

The Essential Turing:
Seminal Writings in

Computing, Logic, Philosophy,
Artificial Intelligence, and

Artificial Life:
Plus The Secrets of Enigma

B. Jack Copeland,
Editor

OXFORD UNIVERSITY PRESS

Alan Mathison Turing OBE FRS (/ˈtjʊərɪŋ/; 23 June 1912 –
7 June 1954) was an English mathematician, computer
scientist, logician, cryptanalyst, philosopher, and theoretical
biologist. Turing was highly influential in the development
of theoretical computer science, providing a formalisation of
the concepts of algorithm and computation with the Turing
machine, which can be considered a model of a general-
purpose computer. Turing is widely considered to be the
father of theoretical computer science and artificial
intelligence. Despite these accomplishments, he was not fully
recognized in his home country during his lifetime, due to
his homosexuality, and because much of his work was
covered by the Official Secrets Act.

The Essential Turing
Seminal Writings in Computing, Logic, Philosophy,

Artificial Intelligence, and Artificial Life

plus The Secrets of Enigma

Edited by B. Jack Copeland

CLARENDON PRESS � OXFORD

Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Taipei Toronto Shanghai

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan South Korea Poland Portugal
Singapore Switzerland Thailand Turkey Ukraine Vietnam

Published in the United States
by Oxford University Press Inc., New York

© In this volume the Estate of Alan Turing 2004

Supplementary Material © the several contributors 2004

The moral rights of the author have been asserted

Database right Oxford University Press (maker)

First published 2004

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer.

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data
Data available

ISBN 0–19–825079–7
ISBN 0–19–825080–0 (pbk.)

10 9 8 7 6 5 4 3

Typeset by Kolam Information Services Pvt. Ltd, Pondicherry, India
Printed in Great Britain
on acid-free paper by Biddles Ltd., King’s Lynn, Norfolk

Acknowledgements

Work on this book began in 2000 at the Dibner Institute for the History of

Science and Technology, Massachusetts Institute of Technology, and was com-

pleted at the University of Canterbury, New Zealand. I am grateful to both these

institutions for aid, and to the following for scholarly assistance: John Andreae,

Friedrich Bauer, Frank Carter, Alonzo Church Jnr, David Clayden, Bob Doran,

Ralph Erskine, Harry Fensom, Jack Good, John Harper, Geoff Hayes, Peter

Hilton, Harry Huskey, Eric Jacobson, Elizabeth Mahon, Philip Marks, Elisabeth

Norcliffe, Rolf Noskwith, Gualtiero Piccinini, Andrés Sicard, Wilfried Sieg, Frode

Weierud, Maurice Wilkes, Mike Woodger, and especially Diane Proudfoot. This

book would not have existed without the support of Turing’s literary executor,

P. N. Furbank, and that of Peter Momtchiloff at Oxford University Press.

B.J.C.

Contents

Alan Turing 1912–1954 1

Jack Copeland

Computable Numbers: A Guide 5

Jack Copeland

1. On Computable Numbers, with an Application to the

Entscheidungsproblem (1936) 58

2. On Computable Numbers: Corrections and Critiques 91

Alan Turing, Emil Post, and Donald W. Davies

3. Systems of Logic Based on Ordinals (1938), including

excerpts from Turing’s correspondence, 1936–1938 125

4. Letters on Logic to Max Newman (c.1940) 205

Enigma 217

Jack Copeland

5. History of Hut 8 to December 1941 (1945), featuring an

excerpt from Turing’s ‘Treatise on the Enigma’ 265

Patrick Mahon

6. Bombe and Spider (1940) 313

7. Letter to Winston Churchill (1941) 336

8. Memorandum to OP-20-G on Naval Enigma (c.1941) 341

Artificial Intelligence 353

Jack Copeland

9. Lecture on the Automatic Computing Engine (1947) 362

10. Intelligent Machinery (1948) 395

11. Computing Machinery and Intelligence (1950) 433

12. Intelligent Machinery, A Heretical Theory (c.1951) 465

13. Can Digital Computers Think? (1951) 476

14. Can Automatic Calculating Machines Be Said to Think? (1952) 487

Alan Turing, Richard Braithwaite, Geoffrey Jefferson,

and Max Newman

Artificial Life 507

Jack Copeland

15. The Chemical Basis of Morphogenesis (1952) 519

16. Chess (1953) 562

17. Solvable and Unsolvable Problems (1954) 576

Index 597

viii | Contents

Alan Turing 1912–1954
Jack Copeland

Alan Mathison Turing was born on 23 June 1912 in London1; he died on 7

June 1954 at his home in Wilmslow, Cheshire. Turing contributed to logic,

mathematics, biology, philosophy, cryptanalysis, and formatively to the areas

later known as computer science, cognitive science, ArtiWcial Intelligence, and

ArtiWcial Life.

Educated at Sherborne School in Dorset, Turing went up to King’s College,

Cambridge, in October 1931 to read Mathematics. He graduated in 1934, and in

March 1935 was elected a Fellow of King’s, at the age of only 22. In 1936 he

published his most important theoretical work, ‘On Computable Numbers, with

an Application to the Entscheidungsproblem [Decision Problem]’ (Chapter 1,

with corrections in Chapter 2). This article described the abstract digital com-

puting machine—now referred to simply as the universal Turing machine—on

which the modern computer is based. Turing’s fundamental idea of a universal

stored-programme computing machine was promoted in the United States by

John von Neumann and in England by Max Newman. By the end of 1945 several

groups, including Turing’s own in London, were devising plans for an electronic

stored-programme universal digital computer—a Turing machine in hardware.

In 1936 Turing left Cambridge for the United States in order to continue his

research at Princeton University. There in 1938 he completed a Ph.D. entitled

‘Systems of Logic Based on Ordinals’, subsequently published under the same

title (Chapter 3, with further exposition in Chapter 4). Now a classic, this work

addresses the implications of Gödel’s famous incompleteness result. Turing gave

a new analysis of mathematical reasoning, and continued the study, begun in ‘On

Computable Numbers’, of uncomputable problems—problems that are ‘too

hard’ to be solved by a computing machine (even one with unlimited time and

memory).

Turing returned to his Fellowship at King’s in the summer of 1938. At the

outbreak of war with Germany in September 1939 he moved to Bletchley Park,

the wartime headquarters of the Government Code and Cypher School (GC &

CS). Turing’s brilliant work at Bletchley Park had far-reaching consequences.

1 At 2 Warrington Crescent, London W9, where now there is a commemorative plaque.

‘I won’t say that what Turing did made us win the war, but I daresay we might

have lost it without him’, said another leading Bletchley cryptanalyst.2 Turing

broke Naval Enigma—a decisive factor in the Battle of the Atlantic—and was the

principal designer of the ‘bombe’, a high-speed codebreaking machine. The

ingenious bombes produced a Xood of high-grade intelligence from Enigma. It

is estimated that the work done by Turing and his colleagues at GC & CS

shortened the war in Europe by at least two years.3 Turing’s contribution to

the Allied victory was a state secret and the only oYcial recognition he

received, the Order of the British Empire, was in the circumstances derisory.

The full story of Turing’s involvement with Enigma is told for the Wrst time

in this volume, the material that forms Chapters 5, 6, and 8 having been

classiWed until recently.

In 1945, the war over, Turing was recruited to the National Physical Labora-

tory (NPL) in London, his brief to design and develop an electronic digital

computer—a concrete form of the universal Turing machine. His design (for

the Automatic Computing Engine or ACE) was more advanced than anything

else then under consideration on either side of the Atlantic. While waiting for the

engineers to build the ACE, Turing and his group pioneered the science of

computer programming, writing a library of sophisticated mathematical pro-

grammes for the planned machine.

Turing founded the Weld now called ‘ArtiWcial Intelligence’ (AI) and was a

leading early exponent of the theory that the human brain is in eVect a digital

computer. In February 1947 he delivered the earliest known public lecture to

mention computer intelligence (‘Lecture on the Automatic Computing Engine’

(Chapter 9)). His technical report ‘Intelligent Machinery’ (Chapter 10), written

for the NPL in 1948, was eVectively the Wrst manifesto of AI. Two years later, in

his now famous article ‘Computing Machinery and Intelligence’ (Chapter 11),

Turing proposed (what subsequently came to be called) the Turing test as a

criterion for whether machines can think. The Essential Turing collects together

for the Wrst time the series of Wve papers that Turing devoted exclusively to

ArtiWcial Intelligence (Chapters 10, 11, 12, 13, 16). Also included is a discussion

of AI by Turing, Newman, and others (Chapter 14).

In the end, the NPL’s engineers lost the race to build the world’s Wrst working

electronic stored-programme digital computer—an honour that went to the

Computing Machine Laboratory at the University of Manchester in June 1948.

The concept of the universal Turing machine was a fundamental inXuence on the

Manchester computer project, via Newman, the project’s instigator. Later in

2 Jack Good in an interview with Pamela McCorduck, on p. 53 of her Machines Who Think (New York:

W. H. Freeman, 1979).

3 This estimate is given by Sir Harry Hinsley, oYcial historian of the British Secret Service, writing on

p. 12 of his and Alan Stripp’s edited volume Codebreakers: The Inside Story of Bletchley Park (Oxford: Oxford

University Press, 1993).

2 | Jack Copeland

1948, at Newman’s invitation, Turing took up the deputy directorship of the

Computing Machine Laboratory (there was no Director). Turing spent the rest of

his short career at Manchester University. He was elected a Fellow of the Royal

Society of London in March 1951 (a high honour) and in May 1953 was

appointed to a specially created Readership in the Theory of Computing at

Manchester.

It was at Manchester, in March 1952, that he was prosecuted for homosexual

activity, then a crime in Britain, and sentenced to a period of twelve months’

hormone ‘therapy’—the shabbiest of treatment from the country he had helped

save, but which he seems to have borne with amused fortitude.

Towards the end of his life Turing pioneered the area now known as ArtiWcial

Life. His 1952 article ‘The Chemical Basis of Morphogenesis’ (Chapter 15)

describes some of his research on the development of pattern and form in living

organisms. This research dominated his Wnal years, but he nevertheless found

time to publish in 1953 his classic article on computer chess (Chapter 16) and in

1954 ‘Solvable and Unsolvable Problems’ (Chapter 17), which harks back to ‘On

Computable Numbers’. From 1951 he used the Computing Machine Labora-

tory’s Ferranti Mark I (the Wrst commercially produced electronic stored-pro-

gramme computer) to model aspects of biological growth, and in the midst of

this groundbreaking work he died.

Turing’s was a far-sighted genius and much of the material in this book is of

even greater relevance today than in his lifetime. His research had remarkable

breadth and the chapters range over a diverse collection of topics—mathematical

logic and the foundations of mathematics, computer design, mechanical

methods in mathematics, cryptanalysis and chess, the nature of intelligence

and mind, and the mechanisms of biological growth. The chapters are united

by the overarching theme of Turing’s work, his enquiry into (as Newman put it)

‘the extent and the limitations of mechanistic explanations’.4

Biographies of Turing

Gottfried, T., Alan Turing: The Architect of the Computer Age (Danbury, Conn.: Franklin

Watts, 1996).

Hodges, A., Alan Turing: The Enigma (London: Burnett, 1983).

Newman, M. H. A., ‘Alan Mathison Turing, 1912–1954’, Biographical Memoirs of Fellows of

the Royal Society, 1 (1955), 253–63.

Turing, S., Alan M. Turing (Cambridge: W. HeVer, 1959).

4 M. H. A. Newman, ‘Alan Mathison Turing, 1912–1954’, Biographical Memoirs of Fellows of the Royal

Society, 1 (1955), 253–63 (256).

Alan Turing 1912–1954 | 3

This page intentionally left blank

Computable Numbers: A Guide
Jack Copeland

Part I The Computer

1. Turing Machines 6

2. Standard Descriptions and Description Numbers 10

3. Subroutines 12

4. The Universal Computing Machine 15

5. Turing, von Neumann, and the Computer 21

6. Turing and Babbage 27

7. Origins of the Term ‘Computer Programme’ 30

Part II Computability and Uncomputability

8. Circular and Circle-Free Machines 32

9. Computable and Uncomputable Sequences 33

10. Computable and Uncomputable Numbers 36

11. The Satisfactoriness Problem 36

12. The Printing and Halting Problems 39

13. The Church-Turing Thesis 40

14. The Entscheidungsproblem 45

‘On Computable Numbers, with an Application to the Entscheidungsproblem’

appeared in the Proceedings of the London Mathematical Society in 1936.1 This,

1 Proceedings of the London Mathematical Society, 42 (1936–7), 230–65. The publication date of ‘On

Computable Numbers’ is sometimes cited, incorrectly, as 1937. The article was published in two parts, both

parts appearing in 1936. The break between the two parts occurred, rather inelegantly, in the middle of

Section 5, at the bottom of p. 240 (p. 67 in the present volume). Pages 230–40 appeared in part 3 of volume

42, issued on 30 Nov. 1936, and the remainder of the article appeared in part 4, issued on 23 Dec. 1936. This

information is given on the title pages of parts 3 and 4 of volume 42, which show the contents of each part

and their dates of issue. (I am grateful to Robert Soare for sending me these pages. See R. I. Soare,

‘Computability and Recursion’, Bulletin of Symbolic Logic, 2 (1996), 284–321.)

The article was published bearing the information ‘Received 28 May, 1936.—Read 12 November, 1936.’

However, Turing was in the United States on 12 November, having left England in September 1936 for what

was to be a stay of almost two years (see the introductions to Chapters 3 and 4). Although papers were read

at the meetings of the London Mathematical Society, many of those published in the Proceedings were ‘taken

as read’, the author not necessarily being present at the meeting in question. Mysteriously, the minutes of the

meeting held on 18 June 1936 list ‘On Computable Numbers, with an Application to the Entscheidungs-

problem’ as one of 22 papers taken as read at that meeting. The minutes of an Annual General Meeting held

Turing’s second publication,2 contains his most signiWcant work. Here he pion-

eered the theory of computation, introducing the famous abstract computing

machines soon dubbed ‘Turing machines’ by the American logician Alonzo

Church.3 ‘On Computable Numbers’ is regarded as the founding publication

of the modern science of computing. It contributed vital ideas to the develop-

ment, in the 1940s, of the electronic stored-programme digital computer. ‘On

Computable Numbers’ is the birthplace of the fundamental principle of the

modern computer, the idea of controlling the machine’s operations by means

of a programme of coded instructions stored in the computer’s memory.

In addition Turing charted areas of mathematics lying beyond the scope of the

Turing machine. He proved that not all precisely stated mathematical problems

can be solved by computing machines. One such is the Entscheidungsproblem or

‘decision problem’. This work—together with contemporaneous work by Church4

—initiated the important branch of mathematical logic that investigates and

codiWes problems ‘too hard’ to be solvable by Turing machine.

In this one article, Turing ushered in both the modern computer and the

mathematical study of the uncomputable.

Part I The Computer

1. Turing Machines

A Turing machine consists of a scanner and a limitless memory-tape that moves

back and forth past the scanner. The tape is divided into squares. Each square

may be blank or may bear a single symbol—‘0’ or ‘1’, for example, or some other

symbol taken from a Wnite alphabet. The scanner is able to examine only one

square of tape at a time (the ‘scanned square’).

The scanner contains mechanisms that enable it to erase the symbol on the

scanned square, to print a symbol on the scanned square, and to move the tape to

the left or right, one square at a time.

In addition to the operations just mentioned, the scanner is able to alter what

Turing calls its ‘m-conWguration’. In modern Turing-machine jargon it is usual to

on 12 Nov. 1936 contain no reference to the paper. (I am grateful to Janet Foster, Archives Consultant to the

London Mathematical Society, for information.)

2 The Wrst was ‘Equivalence of Left and Right Almost Periodicity’, Journal of the London Mathematical

Society, 10 (1935), 284–5.

3 Church introduced the term ‘Turing machine’ in a review of Turing’s paper in the Journal of Symbolic

Logic, 2 (1937), 42–3.

4 A. Church, ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics,

58 (1936), 345–63, and ‘A Note on the Entscheidungsproblem’, Journal of Symbolic Logic, 1 (1936), 40–1.

6 | Jack Copeland

SCANNER

0 0 1 0 0 1

use the term ‘state’ in place of ‘m-conWguration’. A device within the scanner is

capable of adopting a number of diVerent states (m-conWgurations), and the

scanner is able to alter the state of this device whenever necessary. The device

may be conceptualized as consisting of a dial with a (Wnite) number of positions,

labelled ‘a’, ‘b’, ‘c’, etc. Each of these positions counts as an m-conWguration or

state, and changing the m-conWguration or state amounts to shifting the dial’s

pointer from one labelled position to another. This device functions as a simple

memory. As Turing says, ‘by altering its m-conWguration the machine can

eVectively remember some of the symbols which it has ‘‘seen’’ (scanned) previ-

ously’ (p. 59). For example, a dial with two positions can be used to keep a record

of which binary digit, 0 or 1, is present on the square that the scanner has just

vacated. (If a square might also be blank, then a dial with three positions is

required.)

The operations just described—erase, print, move, and change state—are

the basic (or atomic) operations of the Turing machine. Complexity of operation

is achieved by chaining together large numbers of these simple basic actions.

Commercially available computers are hard-wired to perform basic operations

considerably more sophisticated than those of a Turing machine—add, multiply,

decrement, store-at-address, branch, and so forth. The precise list of basic

operations varies from manufacturer to manufacturer. It is a remarkable fact,

however, that despite the austere simplicity of Turing’s machines, they are

capable of computing anything that any computer on the market can compute.

Indeed, because they are abstract machines, with unlimited memory, they are

capable of computations that no actual computer could perform in practice.

Example of a Turing machine

The following simple example is from Section 3 of ‘On Computable Numbers’

(p. 61). The once-fashionable Gothic symbols that Turing used in setting out the

example—and also elsewhere in ‘On Computable Numbers’—are not employed

in this guide. I also avoid typographical conventions used by Turing that seem

likely to hinder understanding (for example, his special symbol ‘@’, which he used

to mark the beginning of the tape, is here replaced by ‘!’).

The machine in Turing’s example—call it M—starts work with a blank tape.

The tape is endless. The problem is to set up the machine so that if the scanner is

Computable Numbers: A Guide | 7

positioned over any square of the tape and the machine set in motion, the scanner

will print alternating binary digits on the tape, 0 1 0 1 0 1 . . . , working to the right

from its starting place, and leaving a blank square in between each digit:

0 01 1

In order to do its work, M makes use of four states or m-conWgurations. These

are labelled ‘a’, ‘b’, ‘c’, and ‘d’. (Turing employed less familiar characters.) M is in

state a when it starts work.

The operations thatM is to perform can be set out by means of a table with four

columns (Table 1). ‘R’ abbreviates the instruction ‘reposition the scanner one

square to the right’. This is achieved by moving the tape one square to the left. ‘L’

abbreviates ‘reposition the scanner one square to the left’, ‘P[0]’ abbreviates ‘print

0 on the scanned square’, and likewise ‘P[1]’. Thus the top line of Table 1 reads: if

you are in state a and the square you are scanning is blank, then print 0 on the

scanned square, move the scanner one square to the right, and go into state b.

A machine acting in accordance with this table of instructions—or pro-

gramme—toils endlessly on, printing the desired sequence of digits while leaving

alternate squares blank.

Turing does not explain how it is to be brought about that the machine acts in

accordance with the instructions. There is no need. Turing’s machines are

abstractions and it is not necessary to propose any speciWc mechanism for

causing the machine to act in accordance with the instructions. However, for

purposes of visualization, one might imagine the scanner to be accompanied by a

bank of switches and plugs resembling an old-fashioned telephone switchboard.

Arranging the plugs and setting the switches in a certain way causes the machine

to act in accordance with the instructions in Table 1. Other ways of setting up the

‘switchboard’ cause the machine to act in accordance with other tables of

instructions. In fact, the earliest electronic digital computers, the British Colossus

(1943) and the American ENIAC (1945), were programmed in very much this

way. Such machines are described as ‘programme-controlled’, in order to distin-

guish them from the modern ‘stored-programme’ computer.

Table 1

State Scanned Square Operations Next State

a blank P[0], R b

b blank R c

c blank P[1], R d

d blank R a

8 | Jack Copeland

As everyone who can operate a personal computer knows, the way to set up a

stored-programme machine to perform some desired task is to open the appro-

priate programme of instructions stored in the computer’s memory. The stored-

programme concept originates with Turing’s universal computing machine,

described in detail in Section 4 of this guide. By inserting diVerent programmes

into the memory of the universal machine, the machine is made to carry out

diVerent computations. Turing’s 1945 technical report ‘Proposed Electronic

Calculator’ was the Wrst relatively complete speciWcation of an electronic

stored-programme digital computer (see Chapter 9).

E-squares and F-squares

After describingM and a second example of a computing machine, involving the

start-of-tape marker ‘!’ (p. 62), Turing introduces a convention which he makes

use of later in the article (p. 63). Since the tape is the machine’s general-purpose

storage medium—serving not only as the vehicle for data storage, input, and

output, but also as ‘scratchpad’ for use during the computation—it is useful to

divide up the tape in some way, so that the squares used as scratchpad are

distinguished from those used for the various other functions just mentioned.

Turing’s convention is that every alternate square of the tape serves as scratch-

pad. These he calls the ‘E-squares’, saying that the ‘symbols on E-squares will be

liable to erasure’ (p. 63). The remaining squares he calls ‘F-squares’. (‘E’ and ‘F’

perhaps stand for ‘erasable’ and ‘Wxed’.)

In the example just given, the ‘F-squares’ of M’s tape are the squares bearing

the desired sequence of binary digits, 0 1 0 1 0 1 . . . In between each pair of

adjacent F-squares lies a blank E-square. The computation in this example is so

simple that the E-squares are never used. More complex computations make

much use of E-squares.

Turing mentions one important use of E-squares at this point (p. 63): any

F-square can be ‘marked’ by writing some special symbol, e.g. ‘*’, on the E-square

immediately to its right. By this means, the scanner is able to Wnd its way back to

a particular string of binary digits—a particular item of data, say. The scanner

locates the Wrst digit of the string by Wnding the marker ‘*’.

Adjacent blank squares

Another useful convention, also introduced on p. 63, is to the eVect that the tape

must never contain a run of non-blank squares followed by two or more adjacent

blank squares that are themselves followed by one or more non-blank squares.

The value of this convention is that it gives the machine an easy way of Wnding

the last non-blank square. As soon as the machine Wnds two adjacent blank

squares, it knows that it has passed beyond the region of tape that has

been written on and has entered the region of blank squares stretching away

endlessly.

Computable Numbers: A Guide | 9

The start-of-tape marker

Turing usually considers tapes that are endless in one direction only. For pur-

poses of visualization, these tapes may all be thought of as being endless to the

right. By convention, each of the Wrst two squares of the tape bears the symbol ‘!’,

mentioned previously. These ‘signposts’ are never erased. The scanner searches

for the signposts when required to Wnd the beginning of the tape.

2. Standard Descriptions and Description Numbers

In the Wnal analysis, a computer programme is simply a (long) stream, or row, of

characters. Combinations of characters encode the instructions. In Section 5 of

‘On Computable Numbers’ Turing explains how an instruction table is to be

converted into a row of letters, which he calls a ‘standard description’. He then

explains how a standard description can be converted into a single number. He

calls these ‘description numbers’.

Each line of an instruction table can be re-expressed as a single ‘word’ of the

form qiSjSkMql : qi is the state shown in the left-hand column of the table. Sj is

the symbol on the scanned square (a blank is counted as a type of symbol). Sk is

the symbol that is to be printed on the scanned square. M is the direction of

movement (if any) of the scanner, left or right. ql is the next state. For example,

the Wrst line of Table 1 can be written: a-0Rb (using ‘-’ to represent a blank). The

third line is: c-1Rd.

The second line of the table, which does not require the contents of the

scanned square (a blank) to be changed, is written: b--Rc. That is to say we

imagine, for the purposes of this new notation, that the operations column of the

instruction table contains the redundant instruction P[-]. This device is

employed whenever an instruction calls for no change to the contents of the

scanned square, as in the following example:

State Scanned Square Operations Next State

d x L c

It is imagined that the operations column contains the redundant instruction

P[x], enabling the line to be expressed: dxxLc.

Sometimes a line may contain no instruction to move. For example:

State Scanned Square Operations Next State

d * P[1] c

The absence of a move is indicated by including ‘N’ in the instruction-word:

d*1Nc.

Sometimes a line may contain an instruction to erase the symbol on the

scanned square. This is denoted by the presence of ‘E’ in the ‘operations’ column:

10 | Jack Copeland

State Scanned Square Operations Next State

m * E, R n

Turing notes that E is equivalent to P[-]. The corresponding instruction-word is

therefore m*-Rn.

Any table of instructions can be rewritten in the form of a stream of instruc-

tion-words separated by semicolons.5 Corresponding to Table 1 is the stream:

a-0Rb; b--Rc; c-1Rd; d--Ra;

This stream can be converted into a stream consisting uniformly of the letters

A, C, D, L, R, and N (and the semicolon). Turing calls this a standard description

of the machine in question. The process of conversion is done in such a way that

the individual instructions can be retrieved from the standard description.

The standard description is obtained as follows. First, ‘-’ is replaced by ‘D’, ‘0’

by ‘DC’, and ‘1’ by ‘DCC’. (In general, if we envisage an ordering of all the

printable symbols, the nth symbol in the ordering is replaced by a ‘D’ followed by

n repetitions of ‘C’.) This produces:

aDDCRb; bDDRc; cDDCCRd; dDDRa;

Next, the lower case state-symbols are replaced by letters. ‘a’ is replaced by ‘DA’,

‘b’ by ‘DAA’, ‘c’ by ‘DAAA’, and so on. An obvious advantage of the new notation is

that there is no limit to the number of states that can be named in this way.

The standard description corresponding to Table 1 is:

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

Notice that occurrences of ‘D’ serve to mark out the diVerent segments or

regions of each instruction-word. For example, to determine which symbol an

instruction-word says to print, Wnd the third ‘D’ to the right from the beginning

of the word, and count the number of occurrences of ‘C’ between it and the next

D to the right.

The standard description can be converted into a number, called a description

number. Again, the process of conversion is carried out in such a way that the

individual instructions can be retrieved from the description number. A standard

description is converted into a description number by means of replacing each ‘A’

by ‘1’, ‘C’ by ‘2’, ‘D’ by ‘3’, ‘L’ by ‘4’, ‘R’ by ‘5’, ‘N’ by ‘6’, and ‘;’ by 7. In the case of

the above example this produces:

31332531173113353111731113322531111731111335317.6

5 There is a subtle issue concerning the placement of the semicolons. See Davies’s ‘Corrections to Turing’s

Universal Computing Machine’, Sections 3, 7, 10.

6 Properly speaking, the description number is not the string ‘313325311731133531117311133225

31111731111335317’, but is the number denoted by this string of numerals.

Computable Numbers: A Guide | 11

Occurrences of ‘7’ mark out the individual instruction-words, and occurrences

of ‘3’mark out the diVerent regions of the instruction-words. For example: to Wnd

out which symbol the third instruction-word says to print, Wnd the second ‘7’

(starting from the left), then the third ‘3’ to the right of that ‘7’, and count the

numberofoccurrencesof ‘2’ between that ‘3’ and thenext ‘3’ to the right.ToWndout

the exit state speciWed by the third instruction-word, Wnd the last ‘3’ in that word

and count the number of occurrences of ‘1’ between it and the next ‘7’ to the right.

Notice that diVerent standard descriptions can describe the behaviour of one

and the same machine. For example, interchanging the Wrst and second lines of

Table 1 does not in any way aVect the behaviour of the machine operating in

accordance with the table, but a diVerent standard description—and therefore a

diVerent description number—will ensue if the table is modiWed in this way.

This process of converting a table of instructions into a standard description

or a description number is analogous to the process of compiling a computer

programme into ‘machine code’. Programmers generally prefer to work in so-

called high-level languages, such as Pascal, Prolog, and C. Programmes written in

a high-level language are, like Table 1, reasonably easy for a trained human being

to follow. Before a programme can be executed, the instructions must be

translated, or compiled, into the form required by the computer (machine code).

The importance of standard descriptions and description numbers is ex-

plained in what follows.

3. Subroutines

Subroutines are programmes that are used as components of other programmes.

A subroutine may itself have subroutines as components. Programmers usually

have access to a ‘library’ of commonly used subroutines—the programmer takes

ready-made subroutines ‘oV the shelf ’ whenever necessary.

Turing’s term for a subroutine was ‘subsidiary table’. He emphasized the

importance of subroutines in a lecture given in 1947 concerning the Automatic

Computing Engine or ACE, the electronic stored-programme computer that he

began designing in 1945 (see Chapter 9 and the introduction to Chapter 10):

Probably the most important idea involved in instruction tables is that of standard

subsidiary tables. Certain processes are used repeatedly in all sorts of diVerent connections,

and we wish to use the same instructions . . . every time . . .We have only to think out how

[a process] is to be done once, and forget then how it is done.7

In ‘On Computable Numbers’—eVectively the Wrst programming manual of

the computer age—Turing introduced a library of subroutines for Turing ma-

chines (in Sections 4 and 7), saying (p. 63):

7 The quotation is from p. 389 below.

12 | Jack Copeland

There are certain types of process used by nearly all machines, and these, in some

machines, are used in many connections. These processes include copying down se-

quences of symbols, comparing sequences, erasing all symbols of a given form, etc.

Some examples of subroutines are:

cpe(A, B, x, y) (p. 66):

‘cpe’ may be read ‘compare for equality’. This subroutine compares the string of

symbols marked with an x to the string of symbols marked with a y. The subrou-

tine places the machine in state B if the two strings are the same, and in state A if

they are diVerent. Note: throughout these examples, ‘A’ and ‘B’ are variables

representing any states; ‘x’ and ‘y’ are variables representing any symbols.

f(A, B, x) (p. 63):

‘f ’ stands for ‘Wnd’. This subroutine Wnds the leftmost occurrence of x. f(A, B,

x) moves the scanner left until the start of the tape is encountered. Then the

scanner is moved to the right, looking for the Wrst x. As soon as an x is found,

the subroutine places the machine in state A, leaving the scanner resting on the

x. If no x is found anywhere on the portion of tape that has so far been written

on, the subroutine places the machine in state B, leaving the scanner resting on

a blank square to the right of the used portion of the tape.

e(A, B, x) (p. 64):

‘e’ stands for ‘erase’. The subroutine e(A, B, x) contains the subroutine f(A,

B, x). e(A, B, x) Wnds the leftmost occurrence of symbol x and erases it, placing

the machine in stateA and leaving the scanner resting on the square that has just

been erased. If no x is found the subroutine places themachine in state B, leaving

the scanner resting on a blank square to the right of the used portion of the tape.

The subroutine f(A, B, x)

It is a useful exercise to construct f(A, B, x) explicitly, i.e. in the form of a table of

instructions. Suppose we wish the machine to enter the subroutine f(A, B, x) when

placed in state n, say. Then the table of instructions is as shown in Table 2.

(Remember that by the convention mentioned earlier, if ever the scanner encoun-

ters twoadjacentblank squares, it has passedbeyond the regionof tape that has been

written on andhas entered the region of blank squares stretching away to the right.)

As Turing explains, f(A, B, x) is in eVect built out of two further subroutines,

which he writes f1(A, B, x) and f2(A, B, x). The three rows of Table 2 with an ‘m’

in the Wrst column form the subroutine f1(A, B, x), and the three rows with ‘o’ in

the Wrst column form f2(A, B, x).

Skeleton tables

For ease of deWning subroutines Turing introduces an abbreviated form of

instruction table, in which one is allowed to write expressions referring to

Computable Numbers: A Guide | 13

Table 2

State

Scanned

Square Operations

Next

State Comments

n does not contain ! L n Search for the Wrst square.

n ! L m Found right-hand member

of the pair ‘!!’; move left to

Wrst square of tape; go into

state m. (Notice that x might

be ‘!’.)

m x none A Found x ; go into state A;

subroutine ends.

m neither x nor

blank

R m Keep moving right looking

for x or a blank.

m blank R o Blank square encountered;

go into state o and examine

next square to the right.

o x none A Found x ; go into state A;

subroutine ends.

o neither x nor

blank

R m Found a blank followed by a

non-blank square but no x ;

switch to state m and keep

looking for x.

o blank R B Two adjacent blank squares

encountered; go into state B;

subroutine ends.

Table 3

f(A, B, x)
not ! L f(A, B, x)

! L f1(A, B, x)

�

f1(A, B, x)

x A

neither x nor blank R f1(A, B, x)

blank R f2(A, B, x)

(

f2(A, B, x)
x A

neither x nor blank R f1(A, B, x)

blank R B

(

subroutines in the Wrst and fourth columns (the state columns). Turing calls

these abbreviated tables ‘skeleton tables’ (p. 63). For example, the skeleton table

corresponding to Table 2 is as in Table 3.

Turing’s notation for subroutines is explained further in the appendix to this

guide (‘Subroutines and m-functions’).

14 | Jack Copeland

4. The Universal Computing Machine

In Section 7 of ‘On Computable Numbers’ Turing introduces his ‘universal

computing machine’, now known simply as the universal Turing machine. The

universal Turing machine is the stored-programme digital computer in abstract

conceptual form.

The universal computing machine has a single, Wxed table of instructions

(which we may imagine to have been set into the machine, once and for all, by

way of the switchboard-like arrangement mentioned earlier). Operating in ac-

cordance with this table of instructions, the universal machine is able to carry out

any task for which an instruction table can be written. The trick is to put an

instruction table—programme—for carrying out the desired task onto the tape

of the universal machine.

The instructions are placed on the tape in the form of a standard descrip-

tion—i.e. in the form of a string of letters that encodes the instruction table. The

universal machine reads the instructions and carries them out on its tape.

The universal Turing machine and the modern computer

Turing’s greatest contributions to the development of the modern computer

were:

• The idea of controlling the function of a computing machine by storing a

programme of symbolically encoded instructions in the machine’s memory.

