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So clearly, the Boolean
least squares approach

allows for heterogeneous
diversity when polymorphic

attenuation is required.

Huh? Of Course!

One man’s “Of Course!” is 
another man’s “Huh?” 

Book of Douglass, Law 79
Feel free to ask questions!
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A more formal definition of
finite state machines
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Finite State Machine
l A finite state machine (M) is an abstract

model consisting of
– a finite state set (S),
– a starting state (s0)

– an input alphabet (Σ)
– a mapping function δ = Σ x S → S
– an input sequence acceptance function

β = S → {0, 1}
such that

M = (S, Σ, s0, δ, β)
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Example FSM

l S = {s0, s1, s2}

l Σ = {a, b, c}

δδ a b c
s0 s0 s1 s2

s1 s2 s1 s1

s2 s1 s0 s2
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Example 2: Parse Identifiers
l An identifier is a sequence of characters

that
– must begin with a letter
– may subsequently may contain any

combination of letters and digits
– is terminated by a white space character

* Example from Fundamental Concepts of Computer
Science by Leon Levy, Dorset House Pub., 1988
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Example 2: Parse Identifiers

l S = {sready, sworking, sdone, serror}

l Σ = {letter, digit, whitespace, other}
– letter  = {‘a’..’z’, ‘A’..’Z’}
– digit = {‘0’..’9’}
– whitespace = {‘ ‘, ‘/t’, ‘/r’, ‘/n’}

– other = ~ { letter ∪ digit ∪ whitespace }
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Example 2: Parse Identifiers
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Example 2: Parse Identifiers

δδ letter digit ws other
sready sworking serror sready serror

sworking sworking sworking sdone serror

sdone sworking serror sready serror

serror serror serror serror serror
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Example 3: Gnomes & Warlocks
There are 2 Gnomes and 2 Warlocks on the left
bank of a river. They want to cross the river but
their rowboat can only be rowed by a single person
and can carry only two people. Warlocks should
never outnumber Gnomes in any location if there
are any Gnomes at the location because they’ll kill
the schmuck. Describe the various ontological states
and transitions, and describe a path through the state
machine that achieves the goal state (everyone on
the right side of the river).
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Example 3: Gnomes & Warlocks

S = {Gnomes on left,
Warlocks on left,
position of boat}

Event = {Gnomes in
boat, Warlocks in
boat}

S {g,w,b} 0,1 1,0 1,1 2,0 0,2
S1 2,2,L S11 S13 S15 S14 S12

S2 2,1,L S12 S15 S17 S16 -
S3 2,0,L - S17 - S18 -
S4 1,2,L * Dead Gnome
S5 0,2,L S16 - - - S18

S6 1,1,L S17 S16 S18 - -
S7 0,1,L S18 - - - -
S8 1,0,L * Dead Gnome
S9 0,0,L ? Impossible state
S10 2,2,R ? Impossible state
S11 2,1,R S1 - - - -
S12 2,0,R S2 - - - S1

S13 1,2,R * Dead Gnome
S14 0,2,R - S4 - S1 -
S15 1,1,R S4 S2 S1 - -
S16 0,1,R S5 S6 S4 S2 -
S17 1,0,R * Dead Gnome
S18 0,0,R !! GOAL
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Example 3: Gnomes & Warlocks
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Example 3: Gnomes & Warlocks
GG  WW b

G    C  b G  W

GG   W b      W

{1,0}

{2,0}

     W  b GG W

G   W b   G  W

{1,0} {0,1}

    WW b b GG

{1,1}

        b GG WW

{1,1}

s1

s15

s2

s16

s6 s5

s18

GG    b   WW

s12{1,1} {0,2}

{0,1}
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Take Home Problem
The contents of any square may be moved to any
adjacent empty square. What sequence of moves is
required to get from the starting state to the goal
state?

A A B
A C

A A C
A B???

Starting
State

Goal
State

* Example from How to Solve Problems: Elements of a
Theory of Problems and Problem Solving by Wayne
Wickelgren, W. H. Freeman & Co.,  1974
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Limits of Finite State
Machines
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What are FSMs BAD at?

