
Bruce Powel Douglass, Ph.D. i-Logix Page 1

State Machines and Statecharts

Bruce Powel Douglass, Ph.D.

Bruce Powel Douglass, Ph.D. i-Logix Page 4

All the best lies
are actually true!

Bruce Powel Douglass, Ph.D. i-Logix Page 5

Agenda

l Approach taken for this talk

l Quick Overview of Finite State Machines

l Quick Overview of Harel Statecharts

l Advanced Statechart features

l Other State Notations

Bruce Powel Douglass, Ph.D. i-Logix Page 6

Approach taken for this talk

l This is meant to be a gentle introduction
to states and state machines

l This section will be
– mostly on advanced features of statecharts
– other state representations

l Ask questions if you don’t think your
neighbor is understanding

Bruce Powel Douglass, Ph.D. i-Logix Page 7

Finite State Machine Review

l What’s a STATE?
l What’s a TRANSITION?
l What are the three classes of behavior?
l What kinds of things have state?
l Why model states?

Bruce Powel Douglass, Ph.D. i-Logix Page 8

Simple Example

Bruce Powel Douglass, Ph.D. i-Logix Page 9

Advanced Statechart Features

l Conditional Transitions
l Orthogonal Components
l Concurrency
l Broadcast transitions
l Inherited state behavior

Bruce Powel Douglass, Ph.D. i-Logix Page 10

Conditional Transitions

Bruce Powel Douglass, Ph.D. i-Logix Page 11

Orthogonal Components

l Model state behavior for independent
aspects of objects

l Can be used to model
– concurrency
– independent attributes

l Simplify state diagrams by reducing
“state explosion”

Bruce Powel Douglass, Ph.D. i-Logix Page 12

Orthogonal Components

myInstance: myClass

tColor Color
boolean ErrorStatus
tMode Mode

enum tColor {eRed, eBlue,
 eGreen};

enum boolean {TRUE,
 FALSE}

enum tMode {eNormal,
 eStartup, eDemo}

How do you draw the state of this object?

Bruce Powel Douglass, Ph.D. i-Logix Page 13

Approach 1: Enumerate all

eRed, TRUE,
eDemo

eBlue, FALSE,
eDemo

eGreen, FALSE,
eDemo

eRed, FALSE,
eDemo

eBlue, TRUE,
eDemo

eGreen, TRUE,
eDemo

eRed, TRUE,
eNormal

eBlue, FALSE,
eNormal

eGreen, FALSE,
eNormal

eRed, FALSE,
eNormal

eBlue, TRUE,
eNormal

eGreen, TRUE,
eNormal

eRed, TRUE,
eStartup

eBlue, FALSE,
eStartup

eGreen, FALSE,
eStartup

eRed, FALSE,
eStartup

eBlue, TRUE,
eStartup

eGreen, TRUE,
eStartup

Bruce Powel Douglass, Ph.D. i-Logix Page 14

Approach 2

Bruce Powel Douglass, Ph.D. i-Logix Page 15

What is Concurrency?

l Concurrency is the simultaneous execution
of program statements within a system

l Types:
– Pseudo-concurrency (Single CPU)
– True Concurrency (Multiple CPUs)

Bruce Powel Douglass, Ph.D. i-Logix Page 16

Pseudo-Concurrency

l Heavy-weight (process)
Each process has its own data and
code space

l Light-weight (thread)
Each thread shares a common data and
code space

Bruce Powel Douglass, Ph.D. i-Logix Page 17

Synchronization Models

l Sharing data
– Shared variables
– Message passing

l Types of synchronization
– Synchronous
– Asynchronous
– Balking
– Timeout

Bruce Powel Douglass, Ph.D. i-Logix Page 18

Synchronization Models

l Operations may be
– Guarded
– Synchronous
– Simple (i.e. function calls)

