Int. J. Human-Computer Studies (1994) 41, 385-397

Estimating the number of subjects needed for a
thinking aloud test

JaxkoB NIELSEN
SunSoft, UMTV 19-107, 2550 Garcia Avenue, Mountain View, CA 94043-1100, USA

(ﬁzceived and accepted 28 March 1994)

Two studies of using the thinking aloud method for user interface testing showed
that experimenters who were not usability specialists could use the method.
However, they found only 28-30% of known usability problems when running a
single test subject. Running more test subjects increased the number of problems
found, but with progressively diminishing returns; after five test subjects 77-85% of
the problems had been found.

Certainly We Were Not Many
And Yet We Were Sufficient
From the Norwegian National Anthem, B. Bjgrnson, 1859

1. introduction

The thinking aloudt method has long been employed by usability engineering
experts as one of the principal methods for improving user interfaces through user
testing {(Lewis, 1982; Jgrgensen, 1989; Nielsen, 1993). Even so, the available
evidence indicates that many current development projects do not take advantage of
the method. For example, Milsted, Varnild and Jgrgensen (1989) found that only
21% of Danish software developers knew about thinking aloud and that only 6%
actually used it. No other systematic evaluation methods were used by the
developers, whereas more informal methods such as reviews and heuristic evaluation
{Nielsen & Molich, 1990; Nielsen, 1994} were used widely. The main reason that
more than two thirds of the developers who know the thinking aloud method still do
not use it seems to be that they believe that it is too complex and expensive to use,
requires special video taping laboratories, etc.

The “discount usability engineering” philosophy (Nielsen, 1989, 1990, 1993) aims
at increasing the use of usability methods by reducing their perceived cost and
complexity. The complexity of thinking aloud can be reduced by noting that special
usability laboratories with fancy video taping equipment are not really needed to
benefit from the method. Also, experimenters do not need to be highly skilled
specialists (Nielsen, 1992a4) but can be ordinary computer scientists with a small

t A simplified thinking aloud test involves having a test user operate an interface to perform a set of
pre-defined tasks while being asked to “‘think out loud”. By listening in on the user’'s thoughts, the
experimenter can pinpoint misconceptions and other usability problems as they occur in the interaction.
Advanced thinking aloud methedology involves formal protocol analysis (Ericsson & Simon, 1984) of a
recording of the user’s utterances and actions.

385
1071-5819/94/090385 + 13$68.00/0 © 1994 Academic Press Limited

386 1. NIELSEN

amount of training in the running of thinking aloud tests.t It is even possible to have
designers serve as experimenters for tests of their own interfaces (Wright & Monk,
1991), thus saving the time that would otherwise be required to have a neutral
experimenter learn the system. The present paper aims at reducing the cost of
thinking aloud by investigating the trade-offs between the number of subjects in an
experiment and the proportion of usability problems found in the interface. For the
purposes of the present analysis, we are only concerned with qualitative studies that
aim at disclosing usability problems in a design. For quantitative studies aimed at
collecting usability measures, one would still need to use sufficiently many subjects
to narrow the confidence intervals to an acceptable level.

As a user test method, thinking aloud can be used in several stages of the usability
engineering lifecycle (Nielsen, 1992b, 1993), from the early experimental prototype
stage to almost finished products that need to be polished for release. For many such
iests, one is not necessarily interested in exhaustive testing, since the user interface
is scheduled to undergo changes as the project progresses. Also, one is often
satisfied with qualitative tests, since it is not always necessary to know how much
better a design is, as long as one is satisfied that it is better than the previous
version.

2. Method

Two sets of experiments were conducted using the same method. In each case, a
number of computer science students who were taking a class in user interface
design were given three hours of lectures on the thinking aloud method and were
then asked to run an experiment on their own. Two different (but similar} groups of
students were used in the two experiments. The students were asked to test the user
interface of a given application but were otherwise free to desiga their experiment
(including test tasks and instructions to the subjects) as they saw fit. Test subjects
were two additional (and different) groups of people (24 and 30, respectively). Each
experiment used different test subjects.

The experimenters were asked to write reports on their experiments and to list the
usability problems they had observed. These reports were then scored for usability
problems mentioned and the complete set of usability problems for each application
was defined as the union of the problems from the individual reports. There is some
possibility that there might be additional usability problems that were not
encountered in any of the experiments, but given the fairly large total number of test
subjects in the two studies it is likely that any really serious problem has been found
at least once and thus included in the aggregate list.

