is to perform detailed observa-
tion, data collection and analysis while avoiding preconceptions. The researcher 
needs a high degree of training in observational and qualitative data analysis tech-
niques. Sociologists have evolved a collection of techniques for recording observa-
tions correctly and for systematic data analysis, as well as for iterative research in 
which clarifications are sought as new information becomes available. Ethnographic 
studies in software engineering are valuable for discovering what really goes on in 
particular (technical) communities, and for revealing subtle but important aspects 
of work practices.

5.5. Action Research

In Action Research, the researchers attempt to solve a real-world problem while 
simultaneously studying the experience of solving the problem (Davison et al., 
2004). While most empirical research methods attempt to observe the world as it 
currently exists, action researchers aim to intervene in the studied situations for the 
explicit purpose of improving the situation. Action research has been pioneered in 
fields such as education, where major changes in educational strategies cannot be 
studied without implementing them, and where implementation implies a long 
term commitment, because the effects may take years to emerge. It has also been 
adopted in information science, where organizational change can sometimes 
require a long time to have an impact. However, even in these fields, action 
research is a relatively new idea, and there is widespread discussion about appro-
priate methodology, and even debate on the validity of action research as an 
empirical method.

A precondition for action research is to have a problem owner willing to col-
laborate to both identify a problem, and engage in an effort to solve it. In action 
research, the problem owners become collaborators in the research. In some 
cases, the researcher and the problem owner may be the same person. Two key 
criteria for judging the quality of action research are whether the original problem 
is authentic (i.e. whether it is a real and important problem that needs solving), 
and whether there are authentic knowledge outcomes for the participants. It is 
additionally important for the researcher to engage in a process of critical reflec-
tion upon his past, current and planned actions to identify how they actually 
helped (or not) to solve the problem. Action research is also characterized by a 
commitment to effect real change, and an iterative approach to problem solving.



302 S. Easterbrook et al.

For example, in the process of studying the use of UML, imagine that Joe’s 
colleagues discussed with him their difficulty in integrating software components 
and predicting the effects of such integration. Joe sees this as an opportunity to work 
with them to try out ideas from model-driven development (MDD), and to study 
firsthand how UML changes the way that developers collaborate. Joe initiates a 
project to work with his colleagues to introduce MDD and to record the experi-
ences. Joe and the development team use a series of data collection techniques, 
including periodic interviews, questionnaires, and focus groups, to ensure that they 
establish a process of critical reflection over the life of the project. They use the 
data collected to develop local theories that explain the experiences of the problem-
owners, which, with other research, can be generalized for other people interested 
in adopting MDD. As new information becomes available, they update these theo-
ries to reflect the current understanding of the situation.

Action research is most closely associated with critical theory. In an action 
research project, it is normally taken as self-evident that the problem needs to be 
solved, and that the adopted solution is desirable: knowledge gained from the 
research empowers particular individuals or groups, and facilitate a wider change. 
With this philosophical stance, there is effectively a “moral imperative” to inter-
vene to solve the problem. Therefore, no attempt is made to establish a control 
group: the moral imperative implies that it would be unethical to withhold the 
intervention from some groups. Instead, the emphasis is on identifying useful les-
sons that help others who wish to pursue a similar change agenda. However, action 
research can be linked to other philosophical stances by divorcing it from its eman-
cipatory roots, and focusing instead on practical problem solving. Positivists would 
add a concern with careful comparison of the “before” and “after” situations, while 
constructivists would focus on participants’ perceptions of the change process. The 
key characteristic that differentiates action research from longitudinal case studies 
and ethnographies is that the researcher is also an agent of change.

The biggest challenge for action research is its immaturity as an empirical 
method. Although frameworks for evaluating action research have been proposed 
(e.g. Lau, 1999), they tend to be vague or subjective, leading to accusations that 
action research is ad hoc. Furthermore, organizational change is often inseparable 
from organizational politics, and there is a danger that the research fails to address 
this adequately, either by underestimating the importance of the political agendas 
of the participants, or by overstating the “moral case” for implementing a change. 
Researcher bias can be reduced through critical reflection, and by validating the 
lessons learned through replication. Finally, action research may be expensive, 
given the organizational commitment needed.

