State Machines and Statecharts

' Embedded Systems and Software Design Automation

Bruce Powel Douglass, Ph.D.

Bruce Powel Douglass, Ph.D. I-Logix

Bruce Powel Douglass, Ph.D.

All the best lies
are actually true!

:

Agenda

® Approach taken for this talk

® Quick Overview of Finite State Machines
® Quick Overview of Harel Statecharts

® Advanced Statechart features

® Other State Notations

Bruce Powel Douglass, Ph.D. I-Logix

Approach taken for this talk

® This iIs meant to be a gentle introduction
to states and state machines

® This section will be
— mostly on advanced features of statecharts
— other state representations

® Ask questions If you don’t think your
neighbor Is understanding

Bruce Powel Douglass, Ph.D. I-Logix

Finite State Machine Review

® What's a STATE?

® What's a TRANSITION?

® \What are the three classes of behavior?
® \What kinds of things have state?

® Why model states?

Bruce Powel Douglass, Ph.D.

Simple Example

ZF Rhapsody - fsmtalk - [Statechart of - Msg_Trangaction]
E File Edit “iew Code Lapout Launch ‘window Options Help

D|S(=] & 2e 22 @lalm|E] Ble|8] %] =] et

Message Ready / Sending

Valid ACK Transmit_Cpunt++

tm(Wait_Time)
[Transmit_Cougnt <= Lj

Waiting Invalid ACK

tm{Wait_Time)
[Transmit_Count > Limit]

Bruce Powel Douglass, Ph.D.

Advanced Statechart Features

® Conditional Transitions
® Orthogonal Components
® Concurrency

® Broadcast transitions

® Inherited state behavior

Bruce Powel Douglass, Ph.D.

Conditional Transitions

£ Rhapsody - fsmtalk - [Statechart of : class_9]
E File Edit “iew Code Lapout Launch ‘window Options Help

DSE] &=@ 228 aa@EE| Ble|8] %]z it

[Uploading_Data] Processing_Command

[CMDID{msg) == Upload]

Updating_Parameters]

[CMDID(msg) == Update]

5
=]
Al
N
hel
A
51
©
9|
L]
[
L

Bruce Powel Douglass, Ph.D.

Orthogonal Components

® Model state behavior for independent
aspects of objects

® Can be used to model
— concurrency
— Independent attributes

® Simplify state diagrams by reducing
“state explosion”

Bruce Powel Douglass, Ph.D.

Orthogonal Components

mylInstance: myClass

tColor Color
boolean ErrorStatus
tMode Mode

enum tColor {eRed, eBlue,
eGreen};

enum boolean {TRUE,
FALSE}

enum tMode {eNormal,
eStartup, eDemo}

How do you draw the state of this object?

Bruce Powel Douglass, Ph.D.

Approach 1. Enumerate all

‘eRed, FALSE, |
eDemo

\ J

eRed, TRUE, |
eDemo

‘eRed, FALSE, |
eNormal

\ J

eRed, TRUE, |
eNormal

‘eRed, FALSE,
eStartup

‘eBlue, FALSE,)
eDemo

\ J

(eBlue, TRUE, |
eDemo

‘eBlue, FALSE,)
eNormal

\ J

(eBlue, TRUE, |
eNormal

‘eBlue, FALSE,)

eStartup

eGreen, FALSE
eDemo

\.

1

eDemo

\.

eGreen, TRUE, |

eNormal

\.

‘eGreen, FALSE,]

J

eNormal

eGreen, TRUE, |

eStartup

‘eGreen, FALSE,]

eRed, TRUE, [eBlue, TRUE, eGreen, TRUE,
Bruce eStartup, ., eStartup pege 13

Approach 2

£ Rhapsody - fsmtalk - [Statechart of : myClass]
E File Edit “iew Code Lapout Launch ‘window Options Help

DSE] &=@ 228 @aEE| Ble|a] %]z oo

myClass
/'(_Dolor Mode

5
=]
Al
N
hel
A
51
©
9|
L]
[
L

ErrorStatus

N~

.

Bruce Powel Douglass, Ph.D.

What i1s Concurrency?

® Concurrency Is the simultaneous execution
of program statements within a system

® Types:
— Pseudo-concurrency (Single CPU)
— True Concurrency (Multiple CPUs)

Bruce Powel Douglass, Ph.D.