The following two sections describe the systems tested in the two experiments and
list the usability problems found during the tests. The complete lists of usability
problems were derived by adding up all the individual lists of usability problems
from each thinking aloud subject. This means that the aggregate lists presented in

t Please note that usability laboratories and video taping are needed for advanced uses of thinking
aloud, and that the studies of non-specialist experimenters (Nielsen, 1991) do indicate that the use of
improved methodology leads to better results, The “discount usability engineering” approach acknow-
ledges these facts but emphasizes that there are still large benefits to be gained even with a suboptimal
methodology.

NUMBER OF SUBJECTS FOR THINKING ALOUD

TaBLE 1

387

Usability problems in a popular commercial word processor

Usability problem

Frequency with
which problem
was found
with one subject

AR S N

. Arrow keys do not work even though they are on the keyboard
. cut/copy/paste hard to learn

. Changing to a new document hard

. Scary alert message: change all cannot be undone

Two-cursor problem

. Menu fixation: not seeing the ruler as a place for making formatting

changes

. Confusing menu-based justification commands and ruler-based

justification

. Selected text disappears after insert ruler or insert new page

command

. Hard to distinguish small markers for margin and tabs in the ruler

42%
42%
33%
29%
29%
25%

25%
25%

21%

Tables 1 and 2 are based on the total number of subjects (24 and 30, respectively)
and are therefore probably reasonably complete. Of course, there is never any way
to know whether some additional usability problem would have surfaced if one
additional subject had been run, but both common sense and the mathematical
model presented later in this paper would indicate that this would be unlikely to
happen.

The descriptions of the usability problems in the Appendix are intended to

document the meaning of the term “usability problem” in the statistical treatment

TABLE 2

Usability problems in a shareware outliner

Usability problem

Frequency with
which problem
was found
with one subject

. No menu command for ““insert new section’

. Three different Edit menus

. Confusing terminology for operating on sections

. Mixture of botanical “tree’” metaphor and literary *‘section”

metaphor

No menu command for promoting/demoting sections
Two-cursor problem

. Boing as error message

. Selection of subtrees is non-standard

. Clear tree command evokes scary alert message

. Arrow keys have mixed use for navigation and as function keys
. Find is case sensitive

. Manual talks about conTrROL-TAB instead of commann-TAB
. Not clear where Paste tree will insert subtree

. Copyright notice flashed on screen at startup

57%
47%
40%
37%

37%
27%
23%
23%
20%
20%
17%
13%
13%
13%

388 J. NIELSEN

in later parts of this paper. A deeper understanding of the individual problems
would be of vital interest for an interface designer charged with the iterative design
of the two interfaces, but readers who are pressed for time may want to study the
data in the tables and not read the Appendix.

Simply stated, a usability problem is any aspect of a user interface that is expected
to cause users problems with respect to some salient usability measure (e.g.
learnability, performance, error rate, subjective satisfaction) and that can be
attributed to a single design aspect. Thus, having users say that the interface stinks
would not be considered a usability problem, though it would certainly be a problem
for the product. Having usecrs say that they dislike a blinking field or observing that
users have difficulty understanding a certain menu option would be considered
usability problems.

3. Experiment 1: a commercial word processor

The first application was version 4.5 of a famous commercial word processor
released by a respected computer company. It was tested with a total of 24 thinking
aloud subjects. This interface had presumably already been through an extensive
iterative development process and could be expected to contain relatively few
glaring usability problems. The word processor ran on a personal computer using a
graphical user interface, and relied on the mouse for most navigasion and selection.

In fact, nine usability problems were identified, as shown in Table 1 and described
further in the first list in the Appendix.

4. Experiment 2;: a shareware outliner

The second application to be tested was version 2.2 of a shareware outliner (an
application for manipulating and reorganizing nested hierarchical outlines of, say,
articles or books). It was tested with a total of 30 thinking aloud subjects. This
interface was developed by a single hacker and might be expected to contain a
somewhat larger number of usability problems than the word processor tested in
experiment 1. The outliner ran on a personal computer using a graphical user
interface, and relied on the mouse for many operations.