l Events imply
– Asychronicity
– Event queues

Bruce Powel Douglass, Ph.D. i-Logix Page 19

UML Concurrency

l Each thread is based from a single
“active” object

l All components of the active object
inherit the composite’s thread

l Each thread must have its own event
queue

Bruce Powel Douglass, Ph.D. i-Logix Page 20

Concurrent Statecharts
l Many embedded systems consist of

multiple threads, each running an FSM
l State charts allow the modeling of these

parallel threads

A B

C
D

E

S

T

Bruce Powel Douglass, Ph.D. i-Logix Page 21

Concurrent State Charts
l States S and T are active at the same

time as long as X is active.
– Either S.A or S.B must be active when S is

active
– Either T.C, T.D, or T.E must be active

when T is active

A B

C
D

E

S

T

H

X

Y
Z

Bruce Powel Douglass, Ph.D. i-Logix Page 22

Concurrent State Charts
l When X exits, both S and T exit

– If S exits first, the FSM containing X must
wait until T exits

– If the two FSMs are always independent,
then they must be enclosed at the highest
scope

A B

C
D

E

S

T

H

X

Y
Z

Bruce Powel Douglass, Ph.D. i-Logix Page 23

Explicit Synchronization

Starting Finishing

A

B

C

D E

F

G

explicit control
branching

explicit control
resynchronization

Bruce Powel Douglass, Ph.D. i-Logix Page 24

Example Concurrent FSM

Bruce Powel Douglass, Ph.D. i-Logix Page 25

Communication in
Concurrent FSMs

l Broadcast events
– Events received by more than one

concurrent FSM
– Results in transitions of the same name in

different FSMs

l Propagated transitions
– Transitions which are generated as a result

of transitions in other FSMs

Bruce Powel Douglass, Ph.D. i-Logix Page 26

Propagation and Broadcasts

Bruce Powel Douglass, Ph.D. i-Logix Page 27

Inherited State Behavior

l Two approaches to inheritance for
generalization of reactive classes
– Reuse (i.e. inherit) statecharts of parent
– Use custom statecharts for each subclass

l Reuse of statecharts allows
– specialization of existing behaviors
– addition of new states and transitions
– makes automatic code generation possible

Bruce Powel Douglass, Ph.D. i-Logix Page 28

Inherited State Behavior
l Assumes Liskov Substitution Principle

for generalization:
A subclass must be freely substitutable
for the superclass in any operation

l You CAN
– Add new states
– Elaborate substates in inherited states
– Add new transitions and actions

l You CANNOT
– Delete inherited transitions or states

Bruce Powel Douglass, Ph.D. i-Logix Page 29

Inherited State Models
Blower

Dual Speed Blower

Dual Speed
Multiheat Blower

Off

On

Switch On /
f()

Switch Off

Off
Switch On / g()

Switch Off /
h()
k()

On

Low
High

Off

Switch On

Switch Off /
k()

Low

High

On

Cool

Hot

Warm

Bruce Powel Douglass, Ph.D. i-Logix Page 30

FSM Example: VVI Pacemaker

l 2 key objects executing concurrently
– Communications object
– Pacing Engine object

l Each can be modeled as an FSM

l IT IS NOT APPROPRIATE NOT TO
USE CONCURRENCY IN THIS APP

Bruce Powel Douglass, Ph.D. i-Logix Page 31

Pacemaker Object Model

Communication
Coil Driver

«actor»
Programmer

Communication
Gnome

«actor»
Heart

Ventricular
Pacing Engine
Mode
Pacing Rate
Pulse Amplitude
Pulse Width

Bruce Powel Douglass, Ph.D. i-Logix Page 32

Ventricular Pacing Engine States

Bruce Powel Douglass, Ph.D. i-Logix Page 33

Communication Gnome States

Bruce Powel Douglass, Ph.D. i-Logix Page 34

Communication Coil Driver States

Bruce Powel Douglass, Ph.D. i-Logix Page 35

New Pacemaker Spec

l Both Atrial and Ventricular Pacing must
be supported:
– AAI, AAT, VVI, VVT, AVI

l Behavior for AAI is the same as VVI
except it is a different object instance

l Behavior for AAT is the same as VVT
except it is a different object instance

l Atrial behavior in AVI is different from
ventricular behavior

Bruce Powel Douglass, Ph.D. i-Logix Page 36

Pacemaker Inherited States

Communication
Coil Driver«actor»