• His demonstration (in Section 7 of ‘On Computable Numbers’) that, by this

means, a single machine of Wxed structure is able to carry out every compu-

tation that can be carried out by any Turing machine whatsoever, i.e. is

universal.

Turing’s teacher and friend Max Newman has testiWed that Turing’s interest in

building a stored-programme computing machine dates from the time of ‘On

Computable Numbers’. In a tape-recorded interview Newman stated, ‘Turing

himself, right from the start, said it would be interesting to try and make such a

machine’.8 (It was Newman who, in a lecture on the foundations of mathematics

and logic given in Cambridge in 1935, launched Turing on the research that led

to the universal Turing machine; see the introduction to Chapter 4.9) In his

obituary of Turing, Newman wrote:

The description that [Turing] gave of a ‘universal’ computing machine was entirely

theoretical in purpose, but Turing’s strong interest in all kinds of practical experiment

8 Newman in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of

Computing’, London, Science Museum).

9 Ibid.

Computable Numbers: A Guide | 15

made him even then interested in the possibility of actually constructing a machine on

these lines.10

Turing laterdescribed the connectionbetween theuniversal computingmachine

and the stored-programme digital computer in the following way (Chapter 9,

pp. 378 and 383):

Some years ago I was researching onwhat might now be described as an investigation of the

theoretical possibilities and limitations of digital computingmachines. I considered a type of

machine which had a central mechanism, and an inWnite memory which was contained on

an inWnite tape . . . It can be shown that a single special machine of that type can be made to

do theworkof all . . . The specialmachinemaybe called the universalmachine; itworks in the

following quite simple manner.Whenwe have decided what machine we wish to imitate we

punch adescriptionof it on the tapeof theuniversalmachine. This description explainswhat

the machine would do in every conWguration in which it might Wnd itself. The universal

machine has only to keep looking at this description in order to Wnd out what it should do at

each stage. Thus the complexity of themachine to be imitated is concentrated in the tape and

does not appear in the universal machine proper in any way . . . [D]igital computing ma-

chines such as the ACE . . . are in fact practical versions of the universal machine. There is a

certain central pool of electronic equipment, and a large memory. When any particular

problem has to be handled the appropriate instructions for the computing process involved

are stored in the memory of the ACE and it is then ‘set up’ for carrying out that process.

Turing’s idea of a universal stored-programme computing machine was pro-

mulgated in the USA by von Neumann and in the UK by Newman, the two

mathematicians who, along with Turing himself, were by and large responsible

for placing Turing’s abstract universal machine into the hands of electronic

engineers.

By 1946 several groups in both countries had embarked on creating a universal

Turingmachine in hardware. The race to get the Wrst electronic stored-programme

computer up and running was won byManchester University where, in Newman’s

Computing Machine Laboratory, the ‘Manchester Baby’ ran its Wrst programme

on 21 June 1948. Soon after, Turing designed the input/output facilities and the

programming system of an expandedmachine known as theManchesterMark I.11

(There is more information about the Manchester computer in the introductions

to Chapters 4, 9, and 10, and in ‘ArtiWcial Life’.) A small pilot version of Turing’s

Automatic Computing Engine Wrst ran in 1950, at the National Physical Labora-

tory in London (see the introductions to Chapters 9 and 10).

10 ‘Dr. A. M. Turing’, The Times, 16 June 1954, p. 10.

11 F. C. Williams described some of Turing’s contributions to the Manchester machine in a letter written

in 1972 to Brian Randell (parts of which are quoted in B. Randell, ‘On Alan Turing and the Origins of

Digital Computers’, in B. Meltzer and D. Michie (eds.), Machine Intelligence 7 (Edinburgh: Edinburgh

University Press, 1972)); see the introduction to Chapter 9 below. A digital facsimile of Turing’s Program-

mers’ Handbook for Manchester Electronic Computer (University of Manchester Computing Machine

Laboratory, 1950) is in The Turing Archive for the History of Computing <www.AlanTuring.net/

programmers_handbook>.

16 | Jack Copeland

www.AlanTuring.net/programmers_handbook
www.AlanTuring.net/programmers_handbook

By 1951 electronic stored-programme computers had begun to arrive in the

market place. The Wrst model to go on sale was the Ferranti Mark I, the

production version of the Manchester Mark I (built by the Manchester Wrm

Ferranti Ltd.). Nine of the Ferranti machines were sold, in Britain, Canada, the

Netherlands, and Italy, the Wrst being installed at Manchester University in

February 1951.12 In the United States the Wrst UNIVAC (built by the Eckert-

Mauchly Computer Corporation) was installed later the same year. The LEO

computer also made its debut in 1951. LEO was a commercial version of the

prototype EDSAC machine, which at Cambridge University in 1949 had become

the second stored-programme electronic computer to function.13 1953 saw the

IBM 701, the company’s Wrst mass-produced stored-programme electronic com-

puter. A new era had begun.

How the universal machine works

The details of Turing’s universal machine, given on pp. 69–72, are moderately

complicated. However, the basic principles of the universal machine are, as

Turing says, simple.

Let us consider the Turing machineM whose instructions are set out in Table 1.

(Recall that M’s scanner is positioned initially over any square of M’s endless

tape, the tape being completely blank.) If a standard description of M is placed

on the universal machine’s tape, the universal machine will simulate or mimic the

actions of M, and will produce, on specially marked squares of its tape, the

output sequence that M produces, namely:

0 1 0 1 0 1 0 1 0 1 . . .

The universal machine does this by reading the instructions that the standard

description contains and carrying them out on its own tape.

In order to start work, the universal machine requires on its tape not only the

standard description but also a record of M’s intial state (a) and the symbol that

M is initially scanning (a blank). The universal machine’s own tape is initially

blank except for this record and M’s standard description (and some ancillary

punctuation symbols mentioned below). As the simulation of M progresses, the

universal machine prints a record on its tape of:

• the symbols that M prints

• the position of M’s scanner at each step of the computation

• the symbol ‘in’ the scanner

• M’s state at each step of the computation.

12 S. Lavington, ‘Computer Development at Manchester University’, in N. Metropolis, J. Howlett, and

G. C. Rota (eds.), A History of Computing in the Twentieth Century (New York: Academic Press, 1980).

13 See M. V. Wilkes, Memoirs of a Computer Pioneer (Cambridge, Mass.: MIT Press, 1985).

Computable Numbers: A Guide | 17

When the universal machine is started up, it reads from its tape M’s initial

state and initial symbol, and then searches through M’s standard description for

the instruction beginning: ‘when in state a and scanning a blank . . .’ The relevant

instruction from Table 1 is:

a blank P[0], R b

The universal machine accordingly prints ‘0’. It then creates a record on its tape

of M’s new state, b, and the new position of M’s scanner (i.e. immediately to the

right of the ‘0’ that has just been printed on M’s otherwise blank tape). Next, the

universal machine searches through the standard description for the instruction

beginning ‘when in state b and scanning a blank . . .’. And so on.

How does the universal machine do its record-keeping? After M executes its

Wrst instruction, the relevant portion of M’s tape would look like this—using ‘b’

both to recordM’s state and to indicate the position of the scanner. All the other

squares of M’s tape to the left and right are blank.

0

b

The universal machine keeps a record of this state of aVairs by employing three

squares of tape (pp. 62, 68):

0 b

The symbol ‘b’ has the double function of recording M’s state and indicating the

position of M’s scanner. The square immediately to the right of the state-symbol

displays the symbol ‘in’ M’s scanner (a blank).

What does the universal machine’s tape look like before the computation

starts? The standard description corresponding to Table 1 is:

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

The operator places this programme on the universal machine’s tape, writing

only on F-squares and beginning on the second F-square of the tape. The Wrst

F-square and the Wrst E-square are marked with the start-of-tape symbol ‘!’. The

E-squares (shaded in the diagram) remain blank (except for the Wrst).

! ! D D D D DC RA A A A A; etc.

On the F-square following the Wnal semicolon of the programme, the operator

writes the end-of-programme symbol ‘::’. On the next F-square to the right of

this symbol, the operator places a record of M’s initial state, a, and leaves the

18 | Jack Copeland

following F-square blank in order to indicate that M is initially scanning a blank.

The next F-square to the right is then marked with the punctuation symbol ‘:’.

This completes the setting-up of the tape:

! ! p r r a m m eo g :a::

What does the universalmachine’s tape look like as the computation progresses?

In response to the Wrst instruction in the standard description, the universal

machine creates the record ‘0b-:’ (in describing the tape, ‘-’ will be used to represent

a blank) on the next four F-squares to the right of the Wrst ‘:’. Depicting only the

portion of tape to the right of the end-of-programmemarker ‘::’ (and ignoring any

symbols which the universal machine may have written on the E-squares in the

course of dealing with the Wrst instruction), the tape now looks like this:

0a b::: :

Next the universal machine searches for the instruction beginning ‘when in

state b and scanning a blank . . .’. The relevant instruction from Table 1 is

b blank R c

This instruction would put M into the condition:

0

c

So the universal machine creates the record ‘0-c-:’ on its tape:

:: : ::0 b 0 ca

Each pair of punctuation marks frames a representation (on the F-squares)

of M’s tape extending from the square that was in the scanner at start-up to the

furthest square to the right to have been scanned at that stage of the computation.

The next instruction is:

c blank P[1], R d

This causes the universal machine to create the record ‘0-1d-:’. (The diagram

represents a single continuous strip of tape.)

:: : : 0c

:

:0 b 0

d

a

1

Computable Numbers: A Guide | 19

And so on. Record by record, the outputs produced by the instructions in Table 1

appear on the universal machine’s tape.

Turing also introduces a variation on this method of record-keeping, whereby

the universal machine additionally prints on the tape a second record of the

binary digits printed by M. The universal machine does this by printing in front

of each record shown in the above diagram a record of any digit newly printed by

M (plus an extra colon):

a : : :

: : :1 1 d0

0 0 0 cb::

These single digits bookended by colons form a representation of what has been

printed by M on the F-squares of its tape.

Notice that the record-keeping scheme employed so far requires the universal

machine to be able to print each type of symbol that the machine being

simulated is able to print. In the case of M this requirement is modest, since

M prints only ‘0’, ‘1’, and the blank. However, if the universal machine is to be

able to simulate each of the inWnitely many Turing machines, then this record-

keeping scheme requires that the universal machine have the capacity to print an

endless variety of types of discrete symbol. This can be avoided by allowing the

universal machine to keep its record ofM’s tape in the same notation that is used

in forming standard descriptions, namely with ‘D’ replacing the blank, ‘DC’

replacing ‘0’, ‘DCC’ replacing ‘1’, ‘DA’ replacing ‘a’, ‘DAA’ replacing ‘b’, and so on.

The universal machine’s tape then looks like this (to the right of the end-of-

programme symbol ‘::’ and not including the second record of digits printed

by M):

D D : D D D D DC:A ACA etc::

In this elegant notation of Turing’s, ‘D’ serves to indicate the start of each new

term on the universal machine’s tape. The letters ‘A’ and ‘C’ serve to distinguish

terms representing M’s states from terms representing symbols on M’s tape.

The E-squares and the instruction table

The universal machine uses the E-squares of its tape to mark up each instruction

in the standard description. This facilitates the copying that the universal

machine must do in order to produce its records of M’s activity. For example,

the machine temporarily marks the portion of the current instruction specifying

M’s next state with ‘y’ and subsequently the material marked ‘y’ is copied to the

appropriate place in the record that is being created. The universal machine’s

records of M’s tape are also temporarily marked in various ways.

20 | Jack Copeland

In Section 7 Turing introduces various subroutines for placing and erasing

markers on the E-squares. He sets out the table of instructions for the universal

machine in terms of these subroutines. The table contains the detailed instruc-

tions for carrying out the record-keeping described above.

In Section 2.4 of Chapter 2 Turing’s sometime colleague Donald Davies gives

an introduction to these subroutines and to Turing’s detailed table of instruc-

tions for the universal machine (and additionally corrects some errors in Turing’s

own formulation).

5. Turing, von Neumann, and the Computer

In the years immediately following the Second World War, the Hungarian-

American logician and mathematician John von Neumann—one of the most

important and inXuential Wgures of twentieth-century mathematics—made the

concept of the stored-programme digital computer widely known, through his

writings and his charismatic public addresses. In the secondary literature, von

Neumann is often said to have himself invented the stored-programme com-

puter. This is an unfortunate myth.

From 1933 von Neumann was on the faculty of the prestigious Institute for

Advanced Study at Princeton University. He and Turing became well acquainted

while Turing was studying at Princeton from 1936 to 1938 (see the introduction

to Chapter 3). In 1938 von Neumann oVered Turing a position as his assistant,

which Turing declined. (Turing wrote to his mother on 17 May 1938: ‘I had

an oVer of a job here as von Neumann’s assistant at $1500 a year but decided

not to take it.’14 His father had advised him to Wnd a job in America,15 but on

12 April of the same year Turing had written: ‘I have just been to see the Dean

[Luther Eisenhart] and ask him about possible jobs over here; mostly for Daddy’s

information, as I think it unlikely I shall take one unless you are actually at

war before July. He didn’t know of one at present, but said he would bear it

all in mind.’)

It was during Turing’s time at Princeton that von Neumann became familiar

with the ideas in ‘On Computable Numbers’. He was to become intrigued with

Turing’s concept of a universal computing machine.16 It is clear that von

14 Turing’s letters to his mother are among the Turing Papers in the Modern Archive Centre, King’s

College Library, Cambridge (catalogue reference K 1).

15 S. Turing, Alan M. Turing (Cambridge: HeVer, 1959), 55.

16 ‘I know that von Neumann was inXuenced by Turing . . . during his Princeton stay before the war,’ said

von Neumann’s friend and colleague Stanislaw Ulam (in an interview with Christopher Evans in 1976; ‘The

Pioneers of Computing: An Oral History of Computing’, Science Museum, London). When Ulam and von

Neumann were touring in Europe during the summer of 1938, von Neumann devised a mathematical game

involving Turing-machine-like descriptions of numbers (Ulam reported by W. Aspray on pp. 178, 313 of his

John von Neumann and the Origins of Modern Computing (Cambridge, Mass.: MIT Press, 1990)). The word

Computable Numbers: A Guide | 21

Neumann held Turing’s work in the highest regard.17 One measure of his esteem

is that the only names to receive mention in his pioneering volume The Com-

puter and the Brain are those of Turing and the renowned originator of infor-

mation theory, Claude Shannon.18

The Los Alamos physicist Stanley Frankel—responsible with von Neumann

and others for mechanizing the large-scale calculations involved in the design of

the atomic and hydrogen bombs—has recorded von Neumann’s view of the

importance of ‘On Computable Numbers’:

I know that in or about 1943 or ’44 von Neumann was well aware of the fundamental

importance of Turing’s paper of 1936 ‘On computable numbers . . .’, which describes in

principle the ‘Universal Computer’ of which every modern computer (perhaps not

ENIAC as Wrst completed but certainly all later ones) is a realization. Von Neumann

introduced me to that paper and at his urging I studied it with care. Many people have

acclaimed von Neumann as the ‘father of the computer’ (in a modern sense of the term)

but I am sure that he would never have made that mistake himself. He might well be called

the midwife, perhaps, but he Wrmly emphasized to me, and to others I am sure, that the

fundamental conception is owing to Turing—insofar as not anticipated by Babbage,

Lovelace, and others. In my view von Neumann’s essential role was in making the world

aware of these fundamental concepts introduced by Turing and of the development work

carried out in the Moore school and elsewhere.19

In 1944 von Neumann joined the ENIAC group, led by Presper Eckert and

John Mauchly at the Moore School of Electrical Engineering (part of the Univer-

sity of Pennsylvania).20 At this time von Neumann was involved in the Manhat-

tan Project at Los Alamos, where roomfuls of clerks armed with desk calculating

machines were struggling to carry out the massive calculations required by the

physicists. Hearing about the Moore School’s planned computer during a chance

encounter on a railway station (with Herman Goldstine), von Neumann imme-

diately saw to it that he was appointed as consultant to the project.21 ENIAC—

under construction since 1943—was, as previously mentioned, a programme-

controlled (i.e. not stored-programme) computer: programming consisted of

‘intrigued’ is used in this connection by von Neumann’s colleague Herman Goldstine on p. 275 of his The

Computer from Pascal to von Neumann (Princeton: Princeton University Press, 1972).)

17 Turing’s universal machine was crucial to von Neumann’s construction of a self-reproducing automa-

ton; see the chapter ‘ArtiWcial Life’, below.

18 J. von Neumann, The Computer and the Brain (New Haven: Yale University Press, 1958).

19 Letter from Frankel to Brain Randell, 1972 (Wrst published in B. Randell, ‘On Alan Turing and the

Origins of Digital Computers’, in Meltzer and Michie (eds.), Machine Intelligence 7. I am grateful to Randell

for giving me a copy of this letter.

20 John Mauchly recalled that 7 September 1944 ‘was the Wrst day that von Neumann had security

clearance to see the ENIAC and talk with Eckert and me’ (J. Mauchly, ‘Amending the ENIAC Story’,

Datamation, 25/11 (1979), 217–20 (217)). Goldstine (The Computer from Pascal to von Neumann, 185)

suggests that the date of von Neumann’s Wrst visit may have been a month earlier: ‘I probably took von

Neumann for a Wrst visit to the ENIAC on or about 7 August’.

21 Goldstine, The Computer from Pascal to von Neumann, 182.

22 | Jack Copeland

rerouting cables and setting switches. Moreover, the ENIAC was designed with

only one very speciWc type of task in mind, the calculation of trajectories of

artillery shells. Von Neumann brought his knowledge of ‘On Computable

Numbers’ to the practical arena of the Moore School. Thanks to Turing’s abstract

logical work, von Neumann knew that by making use of coded instructions

stored in memory, a single machine of Wxed structure could in principle carry

out any task for which an instruction table can be written.

Von Neumann gave his engineers ‘On Computable Numbers’ to read when, in

1946, he established his own project to build a stored-programme computer at

the Institute for Advanced Study.22 Julian Bigelow, von Neumann’s chief engin-

eer, recollected:

The person who really . . . pushed the whole Weld ahead was von Neumann, because he

understood logically what [the stored-programme concept] meant in a deeper way than

anybody else . . . The reason he understood it is because, among other things, he under-

stood a good deal of the mathematical logic which was implied by the idea, due to the

work of A. M. Turing . . . in 1936–1937. . . . Turing’s [universal] machine does not sound

much like a modern computer today, but nevertheless it was. It was the germinal

idea . . . So . . . [von Neumann] saw . . . that [ENIAC] was just the Wrst step, and that great

improvement would come.23

Von Neumann repeatedly emphasized the fundamental importance of ‘On

Computable Numbers’ in lectures and in correspondence. In 1946 von Neumann

wrote to the mathematician Norbert Wiener of ‘the great positive contribution of

Turing’, Turing’s mathematical demonstration that ‘one, deWnite mechanism can

be ‘‘universal’’ ’.24 In 1948, in a lecture entitled ‘The General and Logical Theory

of Automata’, von Neumann said:

The English logician, Turing, about twelve years ago attacked the following problem. He

wanted to give a general deWnition of what is meant by a computing automaton . . . Turing

carried out a careful analysis of what mathematical processes can be eVected by automata

of this type . . . He . . . also introduce[d] and analyse[d] the concept of a ‘universal auto-

maton’. . . An automaton is ‘universal’ if any sequence that can be produced by any

automaton at all can also be solved by this particular automaton. It will, of course, require

in general a diVerent instruction for this purpose. The Main Result of the Turing Theory.

We might expect a priori that this is impossible. How can there be an automaton which is

22 Letter from Julian Bigelow to Copeland (12 Apr. 2002). See also Aspray, John von Neumann, 178.

23 Bigelow in a tape-recorded interview made in 1971 by the Smithsonian Institution and released in

2002. I am grateful to Bigelow for sending me a transcript of excerpts from the interview.

24 The letter, dated 29 Nov. 1946, is in the von Neumann Archive at the Library of Congress, Washington,

DC. In the letter von Neumann also remarked that Turing had ‘demonstrated in absolute . . . generality that

anything and everything Brouwerian can be done by an appropriate mechanism’ (a Turing machine). He

made a related remark in a lecture: ‘It has been pointed out by A. M. Turing [in ‘‘On Computable

Numbers’’] . . . that eVectively constructive logics, that is, intuitionistic logics, can be best studied in terms

of automata’ (‘Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components’,

in vol. v of von Neumann’s Collected Works, ed. A. H. Taub (Oxford: Pergamon Press, 1963), 329).

Computable Numbers: A Guide | 23

at least as eVective as any conceivable automaton, including, for example, one of twice its

size and complexity? Turing, nevertheless, proved that this is possible.25

The following year, in a lecture delivered at the University of Illinois entitled

‘Rigorous Theories of Control and Information’, von Neumann said:

The importance of Turing’s research is just this: that if you construct an automaton right,

then any additional requirements about the automaton can be handled by suYciently

elaborate instructions. This is only true if [the automaton] is suYciently complicated, if it

has reached a certain minimal level of complexity. In other words . . . there is a very

deWnite Wnite point where an automaton of this complexity can, when given suitable

instructions, do anything that can be done by automata at all.26

Von Neumann placed Turing’s abstract ‘universal automaton’ into the hands of

American engineers. Yet many books on the history of computing in the United

States make no mention of Turing. No doubt this is in part explained by the

absence of any explicit reference to Turing’s work in the series of technical reports

in which von Neumann, with various co-authors, set out a logical design for an

electronic stored-programme digital computer.27Nevertheless there is evidence in

these documents of von Neumann’s knowledge of ‘On Computable Numbers’. For

example, in the report entitled ‘Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument’ (1946), von Neumann and his co-authors,

Burks andGoldstine—both formermembers of the ENIAC group, who had joined

von Neumann at the Institute for Advanced Study—wrote the following:

3.0. First Remarks on the Control and Code: It is easy to see by formal-logical methods, that

there exist codes that are in abstracto adequate to control and cause the execution of any

sequence of operations which are individually available in the machine and which are, in

their entirety, conceivable by the problem planner. The really decisive considerations from

the present point of view, in selecting a code, are more of a practical nature: Simplicity of

the equipment demanded by the code, and the clarity of its application to the actually

important problems together with the speed of its handling of those problems.28

Burks has conWrmed that the Wrst sentence of this passage is a reference to

Turing’s universal computing machine.29

25 The text of ‘The General and Logical Theory of Automata’ is in vol. v of von Neumann, Collected

Works; see pp. 313–14.

26 The text of ‘Rigorous Theories of Control and Information’ is printed in J. von Neumann, Theory of

Self-Reproducing Automata, ed. A. W. Burks (Urbana: University of Illinois Press, 1966); see p. 50.

27 The Wrst papers in the series were the ‘First Draft of a Report on the EDVAC’ (1945, von Neumann; see

n. 31), and ‘Preliminary Discussion of the Logical Design of an Electronic Computing Instrument’ (1946,

Burks, Goldstine, von Neumann; see n. 28).

28 A. W. Burks, H. H. Goldstine, and J. von Neumann, ‘Preliminary Discussion of the Logical Design of

an Electronic Computing Instrument’, 28 June 1946, Institute for Advanced Study, Princeton University,

Section 3.1 (p. 37); reprinted in vol. v of von Neumann, Collected Works.

29 Letter from Burks to Copeland (22 Apr. 1998). See also Goldstine, The Computer from Pascal to von

Neumann, 258.

24 | Jack Copeland

The situation in 1945–1946

The passage just quoted is an excellent summary of the situation at that time. In

‘On Computable Numbers’ Turing had shown in abstracto that, by means of

instructions expressed in the programming code of standard descriptions, a

single machine of Wxed structure is able to carry out any task that a ‘problem

planner’ is able to analyse into eVective steps. By 1945, considerations in

abstracto had given way to the practical problem of devising an equivalent

programming code that could be implemented eYciently by means of thermi-

onic valves (vacuum tubes).

A machine-level programming code in eVect speciWes the basic opera-

tions that are available in the machine. In the case of Turing’s universal machine

these are move left one square, scan one symbol, write one symbol, and so

on. These operations are altogether too laborious to form the basis of eYcient

electronic computation. A practical programming code should not only

be universal, in the sense of being adequate in principle for the program-

ming of any task that can be carried out by a Turing machine, but must in

addition:

• employ basic operations that can be realized simply, reliably, and eYciently

by electronic means;

• enable the ‘actually important problems’ to be solved on the machine as

rapidly as the electronic hardware permits;

• be as easy as possible for the human ‘problem planner’ to work with.

The challenge of designing a practical code, and the underlying mechanism

required for its implementation, was tackled in diVerent ways by Turing and the

several American groups.

Events at the Moore School

The ‘Preliminary Discussion of the Logical Design of an Electronic Computing

Instrument’ was not intended for formal publication and no attempt was made

to indicate those places where reference was being made to the work of others.

(Von Neumann’s biographer Norman Macrae remarked: ‘Johnny borrowed (we

must not say plagiarized) anything from anybody.’30 The situation was the same

in the case of von Neumann’s 1945 paper ‘First Draft of a Report on the

EDVAC’.31 This described the Moore School group’s proposed stored-

programme computer, the EDVAC. The ‘First Draft’ was distributed (by Gold-

stine and a Moore School administrator) before references had been added—and

indeed without consideration of whether the names of Eckert and Mauchly

30 N. Macrae, John von Neumann (New York: Pantheon Books, 1992), 23.

31 J. von Neumann, ‘First Draft of a Report on the EDVAC’, Moore School of Electrical Engineering,

University of Pennsylvania, 1945; reprinted in full in N. Stern, From ENIAC to UNIVAC: An Appraisal of the

Eckert-Mauchly Computers (Bedford, Mass.: Digital Press, 1981).

Computable Numbers: A Guide | 25

should appear alongside von Neumann’s as co-authors.32 Eckert and Mauchly

were outraged, knowing that von Neumann would be given credit for everything

in the report—their ideas as well as his own. There was a storm of controversy

and von Neumann left the Moore School group to establish his own computer

project at Princeton. Harry Huskey, a member of the Moore School group from

the spring of 1944, emphasizes that the ‘First Draft’ should have contained

acknowledgement of the considerable extent to which the design of the proposed

EDVAC was the work of other members of the group, especially Eckert.33

In 1944, before von Neumann came to the Moore School, Eckert and Mauchly

had rediscovered the idea of using a single memory for data and programme.34

(They were far, however, from rediscovering Turing’s concept of a universal

machine.) Even before the ENIAC was completed, Eckert and Mauchly were

thinking about a successor machine, the EDVAC, in which the ENIAC’s most

glaring deWciencies would be remedied. Paramount among these, of course, was

the crude wire’n’plugs method of setting up the machine for each new task. Yet if

pluggable connections were not to be used, how was the machine to be con-

trolled without a sacriWce in speed? If the computation were controlled by means

of existing, relatively slow, technology—e.g. an electro-mechanical punched-card

reader feeding instructions to the machine—then the high-speed electronic

hardware would spend much of its time idle, awaiting the next instruction.

Eckert explained to Huskey his idea of using a mercury ‘delay line’:

Eckert described a mercury delay line to me, a Wve foot pipe Wlled with mercury which

could be used to store a train of acoustic pulses . . . [O]ne recirculating mercury line would

store more than 30 [32 bit binary] numbers . . .My Wrst question to Eckert: thinking about

the pluggable connections to control the ENIAC, ‘How do you control the operations?’

‘Instructions are stored in the mercury lines just like numbers,’ he said. Of course! Once he

said it, it was so obvious, and the only way that instructions could come available at rates

comparable to the data rates. That was the stored program computer.35

32 See N. Stern, ‘John von Neumann’s InXuence on Electronic Digital Computing, 1944–1946’, Annals of

the History of Computing, 2 (1980), 349–62.

33 Huskey in interview with Copeland (Feb. 1998). (Huskey was oVered the directorship of the EDVAC

project in 1946 but other commitments prevented him from accepting.)

34 Mauchly, ‘Amending the ENIAC Story’; J. P. Eckert, ‘The ENIAC’, in Metropolis, Howlett, and Rota, A

History of Computing in the Twentieth Century; letter from Burks to Copeland (16 Aug. 2003): ‘before von

Neumann came’ to the Moore School, Eckert and Mauchly were ‘saying that they would build a mercury

memory large enough to store the program for a problem as well as the arithmetic data’. Burks points out

that von Neumann was however the Wrst of the Moore School group to note the possibility, implict in the

stored-programme concept, of allowing the computer to modify the addresses of selected instructions in a

programme while it runs (A. W. Burks, ‘From ENIAC to the Stored-Program Computer: Two Revolutions in

Computers’, in Metropolis, Howlett, and Rota, A History of Computing in the Twentieth Century, 340–1).

Turing employed a more general form of the idea of instruction modiWcation in his 1945 technical report

‘Proposed Electronic Calculator’ (in order to carry out conditional branching), and the idea of instruction

modiWcation lay at the foundation of his theory of machine learning (see Chapter 9).

35 H. D. Huskey, ‘The Early Days’, Annals of the History of Computing, 13 (1991), 290–306 (292–3). The

date of the conversation was ‘perhaps the spring of 1945’ (letter from Huskey to Copeland (5 Aug. 2003)).

26 | Jack Copeland

Following his Wrst visit to the ENIAC in 1944, von Neumann went regularly to

the Moore School for meetings with Eckert, Mauchly, Burks, Goldstine, and

others.36 Goldstine reports that ‘these meetings were scenes of greatest intellec-

tual activity’ and that ‘Eckert was delighted that von Neumann was so keenly

interested’ in the idea of the high-speed delay line memory. It was, says Gold-

stine, ‘fortunate that just as this idea emerged von Neumann should have

appeared on the scene’.37

Eckert had produced the means to make the abstract universal computing

machine of ‘On Computable Numbers’ concrete! Von Neumann threw himself at

the key problem of devising a practical code. In 1945, Eckert and Mauchly

reported that von Neumann ‘has contributed to many discussions on the logical

controls of the EDVAC, has prepared certain instruction codes, and has tested

these proposed systems by writing out the coded instructions for speciWc prob-

lems’.38 Burks summarized matters:

Pres [Eckert] and John [Mauchly] invented the circulating mercury delay line store, with

enough capacity to store program information as well as data. Von Neumann created the

Wrst modern order code and worked out the logical design of an electronic computer to

execute it.39

Von Neumann’s embryonic programming code appeared in May 1945 in the

‘First Draft of a Report on the EDVAC’.

So it was that von Neumann became the Wrst to outline a ‘practical version

of the universal machine’ (the quoted phrase is Turing’s; see p. 16). The

‘First Draft’ contained little engineering detail, however, in particular concern-

ing electronics. Turing’s own practical version of the universal machine

followed later the same year. His ‘Proposed Electronic Calculator’ set out a

detailed programming code—very diVerent from von Neumann’s—together

with a detailed design for the underlying hardware of the machine (see

Chapter 9).

6. Turing and Babbage

Charles Babbage, Lucasian Professor of Mathematics at the University

of Cambridge from 1828 to 1839, was one of the Wrst to appreciate the enormous

potential of computing machinery. In about 1820, Babbage proposed an

36 Goldstine, The Computer from Pascal to von Neumann, 186.

37 Ibid.

38 J. P. Eckert and J. W. Mauchly, ‘Automatic High Speed Computing: A Progress Report on the EDVAC’,

Moore School of Electrical Engineering, University of Pennsylvania (Sept. 1945), Section 1; this section of

the report is reproduced on pp. 184–6 of L. R. Johnson, System Structure in Data, Programs, and Computers

(Englewood CliVs, NJ: Prentice-Hall, 1970).

39 Burks, ‘From ENIAC to the Stored-Program Computer: Two Revolutions in Computers’, 312.

Computable Numbers: A Guide | 27

‘Engine’ for the automatic production of mathematical tables (such as

logarithm tables, tide tables, and astronomical tables).40 He called it the ‘DiVer-

ence Engine’. This was the age of the steam engine, and Babbage’s Engine was to

consist of more accurately machined forms of components found in railway

locomotives and the like—brass gear wheels, rods, ratchets, pinions, and so

forth.

Decimal numbers were represented by the positions of ten-toothed metal

wheels mounted in columns. Babbage exhibited a small working model of the

Engine in 1822. He never built the full-scale machine that he had designed, but

did complete several parts of it. The largest of these—roughly 10 per cent of the

planned machine—is on display in the London Science Museum. Babbage used

it to calculate various mathematical tables. In 1990 his ‘DiVerence Engine No. 2’

was Wnally built from the original design and this is also on display at the London

Science Museum—a glorious machine of gleaming brass.

In 1843 the Swedes Georg and Edvard Scheutz (father and son) built a sim-

pliWed version of the DiVerence Engine. After making a prototype they built two

commercial models. One was sold to an observatory in Albany, New York, and

the other to the Registrar-General’s oYce in London, where it calculated and

printed actuarial tables.

Babbage also proposed the ‘Analytical Engine’, considerably more ambitious

than the DiVerence Engine.41 Had it been completed, the Analytical Engine

would have been an all-purpose mechanical digital computer. A large model of

the Analytical Engine was under construction at the time of Babbage’s death in

1871, but a full-scale version was never built.

The Analytical Engine was to have a memory, or ‘store’ as Babbage called it,

and a central processing unit, or ‘mill’. The behaviour of the Analytical Engine

would have been controlled by a programme of instructions contained on

punched cards, connected together by ribbons (an idea Babbage adopted from

the Jacquard weaving loom). The Analytical Engine would have been able to

select from alternative actions on the basis of outcomes of previous actions—a

facility now called ‘conditional branching’.

Babbage’s long-time collaborator was Ada, Countess of Lovelace (daughter of

the poet Byron), after whom the modern programming language ada is named.

Her vision of the potential of computing machines was in some respects perhaps

more far-reaching even than Babbage’s own. Lovelace envisaged computing that

40 C. Babbage, Passages from the Life of a Philosopher, vol. xi of The Works of Charles Babbage, ed.

M. Campbell-Kelly (London: William Pickering, 1989); see also B. Randell (ed.), The Origins of Digital

Computers: Selected Papers (Berlin: Springer-Verlag, 3rd edn. 1982), ch. 1.