It could be argued that a great deal of software engineering research is actually 
action research in disguise. Certainly, many key ideas in software engineering were 
originally developed by trying them out on real development projects, and reporting on 
the experiences. In this vein, Dittrich (2002) describes cooperative systems develop-
ment as a form of action research ideally suited to empirical software engineering. By 
adopting the framework of action research more explicitly, it is likely that the design 
and evaluation of such research can be made more rigorous. Action research is also 



11 Selecting Empirical Methods for Software Engineering Research 303

an appealing framework for mixing research with professional activities, especially 
for practitioners interested in reflecting on their experiences and passing on their 
learning outcomes for the benefit of others.

5.6. Mixed-Methods Approaches

Throughout this chapter we have seen how Joe and Jane could have used different 
methods as they learned more about their research topics. While Jane began with 
the design of an experiment to test the efficiency of file navigation with the fisheye 
view, she went on to perform a case study to explore some of the unexpected find-
ings from the experiment. This approach can be characterized as mixed methods 
research – a more complex research strategy that emerged in the recognition that 
all methods have limitations, and the weaknesses of one method can be compen-
sated for by the strengths of other methods (Creswell, 2002).

Mixed method research employs data collection and analysis techniques associ-
ated with both quantitative and qualitative data. The “mixing” might be within one 
study, by using multiple data collection techniques, or among several studies. Key 
decisions involve the strategy for data collection, and the sequence in which dif-
ferent methods are employed. While mixed method research is a powerful 
approach to inquiry, the researcher is challenged with the need for extensive data 
collection, the time-intensive nature of analyzing multiple sources of data, as well 
as the requirement to be familiar with both quantitative and qualitative forms of 
research.

We include here the description of three most familiar strategies described by 
Creswell (2002):
The Sequential explanatory strategy is characterized by the collection and analysis 
of quantitative data followed by the collection and analysis of qualitative data. The 
purpose of this strategy is typically to use qualitative results to assist in explaining 
and interpreting the findings of a quantitative study. It is particularly useful when 
unexpected results arise from the quantitative phase. Jane’s example above follows 
this strategy. When her experimental data indicated that developers switch rapidly 
between navigation strategies, she decided to perform a case study for a more 
in-depth exploration of a few developers and their navigation behavior. Damian 
et al. (2000) provides another example of this approach.

The Sequential exploratory strategy is characterized by the collection and analysis 
of qualitative data followed by the collection and analysis of quantitative data. Its 
purpose is to use quantitative data and results to assist in the interpretation of qualita-
tive findings. This strategy is also useful for testing elements of an emerging theory 
resulting from a qualitative study. For example, as a result of Joe’s ethnographic 
study of collaborative design, he formulates some hypotheses about how UML 
affects the quality of the source code in shared design tasks. To explore this further, 
he uses a sequential exploratory approach to explore the impact of shared UML dia-
grams on code quality. He plans and conducts a survey of many different software 



304 S. Easterbrook et al.

development projects, in which he measures the extent to which they use UML 
for collaboration, and the number of code defects that can be attributed to com-
munication problems. For a published example of this strategy, see Damian and 
Chisan (2006).

The Concurrent triangulation strategy is probably the most familiar and widely 
used among the mixed-method approaches. This strategy uses different methods 
concurrently, in an attempt to confirm, cross-validate or corroborate findings. 
Triangulation is motivated by the fact that often “what people say” could be 
different than “what people do,” and thus collecting data from multiple sources 
helps improve validity. For example, Joe might incorporate additional data 
collection techniques into his ethnographic study on the use of UML. He could 
collect quantitative data from surveys of similar developers to compare against 
the results of his ethnography. By collecting both types of data simultaneously, 
rather than sequentially, each analysis can be adapted to explore emerging results 
from the other. The challenge in this approach is that it may be difficult for the 
researcher to compare the results of two analyses or to resolve contradictions that 
arise in the results. In such cases a further source of evidence, or a follow up 
study might be necessary. For a published example of this strategy, see Bratthall 
and Jørgensen (2002).

Mixed methods research can be conducted within any of the philosophical 
stances. For example, a positivist might combine experiments with confirmatory 
case studies; a constructivist might mix ethnographies with surveys. However, both 
positivism and constructivism may limit the ability to mix the methods. While 
positivists strongly prefer quantitative evidence, and constructivists strongly prefer 
qualitative evidence, mixed methods research emphasizes the use of evidence 
from both quantitative and qualitative data. Therefore, mixed methods research is 
more often associated with a pragmatist stance, where the emphasis is on using 
those methods that most effectively address the research problem.

