## State M achines and Statecharts Part III: Advanced Topics



Bruce Powel Douglass, Ph.D. Chief Evangelist, i-Logix

One man's "Of Course!" is another man's "Huh?" Book of Douglass, Law 79 Feel free to ask questions!

So clearly, the Boolean least squares approach allows for heterogeneous diversity when polymorphic attenuation is required.


## A moreformal definition of finite state machines

## Finite State M achine

- A finite state machine (M) is an abstract model consisting of
- a finite state set (S),
- a starting state ( $\mathrm{S}_{0}$ )
- an input alphabet ( $\Sigma$ )
- a mapping function $\delta=\Sigma \times S \rightarrow S$
- an input sequence acceptance function $\beta=S \rightarrow\{0,1\}$
such that

$$
M=\left(S, \Sigma, s_{0}, \delta, \beta\right)
$$

## ExampleFSM

- $S=\left\{S_{0}, S_{1}, S_{2}\right\}$



## Example 2: Parse Identifiers

- An identifier is a sequence of characters that
- must begin with a letter
- may subsequently may contain any combination of letters and digits
- is terminated by a white space character
* Example from Fundamental Concepts of Computer

Science by Leon Levy, Dorset House Pub., 1988

## Example 2: Parse Identifiers

- $\mathrm{S}=\left\{\mathrm{S}_{\text {ready }}, \mathrm{S}_{\text {working }}, \mathrm{S}_{\text {done }}, \mathrm{S}_{\text {error }}\right\}$
- $\Sigma=$ \{letter, digit, whitespace, other\}
- letter = \{'a'..'z', 'A'..'Z'\}
- digit = \{'0'..'9'\}
- whitespace = \{‘ ', '/t’, '/r', '/n'\}
- other $=\sim\{$ letter $\cup$ digit $\cup$ whitespace $\}$


## Example 2: Parse Identifiers



## Example 2: Parse Identifiers

| $\boldsymbol{\delta}$ | letter | digit | ws | other |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{S}_{\text {ready }}$ | $\mathrm{S}_{\text {working }}$ | $\mathrm{S}_{\text {error }}$ | $\mathrm{S}_{\text {ready }}$ | $\mathrm{S}_{\text {error }}$ |
| $\mathbf{S}_{\text {working }}$ | $\mathrm{S}_{\text {wrrking }}$ | $\mathrm{S}_{\text {working }}$ | $\mathrm{S}_{\text {done }}$ | $\mathrm{S}_{\text {error }}$ |
| $\mathbf{S}_{\text {done }}$ | $\mathrm{S}_{\text {working }}$ | $\mathrm{S}_{\text {error }}$ | $\mathrm{S}_{\text {Seady }}$ | $\mathrm{S}_{\text {error }}$ |
| $\mathrm{S}_{\text {error }}$ |

## Example 3: Gnomes \& Warlocks

There are 2 Gnomes and 2 Warlocks on the left bank of a river. They want to cross the river but their rowboat can only be rowed by a single person and can carry only two people. Warlocks should never outnumber Gnomes in any location if there are any Gnomes at the location because they'll kill the schmuck. Describe the various ontological states and transitions, and describe a path through the state machine that achieves the goal state (everyone on the right side of the river).