41 See Babbage, Passages from the Life of a Philosopher; A. A. Lovelace and L. F. Menabrea, ‘Sketch of the

Analytical Engine Invented by Charles Babbage, Esq.’ (1843), in B. V. Bowden (ed.), Faster than Thought

(London: Pitman, 1953); Randell, The Origins of Digital Computers: Selected Papers, ch. 2; A. Bromley,

‘Charles Babbage’s Analytical Engine, 1838’, Annals of the History of Computing, 4 (1982), 196–217.

28 | Jack Copeland

went beyond pure number-crunching, suggesting that the Analytical Engine

might compose elaborate pieces of music.42

Babbage’s idea of a general-purpose calculating engine was well known to

some of the modern pioneers of automatic calculation. In 1936 Vannevar Bush,

inventor of the DiVerential Analyser (an analogue computer), spoke in a lecture

of the possibility of machinery that ‘would be a close approach to Babbage’s large

conception’.43 The following year Howard Aiken, who was soon to build the

digital—but not stored-programme and not electronic—Harvard Automatic

Sequence Controlled Calculator, wrote:

Hollerith . . . returned to the punched card Wrst employed in calculating machinery by

Babbage and with it laid the groundwork for the development of . . . machines as manu-

factured by the International Business Machines Company, until today many of the things

Babbage wished to accomplish are being done daily in the accounting oYces of industrial

enterprises all over the world.44

Babbage’s ideas were remembered in Britain also, and his proposed computing

machinery was on occasion a topic of lively mealtime discussion at Bletchley

Park, the wartime headquarters of the Government Code and Cypher School and

birthplace of the electronic digital computer (see ‘Enigma’ and the introductions

to Chapters 4 and 9).45

It is not known when Turing Wrst learned of Babbage’s ideas.46 There is

certainly no trace of Babbage’s inXuence to be found in ‘On Computable

Numbers’. Much later, Turing generously wrote (Chapter 11, p. 446):

The idea of a digital computer is an old one. Charles Babbage . . . planned such a machine,

called the Analytical Engine, but it was never completed. Although Babbage had all

the essential ideas, his machine was not at that time such a very attractive prospect.

Babbage had emphasized the generality of the Analytical Engine, claiming that

‘the conditions which enable a Wnite machine to make calculations of unlimited

extent are fulWlled in the Analytical Engine’.47 Turing states (Chapter 11, p. 455)

that the Analytical Engine was universal—a judgement possible only from the

vantage point of ‘On Computable Numbers’. The Analytical Engine was not,

however, a stored-programme computer. The programme resided externally on

42 Lovelace and Menabrea, ‘Sketch of the Analytical Engine’, 365.

43 V. Bush, ‘Instrumental Analysis’, Bulletin of the American Mathematical Society, 42 (1936), 649–69

(654) (the text of Bush’s 1936 Josiah Willard Gibbs Lecture).

44 H. Aiken, ‘Proposed Automatic Calculating Machine’ (1937), in Randell, The Origins of Digital

Computers: Selected Papers, 196.

45 Thomas H. Flowers in interview with Copeland (July 1996).

46 Dennis Babbage, chief cryptanalyst in Hut 6, the section at Bletchley Park responsible for Army,

Airforce, and Railway Enigma, is sometimes said to have been a descendant of Charles Babbage. This was

not in fact so. (Dennis Babbage in interview with Ralph Erskine.)

47 Babbage, Passages from the Life of a Philosopher, 97.

Computable Numbers: A Guide | 29

punched cards, and as each card entered the Engine, the instruction marked on

that card would be obeyed.

Someone might wonder what diVerence there is between the Analytical Engine

and the universal Turing machine in that respect. After all, Babbage’s cards

strung together with ribbon would in eVect form a tape upon which the

programme is marked. The diVerence is that in the universal Turing machine,

but not the Analytical Engine, there is no fundamental distinction between

programme and data. It is the absence of such a distinction that marks oV a

stored-programme computer from a programme-controlled computer. As

Gandy put the point, Turing’s ‘universal machine is a stored-program machine

[in that], unlike Babbage’s all-purpose machine, the mechanisms used in reading

a program are of the same kind as those used in executing it’.48

7. Origins of the Term ‘Computer Programme’

As previously mentioned, Turing’s tables of instructions for Turing machines are

examplesofwhat arenowcalled computerprogrammes.Whenhe turned todesign-

ing an electronic computer in 1945 (the ACE), Turing continued to use his term

‘instruction table’ where a modern writer would use ‘programme’ or ‘program’.49

Later material Wnds Turing referring to the actual process of writing instruction

tables for the electronic computer as ‘programming’ but still using ‘instruction

table’ to refer to the programme itself (see Chapter 9, pp. 388, 390–91).50

In an essay published in 1950 Turing explained the emerging terminology to

the layman (Chapter 11, p. 445): ‘Constructing instruction tables is usually

described as ‘‘programming’’. To ‘‘programme a machine to carry out the oper-

ation A’’ means to put the appropriate instruction table into the machine so that

it will do A.’

Turing seems to have inherited the term ‘programming’ from the milieu

of punched-card plug-board calculators. (These calculators were electro-

mechanical, not electronic. Electro-mechanical equipment was based on the

relay—a small electrically driven mechanical switch. Relays operated much

more slowly than the thermionic valves (vacuum tubes) on which the Wrst

electronic computers were based; valves owe their speed to the fact that they

48 R. Gandy, ‘The ConXuence of Ideas in 1936’, in R. Herken (ed.), The Universal Turing Machine: A Half-

Century Survey (Oxford: Oxford University Press, 1998), 90. Emphasis added.

49 ‘Program’ is the original English spelling, in conformity with ‘anagram’, ‘diagram’, etc. The spelling

‘programme’ was introduced into Britain from France in approximately 1800 (Oxford English Dictionary).

The earlier spelling persisted in the United States. Turing’s spelling is followed in this volume (except in

quotations from other authors and in the section by Davies).

50 See also ‘The Turing-Wilkinson Lecture Series on the Automatic Computing Engine’ (ed. Copeland),

in K. Furukawa, D. Michie, and S. Muggleton (eds.), Machine Intelligence 15 (Oxford: Oxford University

Press, 1999).

30 | Jack Copeland

have no moving parts save a beam of electrons—hence the term ‘electronic’.)

Plug-board calculators were set up to perform a desired sequence of arithmetical

operations by means of plugging wires into appropriate sockets in a board

resembling a telephone switchboard. Data was fed into the calculator from

punched cards, and a card-punching device or printer recorded the results of

the calculation. An early example of a punched-card machine was constructed in

the USA by Herman Hollerith for use in processing statistical data gathered in

the 1890 census. By the mid-twentieth century most of the world’s computing

was being done by punched-card calculators. Gradually the technology was

displaced by the electronic computer.

When Turing joined the National Physical Laboratory in 1945 there was a large

room Wlled with punched-card calulating equipment. David Clayden, one of the

engineers who built the ACE, describes the punched-card equipment and the

terminology in use at that time:

When I started at NPL in 1947 there was a well established punched card department,

mainly Hollerith. The workhorse of punched card equipment is the ‘Reproducer’, which

has a broadside card reader and a broadside card punch. By taking a stack of cards from

the punch and putting them into the reader, it is possible to do iterative calculations. All

functions are controlled by a plugboard on which there are two sets of 12 � 80 sockets,

one for the reader and one for the punch. In addition there is a relay store [i.e. memory].

The plugboard can be connected in many ways (using short plugleads) in order to

perform many functions, including addition, subtraction, and multiplication. The plug-

boards are removable. NPL had a stack of them and called them ‘programme’ boards.51

Turing’s own preference for ‘instruction table’ over the noun ‘programme’ was

not shared by all his colleagues at the NPL. Mike Woodger, Turing’s assistant

from 1946, says: ‘ ‘‘Programme’’ of course was an ordinary English word meaning

a planned sequence of events. We adopted it naturally for any instruction table

that would give rise to a desired sequence of events.’52 The noun ‘programme’

was in use in its modern sense from the earliest days of the ACE project. A

report (probably written by Turing’s immediate superior, Womersley) describing

work done by Turing and his assistants during 1946 stated: ‘It is intended to

prepare the instructions to the machine [the ACE] on Hollerith cards, and it is

proposed to maintain a library of these cards with programmes for standard

operations.’53 By the early 1950s specially printed ruled sheets used at the

NPL for writing out programmes bore the printed heading ‘ACE Pilot Model

Programme’.54

51 Letter from Clayden to Copeland (3 Oct. 2000).

52 Letter from Woodger to Copeland (6 Oct. 2000).

53 ‘Draft Report of the Executive Committee for the Year 1946’, National Physical Laboratory, paper

E.910, section Ma. 1, anon., but probably by Womersley (NPL Library; a digital facsimile is in The Turing

Archive for the History of Computing <www.AlanTuring.net/annual_report_1946>).

54 J. G. Hayes, ‘The Place of Pilot Programming’, MS, 2000.

Computable Numbers: A Guide | 31

www.AlanTuring.net/annual_report_1946

A document written by Woodger in 1947 used the single ‘m’ spelling: ‘A

Program for Version H’.55 Woodger recalls: ‘We used both spellings carelessly

for some years until Goodwin (Superintendent of Mathematics Division

from 1951) laid down the rule that the ‘‘American’’ spelling should be used.’56

It is possible that the single ‘m’ spelling Wrst came to the NPL via the American

engineer Huskey, who spent 1947 with the ACE group. Huskey was respon-

sible for ‘Version H’, a scaled-down form of Turing’s design for the ACE (see

Chapter 10).

Like Turing, Eckert and Mauchly, the chief architects of ENIAC, probably

inherited the terms ‘programming’ and ‘program’ from the plug-board calcula-

tor. In 1942, while setting out the idea of a high-speed electronic calculator,

Mauchly used the term ‘programming device’ (which he sometimes shortened to

‘program device’) to refer to a mechanism whose function was to determine how

and when the various component units of a calculator shall perform.57 In the

summer of 1946 the Moore School organized a series of inXuential lectures

entitled ‘Theory and Techniques for Design of Electronic Digital Computers’. In

the course of these, Eckert used the term ‘programming’ in a similar sense when

describing the new idea of storing instructions in high-speedmemory: ‘We . . . feed

those pieces of information which relate to programming from the memory.’58

Also in 1946, Burks, Goldstine, and von Neumann (all ex-members of the Moore

School group) were using the verb-form ‘program the machine’, and were speak-

ing of ‘program orders’ being stored in memory.59 The modern nominalized form

appears not to have been adopted in the USA until a little later. Huskey says, ‘I am

pretty certain that no one had written a ‘‘program’’ by the time I left Philadelphia

in June 1946.’60

Part II Computability and Uncomputability

8. Circular and Circle-Free Machines

Turing calls the binary digits ‘0’ and ‘1’ symbols ‘of the Wrst kind’. Any symbols

that a computing machine is able to print apart from the binary digits—such as

55 M. Woodger, ‘A Program for Version H’, handwritten MS, 1947 (in the Woodger Papers, National

Museum of Science and Industry, Kensington, London (catalogue reference N30/37)).

56 Letter from Woodger to Copeland (6 Oct. 2000).

57 J. W. Mauchly, ‘The Use of High Speed Vacuum Tube Devices for Calculating’ (1942), in Randell, The

Origins of Digital Computers: Selected Papers.

58 J. P. Eckert, ‘A Preview of a Digital Computing Machine’ (15 July 1946), in M. Campbell-Kelly and

M. R. Williams (eds.), The Moore School Lectures (Cambridge, Mass.: MIT Press, 1985), 114.

59 Sections 1.2, 5.3 of Burks, Goldstine, and von Neumann, ‘Preliminary Discussion of the Logical Design

of an Electronic Computing Instrument’ (von Neumann, Collected Works, vol. v, 15, 43).

60 Letter from Huskey to Copeland (3 Feb. 2002).

32 | Jack Copeland

‘2’, ‘*’, ‘x’, and blank—Turing calls ‘symbols of the second kind’ (p. 60). He also

uses the term ‘Wgures’ for symbols of the Wrst kind.

A computing machine is said by Turing to be circular if it never prints more

than a Wnite number of symbols of the Wrst kind. A computing machine that will

print an inWnite number of symbols of the Wrst kind is said to be circle-free

(p. 60). For example, a machine operating in accordance with Table 1 is circle-

free. (The terms ‘circular’ and ‘circle-free’ were perhaps poor choices in this

connection, and the terminology has not been followed by others.)

A simple example of a circular machine is one set up to perform a single

calculation whose result is an integer. Once the machine has printed the result (in

binary notation), it prints nothing more.

A circular machine’s scanner need not come to a halt. The scanner may

continue moving along the tape, printing nothing further. Or, after printing a

Wnite number of binary digits, a circular machine may work on forever, printing

only symbols of the second kind.

Many real-life computing systems are circle-free, for example automated teller

machine networks, air traYc control systems, and nuclear reactor control

systems. Such systems never terminate by design and, barring hardware failures,

power outages, and the like, would continue producing binary digits forever.

In Section 8 of ‘On Computable Numbers’ Turing makes use of the circular/

circle-free distinction in order to formulate a mathematical problem that cannot

be solved by computing machines.

9. Computable and Uncomputable Sequences

The sequence of binary digits printed by a given computing machine on the

F-squares of its tape, starting with a blank tape, is called the sequence computed by

the machine. Where the given machine is circular, the sequence computed by the

machine is Wnite. The sequence computed by a circle-free machine is inWnite.

A sequence of binary digits is said to be a computable sequence if it is the

sequence computed by some circle-free computing machine. For example, the

inWnite sequence 010101 . . . is a computable sequence.

Notice that although the Wnite sequence 010, for example, is the sequence

computed by some machine, this sequence is not a computable sequence,

according to Turing’s deWnition. This is because, being Wnite, 010 is not the

sequence computed by any circle-free machine. According to Turing’s deWnition,

no Wnite sequence is a computable sequence. Modern writers usually deWne

‘computable’ in such a way that every Wnite sequence is a computable sequence,

since each of them can be computed (e.g. by means of an instruction table that

simply prints the desired sequence). Turing, however, was not much interested in

Wnite sequences.

Computable Numbers: A Guide | 33

The focus of Turing’s discussion is his discovery that not every inWnite

sequence of binary digits is a computable sequence. That this is so is shown by

what mathematicians call a diagonal argument.

The diagonal argument

Imagine that all the computable sequences are listed one under another. (The

order in which they are listed does not matter.) The list stretches away to inWnity

both downwards and to the right. The top left-hand corner might look like this:

01100101011000100101101001000111101 . . .

01011101001110001111111111111110111 . . .

11010000011011010100000110010000011 . . .

�
�
�

Let’s say that this list was drawn up in the following way (by an infinite deity,

perhaps). The Wrst sequence on the list is the sequence computed by the machine

with a description number that is smaller than any description number of any

other circle-free machine. The second sequence on the list is the one computed

by the circle-free machine with the next smallest description number, and so on.

Every computable sequence appears somewhere on this list. (Some will in fact be

listed twice, since sometimes diVerent description numbers correspond to the

same sequence.)

To prove that not all inWnite binary sequences are computable, it is enough to

describe one that does not appear on this list. To this end, consider the inWnite

binary sequence formed by moving diagonally down and across the list, starting

at the top left:

01100 . . .

01011 . . .

11010 . . .

�
�
�

The twist is to transform this sequence into a diVerent one by switching each ‘0’

lying on the diagonal to ‘1’ and each ‘1’ to ‘0’. So the Wrst digit of this new

sequence is formed by switching the Wrst digit of the Wrst sequence on the list

(producing 1); the second digit of the sequence is formed by switching the

second digit of the second sequence on the list (producing 0); the third digit is

formed by switching the third digit of the third sequence on the list (producing 1);

and so on. Turing calls this sequence ‘b’ (p. 72).

34 | Jack Copeland

A moment’s reXection shows that b cannot itself be one of the listed se-

quences, since it has been constructed in such a way that it diVers from each

of these. It diVers from the Wrst sequence on the list at the Wrst digit. It diVers

from the second sequence on the list at the second digit. And so on. Therefore,

since every computable sequence appears somewhere on this list, b is not among

the computable sequences.

Why the computable sequences are listable

A sceptic might challenge this reasoning, saying: ‘Perhaps the computable

sequences cannot be listed. In assuming that the computable sequences can be

listed, one, two, three, and so on, you are assuming in eVect that each comput-

able sequence can be paired oV with an integer (no two sequences being paired

with the same integer). But what if the computable sequences cannot be paired

oV like this with the integers? Suppose that there are just too many computable

sequences for this to be possible.’ If this challenge were successful, it would pull

the rug out from under the diagonal argument.

The response to the challenge is this. Each circle-free Turing machine produces

just one computable sequence. So there cannot be more computable sequences

than there are circle-free Turing machines. But there certainly cannot be more

circle-free Turing machines than there are integers. This is because every Turing

machine has a description number, which is an integer, and this number is not

shared by any other Turing machine.

This reasoning shows that each computable sequence can be paired oV with an

integer, one sequence per integer. As Turing puts this, the computable sequences

are ‘enumerable’ (p. 68).

The totality of inWnite binary sequences, however, is non-enumerable. Not all

the sequences can be paired oV with integers in such a way that no integer is

allocated more than one sequence. This is because, once every integer has had an

inWnite binary sequence allocated to it, one can ‘diagonalize’ in the above way

and produce an extra sequence.

Starting with a blank tape

Incidentally, notice the signiWcance, in Turing’s deWnition of sequence computed

by the machine, of the qualiWcation ‘starting with a blank tape’. If the comput-

ing machine were allowed to make use of a tape that had already had an

inWnite sequence of Wgures printed on it by some means, then the concept of

a computable sequence would be trivialized. Every inWnite binary sequence

would become computable, simply because any sequence of digits whatever—

e.g. b—could be present on the tape before the computing machine starts

printing.

The following trivial programme causes a machine to run along the tape

printing the Wgures that are already there!

Computable Numbers: A Guide | 35

a 1 P[1], R a

a 0 P[0], R a

a - P[-], R a

(The third line is required to deal with blank E-squares, if any.)

10. Computable and Uncomputable Numbers

Prefacing a binary sequence by ‘0’ produces a real number expressed in the form

of a binary decimal. For example, prefacing the binary sequence 010101 . . . pro-

duces 0.010101 . . . (the binary form of the ordinary decimal 0.363636 . . .). If B is

the sequence of binary digits printed by a given computing machine, then 0.B is

called the number computed by the machine.

Where the given machine is circular, the number computed by the machine is

always a rational number. A circle-free machine may compute an irrational

number (p, for example).

A number computed by a circle-free machine is said to be a computable

number. Turing also allows that any number ‘that diVers by an integer’ from

a number computed by a circle-free machine is a computable number (p. 61).

So if B is the inWnite sequence of binary digits printed by some circle-free

machine, then the number computed by the machine, 0.B, is a comput-

able number, as are all the numbers that diVer from 0.B by an integer: 1.B,

10.B, etc.

In Section 10 of ‘On Computable Numbers’, Turing gives examples of large

classes of numbers that are computable. In particular, he proves that the import-

ant numbers p and e are computable.

Not all real numbers are computable, however. This follows immediately from

the above proof that not all inWnite binary sequences are computable. If S is an

inWnite binary sequence that is uncomputable, then 0.S is an uncomputable

number.

11. The Satisfactoriness Problem

In Section 8 of ‘On Computable Numbers’ Turing describes two mathematical

problems that cannot be solved by computing machines. The Wrst will be referred

to as the satisfactoriness problem.

Satisfactory descriptions and numbers

A standard description is said to be satisfactory if the machine it describes is

circle-free. (Turing’s choice of terminology might be considered awkward, since

there need be nothing at all unsatisfactory, in the usual sense of the word, about a

circular machine.)

36 | Jack Copeland

A number is satisfactory if it is a description number of a circle-free machine.

A number is unsatisfactory if either it is a description number of a circular

machine, or it is not a description number at all.

The satisfactoriness problem is this: decide, of any arbitrarily selected standard

description—or, equivalently, any arbitrarily selected description number—

whether or not it is satisfactory. The decision must be arrived at in a Wnite

number of steps.

The diagonal argument revisited

Turing approaches the satisfactoriness problem by reconsidering the above proof

that not every binary sequence is computable.

Imagine someone objecting to the diagonal argument: ‘Look, there must be

something wrong with your argument, because b evidently is computable. In the

course of the argument, you have in eVect given instructions for computing

each digit of b, in terms of counting out digits and switching the relevant

ones. Let me try to describe how a Turing machine could compute b. I’ll

call this Turing machine BETA. BETA is similar to the universal machine in

that it is able to simulate the activity of any Turing machine that one wishes.

First, BETA simulates the circle-free machine with the smallest description

number. BETA keeps up the simulation just as far as is necessary in order to

discover the Wrst digit of the sequence computed by this machine. BETA then

switches this digit, producing the Wrst digit of b. Next, BETA simulates the circle-

free machine with the next smallest description number, keeping up the simula-

tion until it Wnds the second digit of the sequence computed by this machine.

And so on.’

The objector continues: ‘I can make my description of BETA speciWc. BETA

uses only the E-squares of its tape to do its simulations, erasing its rough work

each time it begins a new simulation. It prints out the digits of b on successive F-

squares. I need to take account of the restriction that, in order for it to be said

that b is the sequence computed by BETA, BETA must produce the digits of

bstarting from a blank tape. What BETA will do Wrst of all, starting from a blank

tape, is Wnd the smallest description number that corresponds to a circle-free

machine. It does this by checking through the integers, one by one, starting at 1.

As BETA generates the integers one by one, it checks each to see whether it is a

description number. If the integer is not a description number, then BETA moves

on to the next. If the integer is a description number, then BETA checks whether

the number is satisfactory. Once BETA Wnds the Wrst integer to describe a circle-

free machine, it uses the instructions contained in the description number in

order to simulate the machine. This is how BETA Wnds the Wrst digit of b. Then

BETA continues its search through the integers, until it Wnds the next smallest

description number that is satisfactory. This enables BETA to calculate the

second digit of b. And so on.’

Computable Numbers: A Guide | 37

Turing tackles this objection head on, proving that no computing machine can

possibly do what BETA is supposed to do. It suYces for this proof to consider a

slightly simpliWed version of BETA, which Turing calls H. H is just like BETA

except that H does not switch the digits of the list’s ‘diagonal’ sequence. H is

supposed to write out (on the F-squares) the successive digits not of b but of the

‘diagonal’ sequence itself: the sequence whose Wrst digit is the Wrst digit of the

Wrst sequence on the list, whose second digit is the second digit of the second

sequence on the list, and so on. Turing calls this sequence b0. If no computing

machine can compute b0, then there is no such computing machine as BETA—

because if there were, a machine that computes b0 could be obtained from it,

simply by deleting the instructions to switch each of the digits of the diagonal

sequence.

What happens when H meets itself?

Turing asks: what happens when, as H searches through the integers one by one,

it encounters a number describing H itself? Call this description number K.

H must Wrst check whether K is a description number. Having ascertained that

it is, H must test whether K is satisfactory. Since H is supposed to be computing

the endless binary sequence b0, H itself must be circle-free. So Hmust pronounce

K to be satisfactory.

In order to Wnd the next digit of b0, Hmust now simulate the behaviour of the

machine described by K. Since H is that machine, H must simulate its own

behaviour, starting with its very Wrst action. There is nothing wrong with the

idea of a machine starting to simulate its own previous behaviour (just as a

person might act out some episode from their own past). H Wrst simulates (on its

E-squares) the series of actions that it performed up to and including writing

down the Wrst digit of b0, then its actions up to and including writing down the

second digit of b0, and so on.

Eventually, however, H’s simulation of its own past reaches the point where H

began to simulate the behaviour of the machine described by K. What must H do

now? H must simulate the series of actions that it performed when simulating the

series of actions that culminated in its writing down the Wrst digit of b0, and then

simulate the series of actions that it performed when simulating the series of

actions that culminated in its writing down the second digit of b0, and so on! H is

doomed to relive its past forever.

From the point when it began simulating itself, H writes only on the E-squares

of its tape and never adds another digit to the sequence on its F-squares.

Therefore, H does not compute b0. H computes some Wnite number of digits of

b0 and then sticks.

The problem lies with the glib assumption that H and BETA are able to

determine whether each description number is satisfactory.

38 | Jack Copeland

No computing machine can solve the satisfactoriness problem

Since, as has just been shown, no computing machine can possibly do what H

was introduced to do, one of the various tasks that H is supposed to carry out

must be impossible for a computing machine. But all the things that H is

supposed to do apart from checking for satisfactoriness—decide whether a

number is a description number, extract instructions from a description number,

simulate a machine that follows those instructions, and so on—are demonstrably

things that can be done by the universal machine.

By a process of elimination, then, the task that it is impossible for a computing

machine to carry out must be that of determining whether each description

number is satisfactory or not.

12. The Printing and Halting Problems

The printing problem

Some Turing-machine programmes print ‘0’ at some stage in their computation;

all the remaining programmes never print ‘0’. Consider the problem of deciding,

given any arbitrarily selected programme, into which of these two categories it

falls. This is an example of the printing problem.

The printing problem (p. 73) is the problem of determining whether or not

the machine described by any arbitrarily selected standard description (or,

equivalently, any arbitrarily selected description number) ever prints a certain

symbol (‘0’, for example). Turing proves that if the printing problem were

solvable by some computing machine, then the satisfactoriness problem would

be too. Therefore neither is.

The halting problem

Another example of a problem that cannot be solved by computing machines,

and a close relative of the printing problem, is the halting problem. This is the

problem of determining whether or not the machine described by any arbitrarily

selected standard description eventually halts—i.e. ceases moving altogether—

when started on a given tape (e.g. a blank tape).

The machine shown in Table 1 is rather obviously one of those that never

halt—but in other cases it is not at all obvious from a machine’s table whether or

not it halts. Simply watching the machine run (or a simulation of the machine) is

of little help, for what can be concluded if after a week or a year the machine has

not halted? If the machine does eventually halt, a watching human—or Turing

machine—will sooner or later Wnd this out; but in the case of a machine that has

not yet halted, there is no systematic method for deciding whether or not it is

going to halt.

Computable Numbers: A Guide | 39

The halting problem was so named (and, it appears, Wrst stated) by Martin

Davis.61 The proposition that the halting problem cannot be solved by computing

machine is known as the ‘halting theorem’.62 (It is often said that Turing stated and

proved the halting theorem in ‘On Computable Numbers’, but strictly this is not

true.)

13. The Church–Turing Thesis

Human computers

When Turing wrote ‘On Computable Numbers’, a computer was not a machine

at all, but a human being. A computer—sometimes also spelt ‘computor’—was a

mathematical assistant who calculated by rote, in accordance with a systematic

method. The method was supplied by an overseer prior to the calculation. Many

thousands of human computers were employed in business, government, and

research establishments, doing some of the sorts of calculating work that now-

adays is performed by electronic computers. Like Wling clerks, computers might

have little detailed knowledge of the end to which their work was directed.

The term ‘computing machine’ was used to refer to small calculating machines

that mechanized elements of the human computer’s work. These were somewhat

like today’s non-programmable hand-calculators: they were not automatic, and

each step—each addition, division, and so on—was initiated manually by the

human operator. A computing machine was in eVect a homunculus, calculating

more quickly than an unassisted human computer, but doing nothing that could

not in principle be done by a human clerk working by rote. For a complex

calculation, several dozen human computers might be required, each equipped

with a desk-top computing machine.

In the late 1940s and early 1950s, with the advent of electronic computing

machines, the phrase ‘computing machine’ gave way gradually to ‘computer’.

During the brief period in which the old and new meanings of ‘computer’

coexisted, the preWx ‘electronic’ or ‘digital’ would usually be used in order to

distinguish machine from human. As Turing stated, the new electronic machines

were ‘intended to carry out any deWnite rule of thumb process which could have

been done by a human operator working in a disciplined but unintelligent

manner’.63 Main-frames, laptops, pocket calculators, palm-pilots—all carry out

61 See M. Davis, Computability and Unsolvability (New York: McGraw-Hill, 1958), 70. Davis thinks it

likely that he Wrst used the term ‘halting problem’ in a series of lectures that he gave at the Control Systems

Laboratory at the University of Illinois in 1952 (letter from Davis to Copeland, 12 Dec. 2001).

62 It is interesting that if one lifts the restriction that the determination must be carried out in a Wnite

number of steps, then Turing machines are able to solve the halting and printing problems, and moreover in

a Wnite time. See B. J. Copeland, ‘Super Turing-Machines’, Complexity, 4 (1998), 30–2, and ‘Accelerating

Turing Machines’, Minds and Machines, 12 (2002), 281–301.

63 Turing’s Programmers’ Handbook for Manchester Electronic Computer, 1.

40 | Jack Copeland

work that a human rote-worker could do, if he or she worked long enough, and

had a plentiful enough supply of paper and pencils.

It must be borne in mind when reading ‘On Computable Numbers’ that

Turing there used the word ‘computer’ in this now archaic sense. Thus he says,

for example, ‘Computing is normally done by writing certain symbols on paper’

(p. 75) and ‘The behaviour of the computer at any moment is determined by the

symbols which he is observing, and his ‘‘state of mind’’ ’ (p. 75).

The Turing machine is an idealization of the human computer (p. 59):

‘We may compare a man in the process of computing a real number to a

machine which is only capable of a Wnite number of conditions . . . called

‘‘m-conWgurations’’. The machine is supplied with a ‘‘tape’’ . . .’ Wittgenstein

put the point in a striking way: ‘Turing’s ‘‘Machines’’. These machines are

humans who calculate.’64

In the primary sense, a computable number is a real number that can be

calculated by a human computer—or in other words, a real number that a

human being can calculate by means of a systematic method. When Turing

asserts that ‘the ‘‘computable’’ numbers include all numbers which would natur-

ally be regarded as computable’ (p. 74), he means that each number that is

computable in this primary sense is also computable in the technical sense

deWned in Section 2 of ‘On Computable Numbers’ (see Section 10 of this

introduction).

The thesis

Turing’s thesis, that

the ‘computable’ numbers include all numbers which would naturally be

regarded as computable,

is now known as the Church–Turing thesis.

Some other ways of expressing the thesis are:

1. The universal Turing machine can perform any calculation that any human

computer can carry out.

2. Any systematic method can be carried out by the universal Turing machine.

The Church–Turing thesis is sometimes heard in the strengthened form:

Anything that can be made completely precise can be programmed for a

universal digital computer.

However, this strengthened form of the thesis is false.65 The printing, halting,

and satisfactoriness problems are completely precise, but of course cannot be

programmed for a universal computing machine.

64 L. Wittgenstein, Remarks on the Philosophy of Psychology, vol. i (Oxford: Blackwell, 1980), § 1096.

65 As Martin Davis emphasized long ago in his Computability and Unsolvability, p. vii.

Computable Numbers: A Guide | 41

Systematic methods

A systematic method—sometimes also called an eVective method and a mechan-

ical method—is any mathematical method of which all the following are true:

• the method can, in practice or in principle, be carried out by a human

computer working with paper and pencil;

• the method can be given to the human computer in the form of a Wnite

number of instructions;

• the method demands neither insight nor ingenuity on the part of the human

being carrying it out;

• the method will deWnitely work if carried out without error;

• the method produces the desired result in a Wnite number of steps; or, if the

desired result is some inWnite sequence of symbols (e.g. the decimal expan-

sion of p), then the method produces each individual symbol in the

sequence in some Wnite number of steps.

The term ‘systematic’ and its synonyms ‘eVective’ and ‘mechanical’ are terms

of art in mathematics and logic. They do not carry their everyday meanings. For

example: if some type of machine were able to solve the satisfactoriness problem,

the method it used would not be systematic or mechanical in this sense. (Turing

is sometimes said to have proved that no machine can solve the satisfactoriness

problem. This is not so. He demonstrates only that his idealized human com-

puters—Turing machines—cannot solve the satisfactoriness problem. This does

not in itself rule out the possibility that some other type of machine might be

able to solve the problem.66)

Turing sometimesused the expression rule of thumb inplaceof ‘systematic’. If this

expression is employed, the Church–Turing thesis becomes (Chapter 10, p. 414):

LCMs can do anything that could be described as ‘rule of thumb’ or ‘purely

mechanical’.

‘LCM’ stands for ‘logical computing machine’, a term that Turing seems to have

preferred to the (then current) ‘Turing machine’.

Section 9 of ‘On Computable Numbers’ contains a bouquet of arguments for

Turing’s thesis. The arguments are persuasive, but do not oVer the certainty

of mathematical proof. As Turing says wryly of a related thesis in Chapter 17

(p. 588): ‘The statement is . . . one which one does not attempt to prove. Propa-

ganda is more appropriate to it than proof.’

Additional arguments and other forms of evidence for the thesis amassed.

These, too, left matters short of absolute certainty. Nevertheless, before long it

was, as Turing put it, ‘agreed amongst logicians’ that his proposal gives the

66 See R. Gandy, ‘Church’s Thesis and Principles for Mechanisms’, in J. Barwise, H. J. Keisler, and K.

Kunen (eds.), The Kleene Symposium (Amsterdam: North-Holland, 1980).

42 | Jack Copeland

‘correct accurate rendering’ of talk about systematic methods (Chapter 10,

p. 414).67 There have, however, been occasional dissenting voices over the years

(for example, Kalmár and Péter).68

The converse of the thesis

The converse of the Church–Turing thesis is:

Any number, or binary sequence, that can be computed by the universal

Turing machine can be calculated by means of a systematic method.

This is self-evidently true—the instruction table on the universal machine’s tape

is itself a speciWcation of a systematic method for calculating the number

or sequence in question. In principle, a human being equipped with paper

and pencil could work through the instructions in the table and write out the

digits of the number, or sequence, without at any time exercising ingenuity or

insight (‘in principle’ because we have to assume that the human does not throw

in the towel from boredom, die of old age, or use up every sheet of paper in the

universe).

Application of the thesis

The concept of a systematic method is an informal one. Attempts—such as the

above—to explain what counts as a systematic method are not rigorous, since the

requirement that the method demand neither insight nor ingenuity is left

unexplicated.