Pseudo-Concurrency

® Heavy-weight (process)
Each process has its own data and
code space

® Light-weight (thread)
Each thread shares a common data and
code space

Bruce Powel Douglass, Ph.D.

Synchronization Models

® Sharing data
— Shared variables
— Message passing
® Types of synchronization
— Synchronous
— Asynchronous
— Balking
— Timeout

Bruce Powel Douglass, Ph.D.

Synchronization Models

® Operations may be

— Guarded

— Synchronous

— Simple (i.e. function calls)
® Events imply

— Asychronicity

— Event queues

Bruce Powel Douglass, Ph.D.

UML Concurrency

® Each thread is based from a single
“active” object

® All components of the active object
iInherit the composite’s thread

® Each thread must have its own event
gueue

Bruce Powel Douglass, Ph.D.

Concurrent Statecharts

® Many embedded systems consist of
multiple threads, each running an FSM

@ State charts allow the modeling of these
parallel threads

Bruce Powel Douglass, Ph.D.

Concurrent State Charts

® States S and T are active at the same
time as long as X is active.

— Either S.A or S.B must be active when S iIs
active

— Either T.C, T.D, or T.E must be active

when T Is active

o= L

Bruce Powel Douglass, Ph.D.

Concurrent State Charts

® \When X exits, both S and T exit

— If S exits first, the FSM containing X must
wait until T exits

— If the two FSMs are always independent,
then they must be enclosed at the highest

o= gl

Bruce Powel Douglass, Ph.D.

Explicit Synchronization

B wrrs

A

S =

explicit control explicit control

branchin N
9 resynchronization
Bruce Powel Douglass, Ph.D. Page 23

Example Concurrent FSM

Z¥ Rhapsody - fsmtalk - [Statechart of : Concurrent FSM]
E File Edit “iew Code Lapout Launch Window Optionz Help

D|S|E| %28 2|2 @la|sE| Ble]8] x| =] [osmicors

System

Application_Subsystem
Running \\

Switch to OR Startip
‘ i owitch to OFF [

lPDST Complete

Error | Erroar Detected [Operatimna]

\.

/

| Power_Subsystern

Battery Maing On- Lme Mains
Mains Off- Lme

B
=
A
N
L
|
&1
©
[
L]
5]
9

Bruce Powel Douglass, Ph.D.

Communication In

Concurrent FSMs

® Broadcast events

— Events received by more than one
concurrent FSM

— Results In transitions of the same name In
different FSMs

® Propagated transitions

— Transitions which are generated as a result
of transitions in other FSMs

Bruce Powel Douglass, Ph.D.

Propagation and Broadcasts

£ Rhapsody - fsmtalk - [Statechart of : 5]
E FEile Edit “iew Code Lavout Launch ‘window Options Help

DSE] &=@ 228 aa@E Ble|a] X] & et

S
#~ S_Component_1 [S_Component_3

|Zoam In

Bruce Powel Douglass, Ph.D.

Inherited State Behavior

® Two approaches to inheritance for
generalization of reactive classes

— Reuse (i.e. inherit) statecharts of parent

— Use custom statecharts for each subclass
® Reuse of statecharts allows

— specialization of existing behaviors

— addition of new states and transitions

— makes automatic code generation possible

Bruce Powel Douglass, Ph.D. I-Logix

Inherited State Behavior

® Assumes Liskov Substitution Principle
for generalization:
A subclass must be freely substitutable
for the superclass in any operation

® You CAN

— Add new states
— Elaborate substates in inherited states
— Add new transitions and actions

® You CANNOT
— Delete inherited transitions or states

Bruce Powel Douglass, Ph.D. I-Logix

_

Switch On/
f()

-~

SwitchOn/g()
Off

Switch Off /

h()

\ k()

Bruce Powel Douglass, Ph.D.

Inherited State Models
I

Blower

AN

Dual Speed Blower

AN

Dual Speed
Multiheat Blower

/

A

Switch Off /

\

Switch On

k()

FSM Example: VVI Pacemaker

® 2 key objects executing concurrently
— Communications object
— Pacing Engine object

® Each can be modeled as an FSM

@ IT IS NOT APPROPRIATE NOT TO
USE CONCURRENCY IN THIS APP

Bruce Powel Douglass, Ph.D. I-Logix

Pacemaker Object Model

«actor»
Programmer g

SV >
>\

Bruce Powel Douglass, Ph.D.

