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All the best lies 
are actually true!
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Agenda

l Approach taken for this talk

l Quick Overview of Finite State Machines

l Quick Overview of Harel Statecharts

l Advanced Statechart features

l Other State Notations
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Approach taken for this talk

l This is meant to be a gentle introduction
to states and state machines

l This section will be
– mostly on advanced features of statecharts
– other state representations

l Ask questions if you don’t think your
neighbor is understanding
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Finite State Machine Review

l What’s a STATE?
l What’s a TRANSITION?
l What are the three classes of behavior?
l What kinds of things have state?
l Why model states?
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Simple Example
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Advanced Statechart Features

l Conditional Transitions
l Orthogonal Components
l Concurrency
l Broadcast transitions
l Inherited state behavior
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Conditional Transitions
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Orthogonal Components

l Model state behavior for independent
aspects of objects

l Can be used to model
– concurrency
– independent attributes

l Simplify state diagrams by reducing
“state explosion”
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Orthogonal Components

myInstance: myClass

tColor Color
boolean ErrorStatus
tMode Mode

enum tColor {eRed, eBlue,
    eGreen};

enum boolean {TRUE,
    FALSE}

enum tMode {eNormal,
    eStartup, eDemo}

How do you draw the state of this object?
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Approach 1: Enumerate all

eRed, TRUE,
eDemo

eBlue, FALSE,
eDemo

eGreen, FALSE,
eDemo

eRed, FALSE,
eDemo

eBlue, TRUE,
eDemo

eGreen, TRUE,
eDemo

eRed, TRUE,
eNormal

eBlue, FALSE,
eNormal

eGreen, FALSE,
eNormal

eRed, FALSE,
eNormal

eBlue, TRUE,
eNormal

eGreen, TRUE,
eNormal

eRed, TRUE,
eStartup

eBlue, FALSE,
eStartup

eGreen, FALSE,
eStartup

eRed, FALSE,
eStartup

eBlue, TRUE,
eStartup

eGreen, TRUE,
eStartup
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Approach 2
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What is Concurrency?

l Concurrency is the simultaneous execution
of program statements within a system

l Types:
– Pseudo-concurrency (Single CPU)
– True Concurrency (Multiple CPUs)
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Pseudo-Concurrency

l Heavy-weight (process)
Each process has its own data and
code space

l Light-weight (thread)
Each thread shares a common data and
code space
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Synchronization Models

l Sharing data
– Shared variables
– Message passing

l Types of synchronization
– Synchronous
– Asynchronous
– Balking
– Timeout
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Synchronization Models

l Operations may be
– Guarded
– Synchronous
– Simple (i.e. function calls)

l Events imply
– Asychronicity
– Event queues
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UML Concurrency

l Each thread is based from a single
“active” object

l All components of the active object
inherit the composite’s thread

l Each thread must have its own event
queue
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Concurrent Statecharts
l Many embedded systems consist of

multiple threads, each running an FSM
l State charts allow the modeling of these

parallel threads

A B
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D
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S

T
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Concurrent State Charts
l States S and T are active at the same

time as long as X is active.
– Either S.A or S.B must be active when S is

active
– Either T.C, T.D, or T.E must be active

when T is active

A B
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D

E

S

T
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X

Y
Z
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Concurrent State Charts
l When X exits, both S and T exit

– If S exits first, the FSM containing X must
wait until T exits

– If the two FSMs are always independent,
then they must be enclosed at the highest
scope
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X
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Explicit Synchronization

Starting Finishing

A

B

C

D E

F

G

explicit control
branching

explicit control
resynchronization
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Example Concurrent FSM
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Communication in
Concurrent FSMs

l Broadcast events
– Events received by more than one

concurrent FSM
– Results in transitions of the same name in

different FSMs

l Propagated transitions
– Transitions which are generated as a result

of transitions in other FSMs
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Propagation and Broadcasts
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Inherited State Behavior

l Two approaches to inheritance for
generalization of reactive classes
– Reuse (i.e. inherit) statecharts of parent
– Use custom statecharts for each subclass

l Reuse of statecharts allows
– specialization of existing behaviors
– addition of new states and transitions
– makes automatic code generation possible
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Inherited State Behavior
l Assumes Liskov Substitution Principle

for generalization:
A subclass must be freely substitutable
for the superclass in any operation

l You CAN
– Add new states
– Elaborate substates in inherited states
– Add new transitions and actions

l You CANNOT
– Delete inherited transitions or states
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Inherited State Models
Blower

Dual Speed Blower

Dual Speed 
Multiheat Blower

Off

On

Switch On /
f( )

Switch Off

Off
Switch On / g( )

Switch Off /
h( )
k( )

On

Low
High

Off

Switch On

Switch Off /
k( )

Low

High

On

Cool

Hot

Warm
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FSM Example: VVI Pacemaker

l 2 key objects executing concurrently
– Communications object
– Pacing Engine object

l Each can be modeled as an FSM

l IT IS NOT APPROPRIATE NOT TO
USE CONCURRENCY IN THIS APP
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Pacemaker Object Model