One of the most signiWcant achievements of ‘On Computable Numbers’—and

this was a large step in the development of the mathematical theory of compu-

tation—was to propose a rigorously deWned expression with which the informal

expression ‘by means of a systematic method’ might be replaced. The rigorously

deWned expression is, of course, ‘by means of a Turing machine’.

The importance of Turing’s proposal is this. If the proposal is correct—i.e. if

the Church–Turing thesis is true—then talk about the existence or non-existence

of systematic methods can be replaced throughout mathematics and logic by talk

about the existence or non-existence of Turing-machine programmes. For in-

stance, one can establish that there is no systematic method at all for doing such-

and-such a thing by proving that no Turing machine can do the thing in

question. This is precisely Turing’s strategy with the Entscheidungsproblem, as

explained in the next section.

67 There is a survey of the evidence in chapters 12 and 13 of S. C. Kleene, Introduction to Metamathe-

matics (Amsterdam: North-Holland, 1952).

68 L. Kalmár, ‘An Argument against the Plausibility of Church’s Thesis’, R. Péter, ‘Rekursivität und

Konstruktivität’; both in A. Heyting (ed.), Constructivity in Mathematics (Amsterdam: North-Holland,

1959).

Computable Numbers: A Guide | 43

Church’s contribution

In 1935, on the other side of the Atlantic, Church had independently proposed a

diVerent way of replacing talk about systematic methods with formally precise

language (in a lecture given in April of that year and published in 1936).69 Turing

learned of Church’s work in the spring of 1936, just as ‘On Computable

Numbers’ was nearing completion (see the introduction to Chapter 4).

Where Turing spoke of numbers and sequences, Church spoke of mathemat-

ical functions. (x2 and x þ y are examples of mathematical functions. 4 is said to

be the value of the function x2 for x ¼ 2.) Corresponding to each computable

sequence S is a computable function fx (and vice versa). The value of fx for x ¼ 1

is the Wrst digit of S, for x ¼ 2, the second digit of S, and so on. In ‘On

Computable Numbers’ Turing said (p. 58): ‘Although the subject of this paper

is ostensibly the computable numbers, it is almost equally easy to deWne and

investigate computable functions . . . I have chosen the computable numbers for

explicit treatment as involving the least cumbrous technique.’

Church’s analysis was in terms of his and Stephen Kleene’s concept of a

lambda-deWnable function. A function of positive integers is said to be lambda-

deWnable if the values of the function can be calculated by a process of repeated

substitution.

Thus we have alongside Turing’s thesis

Church’s thesis: every function of positive integers whose values can be calcu-

lated by a systematic method is lambda-deWnable.

Although Turing’s and Church’s approaches are diVerent, they are nevertheless

equivalent, in the sense that every lambda-deWnable function is computable by

the universal machine and every function (or sequence) computable by the

universal machine is lambda-deWnable.70 Turing proved this in the Appendix

to ‘On Computable Numbers’ (added in August 1936).

The name ‘Church–Turing thesis’, now standard, seems to have been intro-

duced by Kleene, with a Xourish of bias in favour of his mentor Church: ‘So

Turing’s and Church’s theses are equivalent. We shall usually refer to them both

as Church’s thesis, or in connection with that one of its . . . versions which deals

with ‘‘Turing machines’’ as the Church-Turing thesis.’71

Although Turing’s and Church’s theses are equivalent in the logical sense, there

is nevertheless good reason to prefer Turing’s formulation. As Turing wrote in

1937: ‘The identiWcation of ‘‘eVectively calculable’’ functions with computable

69 Church, ‘An Unsolvable Problem of Elementary Number Theory’.

70 Equivalent, that is, if the computable functions are restricted to functions of positive integers. Turing’s

concerns were rather more general than Church’s, in that whereas Church considered only functions of

positive integers, Turing described his work as encompassing ‘computable functions of an integral variable

or a real or computable variable, computable predicates, and so forth’ (p. 58, below). Turing intended to

pursue the theory of computable functions of a real variable in a subsequent paper, but in fact did not do so.

71 S. C. Kleene, Mathematical Logic (New York: Wiley, 1967), 232.

44 | Jack Copeland

functions is possibly more convincing than an identiWcation with the l-deWnable

[lambda-deWnable] or general recursive functions.’72 Church acknowledged the

point:

As a matter of fact, there is . . . equivalence of three diVerent notions: computability by a

Turing machine, general recursiveness in the sense of Herbrand–Gödel–Kleene, and

l-deWnability in the sense of Kleene and [myself]. Of these, the Wrst has the advantage

of making the identiWcation with eVectiveness in the ordinary (not explicitly deWned)

sense evident immediately . . . The second and third have the advantage of suitability for

embodiment in a system of symbolic logic.73

The great Kurt Gödel, it seems, was unpersuaded by Church’s thesis until he

saw Turing’s formulation. Kleene wrote:

According to a November 29, 1935, letter from Church to me, Gödel ‘regarded as

thoroughly unsatisfactory’ Church’s proposal to use l-deWnability as a deWnition of

eVective calculability . . . It seems that only after Turing’s formulation appeared did

Gödel accept Church’s thesis.74

HaoWang reports Gödel as saying: ‘We had not perceived the sharp concept of

mechanical procedures sharply before Turing, who brought us to the right

perspective.’75

Gödel described Turing’s analysis of computability as ‘most satisfactory’ and

‘correct . . . beyond any doubt’.76He also said: ‘the great importance of . . . Turing’s

computability . . . seems to me . . . largely due to the fact that with this concept

one has for the Wrst time succeeded in giving an absolute deWnition of an

interesting epistemological notion.’77

14. The Entscheidungsproblem

In Section 11 of ‘On Computable Numbers’, Turing turns to the Entscheidungs-

problem, or decision problem. Church gave the following deWnition of the

Entscheidungsproblem:

By the Entscheidungsproblem of a system of symbolic logic is here understood the problem

to Wnd an eVective method by which, given any expression Q in the notation of the system,

it can be determined whether or not Q is provable in the system.78

72 Turing, ‘Computability and l-DeWnability’, Journal of Symbolic Logic, 2 (1937), 153–63 (153).

73 Church’s review of ‘On Computable Numbers’ in Journal of Symbolic Logic, 43.

74 S. C. Kleene, ‘Origins of Recursive Function Theory’, Annals of the History of Computing, 3 (1981),

52–67 (59, 61).

75 H. Wang, From Mathematics to Philosophy (New York: Humanities Press, 1974), 85.

76 K. Gödel, Collected Works, ed. S. Feferman et al., vol. iii (Oxford: Oxford University Press, 1995), 304,

168.

77 Ibid., vol. ii. (Oxford: Oxford University Press, 1990), 150.

78 Church, ‘A Note on the Entscheidungsproblem’, 41.

Computable Numbers: A Guide | 45

The decision problem was brought to the fore of mathematics by the German

mathematician David Hilbert (who in a lecture given in Paris in 1900 set the

agenda for much of twentieth-century mathematics). In 1928 Hilbert described

the decision problem as ‘the main problem of mathematical logic’, saying that

‘the discovery of a general decision procedure is a very diYcult problem which is

as yet unsolved’, and that the ‘solution of the decision problem is of fundamental

importance’.79

The Hilbert programme

Hilbert and his followers held that mathematicians should seek to express

mathematics in the form of a complete, consistent, decidable formal system—a

system expressing ‘the whole thought content of mathematics in a uniform

way’.80 Hilbert drew an analogy between such a system and ‘a court of arbitra-

tion, a supreme tribunal to decide fundamental questions—on a concrete basis

on which everyone can agree and where every statement can be controlled’.81

Such a system would banish ignorance from mathematics: given any mathemat-

ical statement, one would be able to tell whether the statement is true or false by

determining whether or not it is provable in the system. As Hilbert famously

declared in his Paris lecture: ‘in mathematics there is no ignorabimus’ (there is no

we shall not know).82

It is important that the system expressing the ‘whole thought content of

mathematics’ be consistent. An inconsistent system—a system containing con-

tradictions—is worthless, since any statement whatsoever, true or false, can be

derived from a contradiction by simple logical steps.83 So in an inconsistent

79 D. Hilbert and W. Ackermann, Grundzüge der Theoretischen Logik [Principles of Mathematical Logic]

(Berlin: Julius Springer, 1928), 73, 77.

80 D. Hilbert, ‘The Foundations of Mathematics’ (English translation of a lecture given in Hamburg in

1927, entitled ‘Die Grundlagen der Mathematik’), in J. van Heijenoort (ed.), From Frege to Gödel: A Source

Book in Mathematical Logic, 1879–1931 (Cambridge, Mass.: Harvard University Press, 1967), 475.

81 D. Hilbert, ‘Über das Unendliche’ [On the InWnite], Mathematische Annalen, 95 (1926), 161–90 (180);

English translationbyE.PutnamandG.Massey inR.L. Epstein andW.A.Carnielli,Computability:Computable

Functions, Logic, and the Foundations of Mathematics (2nd edn. Belmont, Calif.: Wadsworth, 2000).

82 D. Hilbert, ‘Mathematical Problems: Lecture Delivered before the International Congress of Mathem-

aticians at Paris in 1900’, Bulletin of the American Mathematical Society, 8 (1902), 437–79 (445).

83 To prove an arbitrary statement from a contradiction P & not P, one may use the following rules of

inference (see further pp. 49–52, below):

(a) not P ‘ not (P & X)

(b) P & not (P & X) ‘ not X .

Rule (a) says: from the statement that it is not the case that P, it can be inferred that not both P and X are the

case—i.e. inferred that one at least of P and X is not the case—where X is any statement that you please.

Rule (b) says: given that P is the case and that not both P and X are the case, it can be inferred that X is not

the case. Via (a), the contradiction ‘P & not P’ leads to ‘not (P & X)’; and since the contradiction also oVers

us P, we may then move, via (b), to ‘not X’. So we have deduced an arbitrary statement, ‘not X’, from the

contradiction. (To deduce simply X, replace X in (a) and (b) by ‘not X’, and at the last step use the rule saying

that two negations ‘cancel out’: not not X ‘ X.)

46 | Jack Copeland

system, absurdities such as 0 ¼ 1 and 6 6¼ 6 are provable. An inconsistent system

would indeed contain all true mathematical statements—would be complete,

in other words—but would in addition also contain all false mathematical

statements!

Hilbert’s requirement that the system expressing the whole content of math-

ematics be decidable amounts to this: there must be a systematic method for

telling, of each mathematical statement, whether or not the statement is provable

in the system. If the system is to banish ignorance totally from mathematics then

it must be decidable. Only then could we be conWdent of always being able to tell

whether or not any given statement is provable. An undecidable system might

sometimes leave us in ignorance.

The project of expressing mathematics in the form of a complete, consistent,

decidable formal system became known as ‘proof theory’ and as the ‘Hilbert

programme’. In 1928, in a lecture delivered in the Italian city of Bologna,

Hilbert said:

In a series of presentations in the course of the last years I have . . . embarked upon a new

way of dealing with fundamental questions. With this new foundation of mathematics,

which one can conveniently call proof theory, I believe the fundamental questions in

mathematics are Wnally eliminated, by making every mathematical statement a concretely

demonstrable and strictly derivable formula . . .

[I]n mathematics there is no ignorabimus, rather we are always able to answer meaningful

questions; and it is established, as Aristotle perhaps anticipated, that our reason involves

no mysterious arts of any kind: rather it proceeds according to formulable rules that are

completely deWnite—and are as well the guarantee of the absolute objectivity of its

judgement.84

Unfortunately for the Hilbert programme, however, it was soon to become

clear that most interesting mathematical systems are, if consistent, incomplete

and undecidable.

In 1931, Gödel showed that Hilbert’s ideal is impossible to satisfy, even in the

case of simple arithmetic.85 He proved that the formal system of arithmetic set

out by Whitehead and Russell in their seminal Principia Mathematica86 is, if

consistent, incomplete. That is to say: if the system is consistent, there are true

84 D. Hilbert, ‘Probleme der Grundlegung der Mathematik’ [Problems Concerning the Foundation of

Mathematics], Mathematische Annalen, 102 (1930), 1–9 (3, 9). Translation by Elisabeth NorcliVe.

85 K. Gödel, ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.’

[On Formally Undecidable Propositions of Principia Mathematica and Related Systems I], Monatshefte für

Mathematik und Physik, 38 (1931), 173–98. English translation in M. Davis (ed.), The Undecidable: Basic

Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions (New York: Raven,

1965), 5–38.

86 A. N. Whitehead and B. Russell, Principia Mathematica, vols. i–iii (Cambridge: Cambridge University

Press, 1910–13).

Computable Numbers: A Guide | 47

statements of arithmetic that are not provable in the system—the formal system

fails to capture the ‘whole thought content’ of arithmetic. This is known as

Gödel’s Wrst incompleteness theorem.

Gödel later generalized this result, pointing out that ‘due to A. M. Turing’s

work, a precise and unquestionably adequate deWnition of the general concept

of formal system can now be given’, with the consequence that incomplete-

ness can ‘be proved rigorously for every consistent formal system containing a

certain amount of Wnitary number theory’.87 The deWnition made possible

by Turing’s work is this (in Gödel’s words): ‘A formal system can simply be

deWned to be any mechanical procedure for producing formulas, called provable

formulas.’88

In his incompleteness theorem, Gödel had shown that no matter how hard

mathematicians might try to construct the all-encompassing formal

system envisaged by Hilbert, the product of their labours would, if consistent,

inevitably be incomplete. As Hermann Weyl—one of Hilbert’s greatest pupils—

observed, this was nothing less than ‘a catastrophe’ for the Hilbert pro-

gramme.89

Decidability

Gödel’s theorem left the question of decidability open. As Newman summarized

matters:

The Hilbert decision-programme of the 1920’s and 30’s had for its objective the discovery

of a general process . . . for deciding . . . truth or falsehood . . . A Wrst blow was dealt at the

prospects of Wnding this new philosopher’s stone by Gödel’s incompleteness theorem

(1931), which made it clear that truth or falsehood of A could not be equated to

provability of A or not-A in any Wnitely based logic, chosen once for all; but there still

remained in principle the possibility of Wnding a mechanical process for deciding whether

A, or not-A, or neither, was formally provable in a given system.90

The question of decidability was tackled head on by Turing and, independently,

by Church.

On p. 84 of ‘On Computable Numbers’ Turing pointed out—by way of a

preliminary—a fact that Hilbertians appear to have overlooked: if a system is

complete then it follows that it is also decidable. Bernays, Hilbert’s close collabor-

ator, had said: ‘One observes that [the] requirement of deductive completeness

87 Gödel, ‘Postscriptum’, in Davis, The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable

Problems and Computable Functions, 71–3 (71); the Postscriptum, dated 1964, is to Gödel’s 1934 paper ‘On

Undecidable Propositions of Formal Mathematical Systems’ (ibid. 41–71).

88 Ibid. 72.

89 H. Weyl, ‘David Hilbert and his Mathematical Work’, Bulletin of the American Mathematical Society, 50

(1944), 612–54 (644).

90 M. H. A. Newman, ‘Alan Mathison Turing, 1912–1954’, Biographical Memoirs of Fellows of the Royal

Society, 1 (1955), 253–63 (256).

48 | Jack Copeland

does not go as far as the requirement of decidability.’91 Turing’s simple argument

on p. 84 shows that there is no conceptual room for the distinction that Bernays

is claiming.

Nevertheless, the crucial question was still open: given that in fact simple

arithmetic is (if consistent) incomplete, is it or is it not decidable? Turing and

Church both showed that no consistent formal system of arithmetic is decidable.

They showed this by proving that not even the functional calculus—the weaker,

purely logical system presupposed by any formal system of arithmetic—is decid-

able. The Hilbertian dream of a completely mechanized mathematics now lay in

total ruin.

A tutorial on first-order predicate calculus

What Turing called the functional calculus (and Church, following Hilbert, the

engere Funktionenkalkül) is today known as Wrst-order predicate calculus (FOPC).

FOPC is a formalization of deductive logical reasoning.

There are various diVerent but equivalent ways of formulating FOPC. One

formulation presents FOPC as consisting of about a dozen formal rules of infer-

ence. (This formulation, which is more accessible than the Hilbert–Ackermann

formulation mentioned by Turing on p. 84, is due to Gerhard Gentzen.92)

The following are examples of formal rules of inference. The symbol ‘‘’
indicates that the statement following it can be concluded from the statements

(or statement) displayed to its left, the premisses.

(i) X, if X then Y ‘Y
(ii) X and Y ‘ X

(iii) X , Y ‘ X and Y

So if, for example, ‘X ’ represents ‘It is sunny’ and ‘Y ’ represents ‘We will go for a

picnic’, (i) says:

‘We will go for a picnic’ can be concluded from the premisses ‘It is sunny’ and

‘If it is sunny then we will go for a picnic’.

(ii) says:

‘It is sunny’ can be concluded from the conjunctive premiss ‘It is sunny and we

will go for a picnic’.

Turing uses the symbol ‘!’ to abbreviate ‘if then’ and the symbol ‘&’ to

abbreviate ‘and’. Using this notation, (i)–(iii) are written:

91 P. Bernays, ‘Die Philosophie der Mathematik und die Hilbertsche Beweistheorie’ [The Philosophy of

Mathematics and Hilbert’s Proof Theory], Blätter für Deutsche Philosophie, 4 (1930/1931), 326–67. See also

H. Wang, ReXections on Kurt Gödel (Cambridge, Mass.: MIT Press, 1987), 87–8.

92 G. Gentzen, ‘Investigations into Logical Deduction’ (1934), in The Collected Papers of Gerhard Gentzen,

ed. M. E. Szabo (Amsterdam: North-Holland, 1969).

Computable Numbers: A Guide | 49

(i) X , X ! Y ‘ Y

(ii) X &Y ‘ X

(iii) X , Y ‘ X & Y

Some more rules of the formal calculus are as follows. a represents any object,

F represents any property:

(iv) a has property F ‘ there is an object that has property F

(v) each object has property F ‘ a has property F

In Turing’s notation, in which ‘a has property F ’ is abbreviated ‘F(a)’, these are

written:

(iv) F(a) ‘ (9x)F(x)
(v) (x)F(x) ‘ F(a)

‘(9x)’ is read: ‘there is an object (call it x) which . . .’. So ‘(9x)F(x)’ says ‘there is
an object, call it x, which has property F ’. ‘(x)’ is read: ‘each object, x, is such that

. . .’. So ‘(x)F(x)’ says ‘each object, x, is such that x has property F ’.

Set out in full, FOPC contains not only rules like (i)–(v) but also several rules

leading from statements containing ‘‘’ to other statements containing ‘‘’. One

such rule is the so-called ‘cut rule’, used in moving from lines (2) and (3) to (4)

in the proof below.

Turing calls ‘(9x)’ and ‘(x)’ quantors; the modern term is quantiWers. A

symbol, such as ‘F ’, that denotes a property is called a predicate. Symbols

denoting relationships, for example ‘<’ (less than) and ‘¼’ (identity), are also

classed as predicates. The symbol ‘x’ is called a variable.

(FOPC is Wrst-order in the sense that the quantiWers of the calculus always

involve variables that refer to individual objects. In second-order predicate calcu-

lus, on the other hand, the quantiWers can contain predicates, as in ‘(9F)’. The
following are examples of second-order quantiWcation: ‘Jules and Jim have some

properties in common,’ ‘Each relationship that holds between a and b also holds

between c and d.’)

Using the dozen or so basic rules of FOPC, more complicated rules of

inference can be proved as theorems (‘provable formulas’) of FOPC. For example:

Theorem (x)(G(x)! H(x)), G(a) ‘ (9x)H(x)

This theorem says: ‘There is an object that has property H ’ can be concluded

from the premisses ‘Each object that has property G also has property H ’ and ‘a

has property G’.

The proof of the theorem is as follows:

(1) (x)(G(x)! H(x)) ‘ G(a)! H(a) (rule (v))

(2) G(a), (G(a)! H(a)) ‘ H(a) (rule (i))

(3) H(a) ‘ (9x)H(x) (rule (iv))

(4) G(a), (G(a)! H(a)) ‘ (9x)H(x) (from (2) and (3) by the cut rule)

50 | Jack Copeland

(5) (x)(G(x)! H(x)), G(a) ‘ (9x)H(x)

(from (1) and (4) by the cut rule)

The cut rule (or rule of transitivity) says in eVect that whatever can be con-

cluded from a statement Y (possibly in conjunction with additional premisses P)

can be concluded from any premiss(es) from which Y can be concluded (together

with the additional premisses P, if any). For example, if Y ‘ Z and X ‘ Y ,

then X ‘ Z . In the transition from (1) and (4) to (5), the additional premiss

G(a) in (4) is gathered up and placed among the premisses of (5).

So far we have seen how to prove further inference rules in FOPC. Often

logicians are interested in proving not inference rules but single statements

unbroken by commas and ‘‘’. An example is the complex statement

not (F(a) & not (9x)F(x)),
which says ‘It is not the case that both F(a) and the denial of (9x)F(x) are true’; or in
other words, you are not going to Wnd F(a) true without Wnding (9x)F(x) true.

To say that a single statement, as opposed to an inference rule, is provable in

FOPC is simply to say that the result of preWxing that statement by ‘‘’ can be

derived by using the rules of the calculus. Think of a ‘‘’ with no statements on its

left as indicating that the statement on its right is to be concluded as a matter of

‘pure logic’—no premisses are required.

For example, the theorem

‘ not (F(a) & not (9x)F(x))
can be derived using rule (iv) and the following new rule.93

X ‘ Y

‘ not (X & not Y)

This rule is read:

If Y can be concluded from X, then it can be concluded that not both X and the

denial of Y are true.

Much of mathematics and science can be formulated within the framework of

FOPC. For example, a formal system of arithmetic can be constructed by adding

a number of arithmetical axioms to FOPC. The axioms consist of very basic

arithmetical statements, such as:

(x)(x þ 0 ¼ x)

and

(x)(y)(Sx ¼ Sy ! x ¼ y),

93 In Gentzen’s system this rule can itself be derived from the basic rules. It should be mentioned that in

the full system it is permissible to write any finite number of statements (including zero) on the right hand

side of ‘‘’.

Computable Numbers: A Guide | 51

where ‘S’ means ‘the successor of ’—the successor of 1 is 2, and so on. (In these

axioms the range of the variables ‘x’ and ‘y’ is restricted to numbers.) Other

arithmetical statements can be derived from these axioms by means of the rules

of FOPC. For example, rule (v) tells us that the statement

1þ 0 ¼ 1

can be concluded from the Wrst of the above axioms.

If FOPC is undecidable then it follows that arithmetic is undecidable. Indeed, if

FOPC is undecidable, then so are very many important mathematical systems. To

Wnd decidable logics one must search among systems that are in a certain sense

weaker than FOPC. One example of a decidable logic is the system that results if all

the quantiWer rules—rules such as (iv) and (v)—are elided from FOPC. This

system is known as the propositional calculus.

The proof of the undecidability of FOPC

Turing and Church showed that there is no systematic method bywhich, given any

formula Q in the notation of FOPC, it can be determined whether or not Q is

provable in the system (i.e. whether or not ‘Q). To put this another way, Church

andTuring showed that theEntscheidungsproblem isunsolvable in the case of FOPC.

Both published this result in 1936.94 Church’s demonstration of undecidability

proceeded via his lambda calculus and his thesis that to each eVective method

there corresponds a lambda-deWnable function. There is general agreement that

Turing was correct in his view, mentioned above (p. 45), that his own way of

showing undecidability is ‘more convincing’ than Church’s.

Turing’s method makes use of his proof that no computing machine can solve

the printing problem. He showed that if a Turing machine could tell, of any

given statement, whether or not the statement is provable in FOPC, then a

Turing machine could tell, of any given Turing machine, whether or not it

ever prints ‘0’. Since, as he had already established, no Turing machine can do

the latter, it follows that no Turing machine can do the former. The Wnal step of

the argument is to apply Turing’s thesis: if no Turing machine can perform the

task in question, then there is no systematic method for performing it.

94 In a lecture given in April 1935—the text of which was printed the following year as ‘An Unsolvable

Problem of Elementary Number Theory’ (a short ‘Preliminary report’ dated 22Mar. 1935 having appeared in

theBulletin of the AmericanMathematical Society (41 (1935), 332–3))—Church proved the undecidability of a

system that includes FOPCas a part. This system is known asPrincipiaMathematica, or PM, after the treatise in

which it was Wrst set out (see n. 86). PM is obtained by adding mathematical axioms to FOPC. Church

established the conditional result that if PM is omega-consistent, then PM is undecidable. Omega-consistency

(Wrst deWned by Gödel) is a stronger property than consistency, in the sense that a consistent system is not

necessarily omega-consistent. As explained above, a system is consistent when there is no statement S such that

both S and not-S are provable in the system. A system is omega-consistent when there is no predicate F of

integers such that all the following are provable in the system: (9x)F(x), not-F(1), not-F(2), not-F(3), and
so on, for every integer. In his later paper ‘A Note on the Entscheidungsproblem’ (completed in April 1936)

Church improved on this earlier result, showing unconditionally that FOPC is undecidable.

52 | Jack Copeland

In detail, Turing’s demonstration contains the following steps.

1. Turing shows how to construct, for any computing machine m, a compli-

cated statement of FOPC that says ‘at some point, machine m prints 0’. He

calls this formula ‘Un(m)’. (The letters ‘Un’ probably come from ‘undecid-

able’ or the German equivalent ‘unentscheidbare’.)

2. Turing proves the following:

(a) If Un(m) is provable in FOPC, then at some point m prints 0.

(b) If at some point m prints 0, then Un(m) is provable in FOPC.

3. Imagine a computing machine which, when given any statement Q in the

notation of FOPC, is able to determine (in some Wnite number of steps)

whether or not Q is provable in FOPC. Let’s call this machine hilbert ’s

dream . 2(a) and 2(b) tell us that hilbert ’s dream would solve the

printing problem. Because if the machine were to indicate that Un(m)

is provable then, in view of 2(a), it would in eVect be indicating thatm does

print 0; and if the machine were to indicate that the statement Un(m) is

not provable then, in view of 2(b), it would in eVect be indicating that m

does not print 0. Since no computing machine can solve the printing

problem, it follows that hilbert ’s dream is a Wgment. No computing

machine is able to determine in some Wnite number of steps, of each statement

Q, whether or not Q is provable in FOPC.

4. If there were a systematic method by which, given any statement Q, it can

be determined whether or not Q is provable in FOPC, then it would follow,

by Turing’s thesis, that there is such a computing machine as hilbert ’s

dream . Therefore there is no such systematic method.

The significance of undecidability

Poor news though the unsolvability of the Entscheidungsproblem was for the

Hilbert school, it was very welcome news in other quarters, for a reason that

Hilbert’s illustrious pupil von Neumann had given in 1927:

If undecidability were to fail then mathematics, in today’s sense, would cease to exist; its

place would be taken by a completely mechanical rule, with the aid of which any manwould

be able to decide, of any given statement, whether the statement can be proven or not.95

As the Cambridge mathematician G. H. Hardy said in a lecture in 1928: ‘if

there were . . . a mechanical set of rules for the solution of all mathematical

problems . . . our activities as mathematicians would come to an end.’96

95 J. von Neumann, ‘Zur Hilbertschen Beweistheorie’ [On Hilbert’s Proof Theory], Mathematische

Zeitschrift, 26 (1927), 1–46 (12); reprinted in vol. i of von Neumann’s Collected Works, ed. A. H. Taub

(Oxford: Pergamon Press, 1961).

96 G. H. Hardy, ‘Mathematical Proof ’, Mind, 38 (1929), 1–25 (16) (the text of Hardy’s 1928 Rouse Ball

Lecture).

Computable Numbers: A Guide | 53

Further reading

Barwise, J., and Etchemendy, J., Turing’s World: An Introduction to Computability Theory

(Stanford, Calif.: CSLI, 1993). (Includes software for building and displaying Turing

machines.)

Boolos, G. S., and JeVrey, R. C., Computability and Logic (Cambridge: Cambridge Univer-

sity Press, 2nd edn. 1980).

Copeland, B. J., ‘Colossus and the Dawning of the Computer Age’, in R. Erskine and

M. Smith (eds.), Action This Day (London: Bantam, 2001).

Epstein, R. L., and Carnielli, W. A., Computability: Computable Functions, Logic, and the

Foundations of Mathematics (Belmont, Calif.: Wadsworth, 2nd edn. 2000).

Hopcroft, J. E., andUllman, J. D., Introduction to Automata Theory, Languages, and Comput-

ation (Reading, Mass.: Addison-Wesley, 1979).

Minsky, M. L., Computation: Finite and InWnite Machines (Englewood CliVs, NJ: Prentice-

Hall, 1967).

Sieg, W., ‘Hilbert’s Programs: 1917–1922’, Bulletin of Symbolic Logic, 5 (1999), 1–44.

Sipser, M., Introduction to the Theory of Computation (Boston: PWS, 1997).

Appendix

Subroutines and M-Functions97

Section 3 of this guide gave a brief introduction to the concept of a skeleton table, where

names of subroutines are employed in place of letters referring to states of the machine.

This appendix explains the associated idea of an m-function, introduced by Turing on

p. 63. m-functions are subroutines with parameters—values that are plugged into the

subroutine before it is used.

The example of the ‘Wnd’ subroutine fmakes this idea clear. The subroutine f(A, B, x) is

deWned in Section 3 (Tables 2 and 3). Recall that f(A, B, x) Wnds the leftmost x on the tape

and places the machine in A, leaving the scanner resting on the x ; or if no x is found,

places the machine in B and leaves the scanner resting on a blank square to the right of the

used portion of the tape. ‘A’, ‘B’, and ‘x’ are the parameters of the subroutine. Parameter ‘x’

may be replaced by any symbol (of the Turing machine in question). Parameters ‘A’ and

‘B’ may be replaced by names of states of the machine. Alternatively, Turing permits ‘A’

and ‘B’ (one or both) to be replaced by a name of a subroutine. For example, replacing ‘A’

by the subroutine name ‘e1(C)’ produces:

f(e1(C), B, x)

This says: Wnd the leftmost x, let the scanner rest on it, and go into subroutine e1(C); or, if

there is no x, go into B (leaving the scanner resting on a blank square to the right of the

used portion of the tape).

The subroutine e1(C) simply erases the scanned square and places the machine in C,

leaving the scanner resting on the square that has just been erased. (‘C ’ is another

parameter of the same type as ‘A’ and ‘B’.) Thus the subroutine f(e1(C), B, x) Wnds

97 By Andrés Sicard and Jack Copeland.

54 | Jack Copeland

the leftmost occurrence of the symbol x and erases it, placing the machine in C and leaving

the scanner resting on the square that has just been erased (or if no x is found, leaves the

scanner resting on a blank square to the right of the used portion of the tape and places

the machine in B). Since in this case nothing turns on the choice of letter, the name of the

subroutine may also be written ‘f(e1(A), B, x)’.

The subroutine f(e1(A), B, x) is one and the same as the subroutine e(A, B, x) (Section

3). The new notation exhibits the structure of the subroutine.

More examples of m-functions are given below. While the use of m-functions is not

strictly necessary for the description of any Turing machine,m-functions are very useful in

describing large or complex Turing machines. This is because of the possibilities they oVer

for generalization, reusability, simpliWcation, and modularization. Generalization is

achieved because tasks of a similar nature can be done by a single m-function, and

modularization because a complex task can be divided into several simpler m-functions.

SimpliWcation is obtained because the language of m-functions submerges some of the

detail of the language of instruction-words—i.e. words of the form qiSjSkMq1—so produ-

cing transparent descriptions of Turing machines. Reusability arises simply because we can

employ the same m-function in diVerent Turing machines.

Although it is diYcult (if not impossible) to indicate the exact role that Turing’s

concept of an m-function played in the development of today’s programming languages,

it is worth emphasizing that some characteristics of m-functions are present in the

subroutines of almost all modern languages. Full use was made of the idea of parametrized

subroutines by Turing and his group at the National Physical Laboratory as they pioneered

the science of computer programming during 1946. A contemporary report (by Huskey)

outlining Turing’s approach to programming said the following:

The fact that repetition of subroutines require[s] large numbers of orders has led to the

abbreviated code methods whereby not only standard orders are used but special words

containing parameters are converted into orders by an interpretation table. The general idea

is that these describe the entries to subroutines, the values of certain parameters in the

subroutine, how many times the subroutine is to be used, and where to go after the

subroutine is Wnished.98

Rather than give a formal deWnition of an m-function we present a series of illustrative

examples.

First, some preliminaries. An alphabet A is some set of symbols, for example {-, 0, 1, 2},

and aword of alphabet A is a Wnite sequence of non-blank symbols of A. The blank symbol,

represented ‘-’, is used to separate diVerent words on the tape and is part of the alphabet, but

never occurs withinwords. The following examples all assume that, at the start of operation,

there is a single word w of the alphabet on an otherwise blank tape, with the scanner

positioned over any symbol of w. The symbols of w are written on adjacent squares, using

both E-squares and F-squares, andw is surrounded by blanks (some of the examples require

there to be at least one blank in front of w and at least three following w).

98 H. D. Huskey, untitled typescript, National Physical Laboratory, n.d. but c. Mar. 1947 (in the Woodger

Papers, National Museum of Science and Industry, Kensington, London (catalogue reference M12/105); a

digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

huskey_1947>).

Computable Numbers: A Guide | 55

www.AlanTuring.net/huskey_1947
www.AlanTuring.net/huskey_1947

LetM be a Turingmachine with alphabetA¼ {-, 0, 1, 2}. The following instructions result

inM printing the symbol ‘1’ at the end of w, replacing the Wrst blank to the right of w:

q100Rq1, q111Rq1, q122Rq1, q1-1Nq2

The Wrst three instructions move the scanner past the symbols ‘0’, ‘1’, and ‘2’, and once the

scanner arrives at the Wrst blank square to the right of w, the fourth instruction prints ‘1’

(leaving M in state q2).