Communication

Coil Driver

Communication
Gnome

Ventricular
Pacing Engine

Mode

Pacing Rate
Pulse Amplitude
Pulse Width

«actor»
Heart

Ventricular Pacing Engine States

E_?_-:Eiffﬂhapsndy - famtalk - [Statechart of - ¥entricular Pacing Engine]
E File Edit ‘“iew Code Lapout Launch ‘window Options Help

D] %= &2 @la|@E] Ble|8] %] =] peuitor

tm(PulseVidth)
Disable Pace Electronics

Pace Start Cmd

tm(RefractoryTime) /
Off < EnableSensor()

Pace Stop Cmd

tm(SenseTime) /
Disconnect Sensor
Enable Pace Electronics

B et Parameters /
Waiting_for_Sense| Activate for next cycle

V Sense

|Zoam |n

Bruce Powel Douglass, Ph.D.

Communication Gnome States

E’_:-_-‘:Eiffﬂhapsudy - umltalk? - [Statechart of : Communication Gnome]
E File Edit %ew Code Layout Launch ‘Window Ophion: Help

D=E| &(=el S(2|v a|alElE] Bje8] X|#] [odiconis =

Enabled
4 Transmitting

tm(MsgT|me) Waiting_for_Msg_Timeout

Enable Comm \
/" Receiving N

/ ByteRecegiyed| | tm(ByteTime) I“SDDHEO]
Disabled fj
Waiting_for_Byte Waiting_for_Bvte Req]\'
\ tm(ByteTime) _ Y,

Disable Comm Validating

Processing [isValid(msg)]

Bruce Powel Douglass, Ph.D.

Communication Coll Driver States

-1 'RHhapzody - umltalk?_szav - [Statechart of : Communication Coil Driver]
E File Edt “iew Code Lapout Launch Window Options Help

D]ﬁiﬂi E. %i?iﬂj aiailﬁiﬁj iﬁ]@j Xil‘ri iDefauItEanig :_j

Transmit Byte Ready Waiting_to_Transmi}

2lse] / tm(trans\Vait)
get next bit

Pulsg Transition /
timekE 0O

byteTime) tm{trangBitTime)

Pulse Transition / Transmitting_Bit

Receiving_Bit| time++
3

R
o
Al
Ny
=
o
[
©|
)
L]
[5)
L

tm(bit\Wait) /
Pulse bit = decode(time)
tion 1shift in bit

Trans
k #if byte full, enqueue to Gnome

Waiting_for_Bit

Bruce Powel Douglass, Ph.D.

New Pacemaker Spec

@ Both Atrial and Ventricular Pacing must
be supported:

— AAIl, AAT, VVI, VVT, AVI

® Behavior for AAl Is the same as VVI
except it Is a different object instance

® Behavior for AAT Is the same as VVT
except it Is a different object instance

® Atrial behavior in AVI Is different from
ventricular behavior

Bruce Powel Douglass, Ph.D.

Pacemaker Inherited States

Communication
«actor» Coll Driver

Programmer

Communication
Gnome

Pacing Engine

Mode

Pacing Rate
Pulse Amplitude
Pulse Width

Ventricular Atrial
Pacing Engine Pacing Engine

«actor»
Heart

Bruce Powel Douglass, Ph.D.

Pacing Engine States

:'/,:v Rhapzody by i-Logix Inc. - [Statechart of Chamber Model]
E File Edt “iew Code Layout Launch “Window Options Help

Dlﬁlnl CI'!{'llgl %l?lkﬁ?l @l|@\|lﬁl|ﬁ| |ﬁ||§|| I><'."|_-'3“'| IDEfaultEanig j

LY
]
2]
A
il
e
5]
©
®
2
@
®

Toldle

~

Tolnhibited

/

2n

.

Fefractory

Self Inhibited
tmiFulse\Width)

tmi{senseTime)

Sense)

Refractory

Self Triggered N
tm{Pulse\yidth)

r

tm{SenseTime)

YWyaiting

Sense

?

