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All the best lies
are actually true!
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Agenda

® Approach taken for this talk

® Quick Overview of Finite State Machines
® Quick Overview of Harel Statecharts

® Advanced Statechart features

® Other State Notations
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Approach taken for this talk

® This iIs meant to be a gentle introduction
to states and state machines

® This section will be
— mostly on advanced features of statecharts
— other state representations

® Ask questions If you don’t think your
neighbor Is understanding
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Finite State Machine Review

® What's a STATE?

® What's a TRANSITION?

® \What are the three classes of behavior?
® \What kinds of things have state?

® Why model states?
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Simple Example

ZF Rhapsody - fsmtalk - [Statechart of - Msg_Trangaction]
E File Edit “iew Code Lapout Launch ‘window Options  Help
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Message Ready / Sending

Valid ACK Transmit_Cpunt++

tm(Wait_Time)
[Transmit_Cougnt <= Lj

Waiting Invalid ACK

tm{Wait_Time)
[Transmit_Count > Limit]
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Advanced Statechart Features

® Conditional Transitions
® Orthogonal Components
® Concurrency

® Broadcast transitions

® Inherited state behavior
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Conditional Transitions

£ Rhapsody - fsmtalk - [Statechart of : class_9]
E File Edit “iew Code Lapout Launch ‘window Options Help

DSE] &=@ 228 aa@EE| Ble|8] %]z it

[ Uploading_Data ] Processing_Command

[CMDID{msg) == Upload]

Updating_Parameters ]

[CMDID(msg) == Update]
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Orthogonal Components

® Model state behavior for independent
aspects of objects

® Can be used to model
— concurrency
— Independent attributes

® Simplify state diagrams by reducing
“state explosion”
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Orthogonal Components

mylInstance: myClass

tColor Color
boolean ErrorStatus
tMode Mode

enum tColor {eRed, eBlue,
eGreen};

enum boolean {TRUE,
FALSE}

enum tMode {eNormal,
eStartup, eDemo}

How do you draw the state of this object?

Bruce Powel Douglass, Ph.D.




Approach 1. Enumerate all

‘eRed, FALSE, |
eDemo

\ J

eRed, TRUE, |
eDemo

‘eRed, FALSE, |
eNormal

\ J

eRed, TRUE, |
eNormal

‘eRed, FALSE,
eStartup

‘eBlue, FALSE,)
eDemo

\ J

(eBlue, TRUE, |
eDemo

‘eBlue, FALSE,)
eNormal

\ J

(eBlue, TRUE, |
eNormal

‘eBlue, FALSE,)

eStartup

eGreen, FALSE
eDemo

\.

1

eDemo

\.

eGreen, TRUE, |

eNormal

\.

‘eGreen, FALSE,]

J

eNormal

eGreen, TRUE, |

eStartup

‘eGreen, FALSE,]

eRed, TRUE, [eBlue, TRUE, eGreen, TRUE,
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Approach 2

£ Rhapsody - fsmtalk - [Statechart of : myClass]
E File Edit “iew Code Lapout Launch ‘window Options Help

DSE] &=@ 228 @aEE| Ble|a] %]z oo

myClass
/'(_Dolor Mode
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What i1s Concurrency?

® Concurrency Is the simultaneous execution
of program statements within a system

® Types:
— Pseudo-concurrency (Single CPU)
— True Concurrency (Multiple CPUs)
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Pseudo-Concurrency

® Heavy-weight (process)
Each process has its own data and
code space

® Light-weight (thread)
Each thread shares a common data and
code space
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Synchronization Models

® Sharing data
— Shared variables
— Message passing
® Types of synchronization
— Synchronous
— Asynchronous
— Balking
— Timeout
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Synchronization Models

® Operations may be

— Guarded

— Synchronous

— Simple (i.e. function calls)
® Events imply

— Asychronicity

— Event queues
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UML Concurrency

® Each thread is based from a single
“active” object

® All components of the active object
iInherit the composite’s thread

® Each thread must have its own event
gueue

Bruce Powel Douglass, Ph.D.




Concurrent Statecharts

® Many embedded systems consist of
multiple threads, each running an FSM

@ State charts allow the modeling of these
parallel threads
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Concurrent State Charts

® States S and T are active at the same
time as long as X is active.

— Either S.A or S.B must be active when S iIs
active

— Either T.C, T.D, or T.E must be active

when T Is active

o= L
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Concurrent State Charts

® \When X exits, both S and T exit

— If S exits first, the FSM containing X must
wait until T exits

— If the two FSMs are always independent,
then they must be enclosed at the highest

o= gl
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Explicit Synchronization

B wrrs

A

S =

explicit control explicit control

branchin N
9 resynchronization
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Example Concurrent FSM

Z¥ Rhapsody - fsmtalk - [Statechart of : Concurrent FSM]
E File Edit “iew Code Lapout Launch Window Optionz Help

D|S|E| %28 2|2 @la|sE| Ble]8] x| =] [osmicors

System

Application_Subsystem
Running \\

Switch to OR Startip
‘ i owitch to OFF [

lPDST Complete

Error | Erroar Detected [ Operatimna]

\.