Communication
Coil Driver

«actor»
Programmer

Communication
Gnome

«actor»
Heart

Ventricular
Pacing Engine
Mode
Pacing Rate
Pulse Amplitude
Pulse Width
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Ventricular Pacing Engine States
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Communication Gnome States
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Communication Coil Driver States
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New Pacemaker Spec

l Both Atrial and Ventricular Pacing must
be supported:
– AAI, AAT, VVI, VVT, AVI

l Behavior for AAI is the same as VVI
except it is a different object instance

l Behavior for AAT is the same as VVT
except it is a different object instance

l Atrial behavior in AVI is different from
ventricular behavior
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Pacemaker Inherited States

Communication
Coil Driver«actor»

Programmer

Communication
Gnome

«actor»
Heart

Pacing Engine

Mode
Pacing Rate
Pulse Amplitude
Pulse Width

Ventricular
Pacing Engine

Atrial
Pacing Engine
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Pacing Engine States
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Atrial AVI Mode State
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Ventricular AVI Mode State
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What is shown in Statecharts?

l Complete state space
l Static structural view
l Supports

– Nesting
– Concurrency
– Propagated transitions
– Broadcast Transitions
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Other State Notations

l State Transition Tables
l State Specifications
l Augmented Message Sequence Diagrams
l Timing Diagrams
l Petri Nets
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State Transition Tables

l Arranged as
– Source x Target state
– Source State x Transition

l Statecharts are very good at showing
the structure of the state space

l Tables are very good at identifying
missing transitions

l Shlaer & Mellor say you should do both
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State Table for VVI Engine

Stop Start Done Timeout V Sense Set Param

1 Off - 4 - - - -

2 Refractory 1 - - 4 - -

3 Pacing 1 - 2 - - -

4 Waiting 1 - - 3 4 4

transitions

states
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What’s shown in State Tables?

l Complete state space
l Good for seeing missing/erroneous

transitions
l No concurrency (one thread per table)
l Propagated transitions
l Broadcast transitions
l No actions
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Object (Module) State
Specifications

l Work in conjunction with statecharts
and state tables

l Textual specifications



Bruce Powel Douglass, Ph.D. i-Logix  Page 46

State Specifications
l State

– Name
– Description
– Activities
– Transitions accepted

l Transitions
– Name
– Guards
– Event List
– Actions List
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State Specifications
l Easy to define requirements which are

– Testable
– Traceable (good for TUV, FDA, DoD)

l Can fully describe and define the states
and transitions

l Recommendation: Put all three in a
single object behavioral document
– Statecharts
– State tables
– State specifications
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Augmented Sequence Diagrams

l Dynamic
– Do not show full state space

l Show specific thread through the state
space
– “Scenario”

l Can be augmented with State indicators
l Good for “walking through” behavior
l Do not replace static structural views
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Sequence Diagrams

l Vertical lines represent objects
l Horizontal arrows represent messages

(incl. transitions)
l Time flow from the top of the page

downwards
l Sequence only is shown normally
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Sequence Diagrams
Object 2Object 1 Object 3

msg 1

msg 2

msg 3

Object 4
msg 4

msg 5

msg 6

msg 7

msg 8msg 9

T
im

e
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Augmented Sequence Diagrams
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Adding Time Annotations
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What’s shown in Augmented
Sequence Diagrams?

l Dynamic scenarios
– typically a single state chart will result in

many ASDs

l Good place to add dynamic timing
information

l Not all messages result in state
transitions
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Timing Diagrams
l Familiar

– Used by electrical engineers

l Show state along vertical axis
l Show linear time along horizontal axis
l Depict particular scenarios
l For usage see

– Real-Time UML: Efficient Objects for Embedded
Systems (Addison-Wesley, Oct. 1997)

– Doing Hard Time: Using Object Oriented
Programming and Software Patterns in Real Time
Applications (Addison-Wesley, Spring 1999)



Bruce Powel Douglass, Ph.D. i-Logix  Page 55

Simple Timing Diagram

State

Off

Refractory

Waiting for
V Sense

Pacing

Pace Start Cmd

Ventricular
Sense

Timeout

Done

Timeout

Time
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Complex Timing Diagram

Deadline

Rise
Time

Execution 
Time

Dwell 
Time

Slack TimeLeading
Jitter

Trailing
Jitter

Period

Initiation
Time

Fall
Time
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Example with jitter and rise times

Time

A

B

C

D
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Example with Dwell and Slack

Time

Initiation

Execution

Dwell

Deadline
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Concurrency in Timing Diagrams

l Concurrency can be shown by creating
horizontal “bands” of states
– Usually one band per object

l Shows the timing relationships between
concurrent threads
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Concurrency in Timing Diagrams

Acquiring
Storing

Idle
Inserting
Removing

Off
Acquiring
Scaling
Displaying

Waveform Parameter

Queue

Waveform Display
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Other Applications of Timing
Diagrams

l Show timing relationships of functional
call threads

l Show testable time budgets
l Assist in understanding RMA results
l Shows sequence of states and object

reactions to events



Bruce Powel Douglass, Ph.D. i-Logix  Page 62

What’s shown in Timing
Diagrams?