ToDwal

VToTri ggered

Bruce Powel Douglass, Ph.D.

|Znam In

Atrial AVI Mode State

_kpg‘.ﬁhapsu_dy by i-Logix Inc. - [Statechart of Atrial Model]
E File Edit ‘“iew Code Lapout Launch ‘wWindow Options Help

Dlﬁlnl CHJ'IEII %P?Wﬂ @|Q|IE||E| IP'E' ><|_-'3"| IDEfauItEnnfig

/ Atrial Pacing Engine AV Mode

Refractory Atrial Pacing Done

W Refractory Done

tmiY Sense Time) *
Atrial Pacing Start

K
o
A
N
)
&
i)
©
®
[
®
)

YWaiting for Sense
Set Parameters /

Activate for Mext Cycle

Bruce Powel Douglass, Ph.D.

Ventricular AVI Mode State

_kpg‘.ﬁhapsu_dy by i-Logix Inc. - [Statechart of Yentricular Model]
E File Edit ‘“iew Code Lapout Launch ‘wWindow Options Help

Dlﬁlnl CHJ'IEII %P?Wﬂ @|Q|IE||E| IP'E' ><|_-'3"| IDEfauItEnnfig

/ Ventricular Pacing Engine AV| Mode

Refractory Atrial Paci ne

tm{refractoryTime) * .
efractory Done / Waiting for A Pace

Enable Sensor

Atrial Pacing Start

K
o
A
N
)
&
i)
©
®
[
®
)

Set Parameters /
Activate for Next Cycle

Bruce Powel Douglass, Ph.D.

What Is shown In Statecharts?

® Complete state space
@ Static structural view

® Supports
— Nesting
— Concurrency
— Propagated transitions
— Broadcast Transitions

Bruce Powel Douglass, Ph.D.

Other State Notations

@ State Transition Tables

® State Specifications

® Augmented Message Seguence Diagrams
® Timing Diagrams

® Petri Nets

Bruce Powel Douglass, Ph.D.

State Transition Tables

® Arranged as
— Source x Target state
— Source State x Transition

@ Statecharts are very good at showing
the structure of the state space

® Tables are very good at identifying
missing transitions

® Shlaer & Mellor say you should do both

Bruce Powel Douglass, Ph.D. I-Logix

State Table for VVI Engine

transitions

Bruce Powel Douglass, Ph.D.

What’s shown In State Tables?

® Complete state space

® Good for seeing missing/erroneous
transitions

® No concurrency (one thread per table)
® Propagated transitions

® Broadcast transitions

® No actions

Bruce Powel Douglass, Ph.D.

Object (Module) State
Specifications

@ \Work Iin conjunction with statecharts
and state tables

® Textual specifications

Bruce Powel Douglass, Ph.D.

State Specifications

@ State
— Name
— Description
— Activities

— Transitions accepted

® Transitions
— Name
— Guards
— Event List
— Actions List

Bruce Powel Douglass, Ph.D.

State Specifications

® Easy to define requirements which are

— Testable
— Traceable (good for TUV, FDA, DoD)

@ Can fully describe and define the states
and transitions

® Recommendation: Put all three in a
single object behavioral document

— Statecharts
— State tables
— State specifications

Bruce Powel Douglass, Ph.D. I-Logix

Augmented Seguence Diagrams

® Dynamic
— Do not show full state space

® Show specific thread through the state
space
— “Scenario”
® Can be augmented with State indicators
@ Good for “walking through” behavior

® Do not replace static structural views

Bruce Powel Douglass, Ph.D.

Sequence Diagrams

@ Vertical lines represent objects

® Horizontal arrows represent messages
(incl. transitions)

® Time flow from the top of the page
downwards

® Sequence only Is shown normally

Bruce Powel Douglass, Ph.D.

Sequence Diagrams
Object 2

Object 1

msg 1

msg 3

>

msg 2

Object 3

msg 4

Object 4

>

msg 5

<

msg 6

>

Bruce Powel Douglass, Ph.D.

Auamented Sequence Diac rams

*L Rhapsody - Project - [Sequence Diagram: MSC1]

H‘Fle Edit ¥iew Code Launch Mindow Options Help

D@ P sz @lalmEEl Blela] X[=] [Deeurconis =l

Pacing_Engine Pace_Timer Ventricular_Sensor

I:’acing Rate Time()

Ventricular Event()

N 0 o 2 o 7|

acing Rate Time()

®ading
Pulse Width Time()

tthacing Rate Time]

II(PL”SG Width Timeq

Refrz ctory

Refractory Time()

tm(Refractory Timej

acing Rate Time()

]

>

I%|

FaorHelp, press F1

Bruce Powe Duouyiass, Fii.u.