6. Data Collection Techniques

Once the research method has been selected, the researcher must decide which data 
collection techniques are the most suitable for gathering data based on the study’s 
unit of analysis. Multiple techniques can be used to gather data from different per-
spectives, as there are advantages and limitations to each technique. Indeed, using 
multiple techniques allows the researcher to triangulate even within a single 
method. If different kinds of data support the same conclusions, it strengthens the 
study. Singer et al. (Chap. 1) provide an overview of various potential data collec-
tion techniques.

Selecting suitable techniques requires careful consideration of the research 
design as well as the pragmatics of the research setting. It is important to note the 
advantages and disadvantages of the different techniques from the perspectives of 
the experimenter, the participants, the generalizability and reliability of the results. 



11 Selecting Empirical Methods for Software Engineering Research 305

A careful blend of techniques can help to offset potential bias and leads to a more 
comprehensive understanding of the research topic (Varkevisser et al., 2003). New 
researchers should ensure they are familiar with the techniques they select, and that 
they are aware of the potential pitfalls they may face. For example, it is always 
advisable to pilot-test the data collection instrument, and to pilot-test not just the 
collection aspect of the instrument, but also the analysis procedure. Many problems 
do not arise until some data is analyzed and it is often possible to detect such prob-
lems with even a small data set. How to analyze the data collected is a topic beyond 
the scope of this chapter. Wohlin et al. (2000) provide a summary of quantitative 
analysis techniques for software engineering, and Seaman (Chap. 2) provides an 
excellent guide to coding etc for qualitative research.

In the end, Jane chose to use a post-study questionnaire that collected both 
quantitative and qualitative data (open-ended responses). During the study, she 
observed and videotaped the users and their interactions with the computer so that 
she could time how long it took to complete the navigation tasks she set for them. 
She also instrumented the IDE they were using to count number of scrollbar selec-
tion events and number of mouse clicks. These numbers can be used with the 
start/end times indicated on the annotated videotapes of the users. Interviews and 
focus groups are used at the end of her field study to gather more ideas on how 
navigation features could be improved in the IDE and why the fisheye view is or 
is not used by some developers. Joe used questionnaires at different stages in his 
research. He also conducted interviews and collected observations as a participant 
in the observed group.

7. Empirical Validity

For empirical work to be acceptable as a contribution to scientific knowledge, the 
researcher needs to convince readers that the conclusions drawn from an empirical 
study are valid. Not surprisingly, the criteria by which researchers judge validity 
depend on their philosophical stance.

For positivists, research is normally theory-driven. The key steps include deriving 
study propositions from the theory, designing the study to address the propositions, 
and then drawing more general conclusions from the results. Each of these steps 
must be shown to be sound. Accordingly, positivists usually identify four criteria 
for validity:

● Construct validity focuses on whether the theoretical constructs are interpreted 
and measured correctly. For example, if Jane designs an experiment to test her 
claims about the efficiency of fish eye views, will she interpret “efficiency” in 
the same way that other researchers have, and does she have an appropriate 
means for measuring it? Problems with construct validity occur when the 
measured variables don’t correspond to the intended meanings of the theoretical 
terms.



306 S. Easterbrook et al.

● Internal validity focuses on the study design, and particularly whether the results 
really do follow from the data. Typical mistakes include the failure to handle 
confounding variables properly, and misuse of statistical analysis.

● External validity focuses on whether claims for the generality of the results are 
justified. Often, this depends on the nature of the sampling used in a study. For 
example, if Jane’s experiment is conducted with students as her subjects, it 
might be hard to convince people that the results would apply to practitioners in 
general.

● Reliability focuses on whether the study yields the same results if other research-
ers replicate it. Problems occur if the researcher introduces bias, perhaps because 
the tool being evaluated is one that the researcher herself has a stake in.

These criteria are useful for evaluating all positivist studies, including controlled 
experiments, most case studies and survey research. In reporting positivist empirical 
studies, it is important to include a section on threats to validity, in which potential 
weaknesses in the study design as well as attempts to mitigate these threats 
are discussed in terms of these four criteria. This is important because all study 
designs have flaws. By acknowledging them explicitly, the researchers show that 
they are aware of the flaws and have taken reasonable steps to minimize their 
effects.