l Good view of overall time
l Timing of interaction of concurrent

states
l Timing details

– Jitter
– Execution time
– Dwell time
– Slack time
– Rise and Fall time
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Petri Nets
l Petri nets are a generic modeling tool
l FSMs are a special case of Petri nets
l Petri nets are defined as a set of

– Places which hold tokens
– Tokens small filled circles
– Arcs directed lines
– Transitions bars connecting arcs from

places to places

l Petri nets can show concurrency by
permitting multiple tokens
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Petri Net Rules
l A Petri net is executed by moving

tokens
l A transition can fire iff all of its input

places contain tokens
l The firing of a transition

– Removes a token from each input place
– Puts a token in each output place

l The number of tokens a place can hold
is called its capacity
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Simple Petri Net

P1

P2

P3

P4

P5T1
T2

place

token
transition

arc
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Standard Programming Constructs

Sequencing Selection 
(or contention)

Looping

Explicit Control 
Branching

Concurrent threads

T8

T9

T2

T3

T1
T5

T6

T7Explicit Control 
Synchronization

T4
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Pacemaker Petri Net

Comm Off
Idle

Receiving Checking

Sending

Pacing Off

Waiting for
V Sense

RefractoryPacing

Set Parameter
Cmd Received

RSO

RSO

RSO

RSO

PSC
RSO    Reed Switch Opens
PSC    Pace Stop Command PSC

PSC
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Time-Augmented Petri Nets

Queue

Capacity=500

Timer
Interrupt
MIT=32
ms

Read ECG Value
MFF=8

Dequeue ECG Value
MFF=32

Display
Timer
Interupt
MIT=8
ms

Example above shows a queuing model
between two asynchronous threads: 

ECG Waveform acquisition and display
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What’s Shown in Petri Nets?
l Generalized behavior (incl. state behavior)
l Concurrency
l Can be augmented with time
l Many different extensions are available
l Petri nets suffer from

– lack of scalability because they are flat like
Mealy-Moore state models

– lack of tools
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FSMs and Development Process

l FSMs apply to OBJECTS
– Sensor object
– Queue object
– Pacemaker pacing engine object
– Language parser object
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Structured Process

l Identify behavioral functions that exhibit
state behavior

l For each such function, design a FSM
– For each state, define

u Valid transitions
u Actions
u Activities

l Decide on an implementation strategy
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Object Oriented Process

l Identify classes and objects
l Identify which classes have FSMs
l Define a single FSM for each relevant

class
– For each state, define

u Valid transitions
u Actions
u Activities

l Decide on an implementation strategy
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Implementation Strategies

l Case/Switch statements
l FSM Generator
l Centralized state machine
l Separate state machines for each FSM

object
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Case/Switch Statements

Switch (stateVar) {
case state1: ...

break;
case state2: ...

break;
case state3: ...

break;
case default: // invalid state
};
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Case/Switch Statements
Switch (stateVar) {

case state1: switch(transition) {
case T1: ...

break;
case T2: ...

break;
case default: // invalid transition
};
break;
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Centralized State machine

Object 1

State Central

State Table

Transition

New State

Action list

ProcessTransition(...)
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Separate State machines

My Class

FSM Class My Class FSM Class

class myClass: public FSM
{

};

class myClass {
private:

FSM myFSM;
};
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Separate State Machines

Class FSM

Current State

AcceptTransition(t )
ApplyTActions(s )
ApplyEntryActions(s )
ApplyExitActions( s)

State

ID
TransitionList
EntryActionList
Exit ActionList
ActivityList

Transition

ID
Target State
ActionListAction

F( )

1

n

n

n

n

1

1

1
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Summary
l Objects have behavior

– Simple
– Continuous
– State-driven

l Modeling objects as Finite State
Machines simplifies the behavior

l States apply to objects
l FSM Objects spend all their time in

exactly 1 state (which may contain
concurrent substates)
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Summary
l States are disjoint ontological conditions

that persist for a significant period of
time.

l States are defined by one of the
following:
– The values of all attributes of the object
– The values of specific attributes of the

object
– Disjoint behaviors

u Events accepted
u Actions performed
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Summary
l Transitions are the representation of

responses to events within FSMs
l Transitions take an insignificant amount

of time
l Actions are functions which may be

associated with
– Transitions
– State Entry
– State Exit

l Activities are processing that continues
as long as a state is active
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Summary
l Harel Statecharts provide

– Nested States
– Concurrency
– Propagated and Broadcast Transitions
– Orthogonal Components
– Guards on transitions
– Flexible action model
– Activities within states
– History
– Inherited state behavior
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Summary
l Statecharts show static structural view
l State tables show missing transitions
l State specifications are good for defining

testable, traceable requirements
l Sequence diagrams show scenarios
l Timing diagrams show overall timing in

scenarios
l Petri nets are more general and show

static structural view