/

| Power_Subsystern

Battery Maing On- Lme Mains
Mains Off- Lme

B
=
A
N
L
|
&1
©
[
L ]
5]
9

Bruce Powel Douglass, Ph.D.




Communication In

Concurrent FSMs

® Broadcast events

— Events received by more than one
concurrent FSM

— Results In transitions of the same name In
different FSMs

® Propagated transitions

— Transitions which are generated as a result
of transitions in other FSMs
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Propagation and Broadcasts

£ Rhapsody - fsmtalk - [Statechart of : 5]
E FEile Edit “iew Code Lavout Launch ‘window Options Help

DSE] &=@ 228 aa@E Ble|a] X] & et

S
#~ S_Component_1 [ S_Component_3

|Zoam In

Bruce Powel Douglass, Ph.D.




Inherited State Behavior

® Two approaches to inheritance for
generalization of reactive classes

— Reuse (i.e. inherit) statecharts of parent

— Use custom statecharts for each subclass
® Reuse of statecharts allows

— specialization of existing behaviors

— addition of new states and transitions

— makes automatic code generation possible
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Inherited State Behavior

® Assumes Liskov Substitution Principle
for generalization:
A subclass must be freely substitutable
for the superclass in any operation

® You CAN

— Add new states
— Elaborate substates in inherited states
— Add new transitions and actions

® You CANNOT
— Delete inherited transitions or states
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FSM Example: VVI Pacemaker

® 2 key objects executing concurrently
— Communications object
— Pacing Engine object

® Each can be modeled as an FSM

@ IT IS NOT APPROPRIATE NOT TO
USE CONCURRENCY IN THIS APP
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Pacemaker Object Model

«actor»
Programmer g

SV >
>\
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Pacing Engine
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Ventricular Pacing Engine States

E_?_-:Eiffﬂhapsndy - famtalk - [Statechart of - ¥entricular Pacing Engine]
E File Edit ‘“iew Code Lapout Launch ‘window Options  Help

D] %= &2 @la|@E] Ble|8] %] =] peuitor

tm(PulseVidth)
Disable Pace Electronics

Pace Start Cmd

tm(RefractoryTime) /
Off < EnableSensor( )

Pace Stop Cmd

tm(SenseTime) /
Disconnect Sensor
Enable Pace Electronics

B et Parameters /
Waiting_for_Sense| Activate for next cycle

V Sense

|Zoam |n
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Communication Gnome States

E’_:-_-‘:Eiffﬂhapsudy - umltalk? - [Statechart of : Communication Gnome]
E File Edit %ew Code Layout Launch ‘Window Ophion:  Help
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Enabled
4 Transmitting

tm(MsgT|me) Waiting_for_Msg_Timeout

Enable Comm \
/" Receiving N

/ ByteRecegiyed| | tm(ByteTime) I“SDDHEO]
Disabled fj
Waiting_for_Byte Waiting_for_Bvte Req ]\'
\ tm(ByteTime) \_ Y,

Disable Comm Validating

Processing [isValid(msg)]
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Communication Coll Driver States

-1 'RHhapzody - umltalk?_szav - [Statechart of : Communication Coil Driver]
E File Edt “iew Code Lapout Launch Window Options Help
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tm(bit\Wait) /
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Waiting_for_Bit
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New Pacemaker Spec

@ Both Atrial and Ventricular Pacing must
be supported:

— AAIl, AAT, VVI, VVT, AVI

® Behavior for AAl Is the same as VVI
except it Is a different object instance

® Behavior for AAT Is the same as VVT
except it Is a different object instance

® Atrial behavior in AVI Is different from
ventricular behavior
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Pacemaker Inherited States

Communication
«actor» Coll Driver

Programmer

Communication
Gnome

Pacing Engine

Mode

Pacing Rate
Pulse Amplitude
Pulse Width

Ventricular Atrial
Pacing Engine Pacing Engine

«actor»
Heart
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Pacing Engine States

:'/,:v Rhapzody by i-Logix Inc. - [Statechart of Chamber Model]
E File Edt “iew Code Layout Launch “Window Options  Help
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Atrial AVI Mode State

_kpg‘.ﬁhapsu_dy by i-Logix Inc. - [Statechart of Atrial Model]
E File Edit ‘“iew Code Lapout Launch ‘wWindow Options  Help
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Ventricular AVI Mode State

_kpg‘.ﬁhapsu_dy by i-Logix Inc. - [Statechart of Yentricular Model]
E File Edit ‘“iew Code Lapout Launch ‘wWindow Options  Help
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What Is shown In Statecharts?