I [[\Wed, 18 Feh 98 [12:52 PM 2
I-LUYIX

Adding Time Annotatlons

-~ Rhapeody - Propect - [Sequence Diagram; MSCZ]

HEI Edil Mew Code Launch Sndow Opions Help

= O = e Y s i = S |
[~

Pacing_Engine Pacing_Timer Ventricular_Sensor

F’acing_Rate_TimeQ

Ventricular_Event()

b

{800 ms +/-10ms}

Ventricular_Event() .

Pulse_Width_Time()

{b-a<2ms}

=]
=

[

Bruce Powel Douglass, Ph.D.

What’s shown in Augmented
Sequence Diagrams?

® Dynamic scenarios

— typically a single state chart will result in
many ASDs

® Good place to add dynamic timing
iInformation

® Not all messages result in state
transitions

Bruce Powel Douglass, Ph.D.

Timing Diagrams

@ Familiar
— Used by electrical engineers

® Show state along vertical axis
® Show linear time along horizontal axis
® Depict particular scenarios

® For usage see

— Real-Time UML.: Efficient Objects for Embedded
Systems (Addison-Wesley, Oct. 1997)

— Doing Hard Time: Using Object Oriented
Programming and Software Patterns in Real Time
Applications (Addison-Wesley, Spring 1999)

Bruce Powel Douglass, Ph.D. I-Logix Page 54

Simple Timing Diagram

Done

Pacing e

Timeout
Waiting for AN
V Sense

AN
Refractory Ventricular
Sense

Off S

Pace Start Cmd

Time ——
Bruce Powel Douglass, Ph.D. I-Logix

Complex Timing Diagram

Initiation Trailing

T\ me fi tjer
Deadline

Executlon DweII ==
Time Time

Slack Time

Bruce Powel Douglass, Ph.D.

Example with jitter and rise times

Example with Dwell and Slack

Initiation

. Execution

Dwell
| Deadline

Bruce Powel Douglass, Ph.D.

Concurrency in Timing Diagrams

® Concurrency can be shown by creating
horizontal “bands” of states

— Usually one band per object

® Shows the timing relationships between
concurrent threads

Bruce Powel Douglass, Ph.D.

Concurrency in Timing Diagrams

Waveform Parameter

Acquiring
Storing

Inserting
Removing

Waveform Display

Acquiring
Scaling ‘ ‘L‘
Displaying

Bruce Powel Douglass, Ph.D.

Other Applications of Timing
Diagrams

® Show timing relationships of functional
call threads

® Show testable time budgets
® Assist In understanding RMA resu

® Shows sequence of states and obj
reactions to events

Bruce Powel Douglass, Ph.D.

What’s shown in Timing
Diagrams?
® Good view of overall time

® Timing of interaction of concurrent
states

® Timing detalls
— Jitter
— Execution time
— Dwell time
— Slack time
— Rise and Fall time

Bruce Powel Douglass, Ph.D.

Petri Nets

Petri nets are a generic modeling tool
~SMs are a special case of Petri nets

Petrl nets are defined as a set of
— Places which hold tokens
— Tokens small filled circles

— Arcs directed lines

— Transitions bars connecting arcs from
places to places

® Petri nets can show concurrency by
permitting multiple tokens

Bruce Powel Douglass, Ph.D. I-Logix

Petri Net Rules

® A Petri net Is executed by moving
tokens

® A transition can fire iff all of its input
places contain tokens

® The firing of a transition
— Removes a token from each input place
— Puts a token in each output place

® The number of tokens a place can hold
IS called its capacity

Bruce Powel Douglass, Ph.D. I-Logix

Simple Petri Net

Bruce Powel Douglass, Ph.D.

Standard Programming Constructs

@<t@ @5<

Explicit Control

' & t
Sequencing ection Branching

(or contention)

T

el S

Explicit Control Looping Concur rent threads
Synchronization

Bruce Powel Douglass, Ph.D. I-Logix Page 66

Pacemaker Petri Net

Checking

Set Parameter

Cmd Received
RSO Reed Switch Opens

PSC Pace Stop Command

Pacing Off

‘\I Paci ”g Refractory
Bruce Powel Douglass, Ph.D. P$6aix Page 67

Time-Augmented Petri Nets

Timer

Interrupt @

A

MIT=32
ms

(@

Read ECG Value

=)

MEE=8 Capacity=500 MFF=32

Display
Timer

| nterupt
MIT=8
ms

Dequeue ECG Value

-~

-

Example above shows a queuing model
between two asynchronous threads:
ECG Waveform acquisition and display

\

J

Bruce Powel Douglass, Ph.D.