## Example 3: Gnomes \& Warlocks

| S | \{g,w,b\} | 0,1 | 1,0 | 1,1 | 2,0 | 0,2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 2,2,L | $\mathrm{S}_{11}$ | $\mathrm{S}_{13}$ | $\mathrm{S}_{15}$ | $\mathrm{S}_{14}$ | $\mathrm{S}_{12}$ |
| $\mathrm{S}_{2}$ | 2,1,L | $\mathrm{S}_{12}$ | $\mathrm{S}_{15}$ | $\mathrm{S}_{17}$ | $\mathrm{S}_{16}$ | - |
| $\mathrm{S}_{3}$ | 2,0,L | - | $\mathrm{S}_{17}$ | - | $\mathrm{S}_{18}$ | - |
| $\mathrm{S}_{4}$ | 1,2,L * | Dead Gnome |  |  |  |  |
| $\mathrm{S}_{5}$ | 0,2,L | $\mathrm{S}_{16}$ | - | - | - | $\mathrm{S}_{18}$ |
| $\mathrm{S}_{6}$ | 1,1,L | $\mathrm{S}_{17}$ | $\mathrm{S}_{16}$ | $\mathrm{S}_{18}$ | - | - |
| $\mathrm{S}_{7}$ | 0,1,L | $\mathrm{S}_{18}$ | - | - | - | - |
| $\mathrm{S}_{8}$ | 1,0,L * | Dead Gnome |  |  |  |  |
| $\mathrm{S}_{9}$ | 0,0,L? | Impossible state |  |  |  |  |
| $\mathrm{S}_{10}$ | 2,2,R ? | Impossible state |  |  |  |  |
| $\mathrm{S}_{11}$ | 2,1,R | $\mathrm{S}_{1}$ | - |  |  | - |
| $\mathrm{S}_{12}$ | 2,0,R | $\mathrm{S}_{2}$ | - | - | - | $\mathrm{S}_{1}$ |
| $\mathrm{S}_{13}$ | 1,2,R * | Dead Gnome |  |  |  |  |
| $\mathrm{S}_{14}$ | 0,2,R | - | $\mathrm{S}_{4}$ | - | $\mathrm{S}_{1}$ | - |
| $\mathrm{S}_{15}$ | 1,1,R | $\mathrm{S}_{4}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | - | - |
| $\mathrm{S}_{16}$ | 0,1,R | $\mathrm{S}_{5}$ | $\mathrm{S}_{6}$ | $\mathrm{S}_{4}$ | $\mathrm{S}_{2}$ | - |
| $\mathrm{S}_{17}$ | 1,0,R * | Dead Gnome |  |  |  |  |
| $\mathrm{S}_{18}$ | 0,0,R !! | GOAL |  |  |  |  |

$\mathrm{S}=\{$ Gnomes on left, Warlocks on left, position of boat \}

Event $=\{$ Gnomes in boat, Warlocks in boat\}

## Example 3: Gnomes \& Warlocks



## Example 3: Gnomes \& Warlocks



## Take Home Problem

The contents of any square may be moved to any adjacent empty square. What sequence of moves is required to get from the starting state to the goal state?


Goal
State


* Example from How to Solve Problems: Elements of a Theory of Problems and Problem Solving by Wayne Wickelgren, W. H. Freeman \& Co., 1974


## Limits of Finite State Machines

## What areFSMsBAD at?

- Infinite state spaces
- Continuous systems
- Continuous mathematics
- Fuzzy systems
- neural systems
- Context-free grammars


## Infinite State Spaces

- Construct a FSM for the rule

$$
\begin{aligned}
-S & =\{0,1,2, \ldots\} \\
-\Sigma & =\left\{'++^{\prime}\right\} \\
-s_{0} & =\{0\}
\end{aligned}
$$

## Continuous M athematics

- Construct a FSM for to represent the control loop

- Construct a FSM for the moving average filter function

$$
f_{j}=\frac{d_{j}+d_{j-1}+d_{j-2}+d_{j-3}}{4}
$$

## Other kinds of machines

## Other Kinds of Machines

- Counting Machines
- Stack Machines


## FSM as TapeReader

- A FSM may be thought of as a machine that reads an input stream from a tape.
- The read values on the tape are events



## FSM for Parsing Identifier



## Counting Machine

- FSMs have no memory -- they must assume a new state for each count
- A counting machine can count an arbitrarily large number of states



## Counting Machine Example



## Pushdown Stack Automata

- FSMs have no memory -- only ontological states
- PDAs have
-FSM
- Stack (may have a different vocabulary)
- PDAs can parse context-free grammars



## Types of Grammars

- Chomsky identified 4 different kinds of grammars

| - Unrestricted (UG) |
| :---: | :---: |
| - Context-sensitive (CSG) |
| $\rightarrow$ many programming languages |
| arithmetic expressions |
| - Addressable by pushdown automata |
| - Context-free (CFG) |
| - Right-linear (RLG) |
| $\rightarrow$ regular expressions |
| $\rightarrow$ addressable by state machines |

## Context-Free Grammars

- Productions of the form

$$
P: x \rightarrow y
$$

$-x$ is a member of $N$
-y is a member of $(\mathrm{N} \cup \Sigma)^{*}$
$-N$ is a nonterminal alphabet
$-\Sigma$ is a terminal alphabet