In fact, fourteen usability problems were identified, as shown in Table 2 and
discussed in detail in the second list in the Appendix. Considering that the outliner
was a considerably smaller piece of software than the word processor, it seems that
it was indeed inflicted with usability problems to a larger degree than the word
processor.

t Note, however, that current usability engineering theory has no way to predicl usability difficulties in
an application on the basis on underlying measures of the size or complexity of the functionality of the
application. Intuitively, it just seems that a more complex system would be likely to have more usability
problems than a less complex system, assuming that the same amount of usability talent and effort had
been invested in both development projects.

NUMBER OF SUBJECTS FOR THINKING ALOUD 389

5. Discussion

It is immediately obvious from Tables 1 and 2 that it is not sufficient to run a single
subject in a thinking aloud test. Many of the usability problems have very small
probabilities of being found, and the average number of problems found is only 30%
for the word processor and 28% for the outliner.

Luckily, this problem can be solved by running more than one test subject, since
different problems are found in the tests of different subjects. There are two possible
reasons for this effect: different subjects might encounter different problems, or
experimenters might make different observations during different tests. This study
has not investigated these underlying issues but my intuition is that both explana-
tions probably hold to some extent,

In any case, the empirical evidence does show that different problems are found
when running different subjects. By combining reports from several thinking aloud
studies, one can therefore find more problems than found during any of the
individual tests. For the following discussion, I will assume that it does not matter
how many times a usability problem has been found as long as that number is
greater than zero. This assumption is reasonable during iterative design of a user
interface where the main need is to build a “bug catalog” listing usability problems
to be addressed in the next version. Given that one can never fix the complete list,
there is also a need to prioritize the usability problems. Therefore there is reason to
count the number of occurrences of the individual problems to get an idea of their
relative frequency, but that issue will not be addressed here.

Figure 1 was generated by selecting random subsets of n test subjects for
n = 1-15, For each subset cardinality, ten thousand random subsets were generated,
and Figure 1 shows the average number of usability problems found by these subsets
of test subjects. The number of problems found is cbviously dependent on the actual
subjects included in a subset. After the fact, it would be easy to select the subset of n
subjects that found the most problems. It is probably also possible to choose subjects
in advance to maximize the variety in usability problems they encounter and thus
minimize the number of subjects needed to find each problem at least once. One

E 100

2 ——— ————

w

E .

3 F

a e Word processor
]

= . y=1-07I8n
i 50

2 = . Outliner

G

(=]

A 25

fad

=

8

£ 0 1 1] 1] | 1 I | I I 1 1

Number of test subjects

FIGURE 1. The mean percentage of usability problems found by using various numbers of test subjects in
a thinking aloud study. The two thick lines show empirically derived numbers and the thin line shows a
numerical model.

390 1. NIELSEN

TaBLE 3
Proportion of usability problems found by
running various numbers of subjects in a
thinking aloud test (combined average for the
waord processor and the outliner)

No. of Problems Increase due
subjects found to last subject
1 29% 29%

2 49% 20%
3 63% 14%
4 73% 10%
5 81% 7%
6 86% 5%

likely approach would be to choose subjects with very different backgrounds and
previous computer experience. Figure 1 and the following discussion, however, both
assume random choice of subjects. The average number of subjects needed to find a
usability problem was 3.2 for the word processor and 3.7 for the outliner.

Figure 1 shows the proportion of usability problems found by combining the
results from several subjects. There are slight differences between the curves, but
they are mostly similar. For both curves, the first subject gives the most information,
the next somewhat less, with regularly diminishing marginal gain as more subjects
are run. For these cases, half the problems were found with two subjects, three
quarters with four. Table 3 shows the proportion of problems found for various
numbers of subjects and the benefit from adding the last test subject.

The empirically derived curves in Figure 1 showing the number of problems found
for increasing numbers of subjects fit very closely to the Poisson model given in
equation (1) of Figure 2. The parameter A indicates the proportion of the so-far
undiscovered problems that will be found during the test of the next subject. The
square of (1 — A) thus indicates the proportion of undiscovered problems that will
still be undiscovered after two additional subjects. A least-squares cstimate is
A =10.282, and using this value, we find that (1 — A)?=0.515, indicating that every
time one runs two additional subjects, about half of the remaining problems will be
found. This result can be used to determine when to stop a sequence of experiments
that is intended to discover all usability problems. When only a single usability
problem has been found with the last two subjects, it is likely to be because the
remaining number of problems is zero or one, and when no new problems were
found for the last two subjects, then all problems have probably been found.