Programmer

Communication
Gnome

«actor»
Heart

Pacing Engine

Mode
Pacing Rate
Pulse Amplitude
Pulse Width

Ventricular
Pacing Engine

Atrial
Pacing Engine

Bruce Powel Douglass, Ph.D. i-Logix Page 37

Pacing Engine States

Bruce Powel Douglass, Ph.D. i-Logix Page 38

Atrial AVI Mode State

Bruce Powel Douglass, Ph.D. i-Logix Page 39

Ventricular AVI Mode State

Bruce Powel Douglass, Ph.D. i-Logix Page 40

What is shown in Statecharts?

l Complete state space
l Static structural view
l Supports

– Nesting
– Concurrency
– Propagated transitions
– Broadcast Transitions

Bruce Powel Douglass, Ph.D. i-Logix Page 41

Other State Notations

l State Transition Tables
l State Specifications
l Augmented Message Sequence Diagrams
l Timing Diagrams
l Petri Nets

Bruce Powel Douglass, Ph.D. i-Logix Page 42

State Transition Tables

l Arranged as
– Source x Target state
– Source State x Transition

l Statecharts are very good at showing
the structure of the state space

l Tables are very good at identifying
missing transitions

l Shlaer & Mellor say you should do both

Bruce Powel Douglass, Ph.D. i-Logix Page 43

State Table for VVI Engine

Stop Start Done Timeout V Sense Set Param

1 Off - 4 - - - -

2 Refractory 1 - - 4 - -

3 Pacing 1 - 2 - - -

4 Waiting 1 - - 3 4 4

transitions

states

Bruce Powel Douglass, Ph.D. i-Logix Page 44

What’s shown in State Tables?

l Complete state space
l Good for seeing missing/erroneous

transitions
l No concurrency (one thread per table)
l Propagated transitions
l Broadcast transitions
l No actions

Bruce Powel Douglass, Ph.D. i-Logix Page 45

Object (Module) State
Specifications

l Work in conjunction with statecharts
and state tables

l Textual specifications

Bruce Powel Douglass, Ph.D. i-Logix Page 46

State Specifications
l State

– Name
– Description
– Activities
– Transitions accepted

l Transitions
– Name
– Guards
– Event List
– Actions List

Bruce Powel Douglass, Ph.D. i-Logix Page 47

State Specifications
l Easy to define requirements which are

– Testable
– Traceable (good for TUV, FDA, DoD)

l Can fully describe and define the states
and transitions

l Recommendation: Put all three in a
single object behavioral document
– Statecharts
– State tables
– State specifications

Bruce Powel Douglass, Ph.D. i-Logix Page 48

Augmented Sequence Diagrams

l Dynamic
– Do not show full state space

l Show specific thread through the state
space
– “Scenario”

l Can be augmented with State indicators
l Good for “walking through” behavior
l Do not replace static structural views

Bruce Powel Douglass, Ph.D. i-Logix Page 49

Sequence Diagrams

l Vertical lines represent objects
l Horizontal arrows represent messages

(incl. transitions)
l Time flow from the top of the page

downwards
l Sequence only is shown normally

Bruce Powel Douglass, Ph.D. i-Logix Page 50

Sequence Diagrams
Object 2Object 1 Object 3

msg 1

msg 2

msg 3

Object 4
msg 4

msg 5

msg 6

msg 7

msg 8msg 9

T
im

e

Bruce Powel Douglass, Ph.D. i-Logix Page 51

Augmented Sequence Diagrams

Bruce Powel Douglass, Ph.D. i-Logix Page 52

Adding Time Annotations

Bruce Powel Douglass, Ph.D. i-Logix Page 53

What’s shown in Augmented
Sequence Diagrams?

l Dynamic scenarios
– typically a single state chart will result in

many ASDs

l Good place to add dynamic timing
information

l Not all messages result in state
transitions

Bruce Powel Douglass, Ph.D. i-Logix Page 54

Timing Diagrams
l Familiar

– Used by electrical engineers

l Show state along vertical axis
l Show linear time along horizontal axis
l Depict particular scenarios
l For usage see