- P is a set of production rules
$-S$ is a goal symbol
- A PDA can recognize a CFG


## PDA Example: Palindrome

- A Palindrome is a series of symbols which is symmetric around its middle, i.e. 0110110110
- A nondeterministic PDA can be used to determine if an input string is a palindrome
- We will consider only binary palindromes $s$ $=\{0,1\}$.
- Stack alphabet $=\{E$ (empty), B, G\}
- Stack begins empty \{E\}


## PDA Example: Palindrome



## Examples

## Balancing Parentheses

- Build a machine that can balance arbitrary parenthetical expressions
- Note that no FSM can do this because it requires an infinite set of states or memory:
- '(' '((' '((' ')(((' are all different conditions



## Balancing 4 Parentheses



## Balancing Parentheses (with Memory)

- If we add a counting machine (i.e. memory), note that state characteristics:
- The number of characters is even ( $0,2,4, \ldots$ )
- The number of left parentheses equals the number of right parentheses
- The next token received when the state corresponds to a balanced expression must be a left parenthesis.


## Balancing Parentheses (with M emory)



## Example

- Balance '( ( () () ) )'



## Example

- Balance '( ( () () ) )'



## Example

- Parse '( () ) ) () )'



## Example

- Balance '( ( ) ) ( ) ) '


Tape $\longrightarrow$

## Parsing Real Numbers

- Example real numbers
$\bullet 1$
$\bullet-1$
$\bullet 2.3$
$\bullet 1 E+17$
$\bullet-1 E-5$
$\bullet 1.4323 E 3$
$\bullet+E-3$
- This is a regular grammar (similar to a right-linear grammar)
- Can we build a FSM to produce a binary equivalent of a string representing a real number?


## Real Number Parser



## Real Number Parser

|  | digit(d) | '+' | '=6 | '' | 'E' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sready | $S_{\text {intPart }}$ | $\mathrm{S}_{\text {gotSign }}$ | $\mathrm{S}_{\text {gotSign }}$ | $\mathrm{S}_{\text {fractional }}$ | $\mathrm{S}_{\text {gotE }}$ |
| S gotSign | $S_{\text {intPart }}$ | - | - | $\mathrm{S}_{\text {fractional }}$ | $\mathrm{S}_{\text {gotE }}$ |
| SintPart | SintPart | - | - | Sfractional | $\mathrm{S}_{\text {gotE }}$ |
| $\mathbf{S}_{\text {fractional }}$ | Sfractional | - | - | - | $\mathrm{S}_{\text {gotE }}$ |
| $S_{\text {gotE }}$ | SexpIntPart | SexplntPart | SexpIntPart | - | - |
| SexplntPart | S explntPart | - | - | - | - |

## Real Number Parser

- Parse ‘-3.12E+7’




## Real Number Parser

- Parse '-3.12E+7’


## 10-Key Calculator

- Building a FSM to evaluate arithmetic expressions is a much harder problem than balancing parentheses
- How should one evaluate:
- 1 * $2+3$
- $1+2$ * 3
- 1--3
$\bullet 1^{*}(2+3)$


## Calculator Grammar

This is a context-free grammar:
Expr $\rightarrow$ Expr + Term \#PLUS
$\rightarrow$ Expr - Term \#MINUS
$\rightarrow$ Term
Term $\rightarrow$ Term * Fact \#MULTIPY
$\rightarrow$ Term / Fact \#DIVIDE
$\rightarrow$ Fact
Fact $\rightarrow$ Primary
Primary $\rightarrow$ (Expr) \#PARENTHESES

## Calculator Solution

- We will use an object design here with 2 stacks
- operator stack
- number stack


## Calculator Object M odel



## Parser State M odel



## Expression State M odel



## Example: Parse " $1+2 * 3$ "



## Example: Parse " $1+2 * 3$ "



## Problems with Model

- How to handle Parenthesis?
- Note that when we expect an operator (+ - */) we can get a Right Parenthesis, as in

$$
\begin{array}{rr}
(1+2) & (3+4-6) \\
\uparrow & \uparrow
\end{array}
$$

- Note that when we expect a number we can get a Left Parenthesis, as in

- An operator or Right Parenthesis can follow a Right Parenthessis but not a number ")17" $\leftarrow$ illegal
- A number or Left Parenthesis can follow a Left Parenthesis but not an operator "(*" $\leftarrow$ illegal