By modifying equation (1) by substitution from definition (2), we arrive at
equation (3) which can be used for early predictions of the total number of usability
problems in an interface (see Figure 2). Of course, the parameter A has to be known
and there is no guarantee that it will stay the same for other interfaces. In fact, in a
number of projects surveyed, A varied from 0.12 to 0.48 (Nielsen & Landauer, 1993),
so0 it is essential to derive estimates of A from local experience. Using the value of

NUMBER OF SUBJECTS FOR THINKING ALQUD 391

TABLE 4
Standard deviations of the guesses of the total number of
usability problems expressed as percentages of that number.
For each of the two systems, the left column shows standard
deviations of guesses based on the sum of usability problems
found. The right column shows standard deviations of guesses
based on the number of different problems found

Word processor QOutliner

No. Sum of Different Sum of Different
of subjects problems problems problems problems

1 62% 62% 2% 42%
2 43% 40% 29% 26%
3 34% 29% 24% 20%
4 29% 22% 20% 15%
5 25% 17% 17% 13%

A =0.282, Table 4 shows the standard deviation of the guesses of the total number
of usability problems made after knowing the results from varying numbers of
subjects. The table shows two ways of using equation (3). First, one can count the
total number of usability problems observed {counting any given problem several
times if it is observed for several subjects) and take the average per subject to arrive
at a more reliable estimate of the number of problems for a single subject, inserting
that value in equation (3) with n» = 1. Second, one can count the total number of
different problems observed and insert that value in equation (3), using the actual
value of n. Table 4 shows that the latter approach gives better guesses (smaller
standard deviations).

6. Speculation

Both experiments tested interfaces that had already been released in at least a
second version. Assuming that products do get better with each release, it is likely
that interfaces at an earlier stage of the development lifecycle would have more
usability problems and that these usability problems might be more glaring than the
ones found in these experiments. These considerations might lead to the speculation
that user testing of early interface designs would find more usability problems per

Proportion of problems found with n subjects =1 — (1 — AY* (1)
Problems found with subjects = Total problems X Proportion found with n subjects (2)

Problems found with r subjects (3)
1-(1-a

Total problems =

FiGure 2. Empirical modei for predicting the total number of usability problems in an interface.

392 J. NIELSEN

test subject and that the trade-off curve for such tests would therefore be even more
in favor of using a small number of subjects. Assuming that an iterative design
approach is taken, there is even more reason to recommend the use of a fairly small
number of subjects for user testing of each iteration. Since a new iteration often
introduces new usability problems and sometimes does not even fix the old problems
properly, it is likely that the final usability will be enhanced more by having a large
number of iterations (each of which are only tested to find a reasonably large
proportion of the usability problems) than by testing a small number of iterations
using large numbers of subjects for each iteration.

For real-life, industrial user testing, it is obviously more important to find the
major usability problems than to find the minor ones since therz will never be time
enough to correct all the problems anyway. Unfortunately, the definition of “major
usability problem” is not completely clear, but it would certainly include parameters
such as (a) how many users encounter the problem, and (b) how hard it is for the
individual user to overcome the problem once it is encountered.

If these two parameters are accepted as indicators of the severity of a usability
problem, then it follows by definition that a smaller number of test subjects will be
needed to find the major usability problems than are needed to find all the usability
problems, including the minor ones. From parameter (a) it follows that the major
problems are statistically more likely to occur than the minor problems, and from
parameter (b) it follows that the experimenter will be less likely to overlook a major
problem than a minor problem. Thus, both aspects of the definition increase the
probability that an experimenter will identify a major usability problem even with a
small number of subjects.

Empirical support for this conjecture comes from Virzi (1990). He had the
experimenters in a thinking aloud study rate the usability problems on a scale from
one (minimal effect on usability) to seven (severe detriment to usability). He found
that the severe problems could be found with significantly fewar subjects than the
less severe problems. For example, the average number of subjects needed to find a
major problem (rated as having severity six or seven) was 1.7 compared to the 3.4
subjects needed on the average to find a medium problem (severity three to five)
and the 5.1 subjects needed for minor problems (severity one or two).