In the constructivist stance, assessing validity is more complex. Many researchers 
who adopt this stance believe that the whole concept of validity is too positivist, 
and does not accurately reflect the nature of qualitative research. That is, as the 
constructivist stance assumes that reality is “multiple and constructed,” then 
repeatability is simply not possible (Sandelowski, 1993). Assessment of validity 
requires a level of objectivity that is not possible. Attempts to develop frameworks 
to evaluate the contribution of constructivist research have met with mixed reac-
tions. For example, Lincoln and Guba (1985) proposed to analyze trustworthiness 
of research results in terms of credibility, transferability, dependability, and con-
firmability. Morse et al. (2002) criticise this as being too concerned with post hoc 
evaluation, and argue instead for strategies to establish validity during the research 
process. Creswell (2002) identifies eight strategies for improving validity of con-
structivist research, which are well suited to ethnographies and exploratory case 
studies in software engineering:

1. Triangulation: use different sources of data to confirm results and build a coher-
ent picture.

2. Member checking: go back to research participants to ensure that the interpreta-
tions of the data make sense from their perspective.

3. Rich, thick descriptions: where possible, use detailed descriptions to convey the 
setting and findings of the research.

4. Clarify bias: be honest with respect to the biases brought by the researchers to 
the study, and use this self-reflection when reporting findings.

5. Report discrepant information: when reporting findings, report not only those 
results which confirm the emerging theory, but also those which appear to 
present different perspectives on the findings.



11 Selecting Empirical Methods for Software Engineering Research 307

6. Prolonged contact with participants: Make sure that exposure to the subject 
population is long enough to ensure a reasonable understanding of the issues and 
phenomenon under study.

7. Peer debriefing: Before reporting findings, locate a peer debriefer who can ask 
questions about the study and the assumptions present in the reporting of it, so 
that the final account is as valid as possible.

8. External auditor: The same as peer debriefing, except instead of using a person 
known to the researcher, find an external auditor to review the research proce-
dure and findings.

Dittrich et al. (2007) define a similar set of criteria specifically concerned with 
validity of qualitative research for empirical software engineering.

For critical theorists, assessment of research quality must also take into account 
the utility of the knowledge gained. Researchers adopting the critical stance often 
seek to bring about a change by redressing a perceived injustice, or challenging 
existing perspectives. Repeatability is not usually relevant, because the problems 
tackled are context sensitive. The practical outcome is at least as important as the 
knowledge gained, and any assessment of validity must balance these. However, 
there is little consensus yet on how best to do this. Lau (1999) offers one of the few 
attempts to establish some criteria, specifically for action research. His criteria 
include that the problem tackled should be authentic, the intended change should 
be appropriate and adequate, the participants should be authentic, and the research-
ers should have an appropriate level of access to the organization, along with a 
planned exit point. Most importantly, there should be clear knowledge outcomes 
for the participants.

8. Practical Considerations

In addition to the question of how well the methods fit a given type of research 
question and philosophical stance, the choice of methods also depends on prac-
tical considerations. Often these practical considerations force the researcher to 
change the original research design in terms of the choice of method, data 
collection and analysis procedures. It is important to document the original 
planned research protocol, and all subsequent deviations to it, to allow other 
researchers to understand the study design, interpret the research results, and 
replicate the study.

Most of the practical challenges relate to time, budget and personnel resources, 
and access to data. Rather than describe the challenges for each method individu-
ally, we summarize the challenges related to groups of methods, according to the 
type of data they deal with:

Methods that are primarily qualitative include ethnography, case study, and action 
research. These methods rely on fieldwork, using techniques such as participant 
observation and interviews. Key challenges include preparing good questions for 



308 S. Easterbrook et al.

structured or semi-structured interviews, and finding the time and resources needed 
to collect and analyze potentially large sets of data. The researcher needs a thor-
ough training in how to observe and record social behaviour. Access to the field 
situation may require prolonged time in establishing a relationship with the subject 
organization such that specific project data is made available. For ethnography, the 
researcher needs to find a community where she is accepted as a member, which 
might not be possible unless she has appropriate technical experience. For action 
research, the researcher needs to balance the need to involve the organization in 
helping to set appropriate goals for the research with the need to remain objective, 
such that the research does not become merely consulting.

Methods that are primarily quantitative include controlled experiments and survey 
research. These methods require more significant time in the planning of the 
research than strictly qualitative methods. To achieve external validity for both 
experiments and surveys, the researcher needs the time and budget to (1) define, 
recruit and (if possible) randomly select a sample population that is representative 
of the target population, (2) design and pilot the questions such that all respondents 
are presented with questions that they interpret and understand in exactly the same 
way (therefore careful attention to detail in phrasing the questions is needed), and 
(3) define statistical tests ahead of time, in order to interpret the collected data. The 
goal here is to plan ahead, for smooth analysis and interpretation of results.