If the symbols ‘3’, ‘4’, . . . , ‘9’ are added to the alphabet, so A ¼ f-, 0, 1, :::, 9g, then the

necessary instructions for printing ‘1’ at the end of w are lengthier:

q100Rq1, q111Rq1, . . . , q199Rq1, q1-1Nq2

Them-function add(S, a) deWned by Table 4 carries out the task of printing one symbol

‘a’ at the end of any word w of any alphabet (assuming as before that the machine starts

operating with the scanner positioned over one or another symbol of w and that w is

surrounded by blanks).

Table 4 is the skeleton table for them-function add(S, a). (Skeleton tables are like tables

of instructions but with some parameters to be replaced by concrete values.) Table 4 has

two parameters, ‘a’ and ‘S’. The second parameter ‘S’ is to be replaced by the state or

m-function into which the machine is to go once add(S, a) completes its operation, and

the Wrst parameter ‘a’ is to be replaced by whatever symbol it is that we wish to be printed

at the end of the word.

Both sets of instruction-words shown above can now be replaced by a simple call to the

m-function add(S, a), where S ¼ q2 and a ¼ 1.

If instead of adding ‘1’ at the end of a word from alphabet A ¼ {-, 0, 1, . . . , 9}, we

wanted to add a pair of symbols ‘5’ and ‘4’, then the instruction-words would be:

q100Rq1, q111Rq1, . . . , q199Rq1, q1-5Rq2, q2-4Nq3

These instruction-words can be replaced by the m-function add(add(q3, 4), 5). This m-

function Wnds the end of the word and writes ‘5’, going into m-function add(q3, 4), which

writes ‘4’ and ends in state q3.

Another example: suppose that ‘5’ and ‘4’ are to be printed as just described, and then

each occurrence of the symbol ‘3’ is to be replaced by ‘4’. The m-function

add(add(change(qn, 3, 4), 4), 5) carries out the required task, where the m-function

change(S, a, b) is deWned by Table 5. The m-function change1(S, a, b) is a subroutine

inside the m-function change(S, a, b).

m-functions can employ internal variables. Although internal variables are not strictly

necessary, they simplify an m-function’s description. Internal variables are not parameters

of the m-function—we do not need to replace them with concrete values before the m-

function is used. In the following example, the internal variable ‘d’ refers towhatever symbol

is present on the scanned square when the machine enters the m-function repeat1(S).

Suppose we wish to print a repetition of the Wrst symbol of w at the end of w. This can

be achieved by the m-function repeat(S) deWned by Table 5. (The m-function add(S, d) is

as given by Table 4.)

Every m-function has the form: name(S1, S2, . . . , Sn, a1, a2, . . . ,am), where

S1, S2, . . . , Sn refer either to states or to m-functions, and a1, a2, . . . , am denote sym-

bols. Each m-function is a Turing machine with parameters. To convert an m-function’s

56 | Jack Copeland

Table 4

State Scanned Square Operations Next State

add(S, a) not - R add(S, a)

add(S, a) - P[a] S

Table 5

State Scanned Square Operations Next State

change(S, a, b) not - L change(S, a, b)

change(S, a, b) - R change1(S, a, b)

change1(S, a, b) a P[b], R change1(S, a, b)

change1(S, a, b) not a R change1(S, a, b)

change1(S, a, b) - L S

Table 6

State Scanned Square Operations Next State

repeat(S) not - L repeat(S)

repeat(S) - R repeat1(S)

repeat1(S) d add(S, d)

skeleton table to a Turing-machine instruction table, where each row is an instruction-

word of the form qiSjSkMq1, it is necessary to know the context in which the m-function

is to be used, namely, the underlying Turing machine’s alphabet and states. It is necessary

to know the alphabet because of the use in skeleton tables of expressions such as ‘does not

contain !’, ‘not a’, ‘neither a nor -’, ‘any’. Knowledge of the underlying machine’s states is

necessary to ensure that the m-function begins and ends in the correct state.

The economy eVected by m-functions is illustrated by the fact that if the m-functions

are eliminated from Turing’s description of his universal machine, nearly 4,000

instruction-words are required in their place.99

99 A. Sicard, ‘Máquinas de Turing dinámicas: historia y desarrollo de una idea’ [Dynamic Turing

Machines: Story and Development of an Idea], appendix 3 (Master’s thesis, Universidad EAFIT, 1998);

‘Máquina universal de Turing: algunas indicaciones para su construcción’ [The Universal Turing Machine:

Some Directions for its Construction], Revista Universidad EAFIT, vol. 108 (1998), pp. 61–106.

Computable Numbers: A Guide | 57

CHAPTER 1

On Computable Numbers,

with an Application to the

Entscheidungsproblem (1936)

Alan Turing

The ‘‘computable’’ numbers may be described brieXy as the real numbers

whose expressions as a decimal are calculable by Wnite means. Although the

subject of this paper is ostensibly the computable numbers, it is almost equally

easy to deWne and investigate computable functions of an integral variable or a

real or computable variable, computable predicates, and so forth. The funda-

mental problems involved are, however, the same in each case, and I have chosen

the computable numbers for explicit treatment as involving the least cumbrous

technique. I hope shortly to give an account of the relations of the computable

numbers, functions, and so forth to one another. This will include a development

of the theory of functions of a real variable expressed in terms of computable

numbers. According to my deWnition, a number is computable if its decimal can

be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the comp-

utable numbers include all numbers which could naturally be regarded as

computable. In particular, I show that certain large classes of numbers are

computable. They include, for instance, the real parts of all algebraic numbers,

the real parts of the zeros of the Bessel functions, the numbers p, e, etc. The
computable numbers do not, however, include all deWnable numbers, and an

example is given of a deWnable number which is not computable.

Although the class of computable numbers is so great, and in many ways

similar to the class of real numbers, it is nevertheless enumerable. In § 8 I

examine certain arguments which would seem to prove the contrary. By the

correct application of one of these arguments, conclusions are reached which are

[Received 28 May, 1936.—Read 12 November, 1936.]

This article Wrst appeared in Proceedings of the London Mathematical Society, Series 2, 42 (1936–7). It is

reprinted with the permission of the London Mathematical Society and the Estate of Alan Turing.

superWcially similar to those of Gödel.1 These results have valuable applications.

In particular, it is shown (§ 11) that the Hilbertian Entscheidungsproblem can

have no solution.

In a recent paper Alonzo Church has introduced an idea of ‘‘eVective calcul-

ability’’, which is equivalent to my ‘‘computability’’, but is very diVerently

deWned.2 Church also reaches similar conclusions about the Entscheidungspro-

blem.3 The proof of equivalence between ‘‘computability’’ and ‘‘eVective

calculability’’ is outlined in an appendix to the present paper.

1. Computing machines

We have said that the computable numbers are those whose decimals are

calculable by Wnite means. This requires rather more explicit deWnition. No

real attempt will be made to justify the deWnitions given until we reach § 9. For

the present I shall only say that the justiWcation lies in the fact that the human

memory is necessarily limited.

Wemay compare aman in the process of computing a real number to amachine

which is only capable of a Wnite number of conditions q1, q2, . . . , qR whichwill be

called ‘‘m-conWgurations’’. The machine is supplied with a ‘‘tape’’ (the analogue of

paper) running through it, and divided into sections (called ‘‘squares’’) each

capable of bearing a ‘‘symbol’’. At any moment there is just one square, say the

r-th, bearing the symbolS(r) which is ‘‘in the machine’’. We may call this square

the ‘‘scanned square’’. The symbol on the scanned square may be called the

‘‘scanned symbol’’. The ‘‘scanned symbol’’ is the only one of which the machine

is, so to speak, ‘‘directly aware’’. However, by altering its m-conWguration the

machine can eVectively remember some of the symbols which it has ‘‘seen’’

(scanned) previously. The possible behaviour of the machine at any moment is

determined by the m-conWguration qn and the scanned symbol S(r). This pair

qn,S(r) will be called the ‘‘conWguration’’: thus the conWguration determines the

possible behaviour of the machine. In some of the conWgurations in which the

scanned square is blank (i.e. bears no symbol) the machine writes down a new

symbol on the scanned square: in other conWgurations it erases the scanned

symbol. The machine may also change the square which is being scanned, but

only by shifting it one place to right or left. In addition to any of these operations

them-conWgurationmay be changed. Some of the symbols written downwill form

the sequence of Wgures which is the decimal of the real number which is being

1 Gödel, ‘‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I’’,

Monatshefte Math. Phys., 38 (1931), 173–198.

2 Alonzo Church, ‘‘An unsolvable problem of elementary number theory’’, American J. of Math., 58

(1936), 345–363.

3 Alonzo Church, ‘‘A note on the Entscheidungsproblem’’, J. of Symbolic Logic, 1 (1936), 40–41.

On Computable Numbers | 59

computed. The others are just rough notes to ‘‘assist the memory’’. It will only be

these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used in

the computation of a number. The defence of this contention will be easier when

the theory of the machines is familiar to the reader. In the next section I therefore

proceed with the development of the theory and assume that it is understood

what is meant by ‘‘machine’’, ‘‘tape’’, ‘‘scanned’’, etc.

2. Definitions

Automatic machines

If at each stage the motion of a machine (in the sense of § 1) is completely

determined by the conWguration, we shall call the machine an ‘‘automatic

machine’’ (or a-machine).

For some purposes we might use machines (choice machines or c-machines)

whose motion is only partially determined by the conWguration (hence the use of

the word ‘‘possible’’ in § 1). When such a machine reaches one of these ambigu-

ous conWgurations, it cannot go on until some arbitrary choice has been made by

an external operator. This would be the case if we were using machines to deal

with axiomatic systems. In this paper I deal only with automatic machines, and

will therefore often omit the preWx a-.

Computing machines

If an a-machine prints two kinds of symbols, of which the Wrst kind (called

Wgures) consists entirely of 0 and 1 (the others being called symbols of the second

kind), then the machine will be called a computing machine. If the machine is

supplied with a blank tape and set in motion, starting from the correct initial

m-conWguration, the subsequence of the symbols printed by it which are of the

Wrst kind will be called the sequence computed by the machine. The real number

whose expression as a binary decimal is obtained by prefacing this sequence by a

decimal point is called the number computed by the machine.

At any stage of the motion of the machine, the number of the scanned square,

the complete sequence of all symbols on the tape, and the m-conWguration will

be said to describe the complete conWguration at that stage. The changes of the

machine and tape between successive complete conWgurations will be called the

moves of the machine.

Circular and circle-free machines

If a computing machine never writes down more than a Wnite number of

symbols of the Wrst kind, it will be called circular. Otherwise it is said to be

circle-free.

60 | Alan Turing

A machine will be circular if it reaches a conWguration from which there is no

possible move, or if it goes on moving, and possibly printing symbols of the

second kind, but cannot print any more symbols of the Wrst kind. The sig-

niWcance of the term ‘‘circular’’ will be explained in § 8.

Computable sequences and numbers

A sequence is said to be computable if it can be computed by a circle-free

machine. A number is computable if it diVers by an integer from the number

computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable sequences

than of computable numbers.

3. Examples of computing machines

I. A machine can be constructed to compute the sequence 010101 The

machine is to have the four m-conWgurations ‘‘b’’, ‘‘c’’, ‘‘k’’, ‘‘e’’ and is capable of

printing ‘‘0’’ and ‘‘1’’. The behaviour of the machine is described in the following

table in which ‘‘R’’ means ‘‘the machine moves so that it scans the square

immediately on the right of the one it was scanning previously’’. Similarly for

‘‘L’’. ‘‘E’’ means ‘‘the scanned symbol is erased’’ and ‘‘P’’ stands for ‘‘prints’’. This

table (and all succeeding tables of the same kind) is to be understood to mean

that for a conWguration described in the Wrst two columns the operations in the

third column are carried out successively, and the machine then goes over into

them-conWguration described in the last column. When the second column is left

blank, it is understood that the behaviour of the third and fourth columns

applies for any symbol and for no symbol. The machine starts in the

m-conWguration b with a blank tape.

ConWguration Behaviour

m-conWg. symbol operations Wnal m-conWg.

b None P0, R c

c None R e

e None P1, R k

k None R b

If (contrary to the description in § 1) we allow the letters L, R to appear more

than once in the operations column we can simplify the table considerably.

m-conWg. symbol operations Wnal m-conWg.

b
None

0

1

(P0 b

R,R,P1 b

R,R, P0 b

On Computable Numbers | 61

II. As a slightly more diYcult example we can construct a machine to

compute the sequence 001011011101111011111 The machine is to be

capable of Wve m-conWgurations, viz. ‘‘o’’, ‘‘q’’, ‘‘p’’, ‘‘f’’, ‘‘b’’ and of printing

‘‘@’’, ‘‘x’’, ‘‘0’’, ‘‘1’’. The Wrst three symbols on the tape will be ‘‘@@0’’; the other

Wgures follow on alternate squares. On the intermediate squares we never print

anything but ‘‘x’’. These letters serve to ‘‘keep the place’’ for us and are erased

when we have Wnished with them. We also arrange that in the sequence of Wgures

on alternate squares there shall be no blanks.

ConWguration Behaviour

m-conWg. symbol operations Wnal m-conWg.

b P@, R, P@, R, P0, R, R, P0, L, L o

o
1

0

�
R, Px, L, L, L o

q

q
Any (0 or 1)

None

�
R,R

P1, L

q

p

p

x

@
None

(E,R

R

L, L

q

f

p

f
Any

None

�
R,R

P0, L, L

f

o

To illustrate the working of this machine a table is given below of the Wrst few

complete conWgurations. These complete conWgurations are described by writing

down the sequence of symbols which are on the tape, with the m-conWguration

written below the scanned symbol. The successive complete conWgurations are

separated by colons.

This table could also be written in the form

b : @ @ o 0 0 : @ @ q 0 0 : . . . , (C)

in which a space has been made on the left of the scanned symbol and the

m-conWguration written in this space. This form is less easy to follow, but we shall

make use of it later for theoretical purposes.

62 | Alan Turing

The convention of writing the Wgures only on alternate squares is very useful: I

shall always make use of it. I shall call the one sequence of alternate squares

F-squares and the other sequence E-squares. The symbols on E-squares will be

liable to erasure. The symbols on F-squares form a continuous sequence. There

are no blanks until the end is reached. There is no need to have more than one

E-square between each pair of F-squares: an apparent need of more E-squares

can be satisWed by having a suYciently rich variety of symbols capable of being

printed on E-squares. If a symbol b is on an F-square S and a symbol a is on the

E-square next on the right of S, then S and b will be said to be marked with a.

The process of printing this a will be called marking b (or S) with a.

4. Abbreviated tables

There are certain types of process used by nearly all machines, and these, in some

machines, are used in many connections. These processes include copying down

sequences of symbols, comparing sequences, erasing all symbols of a given form,

etc. Where such processes are concerned we can abbreviate the tables for the

m-conWgurations considerably by the use of ‘‘skeleton tables’’. In skeleton tables

there appear capital German letters and small Greek letters. These are of the nature

of ‘‘variables’’. By replacing each capital German letter throughout by an

m-conWguration and each small Greek letter by a symbol, we obtain the table for

anm-conWguration.

The skeleton tables are to be regarded as nothing but abbreviations: they are

not essential. So long as the reader understands how to obtain the complete

tables from the skeleton tables, there is no need to give any exact deWnitions in

this connection.

Let us consider an example:

m-conWg. Symbol Behaviour Final m-conWg.

f(C, B, a)
@
not @

�
L

L

f1(C, B, a)

f(C, B, a)

From the m-conWguration

f(C, B, a) the machine Wnds

the symbol of form a which

is farthest to the left (the

‘‘Wrst a’’) and the

m-conWguration then

becomes C. If there is no a

then the m-conWguration

becomes B.

f1(C, B, a)

a

not a

None

8<
: R

R

C

f1(C, B, a)

f2(C, B, a)

f2(C, B, a)

a

not a

None

8<
: R

R

C

f1(C, B, a)

B

If we were to replace C throughout by q (say), B by r, and a by x, we should

have a complete table for the m-conWguration f(q; r; x). f is called an

‘‘m-conWguration function’’ or ‘‘m-function’’.

On Computable Numbers | 63

The only expressions which are admissible for substitution in an m-function

are the m-conWgurations and symbols of the machine. These have to be enumer-

ated more or less explicitly: they may include expressions such as p(e, x); indeed
they must if there are any m-functions used at all. If we did not insist on this

explicit enumeration, but simply stated that the machine had certain

m-conWgurations (enumerated) and all m-conWgurations obtainable by substi-

tution of m-conWgurations in certain m-functions, we should usually get an

inWnity of m-conWgurations; e.g., we might say that the machine was to have

the m-conWguration q and all m-conWgurations obtainable by substituting

an m-conWguration for C in p(C). Then it would have q, p(q), p p(q)ð Þ,
p p p(q)ð)ð Þ, . . . as m-conWgurations.

Our interpretation rule then is this. We are given the names of the

m-conWgurations of the machine, mostly expressed in terms of m-functions.

We are also given skeleton tables. All we want is the complete table for the

m-conWgurations of the machine. This is obtained by repeated substitution in

the skeleton tables.

Further examples

(In the explanations the symbol ‘‘!’’ is used to signify ‘‘the machine goes into

the m-conWguration. . . .’’)

e(C, B, a) f(e1(C,B, a), B, a) From e(C, B, a) the Wrst a is erased

and ! C. If there is no a! B.e1(C, B, a) E C

e(B, a) e(e(B, a), B, a) From e(B, a) all letters a are erased

and ! B.

The last example seems somewhat more diYcult to interpret than most. Let us

suppose that in the list of m-conWgurations of some machine there appears

e(b, x) (¼ q, say). The table is

e(b, x) e(e(b, x), b, x)
or q e(q, b, x).

Or, in greater detail:

q e(q, b, x)

e(q, b, x) f(e1(q, b, x), b, x)

e1(q, b, x) E q.

In this we could replace e1(q, b, x) by q0 and then give the table for f (with the

right substitutions) and eventually reach a table in which no m-functions

appeared.

64 | Alan Turing

pe(C, b) f(pe1(C, b), C, @) From pe(C, b) the machine

prints b at the end of the

sequence of symbols and ! C.pe1(C, b)
Any R,R

None Pb

�
pe1(C, b)

C

l(C) L C From f0(C, B, a) it does the

same as for f(C, B, a) but

moves to the left before! C.

r(C) R C

f0(C, B, a) f(l(C), B, a)

f00(C, B, a) f(r(C), B, a)

c(C, B, a) f0(c1(C), B, a) c(C, B, a). The machine

writes at the end the Wrst

symbol marked a and! C.

c1(C) b pe(C, b)

The last line stands for the totality of lines obtainable from it by replacing b by

any symbol which may occur on the tape of the machine concerned.

ce(C, B, a) c(e(C, B, a), B, a) ce(B, a). The machine

copies down in order

at the end all symbols

marked a and erases

the letters a;! B.

ce(B, a) ce(ce(B, a), B, a)

re(C, B, a, b) f(re1(C, B, a, b), B, a) re(C, B, a, b). The machine

replaces the Wrst a by b and

! C! B if there is no a.

re1(C, B, a, b) E; Pb C

re(B, a, b) re(re(B, a, b), B, a, b) re(B, a, b). The machine

replaces all letters a by

b; ! B.

cr(C, B, a) c(re(C, B, a, a), B, a) cr(B, a) diVers from

ce(B, a) only in that the

letters a are not erased. The

m-conWguration cr(B, a) is

taken up when no letters ‘‘a’’

are on the tape.

cr(B, a) cr(cr(B, a), re(B, a, a), a)

cp(C, A, E, a, b) f0(cp1(C, A, b), f(A, E, b), a)

cp1(C, A, b) g f0(cp2(C, A, g), A, b)

cp2(C, A, g)
g
not g

n C

A:

On Computable Numbers | 65

The Wrst symbol marked a and the Wrst marked b are compared. If there is

neither a nor b, ! E. If there are both and the symbols are alike, ! C.
Otherwise ! A.

cpe(C, A, E, a, b) cp(e(e(C, C, b), C, a), A, E, a, b)

cpe(C, A, E, a, b) diVers from cp(C, A, E, a, b) in that in the case when

there is similarity the Wrst a and b are erased.

cpe(A, E, a, b) cpe(cpe(A, E, a, b), A, E, a, b).

cpe(A, E, a, b). The sequence of symbols marked a is compared with the

sequence marked b. ! E if they are similar. Otherwise ! A. Some of the

symbols a and b are erased.

q(C) Any R

None R

n q(C)

q1(C)

q(C, a). The machine Wnds

the last symbol of form

a:! C.

q1(C)
Any R

None

n q(C)

C

q(C, a) q(q1(C, a))

q1(C, a)
a
Not a L

n C

q1(C, a)

pe2(C, a, b) pe(pe(C, b), a) pe2(C, a, b). The machine

prints a b at the end.

ce2(B, a, b) ce(ce(B, b), a) ce3(B, a, b, g). The

machine copies down at the

end Wrst the symbols marked

a, then those marked b, and

Wnally those marked g; it

erases the symbols a, b, g.

ce3(B, a, b, g) ce(ce2(B, b, g),

a)

e(C)
@ R

Not @ L

n e1(C)

e(C)

From e(C) the marks are

erased from all marked

symbols. ! C.
e1(C)

Any R, E, R

None

n e1(C)

C

5. Enumeration of computable sequences

A computable sequence g is determined by a description of a machine which

computes g. Thus the sequence 001011011101111 . . . is determined by the table

on p. [62], and, in fact, any computable sequence is capable of being described in

terms of such a table.

It will be useful to put these tables into a kind of standard form. In the Wrst

place let us suppose that the table is given in the same form as the Wrst table, for

66 | Alan Turing

example, I on p. [61]. That is to say, that the entry in the operations column is

always of one of the forms E : E, R : E, L : Pa : Pa, R : Pa, L : R : L : or no entry

at all. The table can always be put into this form by introducing more m-

conWgurations. Now let us give numbers to the m-conWgurations, calling them

q1, . . . , qR , as in § 1. The initial m-conWguration is always to be called q1. We

also give numbers to the symbols S1, . . . , Sm and, in particular, blank ¼ S0,

0 ¼ S1, 1 ¼ S2. The lines of the table are now of form

m-conWg. Symbol Operations Final m-conWg.

qi Sj PSk , L qm (N1)

qi Sj PSk ,R qm (N2)

qi Sj PSk qm (N3)

Lines such as

qi Sj E,R qm

are to be written as

qi Sj PS0,R qm

and lines such as

qi Sj R qm

to be written as

qi Sj PSj ,R qm

In this way we reduce each line of the table to a line of one of the forms (N1),

(N2), (N3).

From each line of form (N1) let us form an expression qiSjSkLqm; from each

line of form (N2) we form an expression qiSjSkRqm; and from each line of form

(N3) we form an expression qiSjSkNqm.

Let us write down all expressions so formed from the table for the machine and

separate them by semi-colons. In this way we obtain a complete description of the

machine. In this description we shall replace qi by the letter ‘‘D’’ followed by the

letter ‘‘A’’ repeated i times, and Sj by ‘‘D’’ followed by ‘‘C ’’ repeated j times. This

new description of the machine may be called the standard description (S.D). It is

made up entirely from the letters ‘‘A’’, ‘‘C ’’, ‘‘D’’, ‘‘L’’, ‘‘R’’, ‘‘N’’, and from ‘‘;’’.

If Wnally we replace ‘‘A’’ by ‘‘1’’, ‘‘C ’’ by ‘‘2’’, ‘‘D’’ by ‘‘3’’, ‘‘L’’ by ‘‘4’’, ‘‘R’’ by ‘‘5’’,

‘‘N ’’ by ‘‘6’’, and ‘‘;’’ by ‘‘7’’ we shall have a description of the machine in the form

of an arabic numeral. The integer represented by this numeral may be called a

description number (D.N) of the machine. The D.N determine the S.D and the

structure of the machine uniquely. The machine whose D.N is n may be de-

scribed as M(n).

On Computable Numbers | 67

To each computable sequence there corresponds at least one description

number, while to no description number does there correspond more than one

computable sequence. The computable sequences and numbers are therefore

enumerable.

Let us Wnd a description number for the machine I of § 3. When we rename

the m-conWgurations its table becomes:

q1 S0 PS1, R q2
q2 S0 PS0, R q3
q3 S0 PS2, R q4

q4 S0 PS0, R q1

Other tables could be obtained by adding irrelevant lines such as

q1 S1 PS1, R q2

Our Wrst standard form would be

q1S0S1Rq2; q2S0S0Rq3; q3S0S2Rq4; q4S0S0Rq1;

The standard description is

DADDCRDAA ;DAADDRDAAA ;DAAADDCCRDAAAA ;DAAAADDRDA ;

A description number is

31332531173113353111731113322531111731111335317

and so is

3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be called

a satisfactory number. In § 8 it is shown that there can be no general process for

determining whether a given number is satisfactory or not.

6. The universal computing machine

It is possible to invent a single machine which can be used to compute any

computable sequence. If this machineU is supplied with a tape on the beginning

of which is written the S.D of some computing machineM , thenU will compute

the same sequence as M . In this section I explain in outline the behaviour of the

machine. The next section is devoted to giving the complete table forU.

Let us Wrst suppose that we have a machine M 0 which will write down on the

F-squares the successive complete conWgurations of M . These might be ex-

pressed in the same form as on p. [62], using the second description, (C), with

all symbols on one line. Or, better, we could transform this description (as in § 5)

68 | Alan Turing

by replacing each m-conWguration by ‘‘D’’ followed by ‘‘A’’ repeated the appro-

priate number of times, and by replacing each symbol by ‘‘D’’ followed by ‘‘C ’’

repeated the appropriate number of times. The numbers of letters ‘‘A’’ and ‘‘C ’’

are to agree with the numbers chosen in § 5, so that, in particular, ‘‘0’’ is replaced

by ‘‘DC ’’, ‘‘1’’ by ‘‘DCC ’’, and the blanks by ‘‘D’’. These substitutions are to be

made after the complete conWgurations have been put together, as in (C).

DiYculties arise if we do the substitution Wrst. In each complete conWguration

the blanks would all have to be replaced by ‘‘D’’, so that the complete conWgura-

tion would not be expressed as a Wnite sequence of symbols.

If in the description of the machine II of § 3 we replace ‘‘o’’ by ‘‘DAA’’, ‘‘@’’ by
‘‘DCCC ’’, ‘‘q’’ by ‘‘DAAA’’, then the sequence (C) becomes:

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : . . . (C1)

(This is the sequence of symbols on F-squares.)

It is not diYcult to see that if M can be constructed, then so can M 0. The
manner of operation of M 0 could be made to depend on having the rules of

operation (i.e. the S.D) of M written somewhere within itself (i.e. within M 0);
each step could be carried out by referring to these rules. We have only to regard

the rules as being capable of being taken out and exchanged for others and we

have something very akin to the universal machine.

One thing is lacking: at present the machine M 0 prints no Wgures. We may

correct this by printing between each successive pair of complete conWgurations

the Wgures which appear in the new conWguration but not in the old. Then (C1)

becomes

DDA : 0 : 0 : DCCCDCCCDAADCDDC : DCCC: . . . (C2)

It is not altogether obvious that the E-squares leave enough room for the

necessary ‘‘rough work’’, but this is, in fact, the case.

The sequences of letters between the colons in expressions such as (C1) may be

used as standard descriptions of the complete conWgurations. When the letters

are replaced by Wgures, as in § 5, we shall have a numerical description of the

complete conWguration, which may be called its description number.

7. Detailed description of the universal machine

A table is given below of the behaviour of this universal machine. The

m-conWgurations of which the machine is capable are all those occurring in

the Wrst and last columns of the table, together with all those which occur when

we write out the unabbreviated tables of those which appear in the table in the

form of m-functions. E.g., e(anf) appears in the table and is an m-function. Its

unabbreviated table is (see p. [66])

On Computable Numbers | 69

e(anf)
@ R

not @ L

n e1(anf)

e(anf)

e1(anf)
Any R, E,R

None

n e1(anf)

anf

Consequently e1(anf) is an m-conWguration of U .

When U is ready to start work the tape running through it bears on it the

symbol @ on an F-square and again @ on the next E-square; after this, on

F-squares only, comes the S.D of the machine followed by a double colon ‘‘: :’’

(a single symbol, on an F-square). The S.D consists of a number of instructions,

separated by semi-colons.

Each instruction consists of Wve consecutive parts

(i) ‘‘D’’ followed by a sequence of letters ‘‘A’’. This describes the relevant

m-conWguration.

(ii) ‘‘D’’ followed by a sequence of letters ‘‘C ’’. This describes the scanned

symbol.

(iii) ‘‘D’’ followed by another sequence of letters ‘‘C ’’. This describes the

symbol into which the scanned symbol is to be changed.

(iv) ‘‘L’’, ‘‘R ’’, or ‘‘N ’’, describing whether the machine is to move to left, right,

or not at all.

(v) ‘‘D’’ followed by a sequence of letters ‘‘A’’. This describes the Wnal m-

conWguration.

The machine U is to be capable of printing ‘‘A’’, ‘‘C ’’, ‘‘D’’, ‘‘0’’, ‘‘1’’, ‘‘u’’, ‘‘v’’,

‘‘w’’, ‘‘x’’, ‘‘y’’, ‘‘z’’. The S.D is formed from ‘‘;’’, ‘‘A’’, ‘‘C ’’, ‘‘D’’, ‘‘L’’, ‘‘R’’, ‘‘N’’.

Subsidiary skeleton table

con(C, a)
Not A R,R

A L,Pa,R

�
con(C, a)

con1(C, a)

con(C, a). Starting from an

F-square, S say, the sequence C of

symbols describing a conWguration

closest on the right of S is marked

out with letters a: ! C.
con1(C, a)

A R, Pa,R
D R, Pa,R

�
con1(C, a)

con2(C, a)

con2(C, a)
C R, Pa, R
Not C R,R

�
con2(C, a)

C

con(C,). In the Wnal conWguration

the machine is scanning the square

which is four squares to the right

of the last square of C. C is left

unmarked.

The table for U
b f(b1, b1, : :) b. The machine prints : DA on

the F-squares after : :! anf.b1 R, R, P :, R, R, PD, R, R, PA anf

anf g(anf1, :) anf. The machine marks the

conWguration in the last complete

conWguration with y. ! kom.

anf1 con(kom, y)

70 | Alan Turing

kom

; R, Pz, L

z L, L

not z nor ; L

8<
:

con(kmp, x)

kom

kom

kom. The machine Wnds the

last semi-colon not marked

with z. It marks this semi-colon

with z and the conWguration

following it with x.

kmp cpe(e(kom, x, y), sim, x, y) kmp. The machine compares

the sequences marked x and y.

It erases all letters x and y. !
sim if they are alike. Otherwise

! kom.

anf. Taking the long view, the last instruction relevant to the last conWgura-

tion is found. It can be recognised afterwards as the instruction following the last

semi-colon marked z. ! sim.

sim f0(sim1, sim1, z) sim. The machine marks out

the instructions. That part of

the instructions which refers to

operations to be carried out is

marked with u, and the Wnal

m-conWguration with y. The

letters z are erased.

sim1 con(sim2,)

sim2
A

not A R, Pu, R, R, R

�
sim3

sim2

sim3
not A L, Py

A L, Py, R, R, R

�
e(mk, z)

sim3

mk g(mk, :) mk. The last complete

conWguration is marked out

into four sections. The

conWguration is left unmarked.

The symbol directly preceding

it is marked with x. The

remainder of the complete

conWguration is divided into

two parts, of which the Wrst is

marked with v and the last

with w. A colon is printed

after the whole. ! sh.

mk1
not A R, R

A L, L, L, L

�
mk1

mk2

mk2

C R, Px, L, L, L

:

D R, Px, L, L, L

8<
:

mk2

mk4

mk3

mk3
not : R, Pv, L, L, L

:

�
mk3

mk4

mk4 con l l(mk5)ð Þ,ð Þ

mk5
Any R, Pw, R

None P:

�
mk5

sh

sh f(sh1, inst, u) sh. The instructions (marked

u) are examined. If it is found

that they involve ‘‘Print 0’’ or

‘‘Print 1’’, then 0 : or 1 : is

printed at the end.

sh1 L, L, L sh2

sh2
D R, R, R, R

not D

�
sh2
inst

sh3
C R, R

not C

�
sh4
inst

On Computable Numbers | 71

sh4
C R, R

not C

�
sh5
pe2(inst, 0, :)

sh5
C

not C

n inst

pe2(inst, 1, :)

inst g l(inst1), uð Þ inst. The next complete

conWguration is written down,

carrying out the marked

instructions. The letters u, v, w,

x, y are erased. !anf.

inst1 a R, E inst1(a)

inst1(L) ce5(ov, v, y, x, u, w)

inst1(R) ce5(ov, v, x, u, y, w)

inst1(N) ec5(ov, v, x, y, u, w)

ov e(anf)

8. Application of the diagonal process

It may be thought that arguments which prove that the real numbers are not

enumerable would also prove that the computable numbers and sequences

cannot be enumerable.4 It might, for instance, be thought that the limit of a

sequence of computable numbers must be computable. This is clearly only true if

the sequence of computable numbers is deWned by some rule.

Or we might apply the diagonal process. ‘‘If the computable sequences are

enumerable, let an be the n-th computable sequence, and let fn(m) be the m-th

Wgure in an. Let b be the sequence with 1� fn(n) as its n-th Wgure. Since b is

computable, there exists a number K such that 1� fn(n) ¼ fK (n) all n. Putting

n ¼ K , we have 1 ¼ 2fK (K), i.e. 1 is even. This is impossible. The computable

sequences are therefore not enumerable.’’

The fallacy in this argument lies in the assumption that b is computable. It

would be true if we could enumerate the computable sequences by Wnite means,

but the problem of enumerating computable sequences is equivalent to the

problem of Wnding out whether a given number is the D.N of a circle-free

machine, and we have no general process for doing this in a Wnite number of

steps. In fact, by applying the diagonal process argument correctly, we can show

that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this general

process exists, then there is a machine which computes b. This proof, although

perfectly sound, has the disadvantage that itmay leave the reader with a feeling that

‘‘there must be something wrong’’. The proof which I shall give has not this

disadvantage, and gives a certain insight into the signiWcance of the idea ‘‘circle-

free’’. It depends not on constructingb, but on constructingb0, whose n-thWgure is
fn(n).