A final reason to recommend the use of a small number of test subjects is a belief
that the experimenters will be able to observe more from each subject as they get
more experienced in planning and running thinking aloud studies. The experimen-
ters used for the two tests reported in this paper were very inexperienced and were
in fact running their very first user test of any kind. It is likely that they would be
able to improve their methodology as they got more experience. Indeed, a previous
study (Nielsen, 19924) showed a positive correlation between the degree to which
experimenters followed the recommended methodology and the number of usability
problems they found in a thinking aloud study of an interface.

7. Conclusions

The data from this study, as shown in Figure 1, show that thinking aloud studies do
not need a large number of subjects to be successful at identifying usability

NUMBER OF SUBJECTS FOR THINKING ALOUD 393

problems in a user interface. In the two reported here, it was possible to find about
75% of the usability problems by runrning only four to five subjects. Assuming that
the goal is to identify usability problems for correction in future iterations, it does
not seem to be worth the trouble to run more than six or seven subjects, since the
value of additional subjects falls off exponentially.

Intuitively, it scems to be a reasonable goal to aim at finding about 75% of the
usability problems in an interface because:

* it will be very expensive to find all the problems
* the next design iteration will probably introduce some new problems anyway
¢ the true usability catastrophes are likely to be among the first problems found.

Furthermore, more experienced experimenters will probably be able to do better
than the students who served as experimenters in the two studies reported here. So
my final recommendation would be to plan for 4 +£1 subjects in a thinking aloud
study, with the final number of subjects determined by:

+ the skills and experience of the experimenter
= the number of iterations planned for the design
« the financial or other impact of the use of the system.

In early 1994, [surveyed 36 usability specialists from a variety of companies who
had conducted an average of 9.3 usability tests each. The average number of test
subjects they used for a test was 8.8, and only 35% of the respondents were using
between three and six test users per test. Thus, it would seem that there is great
potential for cost savings if development projects would run smaller user tests (and
then do more of them). Even so, there are obviously still some projects for which
“deluxe” usability testing is appropriate, including projects where a single remaining
usability problem would be catastrophic or life-threatening.

The author would like to thank Tom Landauer and the anonymous IJCHS referees for
valuable comments on previous versions of the manuscript.

References

Brooxs, F. R, (1988). Grasping reality through illusion: Interactive graphics serving science.
Proceedings of the ACM CHI'88 Conference, pp. 1-11, Washington, DC, 15-19 May.
Ericsson, K. A. & Simon, H. A, (1984). Protocol Analysis: Verbal Reports as Data.

Cambridge, MA: MIT Press.

JorgenseN, A. H. (1989). Using the thinking-aloud method in system development. In G.
Sarvenpy & M. 1. SmitH, Eds. Designing and Using Human—Compuier Interfaces and
Knowledge Based Systems, pp. 743-750. Amsterdam: Elsevier.

Lews, C. (1982). Using the ‘thinking-aloud’ method in cognitive interface design. Research
Report RC-9265, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA,
Mistep, U., VarniLD, A. & Jorcensen, A. H. (1989). Hvordan sikres kvaliteten af
brugergrensefladen aie systemudviklingen {Assuring the quality of user interfaces in
systern development, in Danish). Proceedings of NordDATA’89 Joint Scandinavian

Computer Conference, pp. 479-484, Copenhagen, Denmark, 19-22 June.

394 J. NIELSEN

NieLseN, J. (1989). Usability engineering at a discount. In G. Sarvenpy & M. J. Smrrh, Eds.
Designing and Using Human—Computer Interfaces and Knowedge Based Systems,
pp. 394-401. Amsterdam: Elsevier.

NieLsen, J. (1990). Big paybacks from ‘discount’ usability engineering. /EEE Software, 7(3),
107-108,

Niersen, J. (1992q). Evaluating the thinking aloud technique for use by computer scientists.
In H. R. Hartson & D. Hix, Eds. Advances in Human-Computer Interaction, Vol. 3,
pp. 69-82. Norwood, NJ: Ablex.)

NiELSEN, J. (1992b). The usability engineering life cycle. IEEE Computer, 25(3), 12-22.