– Real-Time UML: Efficient Objects for Embedded
Systems (Addison-Wesley, Oct. 1997)

– Doing Hard Time: Using Object Oriented
Programming and Software Patterns in Real Time
Applications (Addison-Wesley, Spring 1999)

Bruce Powel Douglass, Ph.D. i-Logix Page 55

Simple Timing Diagram

State

Off

Refractory

Waiting for
V Sense

Pacing

Pace Start Cmd

Ventricular
Sense

Timeout

Done

Timeout

Time

Bruce Powel Douglass, Ph.D. i-Logix Page 56

Complex Timing Diagram

Deadline

Rise
Time

Execution
Time

Dwell
Time

Slack TimeLeading
Jitter

Trailing
Jitter

Period

Initiation
Time

Fall
Time

Bruce Powel Douglass, Ph.D. i-Logix Page 57

Example with jitter and rise times

Time

A

B

C

D

Bruce Powel Douglass, Ph.D. i-Logix Page 58

Example with Dwell and Slack

Time

Initiation

Execution

Dwell

Deadline

Bruce Powel Douglass, Ph.D. i-Logix Page 59

Concurrency in Timing Diagrams

l Concurrency can be shown by creating
horizontal “bands” of states
– Usually one band per object

l Shows the timing relationships between
concurrent threads

Bruce Powel Douglass, Ph.D. i-Logix Page 60

Concurrency in Timing Diagrams

Acquiring
Storing

Idle
Inserting
Removing

Off
Acquiring
Scaling
Displaying

Waveform Parameter

Queue

Waveform Display

Bruce Powel Douglass, Ph.D. i-Logix Page 61

Other Applications of Timing
Diagrams

l Show timing relationships of functional
call threads

l Show testable time budgets
l Assist in understanding RMA results
l Shows sequence of states and object

reactions to events

Bruce Powel Douglass, Ph.D. i-Logix Page 62

What’s shown in Timing
Diagrams?

l Good view of overall time
l Timing of interaction of concurrent

states
l Timing details

– Jitter
– Execution time
– Dwell time
– Slack time
– Rise and Fall time

Bruce Powel Douglass, Ph.D. i-Logix Page 63

Petri Nets
l Petri nets are a generic modeling tool
l FSMs are a special case of Petri nets
l Petri nets are defined as a set of

– Places which hold tokens
– Tokens small filled circles
– Arcs directed lines
– Transitions bars connecting arcs from

places to places

l Petri nets can show concurrency by
permitting multiple tokens

Bruce Powel Douglass, Ph.D. i-Logix Page 64

Petri Net Rules
l A Petri net is executed by moving

tokens
l A transition can fire iff all of its input

places contain tokens
l The firing of a transition

– Removes a token from each input place
– Puts a token in each output place

l The number of tokens a place can hold
is called its capacity

Bruce Powel Douglass, Ph.D. i-Logix Page 65

Simple Petri Net

P1

P2

P3

P4

P5T1
T2

place

token
transition

arc

Bruce Powel Douglass, Ph.D. i-Logix Page 66

Standard Programming Constructs

Sequencing Selection
(or contention)

Looping

Explicit Control
Branching

Concurrent threads

T8

T9

T2

T3

T1
T5

T6

T7Explicit Control
Synchronization

T4

Bruce Powel Douglass, Ph.D. i-Logix Page 67

Pacemaker Petri Net

Comm Off
Idle

Receiving Checking

Sending

Pacing Off

Waiting for
V Sense

RefractoryPacing

Set Parameter
Cmd Received

RSO

RSO

RSO

RSO

PSC
RSO Reed Switch Opens
PSC Pace Stop Command PSC

PSC

Bruce Powel Douglass, Ph.D. i-Logix Page 68

Time-Augmented Petri Nets

Queue

Capacity=500

Timer
Interrupt
MIT=32
ms

Read ECG Value
MFF=8

Dequeue ECG Value
MFF=32

Display
Timer
Interupt
MIT=8
ms

Example above shows a queuing model
between two asynchronous threads:

ECG Waveform acquisition and display

Bruce Powel Douglass, Ph.D. i-Logix Page 69

What’s Shown in Petri Nets?
l Generalized behavior (incl. state behavior)
l Concurrency
l Can be augmented with time
l Many different extensions are available
l Petri nets suffer from

– lack of scalability because they are flat like
Mealy-Moore state models

– lack of tools

Bruce Powel Douglass, Ph.D. i-Logix Page 70

FSMs and Development Process

l FSMs apply to OBJECTS
– Sensor object
– Queue object
– Pacemaker pacing engine object
– Language parser object

Bruce Powel Douglass, Ph.D. i-Logix Page 71

Structured Process

l Identify behavioral functions that exhibit
state behavior

l For each such function, design a FSM
– For each state, define

u Valid transitions
u Actions
u Activities

l Decide on an implementation strategy

Bruce Powel Douglass, Ph.D. i-Logix Page 72

Object Oriented Process

l Identify classes and objects
l Identify which classes have FSMs
l Define a single FSM for each relevant

class
– For each state, define

u Valid transitions
u Actions
u Activities

l Decide on an implementation strategy

Bruce Powel Douglass, Ph.D. i-Logix Page 73

Implementation Strategies

l Case/Switch statements
l FSM Generator
l Centralized state machine
l Separate state machines for each FSM

object

Bruce Powel Douglass, Ph.D. i-Logix Page 74

Case/Switch Statements

Switch (stateVar) {
case state1: ...

break;
case state2: ...

break;
case state3: ...

break;
case default: // invalid state
};

Bruce Powel Douglass, Ph.D. i-Logix Page 75

Case/Switch Statements
Switch (stateVar) {

case state1: switch(transition) {
case T1: ...

break;
case T2: ...

break;
case default: // invalid transition
};
break;

Bruce Powel Douglass, Ph.D. i-Logix Page 76

Centralized State machine

Object 1

State Central

State Table

Transition

New State

Action list

ProcessTransition(...)

Bruce Powel Douglass, Ph.D. i-Logix Page 77

Separate State machines

My Class

FSM Class My Class FSM Class

class myClass: public FSM
{

};

class myClass {
private:

FSM myFSM;
};

Bruce Powel Douglass, Ph.D. i-Logix Page 78

Separate State Machines

Class FSM

Current State

AcceptTransition(t)
ApplyTActions(s)
ApplyEntryActions(s)
ApplyExitActions(s)

State

ID
TransitionList
EntryActionList
Exit ActionList
ActivityList

Transition

ID
Target State
ActionListAction

F()

1

n

n

n

n

1

1

1

Bruce Powel Douglass, Ph.D. i-Logix Page 79

Summary
l Objects have behavior

– Simple
– Continuous
– State-driven

l Modeling objects as Finite State
Machines simplifies the behavior

l States apply to objects
l FSM Objects spend all their time in

exactly 1 state (which may contain
concurrent substates)

Bruce Powel Douglass, Ph.D. i-Logix Page 80

Summary
l States are disjoint ontological conditions

that persist for a significant period of
time.

l States are defined by one of the
following:
– The values of all attributes of the object
– The values of specific attributes of the

object
– Disjoint behaviors

u Events accepted
u Actions performed

Bruce Powel Douglass, Ph.D. i-Logix Page 81

Summary
l Transitions are the representation of

responses to events within FSMs
l Transitions take an insignificant amount

of time
l Actions are functions which may be

associated with
– Transitions
– State Entry
– State Exit

l Activities are processing that continues
as long as a state is active

Bruce Powel Douglass, Ph.D. i-Logix Page 82

Summary
l Harel Statecharts provide

– Nested States
– Concurrency
– Propagated and Broadcast Transitions
– Orthogonal Components
– Guards on transitions
– Flexible action model
– Activities within states
– History
– Inherited state behavior

Bruce Powel Douglass, Ph.D. i-Logix Page 83

Summary
l Statecharts show static structural view
l State tables show missing transitions
l State specifications are good for defining

testable, traceable requirements
l Sequence diagrams show scenarios
l Timing diagrams show overall timing in

scenarios
l Petri nets are more general and show

static structural view