All research conducted in industrial settings brings a number of challenges. It 
can be very hard to gather data to find out what practitioners actually do, or what 
needs to be improved in the organization, rather than what practitioners say they do 
or think require improvement. Data quality can also be an issue (see Chaps. 1 and 
7 for more on this issue). In return for access to the organization, the researcher 
usually has to give up some control. For example, it is hard to observe and docu-
ment findings without interfering with the observed situation, especially when the 
industrial partners want to know in advance what the expected outcomes are. It is 
often difficult to know if changes are made through involvement in the research or 
would have occurred anyway (c.f., the Hawthorne effect). Finally, obtaining per-
mission to publish the results can be a challenge. Delays in publication are likely if 
the organization has concerns about inclusion of confidential data or insights in the 
research. Singer and Vinson (2002) and Vinson and Singer (2004) discuss the 
unique ethical challenges involved in research in industrial settings.

9. Conclusions

We have presented an overview of the choices involved in selecting appropriate 
empirical methods for software engineering research. Our aim in this chapter was 
not provide a thorough description of each method, but rather to cover the issues 
that a researcher must face when deciding how to address a given research problem. 
Further study, and possibly some specialized training may be necessary before a 
researcher can apply a chosen method.



11 Selecting Empirical Methods for Software Engineering Research 309

We have described the key elements of empirical research design: A clear 
research question provides a focus to your study. An explicit philosophical stance 
helps you understand your research goals, and select an appropriate research 
method. A research method helps you design a study, and decide what kinds of data 
to collect and how to collect it. A theory helps you explain the data and relate it to 
the research question and to previous studies in the literature. An appropriate set of 
criteria for assessing validity helps improve the study design, and clarify the nature 
of the conclusions.

We have not addressed a number of related topics, including replication and 
meta-analysis. As the number of empirical studies in software engineering 
increases, these become more important. In particular, it is only through empirical 
induction that we come to trust the results of empirical research – i.e. the results 
need to hold up across many different studies to be considered reliable. Meta-
analysis is the process of systematically comparing the results of multiple studies, 
taking into account differences in the design and context of each individual study. 
In current software engineering research, meta-analysis is hard to accomplish 
because of huge variability in the style and quality of the published reports of 
empirical work.

A key message throughout the chapter is that empirical research never produces 
certain knowledge. Each of the methods we have available for empirical investiga-
tions help to elucidate the phenomena being studied, but each also has significant 
flaws. Awareness of the limitations of each method should allow you to design a 
study that minimizes the weaknesses. Furthermore, the flaws can be overcome by 
mixing methods, and/or by conducting replications (see Brooks et al., Chap. 14, for 
more information on replication).

We believe that clearer distinctions between research methods are necessary to 
facilitate better study designs and clearer criteria for evaluating empirical research. 
The definitions and distinctions we offer in this chapter are by no means widely 
agreed upon, neither in the empirical software engineering community, nor in 
related disciplines. For example, we have avoided the usual distinction between 
qualitative and quantitative methods, as we believe the distinctions between meth-
ods are more subtle than simply the type of data collected. Instead, we have empha-
sized differences in philosophical stance, and in criteria used for designing studies 
for each type of method. We hope that this chapter provides a first step towards a 
consensus on empirical methodology in software engineering.

References

Bratthall, L. and Jørgensen, M. (2002) Can you trust a single data source exploratory software 
engineering case study? Journal of Empirical Software Engineering, 7(1), 9–26.

Calhoun, C. (1995) Critical Social Theory: Culture, History, and the Challenge of Difference. 
Blackwell, Oxford, UK.

Chalmers, A. (1999) What Is This Thing Called Science? 3rd Edition, Hackett Publishing Co, 
Indianapolis.



310 S. Easterbrook et al.

Creswell, J.W. (2002) Research Design: Qualitative, Quantitative and Mixed Methods Approaches. 
2nd Edition, Sage Publications, Thousand Oaks, CA.

Damian, D. and Chisan, J. (2006) An empirical study of the complex relationships between 
requirements engineering processes and other processes that lead to payoffs in productivity, 
quality and risk management, IEEE Transactions on Software Engineering, 32(8), 433–453.

Damian, D.E., Eberlein, A., Shaw, M., and Gaines, B. (2000) Using different communication 
media in requirements negotiation, IEEE Software, 17(3), 28–36.