Let us suppose that there is such a process; that is to say, that we can invent a

machine D which, when supplied with the S.D of any computing machine M

4 Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88.

72 | Alan Turing

will test this S.D and if M is circular will mark the S.D with the symbol ‘‘u’’ and

if it is circle-free will mark it with ‘‘s’’. By combining the machines D and U we

could construct a machine H to compute the sequence b0. The machine D may

require a tape. We may suppose that it uses the E-squares beyond all symbols on

F-squares, and that when it has reached its verdict all the rough work done byD
is erased.

The machine H has its motion divided into sections. In the Wrst N � 1

sections, among other things, the integers 1, 2, . . . , N � 1 have been written

down and tested by the machine D. A certain number, say R(N � 1), of them

have been found to be the D.N’s of circle-free machines. In the N-th section the

machineD tests the number N. If N is satisfactory, i.e., if it is the D.N of a circle-

free machine, then R(N) ¼ 1þ R(N � 1) and the Wrst R(N) Wgures of the

sequence of which a D.N is N are calculated. The R(N)-th Wgure of this sequence

is written down as one of the Wgures of the sequence b0 computed by H . If N is

not satisfactory, then R(N) ¼ R(N � 1) and the machine goes on to the

(N þ 1)-th section of its motion.

From the construction of H we can see that H is circle-free. Each section of the

motion of H comes to an end after a Wnite number of steps. For, by our

assumption about D, the decision as to whether N is satisfactory is reached in

a Wnite number of steps. If N is not satisfactory, then the N-th section is Wnished.

If N is satisfactory, this means that the machine M(N) whose D.N is N is circle-

free, and therefore its R(N)-th Wgure can be calculated in a Wnite number of

steps. When this Wgure has been calculated and written down as the R(N)-th

Wgure of b0, the N-th section is Wnished. Hence H is circle-free.

Now let K be the D.N of H. What does H do in the K-th section of its motion?

It must test whether K is satisfactory, giving a verdict ‘‘s’’ or ‘‘u’’. Since K is the

D.N of H and since H is circle-free, the verdict cannot be ‘‘u’’. On the other hand

the verdict cannot be ‘‘s’’. For if it were, then in the K-th section of its motion H

would be bound to compute the Wrst R(K � 1)þ 1 ¼ R(K) Wgures of the

sequence computed by the machine with K as its D.N and to write down the

R(K)-th as a Wgure of the sequence computed by H . The computation of the Wrst

R(K)� 1 Wgures would be carried out all right, but the instructions for calculat-

ing the R(K)-th would amount to ‘‘calculate the Wrst R(K) Wgures computed by H

and write down the R(K)-th’’. This R(K)-th Wgure would never be found. I.e., H is

circular, contrary both to what we have found in the last paragraph and to the

verdict ‘‘s’’. Thus both verdicts are impossible and we conclude that there can be

no machine D.

We can show further that there can be no machineE which, when supplied with

the S.D of an arbitrary machine M , will determine whether M ever prints a given

symbol (0 say).

We will Wrst show that, if there is a machine E, then there is a general process

for determining whether a given machine M prints 0 inWnitely often. LetM1 be

On Computable Numbers | 73

a machine which prints the same sequence as M , except that in the position

where the Wrst 0 printed by M stands, M1 prints �00. M2 is to have the Wrst two

symbols 0 replaced by �00, and so on. Thus, if M were to print

A B A 0 1 A A B 0 0 1 0 A B . . . ,

then M1 would print

A B A �00 1 A A B 0 0 1 0 A B . . .

and M2 would print

A B A �00 1 A A B �00 0 1 0 A B . . . :

Now let F be a machine which, when supplied with the S.D of M , will write

down successively the S.D of M , of M1, of M2, . . . (there is such a machine).

We combine F with E and obtain a new machine, G. In the motion of G Wrst

F is used to write down the S.D of M , and then E tests it, : 0 : is written if it is

found thatM never prints 0; then F writes the S.D ofM1, and this is tested, : 0 :

being printed if and only ifM1 never prints 0, and so on. Now let us testG with

E. If it is found that G never prints 0, then M prints 0 inWnitely often; if G
prints 0 sometimes, then M does not print 0 inWnitely often.

Similarly there is a general process for determining whether M prints 1 inW-

nitely often. By a combination of these processes we have a process for deter-

mining whether M prints an inWnity of Wgures, i.e. we have a process for

determining whether M is circle-free. There can therefore be no machine E.

The expression ‘‘there is a general process for determining . . .’’ has been used

throughout this section as equivalent to ‘‘there is a machine which will determine

. . .’’. This usage can be justiWed if and only if we can justify our deWnition of

‘‘computable’’. For each of these ‘‘general process’’ problems can be expressed as a

problem concerning a general process for determining whether a given integer n

has a property G(n) [e.g. G(n) might mean ‘‘n is satisfactory’’ or ‘‘n is the Gödel

representation of a provable formula’’], and this is equivalent to computing a

number whose n-th Wgure is 1 if G(n) is true and 0 if it is false.

9. The extent of the computable numbers

No attempt has yet been made to show that the ‘‘computable’’ numbers include

all numbers which would naturally be regarded as computable. All arguments

which can be given are bound to be, fundamentally, appeals to intuition, and for

this reason rather unsatisfactory mathematically. The real question at issue is

‘‘What are the possible processes which can be carried out in computing a

number?’’

The arguments which I shall use are of three kinds.

74 | Alan Turing

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two deWnitions (in case the new deWnition

has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all ‘‘computable’’, several

other propositions of the same character follow. In particular, it follows that, if

there is a general process for determining whether a formula of the Hilbert

function calculus is provable, then the determination can be carried out by a

machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbols on paper. We may

suppose this paper is divided into squares like a child’s arithmetic book. In

elementary arithmetic the two-dimensional character of the paper is sometimes

used. But such a use is always avoidable, and I think that it will be agreed that the

two-dimensional character of paper is no essential of computation. I assume

then that the computation is carried out on one-dimensional paper, i.e. on a tape

divided into squares. I shall also suppose that the number of symbols which may

be printed is Wnite. If we were to allow an inWnity of symbols, then there would

be symbols diVering to an arbitrarily small extent.5 The eVect of this restriction

of the number of symbols is not very serious. It is always possible to use

sequences of symbols in the place of single symbols. Thus an Arabic numeral

such as 17 or 999999999999999 is normally treated as a single symbol. Similarly

in any European language words are treated as single symbols (Chinese, however,

attempts to have an enumerable inWnity of symbols). The diVerences from

our point of view between the single and compound symbols is that the

compound symbols, if they are too lengthy, cannot be observed at one glance.

This is in accordance with experience. We cannot tell at a glance whether

9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the symbols

which he is observing, and his ‘‘state of mind’’ at that moment. We may suppose

that there is a bound B to the number of symbols or squares which the computer

can observe at one moment. If he wishes to observe more, he must use successive

observations. We will also suppose that the number of states of mind which need

be taken into account is Wnite. The reasons for this are of the same character as

5 If we regard a symbol as literally printed on a square we may suppose that the square is

0<x<1, 0<y<1. The symbol is deWned as a set of points in this square, viz. the set occupied by printer’s

ink. If these sets are restricted to be measurable, we can deWne the ‘‘distance’’ between two symbols as the

cost of transforming one symbol into the other if the cost of moving unit area of printer’s ink unit distance

is unity, and there is an inWnite supply of ink at x ¼ 2, y ¼ 0. With this topology the symbols form a

conditionally compact space.

On Computable Numbers | 75

those which restrict the number of symbols. If we admitted an inWnity of states of

mind, some of them will be ‘‘arbitrarily close’’ and will be confused. Again, the

restriction is not one which seriously aVects computation, since the use of more

complicated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up into

‘‘simple operations’’ which are so elementary that it is not easy to imagine them

further divided. Every such operation consists of some change of the physical

system consisting of the computer and his tape. We know the state of the system

if we know the sequence of symbols on the tape, which of these are observed by

the computer (possibly with a special order), and the state of mind of the

computer. We may suppose that in a simple operation not more than one symbol

is altered. Any other changes can be split up into simple changes of this kind. The

situation in regard to the squares whose symbols may be altered in this way is the

same as in regard to the observed squares. We may, therefore, without loss of

generality, assume that the squares whose symbols are changed are always

‘‘observed’’ squares.

Besides these changes of symbols, the simple operations must include changes

of distribution of observed squares. The new observed squares must be immedi-

ately recognisable by the computer. I think it is reasonable to suppose that they

can only be squares whose distance from the closest of the immediately previ-

ously observed squares does not exceed a certain Wxed amount. Let us say that

each of the new observed squares is within L squares of an immediately previ-

ously observed square.

In connection with ‘‘immediate recognisability’’, it may be thought that there

are other kinds of square which are immediately recognisable. In particular,

squares marked by special symbols might be taken as immediately recognisable.

Now if these squares are marked only by single symbols there can be only a Wnite

number of them, and we should not upset our theory by adjoining these marked

squares to the observed squares. If, on the other hand, they are marked by a

sequence of symbols, we cannot regard the process of recognition as a simple

process. This is a fundamental point and should be illustrated. In most math-

ematical papers the equations and theorems are numbered. Normally the

numbers do not go beyond (say) 1000. It is, therefore, possible to recognise a

theorem at a glance by its number. But if the paper was very long, we might reach

Theorem 157767733443477; then, further on in the paper, we might Wnd ‘‘. . .

hence (applying Theorem 157767733443477) we have . . .’’. In order to make sure

which was the relevant theorem we should have to compare the two numbers

Wgure by Wgure, possibly ticking the Wgures oV in pencil to make sure of their not

being counted twice. If in spite of this it is still thought that there are other

‘‘immediately recognisable’’ squares, it does not upset my contention so long as

these squares can be found by some process of which my type of machine is

capable. This idea is developed in III below.

76 | Alan Turing

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares

of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of

mind. The most general single operation must therefore be taken to be one of the

following:

(A) A possible change (a) of symbol together with a possible change of state

of mind.

(B) A possible change (b) of observed squares, together with a possible change

of state of mind.

The operation actually performed is determined, as has been suggested on

p. [75], by the state of mind of the computer and the observed symbols. In

particular, they determine the state of mind of the computer after the operation

is carried out.

We may now construct a machine to do the work of this computer. To each

state of mind of the computer corresponds an ‘‘m-conWguration’’ of the machine.

The machine scans B squares corresponding to the B squares observed by the

computer. In any move the machine can change a symbol on a scanned square or

can change any one of the scanned squares to another square distant not more

than L squares from one of the other scanned squares. The move which is done,

and the succeeding conWguration, are determined by the scanned symbol and the

m-conWguration. The machines just described do not diVer very essentially from

computing machines as deWned in § 2, and corresponding to any machine of this

type a computing machine can be constructed to compute the same sequence,

that is to say the sequence computed by the computer.

II. [Type (b)].

If the notation of the Hilbert functional calculus6 is modiWed so as to be

systematic, and so as to involve only a Wnite number of symbols, it becomes

possible to construct an automatic7 machine K , which will Wnd all the

provable formulae of the calculus.8

6 The expression ‘‘the functional calculus’’ is used throughout to mean the restricted Hilbert functional

calculus.

7 It is most natural to construct Wrst a choice machine (§2) to do this. But it is then easy to construct the

required automatic machine. We can suppose that the choices are always choices between two possibilities 0

and 1. Each proof will then be determined by a sequence of choices i1, i2, . . . , in (i1 ¼ 0 or 1,

i2 ¼ 0 or 1, . . . , in ¼ 0 or 1), and hence the number 2n þ i12
n�1 þ i22

n�2 þ . . .þ in completely determines

the proof. The automatic machine carries out successively proof 1, proof 2, proof 3,

8 The author has found a description of such a machine.

On Computable Numbers | 77

Now let a be a sequence, and let us denote by Ga(x) the proposition ‘‘The x-th

Wgure of a is 1’’, so that �Ga(x) means ‘‘The x-th Wgure of a is 0’’.9 Suppose

further that we can Wnd a set of properties which deWne the sequence a and

which can be expressed in terms of Ga(x) and of the propositional functions

N(x) meaning ‘‘x is a non-negative integer’’ and F(x, y) meaning ‘‘y ¼ x þ 1’’.

When we join all these formulae together conjunctively, we shall have a formula,

A say, which deWnes a. The terms of A must include the necessary parts of the

Peano axioms, viz.,

(9u)N(u) & (x) N(x)! (9y)F(x, y)ð Þ & F(x, y)! N(y)ð Þ,
which we will abbreviate to P.

When we say ‘‘A deWnes a’’, we mean that �A is not a provable formula, and

also that, for each n, one of the following formulae (An) or (Bn) is provable.10

A & F(n) ! Ga u(n)
� �

, (An)

A & F(n) ! �Ga(u
(n))

� �
, (Bn),

where F(n) stands for F(u, u0) & F(u0, u00) & . . . F(u(n�1), u(n)).
I say that a is then a computable sequence: a machine Ka to compute a can

be obtained by a fairly simple modiWcation of K .

We divide the motion of Ka into sections. The n-th section is devoted to

Wnding the n-th Wgure of a. After the (n� 1)-th section is Wnished a double

colon : : is printed after all the symbols, and the succeeding work is done wholly

on the squares to the right of this double colon. The Wrst step is to write the letter

‘‘A’’ followed by the formula (An) and then ‘‘B’’ followed by (Bn). The machine

Ka then starts to do the work of K , but whenever a provable formula is found,

this formula is compared with (An) and with (Bn). If it is the same formula as

(An), then the Wgure ‘‘1’’ is printed, and the n-th section is Wnished. If it is (Bn),

then ‘‘0’’ is printed and the section is Wnished. If it is diVerent from both, then

the work of K is continued from the point at which it had been abandoned.

Sooner or later one of the formulae (An) or (Bn) is reached; this follows from our

hypotheses about a and A, and the known nature of K . Hence the n-th section

will eventually be Wnished. Ka is circle-free; a is computable.

It can also be shown that the numbers a deWnable in this way by the use of

axioms include all the computable numbers. This is done by describing comput-

ing machines in terms of the function calculus.

It must be remembered that we have attached rather a special meaning to the

phrase ‘‘A deWnes a’’. The computable numbers do not include all (in the

ordinary sense) deWnable numbers. Let d be a sequence whose n-th Wgure is

9 The negation sign is written before an expression and not over it.

10 A sequence of r primes is denoted by (r).

78 | Alan Turing

1 or 0 according as n is or is not satisfactory. It is an immediate consequence of

the theorem of § 8 that d is not computable. It is (so far as we know at present)

possible that any assigned number of Wgures of d can be calculated, but not by a

uniform process. When suYciently many Wgures of d have been calculated, an

essentially new method is necessary in order to obtain more Wgures.

III. This may be regarded as a modiWcation of I or as a corollary of II.

We suppose, as in I, that the computation is carried out on a tape; but we avoid

introducing the ‘‘state of mind’’ by considering a more physical and deWnite

counterpart of it. It is always possible for the computer to break oV from his

work, to go away and forget all about it, and later to come back and go on with it.

If he does this he must leave a note of instructions (written in some standard

form) explaining how the work is to be continued. This note is the counterpart

of the ‘‘state of mind’’. We will suppose that the computer works in such a

desultory manner that he never does more than one step at a sitting. The note of

instructions must enable him to carry out one step and write the next note. Thus

the state of progress of the computation at any stage is completely determined by

the note of instructions and the symbols on the tape. That is, the state of the

system may be described by a single expression (sequence of symbols), consisting

of the symbols on the tape followed by D (which we suppose not to appear

elsewhere) and then by the note of instructions. This expression may be called

the ‘‘state formula’’. We know that the state formula at any given stage is

determined by the state formula before the last step was made, and we assume

that the relation of these two formulae is expressible in the functional calculus. In

other words, we assume that there is an axiom A which expresses the rules

governing the behaviour of the computer, in terms of the relation of the state

formula at any stage to the state formula at the preceding stage. If this is so, we

can construct a machine to write down the successive state formulae, and hence

to compute the required number.

10. Examples of large classes of numbers which

are computable

It will be useful to begin with deWnitions of a computable function of an integral

variable and of a computable variable, etc. There are many equivalent ways of

deWning a computable function of an integral variable. The simplest is, possibly,

as follows. If g is a computable sequence in which 0 appears inWnitely11 often,

and n is an integer, then let us deWne x(g, n) to be the number of Wgures

11 IfM computes g, then the problem whether M prints 0 inWnitely often is of the same character as the

problem whether M is circle-free.

On Computable Numbers | 79

1 between the n-th and the (nþ 1)-th Wgure 0 in g. Then f(n) is computable if,

for all n and some g, f(n) ¼ x(g, n). An equivalent deWnition is this. Let H(x, y)

mean f(x) ¼ y. Then, if we can Wnd a contradiction-free axiom Af, such that

Af ! P, and if for each integer n there exists an integer N, such that

Af & F(N) ! H u(n), u(f(n))
� �

,

and such that, if m 6¼ f(n), then, for some N 0,

Af & F(N 0) ! �H(u(n), u(m)
� �

,

then f may be said to be a computable function.

We cannot deWne general computable functions of a real variable, since there is

no general method of describing a real number, but we can deWne a computable

function of a computable variable. If n is satisfactory, let gn be the number

computed by M(n), and let

an ¼ tan p gn � 1
2

� �� �
,

unless gn ¼ 0 or gn ¼ 1, in either of which cases an ¼ 0. Then, as n runs through

the satisfactory numbers, an runs through the computable numbers.12 Now let

f(n) be a computable function which can be shown to be such that for any

satisfactory argument its value is satisfactory.13 Then the function f, deWned by

f anð Þ ¼ af(n), is a computable function and all computable functions of a

computable variable are expressible in this form.

Similar deWnitions may be given of computable functions of several variables,

computable-valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I shall prove

only (ii) and a theorem similar to (iii).

(i) A computable function of a computable function of an integral or

computable variable is computable.

(ii) Any function of an integral variable deWned recursively in terms of

computable functions is computable. I.e. if f(m, n) is computable, and

r is some integer, then Z(n) is computable, where

Z(0) ¼ r ,

Z(n) ¼ f(n, Z(n� 1)):

(iii) If f(m, n) is a computable function of two integral variables, then f(n, n)
is a computable function of n.

12 A function an may be deWned in many other ways so as to run through the computable numbers.

13 Although it is not possible to Wnd a general process for determining whether a given number is

satisfactory, it is often possible to show that certain classes of numbers are satisfactory.

80 | Alan Turing

(iv) If f(n) is a computable function whose value is always 0 or 1, then the

sequence whose n-th Wgure is f(n) is computable.

Dedekind’s theorem does not hold in the ordinary form if we replace ‘‘real’’

throughout by ‘‘computable’’. But it holds in the following form:

(v) If G(a) is a propositional function of the computable numbers and

(a) (9a)(9b){G(a) & �G(b)ð Þ},
(b) G(a) & �G(b)ð Þ ! (a < b),

and there is a general process for determining the truth value of G(a), then there

is a computable number x such that

G(a)! a < x,
�G(a)! a > x:

In other words, the theorem holds for any section of the computables such that

there is a general process for determining to which class a given number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a com-

putable bounded increasing sequence of computable numbers has a computable

limit. This may possibly be understood by considering a sequence such as

�1, � 1
2
, � 1

4
, � 1

8
, � 1

16
, 1

2
, . . . :

On the other hand, (v) enables us to prove

(vi) If a and b are computable and a < b and f(a) < 0 < f(b), where
f(a) is a computable increasing continuous function, then there is a

unique computable number g, satisfying a < g < b and f(g) ¼ 0.

Computable convergence

We shall say that a sequence bn of computable numbers converges computably if

there is a computable integral valued function N(") of the computable variable ",

such that we can show that, if " > 0 and n > N(") and m > N("), then

jbn � bmj < ".

We can then show that

(vii) A power series whose coeYcients form a computable sequence of comp-

utable numbers is computably convergent at all computable points in

the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.

And with the obvious deWnition of ‘‘uniformly computably convergent’’:

(ix) The limit of a uniformly computably convergent computable sequence

of computable functions is a computable function. Hence

On Computable Numbers | 81

(x) The sum of a power series whose coeYcients form a computable sequence

is a computable function in the interior of its interval of convergence.

From (viii) and p ¼ 4 1� 1
3
þ 1

5
� . . .

� �
we deduce that p is computable.

From e ¼ 1þ1þ 1
2!þ 1

3!þ . . . we deduce that e is computable.

From (vi) we deduce that all real algebraic numbers are computable.

From (vi) and (x) we deduce that the real zeros of the Bessel functions are

computable.

Proof of (ii)

Let H(x, y) mean ‘‘Z(x) ¼ y’’, and let K (x, y, z) mean ‘‘f(x, y) ¼ z’’. Af is the

axiom for f(x, y). We take AZ to be

Af & P &
�
F(x, y)! G(x, y)

�
&

�
G(x, y) & G(y, z)! G(x, z)

�
& F(r)!H(u, u(r))
� �

&
�
F(v, w) & H(v, x) & K (w, x, z)! H(w, z)

�
& H(w, z) & G(z, t) v G(t , z)! ��H(w, t)

�� �
:

I shall not give the proof of consistency of AZ. Such a proof may be con-

structed by the methods used in Hilbert and Bernays, Grundlagen der Mathema-

tik (Berlin, 1934), p. 209 et seq. The consistency is also clear from the meaning.

Suppose that, for some n, N, we have shown

AZ & F(N) ! H u(n�1), u(Z(n�1))
� �

,

then, for some M,

Af & F(M) ! K u(n), u(Z(n�1)), u(Z(n))
� �

,

AZ & F(M) ! F u(n�1), u(n)
� �

& H u(n�1), u(Z(n�1))
� �

& K u(n), u(Z(n�1)), u(Z(n))
� �

,

and

AZ & F(M) ! F u(n�1), u(n)
� �

& H u(n�1), u(Z(n�1))
� ��

& K u(n), u(Z(n�1)), u(Z(n))
� �! H u(n), u(Z(n))

� ��
:

Hence AZ & F(M) ! H u(n), u(Z(n))
� �

:

Also AZ & F(r) ! H u, u(Z(0))
� �

:

Hence for each n some formula of the form

AZ & F(M) ! H u(n), u(Z(n))
� �

is provable. Also, if M 0 > M and M 0 > m and m 6¼ Z(u), then

AZ & F(M 0) ! G uZ((n)), u(m)
� �

v G u(m), u(Z(n))
� �

and

82 | Alan Turing

AZ & F(M 0) ! G u(Z(n)), u(m)
� �

v
�

G u(m), u(Z(n))
� ��

& H u(n), u(Z(n))
� �! �H u(n), u(m)

� �� ��:
Hence AZ & F(M 0) ! �H u(n), u(m)

� �� �
:

The conditions of our second deWnition of a computable function are there-

fore satisWed. Consequently Z is a computable function.

Proof of a modified form of (iii)

Suppose that we are given a machineN , which, starting with a tape bearing on it

@ @ followed by a sequence of any number of letters ‘‘F ’’ on F-squares and in the

m-conWguration b, will compute a sequence gn depending on the number n of

letters ‘‘F ’’. If fn(m) is the m-th Wgure of gn, then the sequence b whose n-th

Wgure is fn(n) is computable.

We suppose that the table for N has been written out in such a way that in

each line only one operation appears in the operations column. We also

suppose that X, Q, �00, and �11 do not occur in the table, and we replace @
throughout by Q, 0 by �00, and 1 by �11. Further substitutions are then made. Any

line of form

A a P�00 B

we replace by

A a P�00 re(B, u, h, k)

and any line of the form

A a P�11 B

by A a P�11 re(B, v, h, k)

and we add to the table the following lines:

u pe u1, 0ð Þ
u1 R, Pk, R, PQ, R, PQ u2

u2 re u3, u3, k, hð Þ
u3 pe u2, Fð Þ

and similar lines with v for u and 1 for 0 together with the following line

c R, PX, R, Ph b:

We then have the table for the machine N 0 which computes b. The initial

m-conWguration is c, and the initial scanned symbol is the second @.

On Computable Numbers | 83

11. Application to the Entscheidungsproblem

The results of § 8 have some important applications. In particular, they can be

used to show that the Hilbert Entscheidungsproblem can have no solution. For

the present I shall conWne myself to proving this particular theorem. For the

formulation of this problem I must refer the reader to Hilbert and Ackermann’s

Grundzüge der Theoretischen Logik (Berlin, 1931), chapter 3.

I propose, therefore, to show that there can be no general process for deter-

mining whether a given formula A of the functional calculus K is provable, i.e.

that there can be no machine which, supplied with any one A of these formulae,

will eventually say whether A is provable.

It should perhaps be remarked that what I shall prove is quite diVerent

from the well-known results of Gödel.14 Gödel has shown that (in the

formalism of Principia Mathematica) there are propositions A such that

neither A nor �A is provable. As a consequence of this, it is shown that no

proof of consistency of Principia Mathematica (or of K) can be given within that

formalism. On the other hand, I shall show that there is no general method

which tells whether a given formula A is provable in K, or, what comes to the

same, whether the system consisting of K with �A adjoined as an extra axiom is

consistent.

If the negation of what Gödel has shown had been proved, i.e. if, for each A,

either A or �A is provable, then we should have an immediate solution of

the Entscheidungsproblem. For we can invent a machine K which will

prove consecutively all provable formulae. Sooner or later K will reach either A
or �A. If it reaches A, then we know that A is provable. If it reaches �A, then,

since K is consistent (Hilbert and Ackermann, p. 65), we know that A is not

provable.

Owing to the absence of integers in K the proofs appear somewhat lengthy.

The underlying ideas are quite straightforward.

Corresponding to each computing machine M we construct a formula

Un (M) and we show that, if there is a general method for determining whether

Un (M) is provable, then there is a general method for determining whether M
ever prints 0.

The interpretations of the propositional functions involved are as follows:

RSl (x, y) is to be interpreted as ‘‘in the complete conWguration x (of M) the

symbol on the square y is S’’.

I(x, y) is to be interpreted as ‘‘in the complete conWguration x the square y is

scanned’’.

14 Loc. cit.

84 | Alan Turing

Kqm
(x) is to be interpreted as ‘‘in the complete conWguration x the m-con-

Wguration is qm.

F(x, y) is to be interpreted as ‘‘y is the immediate successor of x’’.

Inst {qiSjSkLql} is to be an abbreviation for

(x, y, x0, y 0) RSj (x, y) & I(x, y) & Kqi (x) & F(x, x0) & F(y 0, y)
� ��
! I(x0, y 0) & RSk (x

0, y) & Kql (x
0)

�
& (z) F(y 0, z) v RSj (x, z)! RSk (x

0, z)
� �� ���

:

Inst {qiSjSkRql} and Inst {qiSjSkNql}

are to be abbreviations for other similarly constructed expressions.

Let us put the description of M into the Wrst standard form of § 6. This

description consists of a number of expressions such as ‘‘qiSjSkLql ’’ (or with R or

N substituted for L). Let us form all the corresponding expressions such as Inst

{qiSjSkLql} and take their logical sum. This we call Des (M).

The formula Un (M) is to be

(9u) N(u) & (x) N(x)! (9x0)F(x, x0)ð½ Þ
& (y, z) F(y, z)! N(y) & N(z)ð Þ
& (y)RS0(u, y) & I(u, u) & Kq1(u) & Des (M)�
! (9s)(9t)[N(s) & N(t) & RS1(s, t)]:

[N(u) & . . . & Des (M)] may be abbreviated to A(M).

When we substitute the meanings suggested on [pp. 84–85] we Wnd that

Un (M) has the interpretation ‘‘in some complete conWguration of M , S1 (i.e.

0) appears on the tape’’. Corresponding to this I prove that

(a) If S1 appears on the tape in some complete conWguration of M , then

Un (M) is provable.

(b) If Un (M) is provable, then S1 appears on the tape in some complete

conWguration of M .

When this has been done, the remainder of the theorem is trivial.

Lemma 1. If S1appears on the tape in some complete conWguration of M , then

Un (M) is provable.

We have to show how to prove Un (M). Let us suppose that in the n-th

complete conWguration the sequence of symbols on the tape is Sr(n, 0),

Sr(n, 1), . . . , Sr(n, n), followed by nothing but blanks, and that the scanned

symbol is the i(n)-th, and that the m-conWguration is qk(n). Then we may form

the proposition

On Computable Numbers | 85

RSr(n; 0) (u
(n), u) & RSr(n; 1) (u

(n), u0) & . . . & RSr(n; n) (u
(n), u(n))

& I(u(n), u(i(n))) & Kqk(n) (u
(n))

& (y)F (y, u0) v F(u, y)ð v F(u0, y) v . . . v F(u(n�1), y) v RS0 (u
(n), y)Þ,

which we may abbreviate to CCn.

As before, F(u, u0) & F(u0, u00) & . . . & F(u(r�1), u(r)) is abbreviated to F(r).

I shall show that all formulae of the form A(M) & F(n) ! CCn (abbreviated

to CFn) are provable. The meaning of CFn is ‘‘The n-th complete conWguration

of M is so and so’’, where ‘‘so and so’’ stands for the actual n-th

complete conWguration of M . That CFn should be provable is therefore to be

expected.

CF0 is certainly provable, for in the complete conWguration the symbols are all

blanks, the m-conWguration is q1, and the scanned square is u, i.e. CC0 is

(y)RS0 (u, y) & I(u, u) & Kq1
(u):

A(M)! CC0 is then trivial.

We next show that CFn ! CFnþ1 is provable for each n. There are three cases

to consider, according as in the move from the n-th to the (nþ 1)-th conWgura-

tion the machine moves to left or to right or remains stationary. We suppose that

the Wrst case applies, i.e. the machine moves to the left. A similar argument

applies in the other cases. If r n, i(n)ð Þ ¼ a, r nþ 1, i(nþ 1)ð Þ ¼ c,

k i(n)ð Þ ¼ b, and k i(nþ 1)ð Þ ¼ d, then Des (M) must include Inst {qaSbSdLqc}

as one of its terms, i.e.

Des (M)! Inst {qaSbSdLqc}:

Hence A(M) & F(nþ1) ! Inst {qaSbSdLqc} & F(nþ1):

But Inst {qaSbSdLqc} & F(nþ1) ! (CCn ! CCnþ1)

is provable, and so therefore is

A(M) & F(nþ1) ! (CCn ! CCnþ1)

and

A(M) & F(n) ! CCn

� �! A(M) & F(nþ1) ! CCnþ1
� �

,

i:e: CFn ! CFnþ1:

CFn is provable for eachn. Now it is the assumptionof this lemma that S1 appears

somewhere, in some complete conWguration, in the sequenceof symbols printed by

86 | Alan Turing

M ; that is, for some integers N , K , CCN has RS1 (u
(N), u(K)) as one of its terms,

and therefore CCN ! RS1 (u
(N), u(K)) is provable. We have then

CCN ! RS1 (u
(N), u(K))

and A(M) & F(N) ! CCN :

We also have

(9u)A(M)! (9u)(9u0) . . . (9u(N 0)) A(M) & F(N)
� �

,

where N 0 ¼ max (N , K): And so

(9u)A(M)! (9u)(9u0) . . . (9u(N 0))RS1 (u
(N), u(K)),

(9u)A(M)! (9u(N))(9u(K))RS1 (u
(N), u(K)),

(9u)A(M)! (9s)(9t)RS1 (s, t),

i.e. Un (M) is provable.

This completes the proof of Lemma 1.

Lemma 2. If Un (M) is provable, then S1 appears on the tape in some com-

plete conWguration of M .

If we substitute any propositional functions for function variables in a

provable formula, we obtain a true proposition. In particular, if we substitute

the meanings tabulated on pp. [84–85] in Un (M), we obtain a true proposition

with the meaning ‘‘S1 appears somewhere on the tape in some complete con-

Wguration of M ’’.

We are now in a position to show that the Entscheidungsproblem cannot

be solved. Let us suppose the contrary. Then there is a general (mechanical)

process for determining whether Un (M) is provable. By Lemmas 1 and 2,

this implies that there is a process for determining whether M ever prints 0,

and this is impossible, by § 8. Hence the Entscheidungsproblem cannot be

solved.

In view of the large number of particular cases of solutions of the Entschei-

dungsproblem for formulae with restricted systems of quantors, it is interesting

to express Un (M) in a form in which all quantors are at the beginning. Un (M)

is, in fact, expressible in the form

(u)(9x)(w)(9u1) . . . (9un)B, (I)

whereB contains no quantors, and n ¼ 6. By unimportant modiWcations we can

obtain a formula, with all essential properties of Un (M), which is of form (I)

with n ¼ 5.

On Computable Numbers | 87

Added 28 August, 1936.15

Appendix

Computability and effective calculability

The theorem that all eVectively calculable (l-deWnable) sequences are computable and its

converse are proved below in outline. It is assumed that the terms ‘‘well-formed formula’’

(W.F.F.) and ‘‘conversion’’ as used by Church and Kleene are understood. In the second of

these proofs the existence of several formulae is assumed without proof; these formulae

may be constructed straightforwardly with the help of, e.g., the results of Kleene in ‘‘A

theory of positive integers in formal logic’’, American Journal of Math, 57 (1935), 153–173,

219–244.

The W.F.F. representing an integer n will be denoted by Nn. We shall say that a

sequence g whose n-th Wgure is fg(n) is l-deWnable or eVectively calculable if

1þ fg(u) is a l-deWnable function of n, i.e. if there is a W.F.F. Mg such that, for all

integers n,

Mg

� �
Nnð Þ conv Nfg(n)þ1,

i.e. Mg

� �
Nnð Þ is convertible into lxy : x(x(y)) or into lxy : x(y) according as the n-th

Wgure of l is 1 or 0.