l Infinite state spaces
l Continuous systems

– Continuous mathematics
– Fuzzy systems
– neural systems

l Context-free grammars
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Infinite State Spaces

l Construct a FSM for the rule
–  S = {0, 1, 2, …}
–  Σ = { ‘++’ }
–  s0 = { 0 }
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Continuous Mathematics

l Construct a FSM for to represent the
control loop

l Construct a FSM for the moving
average filter function

f
d d d d

j
j j j j

=
+ + +− − −1 2 3

4

Ka

Xn Yn
-

+ Delay
Wn

Kb

+
+Vn

Zn
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Other kinds of machines
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Other Kinds of Machines

l Counting Machines
l Stack Machines



Bruce Powel Douglass, Ph.D. i-Logix  Page 23

FSM as Tape Reader
l A FSM may be thought of as a machine

that reads an input stream from a tape.
– The read values on the tape are events

A B C D E . . . input stream

tape head

1
2

3
4

5

6

state
indicator

FSM
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FSM for Parsing Identifier
A B 2   A B 2   

ready

working

done

error

ready

working

done

error

A B 2   

ready

working

done

error

A B 2   

ready

working

done

error

1 2

3 4
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Counting Machine
l FSMs have no memory -- they must

assume a new state for each count
l A counting machine can count an

arbitrarily large number of states

A B C D E

CM 4

. . .
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Counting Machine Example
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Pushdown Stack Automata
l FSMs have no memory -- only ontological

states
l PDAs have

– FSM
– Stack (may have a different vocabulary)

l PDAs can parse context-free grammars

A B C D E

PDA

φ

ω

χ

α

. . . tos
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Types of Grammars
l Chomsky identified 4 different kinds of

grammars
– Unrestricted (UG)
– Context-sensitive (CSG)

u many programming languages
u arithmetic expressions
u Addressable by pushdown automata

– Context-free (CFG)
– Right-linear (RLG)

u regular expressions
u addressable by state machines

generality
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Context-Free Grammars

l Productions of the form
P: x →  y

– x is a member of N
– y is a member of  (N ∪ Σ)*
– N is a nonterminal alphabet

–  Σ is a terminal alphabet
– P is a set of production rules
– S is a goal symbol

l A PDA can recognize a CFG
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PDA Example: Palindrome
l A Palindrome is a series of symbols

which is symmetric around its middle,
i.e. 0110110110

l A nondeterministic PDA can be used to
determine if an input string is a
palindrome
– We will consider only binary palindromes s

= { 0, 1}.
– Stack alphabet = {E (empty), B, G}
– Stack begins empty {E}
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PDA Example: Palindrome
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Examples
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Balancing Parentheses
l Build a machine that can balance arbitrary

parenthetical expressions
l Note that no FSM can do this because it requires

an infinite set of states or memory:
– ‘(‘   ‘((‘    ‘(((‘    ‘((((‘    are all different conditions

( ( ) ( ) . . . input stream

balanced
state

indicator

FSM

unbalanced



Bruce Powel Douglass, Ph.D. i-Logix  Page 34

Balancing 4 Parentheses

Empty

))( ))

)((

)()
)()(

)())

)((

)((

)))

))(

))((

))()

)))(

))))

((( ()

(((

(()

((((

((()

(()(

(())

()(

())

()((

()()

())(

()))
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Balancing Parentheses (with
Memory)

l If we add a counting machine (i.e. memory),
note that state characteristics:
– The number of characters is even (0, 2, 4, ...)
– The number of left parentheses equals the

number of right parentheses
– The next token received when the state

corresponds to a balanced expression must be a
left parenthesis.
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Balancing Parentheses (with Memory)
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Example
l Balance ‘( ( () () ) )’

Parser

Balanced

‘(‘

Unbalanced
Left (1)

‘(‘

Unbalanced
Left (2)

‘(‘
Unbalanced

Left (3)
‘)’

Unbalanced
Left (2)

‘(‘

Unbalanced
Left (3)

‘)’
Unbalanced

Left (2)
‘)’

Unbalanced
Left (1)

‘)’

Balanced
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Example
l Balance ‘( ( () () ) )’

Balanced

Unbalanced
Left

Invalid
Expression

‘(‘ ‘(‘ ‘(‘ ‘)‘ ‘)‘‘(‘ ‘)‘ ‘)‘

1 2 3 2 3 2 1 0

input symbol

balance

Tape
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Example
l Parse ‘( ( ) ) ) ( ) ) ’

Parser

Balanced

‘(‘

Unbalanced
Left (1)

‘(‘

Unbalanced
Left (2)

‘)‘
Unbalanced

Left (1)
‘)’

‘)’

Invalid
Expression

‘(’

‘)’

‘)’

Balanced

Balanced

Invalid
Expression

Invalid
Expression

Invalid
Expression
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Example
l Balance ‘( ( ) ) ) ( ) ) ’