® Complete state space
@ Static structural view

® Supports
— Nesting
— Concurrency
— Propagated transitions
— Broadcast Transitions
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Other State Notations

@ State Transition Tables

® State Specifications

® Augmented Message Seguence Diagrams
® Timing Diagrams

® Petri Nets
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State Transition Tables

® Arranged as
— Source x Target state
— Source State x Transition

@ Statecharts are very good at showing
the structure of the state space

® Tables are very good at identifying
missing transitions

® Shlaer & Mellor say you should do both
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State Table for VVI Engine

transitions
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What’s shown In State Tables?

® Complete state space

® Good for seeing missing/erroneous
transitions

® No concurrency (one thread per table)
® Propagated transitions

® Broadcast transitions

® No actions
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Object (Module) State
Specifications

@ \Work Iin conjunction with statecharts
and state tables

® Textual specifications
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State Specifications

@ State
— Name
— Description
— Activities

— Transitions accepted

® Transitions
— Name
— Guards
— Event List
— Actions List
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State Specifications

® Easy to define requirements which are

— Testable
— Traceable (good for TUV, FDA, DoD)

@ Can fully describe and define the states
and transitions

® Recommendation: Put all three in a
single object behavioral document

— Statecharts
— State tables
— State specifications
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Augmented Seguence Diagrams

® Dynamic
— Do not show full state space

® Show specific thread through the state
space
— “Scenario”
® Can be augmented with State indicators
@ Good for “walking through” behavior

® Do not replace static structural views
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Sequence Diagrams

@ Vertical lines represent objects

® Horizontal arrows represent messages
(incl. transitions)

® Time flow from the top of the page
downwards

® Sequence only Is shown normally
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Sequence Diagrams
Object 2

Object 1

msg 1

msg 3

>

msg 2

Object 3

msg 4

Object 4

>

msg 5

<

msg 6

>
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Auamented Sequence Diac rams

*L Rhapsody - Project - [Sequence Diagram: MSC1]

H‘Fle Edit ¥iew Code Launch Mindow Options Help
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Pacing_Engine Pace_Timer Ventricular_Sensor
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acing Rate Time()
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II(PL”SG Width Timeq
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tm(Refractory Timej

acing Rate Time()
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FaorHelp, press F1
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Adding Time Annotatlons

-~ Rhapeody - Propect - [Sequence Diagram; MSCZ]

HEI Edil Mew Code Launch Sndow  Opions  Help
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What’s shown in Augmented
Sequence Diagrams?

® Dynamic scenarios

— typically a single state chart will result in
many ASDs

® Good place to add dynamic timing
iInformation

® Not all messages result in state
transitions
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Timing Diagrams

@ Familiar
— Used by electrical engineers

® Show state along vertical axis
® Show linear time along horizontal axis
® Depict particular scenarios

® For usage see

— Real-Time UML.: Efficient Objects for Embedded
Systems (Addison-Wesley, Oct. 1997)

— Doing Hard Time: Using Object Oriented
Programming and Software Patterns in Real Time
Applications (Addison-Wesley, Spring 1999)
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Simple Timing Diagram

Done

Pacing e

Timeout
Waiting for AN
V Sense

AN
Refractory Ventricular
Sense

Off S

Pace Start Cmd

Time ——
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Complex Timing Diagram

Initiation Trailing

T\ me fi tjer
Deadline

Executlon DweII ==
Time Time

Slack Time
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Example with jitter and rise times




Example with Dwell and Slack

Initiation

. Execution

Dwell
| Deadline

Bruce Powel Douglass, Ph.D.




Concurrency in Timing Diagrams

® Concurrency can be shown by creating
horizontal “bands” of states

— Usually one band per object

® Shows the timing relationships between
concurrent threads
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Concurrency in Timing Diagrams

Waveform Parameter

Acquiring
Storing

Inserting
Removing

Waveform Display

Acquiring
Scaling ‘ ‘L‘
Displaying
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Other Applications of Timing
Diagrams

® Show timing relationships of functional
call threads

® Show testable time budgets
® Assist In understanding RMA resu

® Shows sequence of states and obj
reactions to events
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What’s shown in Timing
Diagrams?
® Good view of overall time

® Timing of interaction of concurrent
states

® Timing detalls
— Jitter
— Execution time
— Dwell time
— Slack time
— Rise and Fall time
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Petri Nets

Petri nets are a generic modeling tool
~SMs are a special case of Petri nets

Petrl nets are defined as a set of
— Places which hold tokens
— Tokens small filled circles

— Arcs directed lines

— Transitions bars connecting arcs from
places to places

® Petri nets can show concurrency by
permitting multiple tokens
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Petri Net Rules

® A Petri net Is executed by moving
tokens

® A transition can fire iff all of its input
places contain tokens

® The firing of a transition
— Removes a token from each input place
— Puts a token in each output place

® The number of tokens a place can hold
IS called its capacity

Bruce Powel Douglass, Ph.D. I-Logix




Simple Petri Net

Bruce Powel Douglass, Ph.D.