What’s Shown In Petri Nets?

® Generalized behavior (incl. state behavior)
® Concurrency

® Can be augmented with time

® Many different extensions are available

® Petri nets suffer from

— lack of scalability because they are flat like
Mealy-Moore state models

— lack of tools

Bruce Powel Douglass, Ph.D.

FSMs and Development Process

® FSMs apply to OBJECTS
— Sensor object
— Queue object
— Pacemaker pacing engine object
— Language parser object

Bruce Powel Douglass, Ph.D.

Structured Process

@ ldentify behavioral functions that exhibit
state behavior

@ For each such function, design a FSM

— For each state, define
+ Valid transitions
¢ Actions
¢ Activities

® Decide on an implementation strategy

Bruce Powel Douglass, Ph.D.

Object Oriented Process

® ldentify classes and objects
@ ldentify which classes have FSMs
® Define a single FSM for each relevant

class

— For each state, define
+ Valid transitions
¢ Actions
¢ Activities

® Decide on an implementation strategy

Bruce Powel Douglass, Ph.D. I-Logix

Implementation Strategies

® Case/Switch statements
® FSM Generator
® Centralized state machine

® Separate state machines for each FSM
object

Bruce Powel Douglass, Ph.D.

Case/Switch Statements

Switch (stateVar) {
case statel.:
break;
case state?:
break;
case states:

break;
case default: /I Invalid state
};

Bruce Powel Douglass, Ph.D.

Case/Switch Statements

Switch (stateVar) {
case statel: switch(transition) {
case T1l. ..
break;
case 2.

break;
case default: // invalid transition
};
break:

Bruce Powel Douglass, Ph.D.

Centralized State machine

.\;I' ransition

ProcessTransition(...)

State Central

Bruce Powel Douglass, Ph.D.

Separate State machines

FSM Class

e

My Class

My Class & FSM Class

class myClass: public FSM
{

};

class myClass {
private:
FSM myFSM;

};

Bruce Powel Douglass, Ph.D.

Separate State Machines

State

ID

Current State TransitionList
EntryActionList
AcceptTransition(t) Exit ActionList
ApplyTActions(s) ActivityList n
ApplyEntryActions(s) ‘ Transition

Class FSM

ApplyEXxitActions(s) 1
n |D

_ Target State
Action ActionList

20

Bruce Powel Douglass, Ph.D. I-Logix

summary

® ODbjects have behavior
— Simple
— Continuous
— State-driven

® Modeling objects as Finite State
Machines simplifies the behavior

@ States apply to objects

® FSM Objects spend all their time In
exactly 1 state (which may contain
concurrent substates)

Bruce Powel Douglass, Ph.D. I-Logix

summary

@ States are disjoint ontological conditions
that persist for a significant period of
time.

@ States are defined by one of the
following:

ne values of all attributes of the object

ne values of specific attributes of the
nject
— Disjoint behaviors

+ Events accepted
¢ Actions performed

Bruce Powel Douglass, Ph.D.

summary

® Transitions are the representation of
responses to events within FSMs

@ Transitions take an insignificant amount
of time

® Actions are functions which may be

assoclated with
— Transitions

— State Entry

— State Exit

® Activities are processing that continues
as long as a state Is active

Bruce Powel Douglass, Ph.D. I-Logix

Ssummary

@ Harel Statecharts provide
— Nested States
— Concurrency
— Propagated and Broadcast Transitions
— Orthogonal Components
— Guards on transitions
— Flexible action model
— Activities within states
— History
— Inherited state behavior

Bruce Powel Douglass, Ph.D. I-Logix

Ssummary

® Statecharts show static structural view
@ State tables show missing transitions

@ State specifications are good for defining
testable, traceable requirements

® Sequence diagrams show scenarios

® Timing diagrams show overall timing In
scenarios

@ Petri nets are more general and show
static structural view

Bruce Powel Douglass, Ph.D. I-Logix