Balanced

Unbalanced
Left

Invalid
Expression

‘(‘ ‘(‘ ‘)‘ ‘)‘ ‘(‘‘)‘ ‘)‘ ‘)‘

1 2 1 0

input symbol

balance

Tape
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Parsing Real Numbers
l Example real numbers

u 1
u -1
u 2.3
u 1E+17
u -1E-5
u 1.4323E3
u +E-3

l This is a regular grammar (similar to a right-linear
grammar)

l Can we build a FSM to produce a binary equivalent
of a string representing a real number?
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Real Number Parser
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Real Number Parser

digit(d) ‘+’ ‘-‘ ‘.’ ‘E’

sready sintPart sgotSign sgotSign sfractional sgotE

sgotSign sintPart - - sfractional sgotE

sintPart sintPart - - sfractional sgotE

sfractional sfractional - - - sgotE

sgotE sexpIntPart sexpIntPart sexpIntPart - -

sexpIntPart sexpIntPart - - - -
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Real Number Parser
l Parse ‘-3.12E+7’

Parser

sready

‘-‘

sgotSign

‘3‘

sintPart

‘.‘

‘1’

sfractional

‘2’

sfractional

‘E’

‘+’

‘7’

sgotE

sExpIntPart

EOT

sExpIntPart

sfractional
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Real Number Parser
l Parse ‘-3.12E+7’

sready

sgotSign

sintPart

sfractional

sgotE

sexpIntPart

Tape

‘-’ ‘3’

‘1’

‘.’

‘2’

‘E’

‘+’ ‘7’
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10-Key Calculator
l Building a FSM to evaluate arithmetic

expressions is a much harder problem
than balancing parentheses
– How should one evaluate:

u 1 * 2 + 3
u 1 + 2 * 3
u 1 - -3
u 1 * (2 + 3)
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Calculator Grammar
This is a context-free grammar:

Expr → Expr + Term #PLUS
→ Expr - Term #MINUS
→ Term

Term → Term * Fact #MULTIPY
→ Term / Fact #DIVIDE
→ Fact

Fact → Primary
Primary → ( Expr ) #PARENTHESES
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Calculator Solution

l We will use an object design here with 2
stacks
– operator stack
– number stack
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Calculator Object Model
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Parser State Model
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Expression State Model
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Example: Parse “1+2*3”
Parser

Idle

‘1‘

‘+‘

‘2‘

‘*’

‘3’

Got_Number

Got_AddOp

Got_AddOpNum

Parsing_Factor

Got_Number

Num
stack

Op
stack

1

1 +

1
2

+

1
2

+
*

7

pushNum(3)
Reduce (Pop ‘*’, ‘3’, ‘2’ → PushNum’6’;
    Pop (‘+’, ‘6’, ‘1’) → push ‘7’;)

pushNum(‘1’)

pushOp(‘+’)

pushNum(‘2’)

pushOp(‘*’)
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Example: Parse “1+2*3”

idle

GotNumber

Got_AddOp

Got_AddOpNum

Parsing_Factor

Premature EOS

Tape

‘1’

‘+’

‘2’

‘*’

‘3’

done1

1 +

1
2

+

1
2

+
*

7

pushNum(3)
Reduce (Pop ‘*’, ‘3’, ‘2’ → PushNum’6’;
    Pop (‘+’, ‘6’, ‘1’) → push ‘7’;)

DisplayResult( )
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Problems with Model

l How to handle Parenthesis?
– Note that when we expect an operator (+ - * /) we can

get a Right Parenthesis, as in
(1+2) (3+4-6)

– Note that when we expect a number we can get a Left
Parenthesis, as in

(2)        (1+3*(3+4))

– An operator or Right Parenthesis can follow a Right
Parenthessis but not a number    “)17” ←← illegal

– A number or Left Parenthesis can follow a Left
Parenthesis but not an operator   “(*” ←← illegal

↑↑ ↑↑ ↑↑

↑↑ ↑↑
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Improved Parser State Model
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Example: Parse “(1+3)*4”
Parser

Idle

‘(‘

‘1‘

‘+‘

‘3’

‘)’

GotLeftParen

Got_AddOp

Got_AddOpNum

Parsing_Factor

Got_Number

Num
stack

Op
stack

 (

1 (

1 (
+

1
3

4

Reduce (Pop ‘+’, ‘3’, ‘1’ → PushNum’4’;
    Pop (‘)’;)

pushOp(‘(‘)

pushNum(‘1’)

pushOp(‘+’)

pushNum(‘3’)

(
+
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Example: Parse “(1+3)*4”  (cont)

Parser

GotNum

‘*‘

‘4‘

Done

GotMultOp

GotNum

Ready

Num
stack

Op
stack

4 *

4

8

 

pushOp(‘*‘)

pushNum(‘4’)
Reduce(Pop ‘*’, ‘4’, ‘4’; pushNum(8)

Display(d = PopNum; show(d); )
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Problems with Model (2)

l How do we handle unary operators?
u -17
u +25
u 4 - -6
u -4 * +19

l Note that if an addOp {‘+’, ‘-’} occurs
when expecting a number, it should be
treated as a unary operator (i.e. sign)
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Improved Parser State Model (2)
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Example: Parse “3+-4”
Parser