Standard Programming Constructs

@<t@ @5<

Explicit Control

' & t
Sequencing ection Branching

(or contention)

T

el S

Explicit Control Looping Concur rent threads
Synchronization

Bruce Powel Douglass, Ph.D. I-Logix Page 66




Pacemaker Petri Net

Checking

Set Parameter

Cmd Received
RSO Reed Switch Opens

PSC Pace Stop Command

Pacing Off

‘\I Paci ”g Refractory
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Time-Augmented Petri Nets

Timer

Interrupt @

A

MIT=32
ms

(@

Read ECG Value

=)

MEE=8 Capacity=500 MFF=32

Display
Timer

| nterupt
MIT=8
ms

Dequeue ECG Value

-~

-

Example above shows a queuing model
between two asynchronous threads:
ECG Waveform acquisition and display

\

J
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What’s Shown In Petri Nets?

® Generalized behavior (incl. state behavior)
® Concurrency

® Can be augmented with time

® Many different extensions are available

® Petri nets suffer from

— lack of scalability because they are flat like
Mealy-Moore state models

— lack of tools
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FSMs and Development Process

® FSMs apply to OBJECTS
— Sensor object
— Queue object
— Pacemaker pacing engine object
— Language parser object
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Structured Process

@ ldentify behavioral functions that exhibit
state behavior

@ For each such function, design a FSM

— For each state, define
+ Valid transitions
¢ Actions
¢ Activities

® Decide on an implementation strategy
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Object Oriented Process

® ldentify classes and objects
@ ldentify which classes have FSMs
® Define a single FSM for each relevant

class

— For each state, define
+ Valid transitions
¢ Actions
¢ Activities

® Decide on an implementation strategy
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Implementation Strategies

® Case/Switch statements
® FSM Generator
® Centralized state machine

® Separate state machines for each FSM
object
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Case/Switch Statements

Switch (stateVar) {
case statel.:
break;
case state?:
break;
case states:

break;
case default: /I Invalid state
};
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Case/Switch Statements

Switch (stateVar) {
case statel: switch(transition) {
case T1l. ..
break;
case 2.

break;
case default: // invalid transition
};
break:
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Centralized State machine

.\;I' ransition

ProcessTransition(...)

State Central
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Separate State machines

FSM Class

e

My Class

My Class & FSM Class

class myClass: public FSM
{

};

class myClass {
private:
FSM myFSM;

};
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Separate State Machines

State

ID

Current State TransitionList
EntryActionList
AcceptTransition(t ) Exit ActionList
ApplyTActions(s ) ActivityList n
ApplyEntryActions(s ) ‘ Transition

Class FSM

ApplyEXxitActions( s) 1
n |D

_ Target State
Action ActionList

20

Bruce Powel Douglass, Ph.D. I-Logix




summary

® ODbjects have behavior
— Simple
— Continuous
— State-driven

® Modeling objects as Finite State
Machines simplifies the behavior

@ States apply to objects

® FSM Objects spend all their time In
exactly 1 state (which may contain
concurrent substates)
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summary

@ States are disjoint ontological conditions
that persist for a significant period of
time.

@ States are defined by one of the
following:

ne values of all attributes of the object

ne values of specific attributes of the
nject
— Disjoint behaviors

+ Events accepted
¢ Actions performed
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summary

® Transitions are the representation of
responses to events within FSMs

@ Transitions take an insignificant amount
of time

® Actions are functions which may be

assoclated with
— Transitions

— State Entry

— State Exit

® Activities are processing that continues
as long as a state Is active
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Ssummary

@ Harel Statecharts provide
— Nested States
— Concurrency
— Propagated and Broadcast Transitions
— Orthogonal Components
— Guards on transitions
— Flexible action model
— Activities within states
— History
— Inherited state behavior

Bruce Powel Douglass, Ph.D. I-Logix




Ssummary

® Statecharts show static structural view
@ State tables show missing transitions

@ State specifications are good for defining
testable, traceable requirements

® Sequence diagrams show scenarios

® Timing diagrams show overall timing In
scenarios

@ Petri nets are more general and show
static structural view
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