Davison, R.M., Martinsons, M.G., and Kock, N. (2004) Principles of canonical action research, 
Information Systems Journal, 14(1), 65–86.

Dittrich, Y. (2002) Doing Empirical Research on Software Development: Finding a Path Between 
Understanding, Intervention, and Method Development. In Social Thinking: Software Practice, 
Y. Dittrich, C. Floyd, and R. Klischewski, Eds. MIT Press.

Dittrich, Y., John, M., Singer, J., and Tessem, B. (2007) Editorial for the Special Issue on 
Qualitative Software Engineering Research, Information and Software Technology, 49(6), 
531–539.

Flyvbjerg, B. (2006) Five misunderstandings about case study research, Qualitative Inquiry, 
12(2), 219–245.

Glaser, B.G. and Strauss, A. (1967) Discovery of Grounded Theory: Strategies for Qualitative 
Research. Sociology Press, Mill Valley, CA.

Gregor, S. (2006) The Nature of Theories in Information Systems, MIS Quarterly, 30(3), 
611–642

Jørgensen, M. and Sjøberg, D.I.K. (2004) Generalization and Theory-Building in Software 
Engineering Research. IEE Proceedings, Workshop on Empirical Assessment in Software 
Engineering (EASE’04), at ICSE’04, pp. 29–36.

Kitchenham, B., Pickard, L., and Pfleeger, S.L. (1995) Case studies for method and tool evaluation, 
IEEE Software, 12(4), 52–62.

Klein, H.K. and Myers, M.D. (1999) A set of principles for conducting and evaluating interpretive 
field studies in information systems, MIS Quarterly, 23(1), 67–93.

Lau, F. (1999).Towards a framework for action research in information systems studies, 
Information Technology and People, 12(2), 148–175.

Lincoln, Y.S. and Guba, E.G. (1985) Naturalistic Inquiry. Sage, Beverly Hills, CA.
Littlejohn, S.W. and Foss, K.A. (2004) Theories of Human Communication. 8th Edition, 

Wadsworth Publishing, Belmont, CA.
McGrath, J.E. (1995) Methodology matters: doing research in the behavioral and social sciences. 

In Human–Computer Interaction: Toward the Year 2000, R.M. Baecker, J. Grudin, W. 
Buxton, A., and Greenberg, S., Eds. Morgan Kaufmann Publishers, San Francisco, CA, pp. 
152–169.

Meltzoff, J. (1998) Critical Thinking About Research: Psychology and Related Fields. American 
Psychological Association, Washington DC.

Menand, L. (1997) Pragmatism: A Reader. Vintage Press, New York.
Morse, J.M., Barrett, M., Mayan, M., Olson, K. and Spiers, J. (2002) Verification strategies for 

establishing reliability and validity in qualitative research, International Journal of Qualitative 
Methods, 1(2), 1–19.

Robinson, H., Segal, J. and Sharp, H. (2007) Ethnographically-informed empirical studies of 
software practice, Information and Software Technology, 49(6), 540–551.

Sandelowski, M. (1993) Rigor or rigor mortis: the problem of rigor in qualitative research revisited, 
Advances in Nursing Science, 16(2), 1–8.

Simon, H. (1996) The Sciences of the Artificial. 3rd Edition, MIT Press, Cambridge, MA.
Singer, J.A. and Vinson, N.G. (2002) Ethical issues in empirical studies of software engineering, 

IEEE Transactions on Software Engineering, 28(12), 1171–1180.
Varkevisser, C.M., Pathmanathan, I., and Brownlee, A. (2003) Designing and Conducting Health 

Systems Research Projects: Volume 1 – Proposal Development and Fieldwork. Chapter 10: 
Data Collection Techniques. Available online at http://www.idrc.ca/en/ev-56605-201-1-DO_
TOPIC.html



11 Selecting Empirical Methods for Software Engineering Research 311

Vinson, N.G. and Singer, J.A. (2004) Consent issues raised by observational research in organisa-
tions, NCEHR Communique, 12(2), 35–36.

Wieringa, R.J. and Heerkens, J.M.G. (2006) The methodological soundness of requirements 
engineering papers: a conceptual framework and two case studies, Requirements Engineering 
Journal, 11, 295–307.

Wohlin, C., Runesson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A. (2000) 
Introduction to Experimentation in Software Engineering. Kluwer Academic Publishers, 
Boston, MA.

Yin, R.K. (2002) Case Study Research: Design and Methods. Sage, Thousand Oaks, CA.