Idle

‘3‘

‘+‘

‘-‘

‘4’

GotNum

Got_AddOp

Got_AddOp

Got_AddOpNum

Num
stack

Op
stack

3

3 +

3 +

3
4

+
M

Reduce {Pop ‘M’, ‘4’ → PushNum’-4’;
    Pop (‘+’, ‘-4’, ‘3’) → push ‘-1’;) }
Display { d =Popnum(); show(d); }

pushNum(‘3’)

pushOp(‘+’)

pushOp(UnaryM)

pushNum(‘4’)

M

Done

Ready
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Exercise for the Reader
l Validate the state machine for following

expressions
u (2+3)/(7-9)
u 2*( ( (3-2) * (4+1) ) - 5)

l Add error states and transitions to
identify the following errors

u )3-2
u 1 - *3
u 4+5)-7



Bruce Powel Douglass, Ph.D. i-Logix  Page 62

Object-Oriented State Patterns
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Simple Approach #1
l Use nested CASE statements to implement

state
case (state1) {

switch(event) {
case e1: ….; break;
case e2: ….; break;
}

case state2 :
switch(event) {….

l Problems
– Performance
– Scalability



Bruce Powel Douglass, Ph.D. i-Logix  Page 64

Simple Approach #2

l Use a single state variable (class
attribute) which holds the current state

l Event acceptor operations
– actions of event acceptor operations vary

depending on the value of the state
variable

– event acceptor operations update this state
variable to change state
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Simple Approach #2
l Example

myClass::AcceptTurn(int nClicks) {
if (stateVar = OPERATIONAL) {

display(nClicks);
clicks += nClicks;
if (clicks > MAX)

stateVar = OVERFLOW;
}; // end if

};
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State Pattern

State Pattern

Context Abstract
State

Concrete State

Accept(event)

Current State

Abstract State

Concrete
State

1
Context

*

{abstract}
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State Pattern

l Good when some set of states are long
lasting

l Good to optimize rapidly-changing
states by making less-frequent state
changes more expensive
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State Pattern
«context»
Idle Mode

«context»
AAI Mode

Turn On
create( )

To AAI
destroy( )

create( )

tm(Ref Time)

A Sense accept( A Sense)

Refractory

Waiting

Waiting

tm(A Sense Time)

Pacing

«context»
Pacing
Engine
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State Table Pattern
State Table

PatternContext

*

State

1

Context

Transition

These dependencies allow
transitions and states to call
operations within Context as

actions.

1

1

State
Table

1

The state table is oriented as a
state x transition matrix allowing

access in a single probe
«callback»

«callback» *

guard
accept

setDefault
addGuard

nextState

Transition

entry
exit

activity

stateID

State

entry
exit

activity

currentState

State Table
StateTable
Template

state space,
transition space
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State Table Pattern

l Good for large state spaces
l Good for constant run-time performance
l More complex and expensive to set up
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State Table Pattern
theContext StateTable State 2

«context» «state»

State 1 Trans 1
«transition»«state table» «state»

create<nStates, nTrans>
create()

assignState(State 1)

guard( )

accept(event)

create()
assignState(State 2) create()

assignTrans(Trans 1)

setDefault(target state, guard, action)

accept(event)

(*guard)()
return TRUE

exitAction( )(*exitAction)()
accept()

(*action)()
entryAction( )

(*entryAction)()

return

setDefault(initialState)
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Summary
l Objects have behavior

– Simple
– Continuous
– State-driven

l Modeling objects as Finite State Machines
simplifies the behavior

l States apply to objects
l FSM Objects spend all their time in exactly 1

state (discounting orthogonal substates)
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Summary

l States are disjoint ontological conditions
that persist for a significant period of time.

l States are defined by one of the following:
– The values of all attributes of the object
– The values of specific attributes of the object
– Disjoint behaviors

u Events accepted
u Actions performed
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Summary
l Transitions are the representation of

responses to events within FSMs
l Transitions take an insignificant amount

of time
l Actions are functions which may be

associated with
– Transitions
– State Entry
– State Exit

l Activities are processing that continues
as long as a state is active
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Summary

l Harel statecharts expand standard FSMs
– Nested states
– Concurrency
– Broadcast transitions
– Orthogonal Components
– Actions on states or transitions
– History
– Guards on transitions
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Summary
l Statecharts show static structural view

– good “roadmap”

l State tables show static structureal view
– good for id’ing missing transitions

l Sequence diagrams show scenarios
– good for looking walking through sequences of

transitions

l Timing diagrams show overall timing in
scenarios
– good for looking at timing details of sequences
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Sleeping

EatingReviewing

Preparing

Talking

Party!

Awake

Time up

Time to start

Alarm 

Q & A