To show that every l-deWnable sequence g is computable, we have to show how to

construct a machine to compute g. For use with machines it is convenient to make a trivial

modiWcation in the calculus of conversion. This alteration consists in using x, x0, x00, . . . as
variables instead of a, b, c, We now construct a machineL which, when supplied with

the formulaMg, writes down the sequence g. The construction ofL is somewhat similar to

that of the machine K which proves all provable formulae of the functional calculus. We

Wrst construct a choice machine L1, which, if supplied with a W.F.F., M say, and suitably

manipulated, obtains any formula into whichM is convertible.L1 can then be modiWed so

as to yield an automatic machineL2 which obtains successively all the formulae into which

M is convertible (cf. foot-note p. [77]). The machineL includesL2 as a part. The motion

of the machine L when supplied with the formula Mg is divided into sections of which

the n-th is devoted to Wnding the n-th Wgure of g. The Wrst stage in this n-th section

is the formation of {Mg}(Nn). This formula is then supplied to the machine

L2, which converts it successively into various other formulae. Each formula into which it

is convertible eventually appears, and each, as it is found, is compared with

lx lx0[{x} {x}(x0)ð Þ]½ �, i:e: N2,

and with lx lx0[{x}(x0)]½ �, i:e: N1:

If it is identical with the Wrst of these, then the machine prints the Wgure 1 and the

n-th section is Wnished. If it is identical with the second, then 0 is printed and the

section is Wnished. If it is diVerent from both, then the work of L2 is resumed.

15 The Graduate College, Princeton University, New Jersey, USA.

88 | Alan Turing

By hypothesis, {Mg}(Nn) is convertible into one of the formulae N2 or N1; consequently

the n-th section will eventually be Wnished, i.e. the n-th Wgure of g will eventually be

written down.

To prove that every computable sequence g is l-deWnable, we must show how to Wnd a

formula Mg such that, for all integers n,

{Mg}(Nn) conv N1þfg(n):

Let M be a machine which computes g and let us take some description of the

complete conWgurations of M by means of numbers, e.g. we may take the D.N of the

complete conWguration as described in § 6. Let x(n) be the D.N of the n-th complete

conWguration of M . The table for the machine M gives us a relation between x(nþ 1)

and x(n) of the form

x(nþ 1) ¼ rg x(n)ð Þ,
where rg is a function of very restricted, although not usually very simple, form: it is

determined by the table for M. rg is l-deWnable (I omit the proof of this), i.e. there is a

W.F.F. Ag such that, for all integers n,

{Ag}(Nx(n)) conv Nx(nþ1):

Let U stand for

lu {u}(Ag)
� �

(Nr)
� �

,

where r ¼ x(0); then, for all integers n,

{Ug}(Nn) conv Nx(n):

It may be proved that there is a formula V such that

{V }(Nx(nþ1))f g(Nx(n))

conv N1 if , in going from the n-th to

the (nþ 1)-th complete configuration, the

figure 0 is printed:

conv N2 if the figure 1 is printed.

conv N3 otherwise.

8>>>>>><
>>>>>>:

Let Wg stand for

lu {V } {Ag} {Ug}(u)
� �� �� �

{Ug}(u)
� �� �

,

so that, for each integer n,

{V }(Nx(nþ1))f g(Nx(n)) conv {Wg}(Nn),

and let Q be a formula such that

{Q}(Wg)
� �

(Ns) conv Nr(z),

On Computable Numbers | 89

where r (s) is the s-th integer q for which {Wg}(Nq) is convertible into either N1 or N2.

Then, if Mg stands for

lw {Wg} {Q}(Wg)
� �

(w)
� �� �

,

it will have the required property.16

16 In a complete proof of the l-deWnability of computable sequences it would be best to modify this

method by replacing the numerical description of the complete conWgurations by a description which can be

handled more easily with our apparatus. Let us choose certain integers to represent the symbols and the

m-conWgurations of the machine. Suppose that in a certain complete conWguration the numbers represent-

ing the successive symbols on the tape are s1s2 . . . sn, that the m-th symbol is scanned, and that the

m-conWguration has the number t ; then we may represent this complete conWguration by the formula

[Ns1 ,Ns2 , . . . ,Nsm�1], [Nt ,Nsm], [Nsmþ1, . . . ,Nsn]½ �,

where [a, b] stands for lu {u}(a)f g(b)½ �,

[a, b, c] stands for lu {{u}(a)}(b)f g(c)½ �,

etc.

90 | Alan Turing

CHAPTER 2

On Computable Numbers:

Corrections and Critiques

Alan Turing, Emil Post,

and Donald W. Davies

Introduction
Jack Copeland

This chapter contains four items:

2.1 On Computable Numbers, with an Application to the Entscheidungs-

problem. A Correction. Alan Turing

2.2 On Computable Numbers, with an Application to the Entscheidungs-

problem. A Critique. Emil Post

2.3 Draft of a Letter from Turing to Alonzo Church Concerning

the Post Critique

2.4 Corrections to Turing’s Universal Computing Machine Donald W. Davies

As is not uncommon in work of such complexity, there are a number of mistakes

in ‘On Computable Numbers’ (Chapter 1). Turing corrected some of these in his

short note 2.1, published in the Proceedings of the London Mathematical Society a

few months after the original paper had appeared.

The mathematician Emil L. Post’s critique of ‘On Computable Numbers’ was

published in 1947 and formed part of Post’s paper ‘Recursive Unsolvability of a

Problem of Thue’.1 Post is one of the major Wgures in the development of mathe-

matical logic in the twentieth century, althoughhisworkdid not gainwide recogni-

tion until after his death. (Born in 1897, Post died in the same year as Turing.)

By 1936 Post had arrived independently at an analysis of computability

substantially similar to Turing’s.2 Post’s ‘problem solver’ operated in a ‘symbol

1 Journal of Symbolic Logic, 12 (1947), 1–11.

2 E. L. Post, ‘Finite Combinatory Processes—Formulation 1’, Journal of Symbolic Logic, 1 (1936), 103–4.

space’ consisting of ‘a two way inWnite sequence of spaces or boxes’. A box

admitted ‘of but two possible conditions, i.e., being empty or unmarked,

and having a single mark in it, say a vertical stroke’. The problem solver

worked in accordance with ‘a Wxed unalterable set of directions’ and could

perform the following ‘primitive acts’: determine whether the box at present

occupied is marked or not; erase any mark in the box that is at present occupied;

mark the box that is at present occupied if it is unmarked; move to the box to

the right of the present position; move to the box to the left of the present

position.

Later, Post considerably extended certain of the ideas in Turing’s ‘Systems of

Logic Based on Ordinals’ (Chapter 3), developing the important Weld now called

degree theory.

In his draft letter to Church, Turing responded to Post’s remarks concerning

‘Turing convention-machines’.3 It is doubtful whether Turing ever sent the letter.

The approximate time of writing can be inferred from Turing’s opening remarks:

Kleene’s review appeared in the issue of the Journal of Symbolic Logic dated

September 1947 (12: 90–1) and Turing’s ‘Practical Forms of Type Theory’

appeared in the same journal in June 1948.

In his Wnal year at university Donald Davies (1924–2000) heard about Turing’s

proposed Automatic Computing Engine and the plans to build it at the National

Physical Laboratory in London (see Chapter 9). Davies immediately applied

to join the National Physical Laboratory and in September 1947 became amember

of the small team surrounding Turing. Davies played a leading role in the develop-

ment and construction of the pilot model of the Automatic Computing Engine,

which ran its Wrst programme in May 1950. From 1966 he was head of the

computer science division at the National Physical Laboratory. He originated

the important concept of ‘packet switching’ used in the ARPANET, forerunner

of the Internet. From 1979 Davies worked on data security and public key

cryptosystems.

‘On Computable Numbers’ contained a number of what would nowadays be

called programming errors. Davies described Turing’s reaction when he drew

Turing’s attention to some of these:

I was working more or less under [Turing’s] supervision . . . I had been reading his

famous work on computable numbers . . . and I began to question some of the details of

his paper. In fact I . . . found a number of quite bad programming errors, in eVect, in the

speciWcation of the machine that he had written down, and I had worked out how

to overcome these. I went along to tell him and I was rather cock-a-hoop . . . I thought

he would say ‘Oh Wne, I’ll send along an addendum’ [to the London Mathematical

Society]. But in fact he was very annoyed, and pointed out furiously that really it

3 The draft is among the Turing Papers in the Modern Archive Centre, King’s College Library,

Cambridge; catalogue reference D 2.

92 | Jack Copeland

didn’t matter, the thing was right in principle, and altogether I found him extremely

touchy on this subject.4

In Section 4 of his ‘Corrections to Turing’s Universal Computing Machine’

Davies mends the errors that he discovered in 1947. He emphasizes that—as

Turing said—these programming errors are of no signiWcance for the central

arguments of ‘On Computable Numbers’.

Davies’s lucid commentary forms an excellent introduction to ‘On Comput-

able Numbers’.5

4 Davies in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of

Computing’ (London: Science Museum, 1975)).

5 I am grateful to Diane Davies for her permission to publish this article.

Corrections and Critiques | 93

2.1
On Computable Numbers, with an Application to
the Entscheidungsproblem. A Correction. (1937)
Alan Turing

In a paper entitled ‘‘On computable numbers, with an application to the

Entscheidungsproblem’’ [Chapter 1] the author gave a proof of the insolubility

of the Entscheidungsproblem of the ‘‘engere Funktionenkalkül’’. This proof

contained some formal errors1 which will be corrected here: there are also

some other statements in the same paper which should be modiWed, although

they are not actually false as they stand.

The expression for Inst {qiSjSkLql} on p. [85] of the paper quoted should

read

(x, y, x0, y 0) RSj (x, y) & I(x, y) & Kqi (x) & F(x, x0) & F(y 0, y)
� ��

! I(x0, y 0) & RSk (x
0, y) & Kql (x

0) & F(y 0, z) v RS0 (x, z)ð½� ! RS0 (x
0, z)Þ

& RS1 (x, z)! RS1 (x
0, z)ð Þ & . . . & RSM (x, z)! RSM (x

0, z)ð Þ���,
S0, S1, . . . , SM being the symbols which M can print. The statement on p. [86],

[lines 24–25], viz.

‘‘Inst {qaSbSdLqc} & F(nþ1) ! (CCn ! CCnþ1)

is provable’’ is false (even with the new expression for Inst {qaSbSdLqc}): we are

unable for example to deduce F(nþ1) ! �F(u, u00)ð Þ and therefore can never use

the term

F(y 0, z) v RS0 (x, z)! RS0 (x
0, z)ð Þ & . . . & RSM (x, z)! RSM (x

0, z)ð Þ½ �

in Inst {qaSbSdLqc}. To correct this we introduce a new functional variable

G [G(x, y) to have the interpretation ‘‘x precedes y’’]. Then, if Q is an abbrevi-

ation for

(x)(9w)(y, z) F(x, w) & F(x, y)!G(x, y)ð Þ & F(x, z) & G(z, y)! G(x, y)ð Þf
& G(z, x) v G(x, y) & F(y, z)ð Þ v F(x, y) & F(z, y)ð Þ ! �F(x, z)ð Þ½ �g

the corrected formula Un (M) is to be

This article Wrst appeared in Proceedings of the London Mathematical Society, Series 2, 43 (1937), 544–6. It is

reprinted with the permission of the London Mathematical Society and the Estate of Alan Turing.

1 The author is indebted to P. Bernays for pointing out these errors.

(9u)A(M)! (9s)(9t)RS1 (s, t),

where A(M) is an abbreviation for

Q & (y)RS0 (u, y) & I(u, u) & Kq1 (u) & Des (M):

The statement on page [86] (line [24]) must then read

Inst {qaSbSdLqc} & Q & F(nþ1) ! CCn ! CCnþ1ð Þ,
and [lines 19–20] should read

r n, i(n)ð Þ ¼ b, r nþ 1, i(n)ð Þ ¼ d, k(n) ¼ a, k(nþ 1) ¼ c:

For the words ‘‘logical sum’’ on p. [85], line [13], read ‘‘conjunction’’. With these

modiWcations the proof is correct. Un (M) may be put in the form (I) (p. [87])

with n ¼ 4.

Some diYculty arises from the particular manner in which ‘‘computable

number’’ was deWned (p. [61]). If the computable numbers are to satisfy intuitive

requirements we should have:

If we can give a rule which associates with each positive integer n two rationals

an, bn satisfying an < anþ1 < bnþ1 < bn, bn � an < 2�n, then there is a computable

number a for which an < a < bn each n. (A)

A proof of this may be given, valid by ordinary mathematical standards, but

involving an application of the principle of excluded middle. On the other hand

the following is false:

There is a rule whereby, given the rule of formation of the sequences an, bn in (A)

we can obtain a D.N. for a machine to compute a. (B)

That (B) is false, at least if we adopt the convention that the decimals of

numbers of the form m=2n shall always terminate with zeros, can be seen in this

way. Let N be some machine, and deWne cn as follows: cn ¼ 1
2
if N has not

printed a Wgure 0 by the time the n-th complete conWguration is reached

cn ¼ 1
2
� 2�m�3 if 0 had Wrst been printed at the m-th complete conWguration

(m < n). Put an ¼ cn � 2�n�2, bn ¼ cn þ 2�n�2. Then the inequalities of (A) are

satisWed, and the Wrst Wgure of a is 0 if N ever prints 0 and is 1 otherwise. If (B)

were true we should have a means of Wnding the Wrst Wgure of a given the D.N. of

N : i.e. we should be able to determine whether N ever prints 0, contrary to the

results of §8 of the paper quoted. Thus although (A) shows that there must be

machines which compute the Euler constant (for example) we cannot at present

describe any such machine, for we do not yet know whether the Euler constant is

of the form m=2n.

This disagreeable situation can be avoided by modifying the manner in which

computable numbers are associated with computable sequences, the totality of

computable numbers being left unaltered. It may be done in many ways of which

Corrections and Critiques | 95

this is an example.2 Suppose that the Wrst Wgure of a computable sequence g is i

and that this is followed by 1 repeated n times, then by 0 and Wnally by the

sequence whose r-th Wgure is cr ; then the sequence g is to correspond to the real

number

(2i � 1)n þ
X1
r¼1

(2cr � 1) 2
3

� �r
:

If the machine which computes g is regarded as computing also this real number

then (B) holds. The uniqueness of representation of real numbers by sequences

of Wgures is now lost, but this is of little theoretical importance, since the D.N.’s

are not unique in any case.

The Graduate College, Princeton, N.J., U.S.A.

2 This use of overlapping intervals for the deWnition of real numbers is due originally to Brouwer.

96 | Alan Turing

2.2
On Computable Numbers, with an Application to
the Entscheidungsproblem. A Critique. (1947)
Emil Post

The following critique of Turing’s ‘‘computability’’ paper [Chapter 1] concerns

only pp. [58–74] thereof. We have checked the work through the construction of

the ‘‘universal computing machine’’ in detail, but the proofs of the two theorems

in the section following are there given in outline only, and we have not supplied

the formal details. We have therefore also left in intuitive form the proofs of the

statements on recursiveness, and alternative procedures, we make below.

One major correction is needed. To the instructions for con1(C,a) p. [70], add
the line: None PD, R, Pa,R,R,R C. This is needed to introduce the representa-

tion D of the blank scanned square when, as at the beginning of the action of the

machine, or due to motion right beyond the rightmost previous point, the com-

plete conWguration ends with a q, and thus make the fmp of p. [71] correct. We

may also note the following minor slips and misprints in pp. [58–74]. Page [63],

to the instructions for f(C,B,a) add the line: None L f(C,B,a); p. [67] and

p. [68], the S.D should begin, but not end, with a semicolon; p. [69], omit the Wrst

D in (C2); p. [70], last paragraph [above skeleton table], add ‘‘:’’ to the Wrst list of

symbols; pp. [71–72], replace g by q; p. [71], in the instruction formk,mk should
bemk1; p. [71], in the second instruction for sim2, replace the Wrst R by L; p. [71],

in the Wrst instruction for sh2, replace sh2 by sh3. A reader of the paper will be

helped by keeping in mind that the ‘‘examples’’ of pages [63–66] are really parts of

the table for the universal computing machine, and accomplish what they are said

to accomplish not for all possible printings on the tape, but for certain ones that

include printings arising from the action of the universal computing machine. In

particular, the tape has @ printed on its Wrst two squares, the occurrence of two

consecutive blank squares insures all squares to the right thereof being blank, and,

usually, symbols referred to are on ‘‘F-squares’’, and obey the convention of p. [63].1

Turing’s deWnition of an arbitrary machine is not completely given in his

paper, and, at a number of points, has to be inferred from his development. In

the Wrst instance his machine is a ‘‘computing machine’’ for obtaining the

successive digits of a real number in dyadic notation, and, in that case, starts

operating on a blank tape. Where explicitly stated, however, the machine may

Post’s critique originally formed an untitled appendix occupying pp. 7–11 of ‘Recursive Unsolvability of a

Problem of Thue’, Journal of Symbolic Logic, 12 (1947), 1–11. The critique is reprinted here by permission of

the Association for Symbolic Logic. All rights reserved. This reproduction is by special permission for this

publication only.

1 Editor’s note. This paragraph originally formed a footnote (the Wrst) to Post’s appendix.

start operating on a tape previously marked. From Turing’s frequent references to

the beginning of the tape, and the way his universal computing machine treats

motion left, we gather that, unlike our tape, this tape is a one-way inWnite aVair

going right from an initial square.

Primarily as a matter of practice, Turing makes his machines satisfy the

following convention. Starting with the Wrst square, alternate squares are called

F-squares, the rest, E-squares. In its action the machine then never directs

motion left when it is scanning the initial square, never orders the erasure, or

change, of a symbol on an F-square, never orders the printing of a symbol on a

blank F-square if the previous F-square is blank, and, in the case of a computing

machine, never orders the printing of 0 or 1 on an E-square. This convention is

very useful in practice. However the actual performance, described below, of the

universal computing machine, coupled with Turing’s proof of the second of the

two theorems referred to above, strongly suggests that Turing makes this con-

vention part of the deWnition of an arbitrary machine. We shall distinguish

between a Turing machine and a Turing convention-machine.

By a uniform method of representation, Turing represents the set of instruc-

tions, corresponding to our quadruplets,2 which determine the behavior of a

machine by a single string on seven letters called the standard description (S.D)

of the machine. With the letters replaced by numerals, the S.D of a machine is

considered the arabic representation of a positive integer called the description

number (D.N) of the machine. If our critique is correct, a machine is said to be

circle-free if it is a Turing computing convention-machine which prints an

inWnite number of 0’s and 1’s.3 And the two theorems of Turing’s in question

are really the following. There is no Turing convention-machine which,

when supplied with an arbitrary positive integer n, will determine whether

n is the D.N of a Turing computing convention-machine that is circle-free.

There is no Turing convention-machine which, when supplied with an

arbitrary positive integer n, will determine whether n is the D.N of a Turing

computing convention-machine that ever prints a given symbol (0 say).4

2 Our quadruplets are quintuplets in the Turing development. That is, where our standard instruction

orders either a printing (overprinting) or motion, left or right, Turing’s standard instruction always orders a

printing and a motion, right, left, or none. Turing’s method has certain technical advantages, but compli-

cates theory by introducing an irrelevant ‘‘printing’’ of a symbol each time that symbol is merely passed over.

3 ‘‘Genuinely prints’’, that is, a genuine printing being a printing in an empty square. See the previous

footnote.

4 Turing in each case refers to the S.D of a machine being supplied. But the proof of the Wrst theorem, and

the second theorem depends on the Wrst, shows that it is really a positive integer n that is supplied. Turing’s

proof of the second theorem is unusual in that while it uses the unsolvability result of the Wrst theorem, it

does not ‘‘reduce’’ [Post (1944)] the problem of the Wrst theorem to that of the second. In fact, the Wrst

problem is almost surely of ‘‘higher degree of unsolvability’’ [Post (1944)] than the second, in which case it

could not be ‘‘reduced’’ to the second. Despite appearances, that second unsolvability proof, like the Wrst, is

a reductio ad absurdum proof based on the deWnition of unsolvability, at the conclusion of which, the Wrst

result is used.

98 | Emil Post

In view of [Turing (1937)], these ‘‘no machine’’ results are no doubt equivalent

to the recursive unsolvability of the corresponding problems.5 But both of these

problems are infected by the spurious Turing convention. Actually, the set of n’s

which are D.N’s of Turing computing machines as such is recursive, and hence

the condition that n be a D.N oVers no diYculty. But, while the set of n’s which

are not D.N’s of convention-machines is recursively enumerable, the comple-

ment of that set, that is, the set of n’s which are D.N’s of convention-machines, is

not recursively enumerable. As a result, in both of the above problems, neither

the set of n’s for which the question posed has the answer yes, nor the set for

which the answer is no, is recursively enumerable.

This would remain true for the Wrst problem even apart from the convention

condition. But the second would then become that simplest type of unsolvable

problem, the decision problem of a non-recursive recursively enumerable set of

positive integers [(Post 1944)]. For the set of n’s that are D.N’s of unrestricted

Turing computing machines printing 0, say, is recursively enumerable, though its

complement is not. The Turing convention therefore prevents the early appear-

ance of this simplest type of unsolvable problem.

It likewise prevents the use of Turing’s second theorem in the . . . unsolvability

proof of the problem of Thue.6 For in attempting to reduce the problem of

Turing’s second theorem to the problem of Thue, when an n leads to a Thue

question for which the answer is yes, we would still have to determine whether n

is the D.N of a Turing convention-machine before the answer to the question

posed by n can be given, and that determination cannot be made recursively for

arbitrary n. If, however, we could replace the Turing convention by a convention

that is recursive, the application to the problem of Thue could be made. An

analysis of what Turing’s universal computing machine accomplishes when

applied to an arbitrary machine reveals that this can be done.

The universal computing machine was designed so that when applied to the

S.D of an arbitrary computing machine it would yield the same sequence of 0’s

and 1’s as the computing machine as well as, and through the intervention of, the

successive ‘‘complete conWgurations’’—representations of the successive states of

tape versus machine—yielded by the computing machine. This it does for a

Turing convention-machine.7 For an arbitrary machine, we have to interpret a

direction of motion left at a time when the initial square of the tape is scanned as

5 Our experience with proving that ‘‘normal unsolvability’’ in a sense implicit in [Post (1943)] is

equivalent to unsolvability in the sense of Church [(1936)], at least when the set of questions is recursive,

suggests that a fair amount of additional labor would here be involved. That is probably our chief reason for

making our proof of the recursive unsolvability of the problem of Thue independent of Turing’s develop-

ment.

6 Editor’s note. Thue’s problem is that of determining, for arbitrary strings of symbols A, B from a given

Wnite alphabet, whether or not A and B are interderivable by means of a succession of certain simple

substitutions. (See further Chapter 17.)

7 Granted the corrections [detailed above].

Corrections and Critiques | 99

meaning no motion.8 The universal computing machine will then yield again

the correct complete conWgurations generated by the given machine. But the

space sequence of 0’s and 1’s printed by the universal computing machine will now

be identical with the time sequence of those printings of 0’s and 1’s by the given

machine that are made in empty squares. If, now, instead of Turing’s conven-

tion we introduce the convention that the instructions deWning the machine

never order the printing of a 0 or 1 except when the scanned square is empty,

or 0, 1 respectively, and never order the erasure of a 0 or 1, Turing’s

arguments again can be carried through. And this ‘‘(0, 1) convention’’,

being recursive, allows the application to the problem of Thue to be

made.9 Note that if a machine is in fact a Turing convention-machine, we

could strike out any direction thereof which contradicts the (0, 1) convention

without altering the behavior of the machine, and thus obtain a (0, 1)

convention-machine. But a (0, 1) convention-machine need not satisfy the

Turing convention. However, by replacing each internal-conWguration qi of

a machine by a pair qi , qi
0 to correspond to the scanned square being an F- or

an E-square respectively, and modifying printing on an F-square to include

testing the preceding F-square for being blank, we can obtain a ‘‘(q, q0)
convention’’ which is again recursive, and usable both for Turing’s argu-

ments and the problem of Thue, and has the property of, in a sense, being

equivalent to the Turing convention. That is, every (q, q0) convention-

machine is a Turing convention-machine, while the directions of every

Turing convention-machine can be recursively modiWed to yield a (q, q0)
convention-machine whose operation yields the same time sequence and

spatial arrangement of printings and erasures as does the given machine,

except for reprintings of the same symbol in a given square.

These changes in the Turing convention, while preserving the general outline

of Turing’s development and at the same [time] admitting of the application to

the problem of Thue, would at least require a complete redoing of the formal

work of the proof of the second Turing theorem. On the other hand, very little

added formal work would be required if the following changes are made in the

Turing argument itself, though there would still remain the need of extending the

equivalence proof of [Turing (1937)] to the concept of unsolvability. By using the

above result on the performance of the universal computing machine when

applied to the S.D of an arbitrary machine, we see that Turing’s proof of his

Wrst theorem, whatever the formal counterpart thereof is, yields the following

theorem. There is no Turing convention-machine which, when supplied with an

8 This modiWcation of the concept of motion left is assumed throughout the rest of the discussion, with

the exception of the last paragraph.

9 So far as recursiveness is concerned, the distinction between the Turing convention and the (0, 1)

convention is that the former concerns the history of the machine in action, the latter only the instructions

deWning the machine. Likewise, despite appearances, the later (q, q0) convention.

100 | Emil Post

arbitrary positive integer n, will determine whether n is the D.N of an arbitrary

Turing machine that prints 0’s and 1’s in empty squares inWnitely often. Now

given an arbitrary positive integer n, if that n is the D.N of a Turing machineM ,

apply the universal computing machine to the S.D of M to obtain a machine

M�. SinceM� satisWes the Turing convention, whatever Turing’s formal proof of

his second theorem is, it will be usable intact in the present proof, and, via the

new form of his Wrst theorem, will yield the following usable result. There is no

machine which, when supplied with an arbitrary positive integer n, will deter-

mine whether n is the D.N of an arbitrary Turing machine that ever prints a given

symbol (0 say).10

These alternative procedures assume that Turing’s universal computing ma-

chine is retained. However, in view of the above discussion, it seems to the writer

that Turing’s preoccupation with computable numbers has marred his entire

development of the Turing machine. We therefore suggest a redevelopment of the

Turing machine based on the formulation given in [‘Recursive Unsolvability of a

Problem of Thue’11]. This could easily include computable numbers by deWning

a computable sequence of 0’s and 1’s as the time sequence of printings of 0’s and

1’s by an arbitrary Turing machine, provided there are an inWnite number of such

printings. By adding to Turing’s complete conWguration a representation of the

act last performed, a few changes in Turing’s method would yield a universal

computing machine which would transform such a time sequence into a space

sequence. Turing’s convention would be followed as a matter of useful practice in

setting up this, and other, particular machines. But it would not infect the theory

of arbitrary Turing machines.

References

Church, A. 1936. ‘An Unsolvable Problem of Elementary Number Theory’, American

Journal of Mathematics, 58, 345–363.

Post, E. L. 1943. ‘Formal Reductions of the General Combinatorial Decision Problem’,

American Journal of Mathematics, 65, 197–215.

Post, E. L. 1944. ‘Recursively Enumerable Sets of Positive Integers and their Decision

Problems’, Bulletin of the American Mathematical Society, 50, 284–316.

Turing, A. M. 1937. Computability and l-deWnability, Journal of Symbolic Logic, 2,

153–163.

10 It is here assumed that the suggested extension of [Turing (1937)] includes a proof to the eVect that the

existence of an arbitrary Turing machine for solving a given problem is equivalent to the existence of a

Turing convention-machine for solving that problem.

11 Editor’s note. See the reference at the foot of p. 97.

Corrections and Critiques | 101

2.3
Draft of a Letter from Turing to Alonzo Church
Concerning the Post Critique

Dear Professor Church,

I enclose corrected proof of my paper ‘Practical forms of type theory’ and

order for reprints.

Seeing Kleene’s review of Post’s paper (on problem of Thue) has reminded me

that I feel I ought to say a few words somewhere to clear up the points which Post

has raised about ‘Turing machines’ and ‘Turing convention machines’ [see 2.2].

Post observes that my initial description of a machine diVers from the machines

which I describe later in that the latter are subjected to a number of conventions

(e.g. the use of E and F squares). These conventions are nowhere very clearly

enumerated in my paper and cast a fog over the whole concept of a ‘Turing

machine’. Post has enumerated the conventions and embodied them in a deWni-

tion of a ‘Turing convention machine’.

My intentions in this connection were clear in my mind at the time the paper

was written; they were not expressed explicitly in the paper, but I think it is now

necessary to do so. It was intended that the ‘Turing machine’ should always be

the machine without attached conventions, and that all general theorems about

machines should apply to this deWnition. To the best of my belief this was

adhered to. On the other hand when it was a question of describing particular

machines a host of conventions became desirable. Clearly it was best to choose

conventions which did not restrict the essential generality of the machine, but

one was not called upon to establish any results to this eVect. If one could Wnd

machines obeying the conventions and able to carry out the desired operations,

that was enough. It was also undesirable to keep any Wxed list of conventions. At

any moment one might wish to introduce a new one.

Published with the permission of the Estate of Alan Turing.

2.4
Corrections to Turing’s Universal
Computing Machine
Donald W. Davies

1. Introduction

In 1947 I was working in a small team at the National Physical Laboratory in

London, helping to build one of the Wrst programmed computers. This had been

designed by Turing. (See Chapter 9.)

When I Wrst studied Turing’s ‘On Computable Numbers, with an Application

to the Entscheidungsproblem’, it soon became evident to me that there were a

number of trivial errors, amounting to little more than typographic errors, in the

design of his universal computing machine U. A closer look revealed a—now-

adays typical—programming error in which a loop led back to the wrong place.

Then I became aware of a more fundamental fault relating to the way U describes

the blank tape of the machine it is emulating. Perhaps it is ironic, as well as

understandable, that the Wrst emulation program for a computer should have

been wrong. I realized that, even though the feasibility of the universal comput-

ing machine was not in doubt, the mistakes in Turing’s exposition could puzzle

future readers and plague anyone who tried to verify Turing’s design by imple-

menting his universal machine in practice.

When I told Turing about this he became impatient and made it clear that I

was wasting my time and his by my worthless endeavours. Yet I kept in mind the

possibility of testing a corrected form of U in the future. It was to be nearly Wfty

years before I Wnally did this.

I could not implement exactly Turing’s design because this generates a profu-

sion of states when the ‘skeleton tables’ are substituted by their explicit form (to a

depth of 9). Also the way in which U searches for the next relevant instruction

involves running from end to end of the tape too many times. Features of

Turing’s scheme which greatly simplify the description also cause the explicit

machine to have many symbols, a considerable number of states and instruc-

tions, and to be extremely slow. Turing would have said that this ineYciency was

irrelevant to his purpose, which is true, but it does present a practical problem if

one is interested in verifying an actual machine. Some fairly simple changes to

the design reduce this problem. The Wnal part of this paper outlines a redesign of

the universal machine which was tested by simulation and shown to work. There

can be reasonable conWdence that there are no further signiWcant errors in

Turing’s design, but a simulation starting directly from Turing’s ‘skeleton tables’

would clinch the matter.

By and large I use Turing’s notation and terminology in what follows. Where

my notation diVers from Turing’s the aim has been to make matters clearer. In

particular, Turing’s Gothic letters are replaced by roman letters. I sometimes

introduce words from modern computer technology where this makes things

clearer. (There is no special signiWcance to the use of boldface type—this is used

simply for increased clarity.)

2. The Turing Machine T

Turing required a memory of unlimited extent and a means of access to that

memory. Access by an address would not provide unlimited memory. In this

respect the Turing machine goes beyond any existing real machine.

His method, of course, was to store data in the form of symbols written on a

tape of unlimited length. SpeciWcally, the tape had a beginning, regarded as its

left-hand end, marked with a pair of special symbols ‘e e’ that can easily be

found. To the right of these symbols there are an unlimited number of symbol-

positions or ‘squares’ which can be reached by right and left movements of the

machine, shown as ‘R’ and ‘L’ respectively in the machine’s instructions. By

repeated R and L movements any square can be accessed.

Let us consider how the machine’s instructions are composed. We are not

concerned yet with U, the universal machine, but with a speciWc Turing machine

T—the ‘target machine’—which will later be emulated by U.

An instruction for T consists of Wve parts. The purpose of the Wrst two parts is

to address the instruction. These give the state of the machine (I shall call this M)

and the symbol S that the machine is reading in the scanned square. This state-

symbol pair M-S determines the next operation of the machine. Turing called

M-S a ‘conWguration’. For each such pair that can occur (Wnitely many, since

there is a Wnite number of states and of symbols), the next operation of the

machine must be speciWed in the instructions, by notations in the remaining

three parts. The Wrst of these is the new symbol to be written in place of the one

that has been read, and I call this S0. Then there is an action A, which takes place

after the writing of the new symbol, and this can be a right shift R, a left shift L,

or N, meaning no movement. Finally the resultant state M0 is given in the last of

the Wve parts of the instruction.

To summarize: an instruction is of the form MSS0AM0. The current machine

conWguration is the pair M-S, which selects an appropriate instruction. The

instruction then speciWes S0, A, and M0, meaning that the symbol S0 is written
in place of S. The machine then moves according to action A (R, L, or N) and

Wnally enters a new state M0. A table of these instructions, each of Wve parts,

speciWes the entire behaviour of the target machine T. The table should have

instructions for all the M-S pairs that can arise during the operation of the

machine.

104 | Donald Davies

There are some interesting special cases. One of the options is that S0 ¼ S,

meaning that the symbol that was in the scanned square remains in place. In

eVect, no writing has occurred. Another is that S0 ¼ blank, meaning that the

symbol S which was read has been erased.

As a practical matter, note that the part of the tape which has been used is

always Wnite and should have well-deWned ends, so that the machine will not run

away down the tape. As already mentioned, Turing speciWes that at the left-hand

end the pair of special symbols ‘e e’ is printed. These are never removed or

altered. On the extreme right of the used part of the tape there must be a

sequence of blank squares. Turing arranges that there will never be two adjacent

blanks anywhere in the used part of the tape, so that the right-hand end of the

used portion can always be found. This convention is necessary to make U work

properly, as is explained in detail later. However, Turing does not necessarily

follow this convention in specifying target machines T. This can result in misbe-

haviour.