NieLseN, J. (1993). Usability Engineering. Boston, MA: Academic Press.

NieLsen, J. (1994). Heuristic evaluation. In J. Nietsen & R. L. Mack, Eds. Usability
Inspection Methods, pp. 25-62. New York: John Wiley.

Nieisen, J. & Lanpauer, T. K. (1993), A mathematical model of the finding of usability
problems. Proceedings of the ACM INTERCHI'93 Conference, pp.206-213, Amsterdam,
The Netherlands, 24-29 April.

NieLsen, J. & MoLicn, R. (1990). Heuristic evaluation of user interfaces. Proceedings of the
ACM CHI'90 Conference, pp. 249-256, Seattle, WA, 1-5 April.

Virzi, R. A. (1990). Streamlining the design process: Running fewer subjects. Proceedings of
the Human Factors Society 34th Annual Meeting, pp.291-294, Orlando, FL, 8-12
October.

WriGHT, P. C. & Monk, A. F. (1991). A cost-effective evaluation method for use by
designers. International Journal of Man-Machine Studies, 35, 891-912.

Paper accepted for publication by the Editor, Professor B. R. Gaines.

Appendix: descriptions of the usability problems

This appendix provides somewhat more detailed descriptions of the usability
probiems than can be accommodated within the main paper. These descriptions are
not of great importance for readers who are only interested in the main point with
respect to how many subjects to use in a qualitative usability test. The descriptions
are intended for readers who are interested in the methodological issues related to
the question of what constitutes a usability problem and for readers who want to
assess the relative severity of the various usability problems for themselves.

The first list describes the nine usability problems found in the commercial word
Processor. '

Problem 1. The arrow keys had no effect in this word processor even though they
were present on the keyboard. This problem was corrected in version 5 of the
application. .

Problem 2. Users had problems learning the standard cut/copy/paste commands.
First, the commands only worked if something had been selected. Second, the copy
command gave no feedback, leading some users to wonder whether it had any effect.

Problem 3. Because this version of the program only supported one open document
at a time, it was not possible to open a new document before the previous document
had been closed. Closing a document is a very indirect action if one has the goal of
opening a document, so many users tried the open command first. Upon seeing that
it was grayed out in the menu, they often realized that it was disabled for some

NUMBER OF SUBJECTS FOR THINKING ALOUD 395

reason but they were not always able to discover this reason. Assuming that it was
indeed necessary to restrict the system to a single open document, it might have
been better to allow users to select the open command and then present them with a
dialog box stating that the current document would have to be closed first and
asking them whether they want this done or whether they want to cancel.

Problem 4. Due to yet another underlying functionality limitation, the word
processor could not support undo for the global replacement operation. The
interface correctly informed users about the limitation but did so using such scary
language that several users did not dare use this feature at all.

Problem 5. The “two-cursor problem” (Brooks, 1988) of having one cursor indicat-
ing the text insertion point and another indicating where the mouse is pointing.
Some users assumed that they would be typing at the mouse pointer and were
confused when the text appeared elsewhere on the screen. One subject tried to
move the insertion point to a new location by direct manipulation (clicking on it
with the mouse pointer and trying to drag it to a new location).

Problem 6. Some users suffered from menu fixation and believed that the selection
of menu commands was the only way to operate the interface. In fact, some
formatting operations such as margin indentation could only be activated by direct
manipulation of markers on a graphical “ruler”.

Problem 7. The word processor had two different sets of justification commands.
One set was located in the menus and only changed the justification of the currently
selected lines. Another set was located on the graphical ruler and changed the
justification of all lines until the next ruler, thus having a more global effect
(especially since most novice users only have a single ruler in a document). The
difference between these two sets of commands was not clear to some users.
Sometimes they would use a menu-based justification command and be quite
surprised when the operation had no effect on subsequently typed text.

Problem 8 The commands ‘“‘insert ruler” and “insert new page” worked by
replacing the selected text with the special object indicated by the command (a new
ruler or a top-of-page marker). This may have been a local extension of the
cut-and-paste paradigm, but several users did not expect this to happen and got very
scared when some of their text disappeared as a result of these commands. It might
have been better to simply insert the new special object in front of the selected text
rather than replacing it.