## Improved Parser State M odel



## Example: Parse " $(1+3) * 4$ "



## Example: Parse " $(1+3) * 4$ " (cont)



## Problems with M odel (2)

- How do we handle unary operators?
- -17
- +25
- 4- -6
- 4 $^{*}+19$
- Note that if an addOp \{'+', '-'\} occurs when expecting a number, it should be treated as a unary operator (i.e. sign)


## Improved Parser State M odel (2)



## Example: Parse " $3+-4$ "



## Exercise for the Reader

- Validate the state machine for following expressions
$\bullet(2+3) /(7-9)$
-2* $(((3-2) *(4+1))-5)$
- Add error states and transitions to identify the following errors
- )3-2
-1 - *3
-4+5)-7


## Object-Oriented State Patterns

## Simple A pproach \#1

- Use nested CASE statements to implement state
case (state1) \{ switch(event) \{ case e1: ....; break; case e2: ....; break; \}
case state2 :
switch(event) \{....
- Problems
- Performance
- Scalability


## Simple A pproach \#2

- Use a single state variable (class attribute) which holds the current state
- Event acceptor operations
- actions of event acceptor operations vary depending on the value of the state variable
- event acceptor operations update this state variable to change state


## Simple A pproach \#2

- Example myClass::AcceptTurn(int nClicks) \{ if (stateVar = OPERATIONAL) \{ display(nClicks);
clicks += nClicks; if (clicks > MAX) stateVar = OVERFLOW;
\}; // end if
\};


## State Pattern

## State Pattern



## State Pattern

- Good when some set of states are long lasting
- Good to optimize rapidly-changing states by making less-frequent state changes more expensive


## State Pattern



## StateTable Pattern

These dependencies allow transitions and states to call operations within Context as actions.

The state table is oriented as a state x transition matrix allowing


## StateTable Pattern

- Good for large state spaces
- Good for constant run-time performance
- More complex and expensive to set up


## State Table Pattern



## References of Interest

- Douglass, Bruce Powel Real-Time UML: Efficient Objects for Embedded Systems. Reading, MA: Addison-Wesley-Longman, Dec. 1997
- Douglass, Bruce Powel Doing Hard Time: Using Object Oriented Programming and Software Patterns in Real Time Applications. Reading, MA: Addison-Wesley-Longman, Spring 1999
- Brookshear, J. Glenn Theory of Computation: Formal Languages, Automata, and Complexity. Redwood City, CA: Benjamin/Cummings, 1989
- Levy, Leon S. Fundamental Concepts of Computer Science: Mathematical Foundations of Programming. New York: Dorset Publishing, 1988
- Harel, David Algorithmics: The Spirit of Computing. Reading, MA: Addison-Wesley-Longman, 1993


## Summary

- Objects have behavior
- Simple
- Continuous
- State-driven
- Modeling objects as Finite State Machines simplifies the behavior
- States apply to objects
- FSM Objects spend all their time in exactly 1 state (discounting orthogonal substates)


## Summary

- States are disjoint ontological conditions that persist for a significant period of time.
- States are defined by one of the following:
- The values of all attributes of the object
- The values of specific attributes of the object
- Disjoint behaviors
- Events accepted
- Actions performed


## Summary

- Transitions are the representation of responses to events within FSMs
- Transitions take an insignificant amount of time
- Actions are functions which may be associated with
- Transitions
- State Entry
- State Exit
- Activities are processing that continues as long as a state is active


## Summary

- Harel statecharts expand standard FSMs
- Nested states
- Concurrency
- Broadcast transitions
- Orthogonal Components
- Actions on states or transitions
- History
- Guards on transitions


## Summary

- Statecharts show static structural view
- good "roadmap"
- State tables show static structureal view
- good for id'ing missing transitions
- Sequence diagrams show scenarios
- good for looking walking through sequences of transitions
- Timing diagrams show overall timing in scenarios
- good for looking at timing details of sequences