Problem 9. The graphical ruler had some small markers used to set margins and
tabulators, with different markers used for slight variations in functionality such as
setting the left margin of the first line of a paragraph versus setting the left margin of
the rest of the paragraph. Some users had difficulties in distinguishing between these
markers.

This second list describes the fourteen usability problems found in the shareware
outliner,

Problem 1. Users searched in vain for a menuw command to insert a new section

396 J. NIELSEN

(element) in the outline. In fact, new elements were inserted “simply” by pressing
the retirn key but many vsers had a hard time discovering this. One reason for this
problem is that the return key was seen as a text processing key (to insert white
space in a document} and not as a function key to create new objects.

FProbiem 2. The outliner had three different edit menus: one for cut-and-paste of
actual text, one for cut-and-paste of entire sub-tree structures of nested sections, and
one for cut-and-paste of the contents of a kind of database of text strings called a
textstore. Users were often confused by this deviation from the standard of having a
single, generic edit menu that operates on all kinds of objects.

Problem 3. The terminology used in the menu commands for operating on sections
was somewhat confusing, In addition to the headings of the various sections in the
outline, the system allowed the user to operate on an additional text string for each
section. These additional strings were normally not shown but could be displayed by
the command “open section”. Users sometimes confused this command with the
command to expand the hierarchy to make the subsections under the current section
visible. This command was called “expand subsections” and its inverse command
was “‘hide subsubsections” (note, two ‘“‘sub’).

Problem 4. The program used mixed metaphors for the hierarchical outline and this
sometimes caused confusion. One metaphor was a literary onz of sections and
subsections (used in some commands) and another was a botanical one of trees and
subtrees (used in other commands to operate on a section and its subsections as a
whole). Also, some users misinterpreted the term “tree” as referring to the entire
outline rather than to the currently selected subtree. One user interpreted the menu
command “‘cut tree” in analogy to cutting timber and was afraid to use it because it
seemed too drastic.

Problem 5. Several users searched for a menu command to promote subsections to
sections or to demote sections to subsections. There were no explicit commands to
accomplish this goal and users were expected to use the left and right arrow keys as
function keys. Note that this problem and problem 1 seem to be similar to the menu
fixation problem reported as problem 6 of the word processor.

Problem 6. The two-cursor problem (discussed as problem 5 of the word processor)
was also observed here.

Problem 7. The sound “boing” was used as practically the only error message
throughout the system. This sometimes annoyed users and sometimes caused further
problems because they did not understand the underlying error situation. Also,
disabled menu commands were not grayed out but caused further boings when
selected.

Problem 8. Selecting entire subtrees of the hierarchy was done by placing the
insertion cursor in the heading of the top-most element of the subiree. There was no
visual indication of the extent of the selection and the actual operation was the same
as that used for selecting text. Actually, a subtree would be selected even if no text
was selected when the insertion point was positioned between two text characters.

NUMBER OF SUBJECTS FOR THINKING ALOUD 397

Problem 9. In a problem similar to that reported as problem 4 of the word
processor, the “clear tree” command gave a scary alert message stating that it could
not be undone. Users were often so frightened by this message that they abandoned
any attempt to use the command even when it would have been correct of them to
do so.

Problem 10. The arrow keys had two mixed uses: the up/down keys were used for
navigation (moving the insertion point one line up or down) whereas the left/right
keys were used as command keys (lo promote or demote a section in the hierarchy).
Users sometimes confused these two uses of a set of keys that are normally very
strongly grouped.

Problem 11. The “find” command was strictly case sensitive and would not find, say,
a word starting with an upper case character if the search string was entered using all
lower case characters. This sometimes led users to assume either that the word did
not exist in the document or that the find command did not work.

Problem 12. The manual used the term ‘““‘coNnTROL-TAB” to refer to holding down
the command key while pressing the tabulator key. Some keyboards actually had a
key labeled “control” which was nof the command key and some users had severe
problems finding the correct key to hold down.

Problem 13, Some users were confused where the “paste tree” command would
insert the subtrce. Normally, a paste command inserts the content of the clipboard
at the insertion point, but the “paste tree” command inserted a subtree below the
section heading containing the insertion point.

Problem 14. When starting the program, a window with a copyright notice would
flash on the screen for a brief moment. Some users were frustrated at not being able
to read the full contents of the window and feared having missed some important
information.