The purpose of T is to perform a calculation, therefore T must generate

numbers. For this reason the symbols it can print include 0 and 1, which are

suYcient to specify a binary result. By convention these two symbols are never

erased but remain on the tape as a record of the result of the computation. It

happens that they are treated in a special way in the emulation by U, in order

to make the result of the calculation more obvious, as I shall explain in due

course.

3. The Basic Plan of U

The universal machine U must be provided with the table of instructions of

the Turing machine T that it is to emulate. The instructions are given at the

start of U’s tape, separated by semicolons ‘;’. At the end of these instructions is

the symbol ‘::’ (which is a single symbol). Later I shall settle the question

of whether a semicolon should be placed before the Wrst instruction or after the

last one.

Following ‘::’ is the workspace, in which Umust place a complete description,

in U’s own symbols, of machine T. This description consists of all the symbols on

T’s tape, the position of the machine on that tape, and the state of the machine. I

call such a description an image or snapshot of machine T. As T goes through its

computational motions, more and more snapshots are written in U’s workspace,

so that an entire history of T gradually appears.

In order to make this evolving representation of T’s behaviour possible, U

must not change any of the images on its tape. U simply adds each new image to

the end of the tape as it computes it.

The Wrst action of U is to construct the initial image of T, in the space

immediately following the ‘::’ symbol which terminates the set of instructions.

Corrections and Critiques | 105

Subsequently, U writes new images of T, separated by colons ‘:’, each image

representing a successive step in the evolution of T’s computation.

Whenever T is asked to print a 0 or 1, the image in which this happens

is followed by the symbols ‘0 :’ or ‘1 :’ respectively. This serves to emphasize

the results of the computation. For example, U’s tape might look like this,

with the instruction set followed by successive images of T. The ‘output’ charac-

ter 0 printed in image 3 is highlighted by printing it again after the image, and

likewise in the case of the ‘output’ character 1 that is printed in image 5.

e e ; inst 1 ; inst 2 ; . . . inst n :: image 1 : image 2 : image 3 : 0 :

image 4 : image 5 : 1 : etc.

Note that each instruction begins with a semicolon. This diVers from Turing,

who has the semicolon after each instruction, so that the instructions end with

the pair of characters ‘; ::’. I found this departure from Turing’s presentation

necessary, as I shall explain later.

The symbols on the tape up to and including the ‘::’—i.e. T’s instructions—are

given to U before it starts operating. When U commences its operations, it writes

out the Wrst image and then computes successive images from this, using the

instructions, and intersperses the images with ‘outputs’ as required.

To complete this description of the basic plan of U I must specify how the

symbols are spaced out in order to allow for marking them with other symbols.

Looking in more detail at the start of the tape we would Wnd squares associated

in pairs. The left square of each pair contains a symbol from the set:

A C D L R N 0 1 ; :: :

These symbols are never erased by U; they form a permanent record of the

instructions and the images of T. Thus the Wrst few squares of a tape might

contain these symbols representing an instruction, where ‘�’ refers to the blank

symbol, meaning an empty square:

e e D�A� D� D� C� R� D�A� A� ;� . . . (1)

The blank squares leave room for symbols from the set u v w x y z, which are

reserved for use as markers and serve to mark the symbol to their immediate left.

For example, at one stage of the operation of U the parts of this instruction are

marked out as follows:

e e D � A � D � D u C u R u D y A y A y ; � . . .

Here the ‘u’ and ‘y’ mark D C R and D A A respectively.

Unlike the symbols A C D L R N 0 1 ; :: : which are never erased, the letters u

v w x y z are always temporary markings and are erased when they have done

their job.

106 | Donald Davies

The positions of the A C D L R N 0 1 ; :: : symbols will be called ‘non-erasing

positions’. Note that the left hand ‘e’ occupies such a position also.

4. Notation for States, Symbols, and Actions in U’s

Instructions and in Images of T

The states, symbols, and actions which U represents on its tape are those of T,

which U is emulating. We do not know how many states and symbols have to be

emulated, yet the set of symbols of U is limited by its design. For economy in U’s

symbols, the nth state of T is represented on U’s tape by DAA . . . A with n

occurrences of letter ‘A’. The blank spaces between these letters are not shown

here but are important for the operation of U and will always be assumed. The

nth symbol of T is shown on U’s tape by the string DCC . . . C with n occurrences

of letter ‘C’. It appears from an example in Turing’s text that D by itself (with a

marking square to its right, as always) can be one of these ‘symbol images’. In fact

I shall choose to make this the ‘blank’ symbol.

Read in accordance with these conventions, the symbols in example (1), above,

form the instruction: ‘when in state 1—reading a blank—write symbol 0—move

right—change to state 2’.

With the semicolons as spacers we now have a complete notation for instruc-

tions on U’s tape. Next we need a notation for an image of machine T, which is

also made up from these state and symbol images, DAA . . . and DCC . . .

respectively.

The keys to the next action of T are its present state and the symbol it is

reading, which have been stored in the instruction table as the pair M-S. So this

same combination is used in the image, by listing in correct sequence all the

symbols on T’s tape and inserting the state image immediately in front of the

symbol which machine T’s emulation is currently reading. The placing of the

state image indicates which square is currently scanned. So a tape image might

look like this:

symbol 1, symbol 2, symbol 3, state, symbol 4, symbol 5 :

The current state is given at the position indicated. This emulated tape of T

records that T is scanning symbol 4. The combination ‘state, symbol 4’ which

appears in this string is the M-S pair that U must look up, by searching for it in

the instruction table. To get the image of the next state of T, state and symbol 4

may have to be changed and the state image, also changed, may have to be moved

to the right, or to the left, or not moved. These are the processes which occur

in one step of evolution of the machine T. It will be done by building a

completely new image to the right of the last ‘:’. (Consequently the tape space

is rapidly used up.)

Corrections and Critiques | 107

5. Notation for Machine U

In principle, machine U should be speciWed in the same formal notation as

machine T, but this would be bulky and tedious to read and understand, so

Turing used a much more Xexible notation. A compiler could be built to take the

‘higher-level’ notation of machine U’s speciWcation as given by Turing and

generate the complete set of instructions for U.

The statements which make up Turing’s speciWcation of U are similar to

procedures with parameters (more correctly they are like macros) and they

have four parts. As with the instructions of T, a state and symbol select which

statement is to apply, except that the symbol can now be a logical expression such

as ‘not C’, which in the explicit speciWcation would require as many instructions

as there are symbols other than ‘C’. There are also statements that copy symbols

from one part of the (real) tape to another, and this requires one instruction for

each allowed symbol variety. The actions, which in the explicit notation can only

write a symbol and optionally move one place left or right, are expanded here to

allow multiple operations such as ‘L, Pu, R, R, R’, specifying that symbol ‘u’ is

being printed to the left of the starting point and the machine ends up two

places to the right of that point. Turing requires that these speciWcations be

‘compiled’ into the standard Wve-part instructions. I will call these procedures

‘routines’. Their parameters are of two kinds, the states that the operations lead

to, which are shown as capital letters, and symbol values, which are shown in

lower case.

The speciWcation of machine U consists of a collection of ‘subroutines’ which

are then used in a ‘program’ of nine routines that together perform the evolution

of T. We shall Wrst describe the subroutines, then the main program.

6. Subroutines

In principle, the action of a routine depends on the position of the

machine when the routine is invoked, i.e. the square on the tape which is

being scanned. Also, the position of the scanned square at the end of a routine’s

operation could be signiWcant for the next operation to come. But Turing’s

design avoids too much interaction of this kind. It can be assumed that the

positions are not signiWcant for the use of the subroutines in U unless the

signiWcance is described here. Certain subroutines which are designed to Wnd a

particular symbol on the tape (such as f(A, B, a) and q(A, a) and others) leave

the machine in a signiWcant position. Con(A, a) has signiWcant starting and

Wnishing positions.

Where a routine uses other routines, these are listed (for convenience in

tracing side-eVects). Also listed are those routines that use the routine in

108 | Donald Davies

question. It would be possible to make several of the routines much more

eYcient, greatly reducing the amount of machine movement, but I have not

made such changes here. (For eYciency, routines could be tailored for each of

their uses and states and symbols could easily be coded in binary. But this would

be a redesign.)

f(A, B, a)

The machine moves left until it Wnds the start of the tape at an ‘e’ symbol. Then it

moves right, looking for a symbol ‘a’. If one is found it rests on that symbol and

changes state to A. If there is no symbol ‘a’ on the whole tape it stops on the Wrst

blank non-erasing square to the right of the used portion of tape, going into state

B. In general terms, this routine is looking for the leftmost occurrence of the

symbol ‘a’. The special case f(A, B, e) will Wnd the leftmost occurrence of ‘e’,

which is in a non-erasing position. Uses no routines. Used by b, e(A, B, a), f 0(A,
B, a), cp(A, B, E, a, b), sh, and pe(A, b).

f 0(A, B, a)
As for f(A, B, a) except that if a symbol ‘a ’ is found, the machine stops one

square to the left, over the square which is marked by the ‘a ’. Uses f(A, B, a) and

1(A). Used by cp(A, B, E, a, b), sim, and c(A, b, a).

1(A)

Simply shifts one square to the left. Uses none. Used by f 0(A, B, a), mk, and inst.

e(A)

The marks are erased from all marked symbols, leaving the machine in state A.

Uses none. Used by ov.

e(A, B, a)

The machine Wnds the leftmost occurrence of symbol ‘a ’, using routine f(A, B, a),

then erases it, resting on the blank symbol and changing to state A. If there is no

such symbol to erase, it stops on the non-erasing square to the right of the used

portion of tape in state B, as for f(A, B, a). Uses f(A, B, a). Used by kmp, cpe(A, B,

E, a, b), and e(B, a).

e(B, a)

Erases all occurrences of the symbol ‘a ’ on the tape, leaving the machine in state

B. Uses e(A, B, a). Used by sim.

pe(A, b)

Prints the symbol ‘b’ in the Wrst blank non-erasing position at the end of the

sequence of symbols. Uses f(A, B, a). Used by pe2(A, a, b) and c(A, B, a).

Corrections and Critiques | 109

pe2(A, a, b)

Prints the symbol ‘a ’ and then ‘b’ in the Wrst blank non-erasing positions. Uses

pe(A, b). Used by sh.

q(A)

Moves to the next non-erasing position after the used portion of tape and goes to

state A. Uses none. Used by q(A, a).

q(A, a)

Finds the last occurrence of symbol ‘a’ and stops there in state A. Uses q(A).

Used by anf, mk, and inst. If the symbol does not exist, the machine will run oV

the tape to the left. However, in its use in anf,mk, and inst, it will Wnd a colon or

‘u’ on which to stop.

c(A, B, a)

Finds the leftmost symbol marked with ‘a’ and copies it at the end of the

tape in the Wrst non-erasing square available, then goes to state A. If no symbol

‘a’ is found goes to state B. The symbols which this routine (and those that

use it) will be required to copy are ‘D’, ‘C’, and ‘A’. This means that each

invocation needs three diVerent states. Uses f 0(A, B, a) and pe(A, b). Used by

ce(A, B, a).

ce(A, B, a)

Copies at the end of the tape in the Wrst non-erasing square the leftmost symbol

marked by ‘a ’, then goes to state Awith the single (leftmost) marking ‘a’ erased. If

there is no symbol ‘a ’ on the tape, goes to state B. Uses c(A, B, a) and e(A, B, a).

Used by ce(B, a).

ce(B, a)

Copies in the correct sequence, at the end of the tape in non-erasing squares, all

the symbols on the tape that are marked with ‘a ’, at the same time erasing each

‘a ’, and then goes to state B. If there are no symbols marked with ‘a ’ it goes

straight to B. Uses ce(A, B, a). Used by ce2(B, a, b), ce3(B, a, b, c), ce4(B, a, b, c,

d), and ce5(B, a, b, c, d, e).

ce5(B, a, b, c, d, e)

Copies in the sequence given, at the end of the tape in non-erasing squares, all

the symbols marked with ‘a’, then those marked with ‘b’, then ‘c ’, ‘d ’, and ‘e’ in

turn, ending in state B. Uses ce4(B, a, b, c, d) and ce(B, a) and ce4 uses ce3 which

uses ce2 and all of these use ce(B, a). Only ce5(B, a, b, c, d, e) is used elsewhere, by

inst.

110 | Donald Davies

cp(A, B, E, a, b)

Compares the leftmost symbols marked by ‘a ’ and ‘b ’. First it Wnds the symbol

marked ‘a’, by using the routine f 0(A, B, a). It enters a diVerent state cp2(A, B, x)
according to the symbol ‘x ’ it Wnds there. There are three possible symbols: ‘D’,

‘C’, and ‘A’. Then it Wnds the symbol marked ‘b ’ in the same way. If they are the

same, the resultant state is A, if not the state becomes B. If one of these marked

symbols is found, but not the other, the outcome is state B. If neither is found,

the outcome is E. Uses f(A, B, a) and f 0(A, B, a). Used by cpe(A, B, E, a, b). (I

have changed Turing’s state-symbol ‘U’ to ‘B’ to avoid confusion.)

cpe(A, B, E, a, b)

Action as for cp(A, B, E, a, b) followed by, if the marked symbols are the same,

the erasure of both the markings ‘a’ and ‘b’. Uses cp(A, B, E, a, b) and e(A, B, a).

Used by cpe(B, E, a, b).

cpe(B, E, a, b)

Comparison of two marked sequences. First it compares the leftmost symbols

marked with ‘a’ and ‘b’. If they diVer the state B is reached and the process stops.

If they are both absent, state E. Otherwise both marked symbols are erased and

the process is repeated with the next leftmost marked symbols. So, if the whole

sequence of symbols marked with ‘a’ equals the sequence marked with ‘b’ (or

both are absent) the result is state E and all markings ‘a’ and ‘b’ have been

removed. If the sequences diVer, state B is reached and some of the markings

have been removed. Uses cpe(A, B, E, a, b). Used by kmp.

con(A, a)

This routine’s action depends on where it starts on the tape. It leaves the machine

in a signiWcant position after its action is completed. The purpose is to mark with

symbol ‘a’ the M-S pair next on the right of the start position. The routine must

start on a non-erasing square. It seeks a pattern such as:

D� A� A� . . . A� D� C� C� . . . C �
and will replace all the blanks (or any other symbols in these places) by the symbol

‘a’. There may be as few as one ‘A’ after the Wrst ‘D’, representing the state, and

optionally no ‘C’ following the second ‘D’, representing the symbol. The starting

point can be on the Wrst ‘D’ of this pattern, or earlier if no other ‘A’ symbols

intervene. For example, in an image there is only one state, so the Wrst ‘A’ symbol

can be sought from anywhere to its left in the image string. The Wnal state is A and

the position is two non-erasable squares to the right of the last marked symbol.

(Turing refers to this as ‘the last square of C’ but his own example shows a

symbol image with no Cs. Turing’s comment ‘C is left unmarked’ does not

Corrections and Critiques | 111

seem to make sense.) Uses none. Used by anf, kom, sim, and mk. The use of

con(A, a) in sim and mk employs the Wnal position it reaches.

7. Operation of the Universal Machine U

The routines which comprise the operation of U are entered in succession, except

for the process of searching for the relevant instruction, which has its own loop.

The initial state of the machine is b, remembering that the instruction table for

the Turing machine which U is emulating must already be on the tape. The

starting position is immaterial.

b

The beginning of U’s operation. It writes the symbols ‘: D A’ in the non-erasing

squares after the symbol :: that signiWes the end of the instructions which are

already on the tape. This is the image of the initial state of the emulated machine

T and consists of the coding for ‘state 1’ with no following symbol images,

meaning that the initial tape of T is blank.

This operation uses f(A, B, a).

anf

Presumably this is from the German Anfang, or beginning. It is the start of the

process of generating the next image of T. The process will return to anf when

one new image has been appended on U’s tape, so that building of successive

images continues. Its action is q(anf1, :) which Wnds the last ‘:’ and then anf1
uses con(kom, y) to mark the last M-S pair on the tape with ‘y ’ and go to state

kom. Thus the machine state and scanned symbol of the last image on the tape

have been marked. Initially this results in marking just the ‘D’ ‘A’, but there is an

error in this design because absence of a symbol image means that con will fail,

since it looks only for symbols ‘A’ or ‘D’ when in its internal state con1. This is

easily corrected: see Section 8.

This operation uses con(A, a) and q(A, a).

kom

From its position in the image region, the machine moves left, looking for either

‘;’ or ‘z’. It will Wnd ‘;’ at the start of the last instruction, provided that the

termination of the instruction area is shown as just ‘::’ and not ‘; ::’ (the latter is

implied by Turing). Also, if all instructions are to be available, the Wrst instruc-

tion must begin with ‘;’. The correct designation of a single instruction should be

‘;’ followed by the Wve parts, and not as shown on p. 68 of Turing’s treatment.

With these changes, kom will ignore any ‘;’ which is marked with ‘z ’. ‘z ’ signiWes

that the instruction which follows has already been tried. The rightmost

112 | Donald Davies

unmarked ‘;’ having been found, this symbol is marked with ‘z ’ and the routine

con(kmp, x) is used to mark the following M-S pair with ‘x ’. Each time that kom

is used, the next instruction to the left will be processed.

If no instruction matches the current state and symbol of T, meaning that the

machine is badly deWned, the search for a colon will run oV the left end of the

tape. This bug is Wxed in Section 9.

This operation uses con(A, a).

kmp

The action of kmp is shown by Turing as cpe(e(kom, x, y), sim, x, y). This will

compare the sequences marked by ‘x ’ and ‘y ’ to discover if the marked instruc-

tion actually applies to the M-S pair shown in the current image of T. If it does,

the state becomes sim, which is the start of building the next image. If not, there

is a problem with partial erasure of the markings, so these are erased by the

e(kom, x, y) operation and we try again, this time trying the next instruction to

the left of those tried so far, which have the ‘z ’ marking. However, there is a bug,

explained and corrected in Section 8.

This operation uses cpe(B, E, a, b) and e(A, B, a).

sim

This routine marks the parts of the leftmost instruction marked with ‘z ’, which

now applies to the next of T’s operations to be performed. The leftmost marked

colon is located by f 0(sim1, sim1, z) and then sim1 is con(sim2,), which marks

the M-S pair with blanks, since this is not required again in this round. The

routine con leaves the machine scanning the next non-erasing square to the right

of the ‘D’ in the coding for the new symbol to be written by T. The ‘D’ is marked

with ‘u’ as are any Cs which follow, so that the new symbol image is marked. The

marking with ‘u’ continues, marking to the left of each square being examined

until an ‘A’ is found, when the marking is changed to ‘y ’. Consequently, both the

new symbol image and the action (L, R, or N) have been marked with ‘u’ and the

new state image has been marked with ‘y ’, which continues until the ‘;’ or ‘::’

terminating the instruction has been reached. Then the ‘z ’ markings are all

removed, since the relevant parts of the instruction for the next stage of T’s

operation have been marked. The line on p. 71 for state sim2 and symbol ‘not A’

has an error; see Section 10.

This operation uses e(B, a), con(A, a), and f 0(A, B, a).

mk

The last ‘:’ is found by means of an operation which should read q(mk1, :) (see

Section 10). Moving right from there, the Wrst ‘A’ is found, which is at the start of

the state image, then two non-erasable squares to the left of this point is the end

of the preceding symbol image. The start of the whole image might have been

Corrections and Critiques | 113

found (‘:’), if this was the initial state, which Wnishes this part of the marking. If a

‘C’ is found, this is markedwith ‘x ’ and so are previous Csmoving backwards until

a ‘D’ is found and marked. From this point backward, symbols in non-erasable

squares are marked with ‘v ’ until the ‘:’ that begins the image is found. In this way

the symbol image preceding the one currently scanned (if any) has been marked

with ‘x ’ and all the earlier symbols in the image (if any) are marked with ‘v ’.

In the second stage of marking, the con(A, a) routine is used to Wnd the M-S

pair, marking it with a blank and ending two non-erasable squares beyond the

last marked ‘D’ or ‘C’ of the symbol image. Two left shifts leave the machine at

the start of the symbol image which immediately follows the scanned symbol.

From there, all symbols are marked with ‘w ’ until the end is reached and Wnally a

‘:’ is placed at the end of the old image, ready for copying out the new image

later.

It may be useful to summarize the marking which is now ready for copying

out the new image. The instruction has been marked with ‘u’ for both the new

symbol and the action (R, L, or N) then with ‘y ’ for the new state. The image has

been marked in three places. Starting from the left, its symbol images are marked

with ‘v ’ until the one before the scanned symbol, which is marked with ‘x ’. Then

the state and symbol scanned, the current M-S pair, are unmarked, because they

will be superseded. To the right of the scanned symbol, all symbol images are

marked with ‘w ’.

This operation uses con(A, a), 1(A), and q(A,).

sh

Before the copying of these marked regions to make a new image, the output of

machine T is made visible on the tape. The part marked with ‘u ’ begins with the

new symbol (S’) to be written on T’s tape, which may be 0, coded as D C, or 1,

coded as D C C. It is immediately preceded in the instruction by the old symbol

that is being overwritten (S). The 0 or 1 is considered as being written if it

replaces a space, which is coded as D, so sh looks for D–DuCu or D–DuCuCu,

using the ‘u’ marking to locate this combination. According to which it Wnds, it

writes either ‘:�0’ or ‘:�1’ at the end of the tape.

The convention that 0 or 1 is output if it replaces a space implies that the target

machine T conforms to the same convention as U, which is not to overwrite

most symbols, only treating special markers in this way. This is in fact an

unnecessary restriction on the programming of T. The restriction means that

U is not really universal. On the other hand, the use of 0 and 1 as special symbols

indicating output goes beyond the fundamental deWnition of a Turing machine.

We must assume that the sh operation is designed for use in the special case of a

target Turing machine with output, the output action consisting of writing 0 or

1 in a square which previously held a space.

This operation uses f(A, B, a) and pe2(A, a, b).

114 | Donald Davies

inst

This routine creates the new image of T’s machine and tape and writes it at the

end of U’s tape, after the Wnal colon. The operation q(1(inst1), u) Wnds the last

‘u’ on the tape and the square that it marks, which contains L, R, or N. This

single ‘u’ is deleted because the action symbol L, R, or N must not be copied into

the new image. According to the action symbol found, the parts are assembled in

one of these sequences, where the machine state ‘y ’ is shown in bold.

R v x u y w

N v x y u w

L v y x u w

In each case the symbols preceding the active part are marked ‘v ’ and are copied

Wrst (they may not exist). The symbols following the previously scanned symbol

are marked ‘w ’ and are copied last. Without a movement of machine T, the new

state, marked ‘y ’, is followed by the new symbol, marked ‘u’; and the previous

symbol, marked ‘x ’, stays in its place. With left movement, the new state is placed

before the previous symbol. With right movement, the new state is placed after

the new symbol, marked ‘u’.

The tape image should always end with a ‘blank’ symbol, which is simply D.

Any rewritten symbols within the used portion of T’s tape which are deleted will

have been overwritten with ‘D’, but at the end, if the section marked with ws was

empty, the action R may leave the state image at the end of the tape. This will

cause a matching failure during the next cycle of the emulation if comparison

occurs with the M-S pair of an instruction that has a symbol value of ‘blank’,

represented by D. Repairs are made in Section 8.

This operation uses 1(A), q(A, a), f(A, B, a), and ce5(B, a, b, c, d, e).

ov

This Wnal operation e(anf) clears all markings and returns to anf to begin once

again the process of generating a new tape image. Since the ‘z’ markings were

cleared by sim and the ce5 operation clears all its markings, there seems no need

for ov, but it does no harm.

This operation uses e(A).

8. The Interesting Errors

The Wrst phase of an evolution of T is to Wnd the relevant instruction. This is

done by marking the current state-symbol pair of Twith ‘y ’ and the state-symbol

pair of an instruction with ‘x ’, then using the cpe operation to compare the

marked strings. The process of cpe deletes some of the ‘x ’ and ‘y ’ markings.

When comparison fails on one instruction the machine moves on to the next.

This comparing process is shown in the table for U on p. 71 of Turing’s paper as

Corrections and Critiques | 115

kmp cpe(e(kom, x, y), sim, x, y)

The e operation is intended to delete all the remaining ‘x ’ and ‘y ’ markings. In

fact this is not quite how erasure works as deWned on p. 64 and the correct form

would be e(e(kom, x), y). But there is a more serious error in returning to kom,

since the essential ‘y ’ marking will not be restored. Returning to anf will repair

this error. The correct deWnition of kmp should be

kmp cpe(e(e(anf , x), y), sim, x, y)

To introduce the second of these interesting errors, it is instructive to look at the

penultimate step in the copying out of the evolved new snapshot of T. This has

been reduced, by Turing’s clever scheme of skeleton tables, to a choice of one of

three copy instructions on p. 72, such as, for example

inst1(R) ce5(ov, v, x, u, y, w)

This copies Wve marked areas from the current instruction and the last image of

T in the sequence to create the new image, for the case where the machine moves

right. The part marked ‘y ’ is the new machine state, ‘v ’ and ‘x ’ form the string of

T-symbols to the left, ‘u’ is the newly printed symbol, and ‘w ’ the string of

T-symbols to the right. Because ‘u’ replaces an existing symbol, the number of

symbols (including blanks) on T’s conceptual tape has not changed! The same is

true for left and null movement. There must be something wrong in an emula-

tion in which the emulated machine can never change the number of symbols on

its tape.

The image shows just the occupied part of T’s tape, and this is conceptually

followed by an unlimited set of blank symbols, which are the tape as yet unused.

The number of symbols in the image of Twill increase by moving right from the

last occupied square and writing on the blank square. After a move right onto

blank tape, there will be no string marked ‘w ’, so machine state ‘y ’ will be the last

thing in the image.

This will lead to a failure of the emulation at the next evolution because the

state-symbol pair of the image, due to be marked with ‘y ’ during the search for

the relevant instruction, is incomplete.

The remedy is to print a new blank symbol for T at the end of the image, when

the move has been to the right and there is no T-symbol there. The necessary

corrections, on p. 72, to the table for U are:

inst1 (R) ce5(q(inst2, A), v, x, u, y, w)

inst2 R, R inst3

inst3
none PD ov

D ov

n

In the case of a move right, after copying the parts of the previous image, the

operation q Wnds the last ‘A’ on the tape, which is the end of the state-symbol

116 | Donald Davies

copied from markings y. If there is a T-symbol to its right, there is no problem.

After two right moves of U, if a ‘D’ is found there is a T-symbol but, if not, by

printing ‘D’, a new blank tape square is added to the image of T. In this way T’s

conceptual tape is extended and the state-symbol pair is made complete.

The error perhaps arose because the endless string of blank symbols on U’s

tape was taken as suYcient for the purpose of T. But for the emulation a blank

square is shown as D. Machines U and T represent a blank tape diVerently.

There is a corresponding error in the way the initial state of T is placed on U’s

tape. It should contain the U-symbols: DAD with suitable spaces between them,

representing T’s initial state DA followed by the scanned symbol D, a blank. The

correction on p. 70 is:

b1 R, R, P:, R, R, PD, R, R, PA, R, R, PD anf

9. Diagnostics

With experience of writing programs it is second nature to build in diagnostics.

Whether they are needed in U is arguable. Since U is a conceptual tool, its

requirements are determined by its use in the argument of Turing’s paper. For

testing the design of U, diagnostics are certainly needed.

There may be a need for two kinds of failure indication in the program of U.

Suppose that T has a deWcient set of instructions, meaning that its latest image

has a state-symbol pair which does not appear among the instructions. I believe

that Turing would class this as a circular machine. The eVect on the operation of

U is that the search for the relevant instruction fails with U moving left beyond

the left-hand end of its tape, and continuing to move left indeWnitely. Perhaps

this is acceptable for the purpose for which U was intended, but it seems

anomalous that a deWciency in T should cause U to misbehave. It can be avoided

by adding a line to the deWnition of kom on p. 71:

kom e fail1 (deficient T instructions)

then changing the next line to respond to symbols not z nor ; nor e.

If Tmoves right without limit, this will be emulated correctly, but moving left

beyond the limits of its tape is a problem. The way U works will cause the next

image of T to appear as if no shift had occurred. There is no way to represent T as

scanning a square to the left of its starting position. This means that the

subsequent behaviour of T will diVer from what its instructions imply. I think

this might aVect the use that Turing made of the machine in the main part of the

paper.

The changes to deal with this problem are:

inst1(L) f(inst4, fail2, x) (machine T has run off left)

inst4 ce5(ov, v, y, x, u, w)

Corrections and Critiques | 117

10. Trivial Errors and Corrections

1. There is potential confusion in the use of the symbol q for diVerent states in

two places, and it is also confused with state g. The best resolution is as

follows.

We can treat the use of q in the example on p. 62 as casual, without

permanent signiWcance. The same might be said of its use on p. 64, which is

unrelated. But from there onwards the examples will form part of the

deWnition of U, so the symbols have global signiWcance.

On p. 66, the states q and q1 appear but, in their subsequent uses in U,

they have been replaced by g, for example in the deWnitions of anf,mk, and

inst. I have retained the notation q, while remembering that previous uses

of this symbol are unrelated.

2. The skeleton tables for re and cr on p. 65, which comprise Wve diVerent states,

are redundant, serving no illustrative purpose and not being used again.

3. On p. 68, the format of the instruction table of T, as written on the tape of

U, is described. Instructions are separated by semicolons. An example

DADDCRDDA;DAA . . . DDRDA; is given. As already explained, this is

misleading, because each instruction should be preceded by a semicolon.

The example should begin with a semicolon, not end with one.

4. In the explanation of the skeleton table for con (p. 70), ‘C’ is one of the

symbols being read and marked. But the words refer to ‘the sequence C of

symbols describing a conWguration’. The Wnal remarks ‘. . . to the right of

the last square of C. C is left unmarked.’ use ‘C’ in the second sense. It

would otherwise seem as if the Wnal symbol ‘C’ was left unmarked, but this

is not so. To clarify, replace by ‘the sequence S’ and ‘. . . last square of S.

ConWguration S is left unmarked.’

5. On p. 71, a line for sim2 should read:

sim2 not A L, Pu, R, R, R sim2

6. On p. 71, the line for mk should read:

mk q(mk1, :)

7. On p. 72, the line for inst1(N) should read:

inst1(N) ce5(ov, v, x, y, u, w)

11. A Redesign of the Universal Machine

To verify, as far as this is possible, that there are no remaining errors in the

amended version of Turing’s program for U, it would be best to generate the

explicit machine instruction table by substitutions and repetitions, then run this

machine with one or more examples of a machine T and Wnd if the emulations

118 | Donald Davies

behaved as they should. But the complexity and slowness of the explicit form of

Turing’s U makes this diYcult.

Therefore I made some changes to the design of U before constructing a

simulation of a Turing machine, loading the instructions for U, producing a

tape image for a machine T and running the program. After some corrections to

my version of U, the simulation behaved correctly. In this section the main

features of the redesign are described.

The new version of U follows Turing’s methods quite closely. The substitution

process introduced with the skeleton tables had been nested to a depth of 9,

causing a proliferation of states and instructions in the explicit machine. To

avoid this, no skeleton tables were used in the new version and this allowed the

procedures to be optimized for each application. The downside is that the ‘low-

level’ description of U which results takes up more space than the original and is

harder to understand and check for accuracy. There are 147 states and 295

instructions in the new version, an enormous reduction.

The representation of T’s states and symbols in a monadic notation such as

DAAAAwas replaced by a binary notation. This was an easy change that reduced

the length of the workspace used. Because nearly all the time is used moving from

end to end of the workspace, this is worthwhile. The small cost of the change is that

there are four U-symbols to represent states and symbols instead of three.

The classic Turing machine can move right or left or stay put in each operation.

To simplify U a little, the third option was removed, so that a left or right

movement became mandatory. For consistency, U was also run on a machine T

with this characteristic. In the whole of U’s program, a compensating movement

became necessary only a few times, so it is not a signiWcant restriction.

Turing’s skeleton tables show, for the scanned symbol, such words as any, or

not A. When translated into a list of discrete symbols for the explicit machine

these generate many instructions. By introducing a ‘wild card’ notation and

searching instructions in a deWnite sequence, this proliferation can be avoided.

A form of instruction was added which, in its written form, had an asterisk for

both the scanned symbol and the written symbol. This acted on any scanned

symbol and did not overwrite it. The way that U worked would have made it

possible to read a wild card (i.e. any) scanned symbol and write over it or to read

a speciWc symbol and leave it unchanged, but these were never needed in

practice. The wild card scanned symbol should only be actioned after all other

possibilities (for this particular state) have been tested. Therefore instructions

now have a deWned sequence and must be tested accordingly. U always did test

instructions in sequence but never made use of that fact.

Testing all instructions in sequence to Wnd a match is very time-consuming

because it requires marking, then comparing square by square, running from

instruction space to work space. It was largely avoided by writing in U’s instruc-

tion table an oVset which indicated where the next instruction could be found.

Corrections and Critiques | 119

This indication led to a section of instructions dealing with a given state; after

this, sequential testing took place. This was a shortcut to speed up U and was not

envisaged as a feature of all Turing machines, since it would greatly complicate U.

Technically it was a little more complex than I have described, but it has no eVect

on the design of U, being merely a chore for the programmer and a detail of the

computer program which interprets those instructions.

U spends some of its time searching for a region on the tape where it will begin

work. To make this easier, additional markers were introduced, for the action

symbol (L or R) and for the start of the current snapshot. Also, the end of the

workspace was marked, and this marking was placed in one of the squares

normally reserved for permanent symbols. Since it had to be overwritten when

the workspace extended, this broke one of Turing’s conventions.

Finally the two failure-indications described earlier were incorporated, one for

a deWcient T-instruction set and the other for T running its machine left, beyond

the usable tape.

11.1 Testing the redesigned machine

A computer program, which I shall call T�, was written which would simulate the

underlying Turing machine, using a set of instructions in its own special code,

which had one byte per symbol or state. This code was chosen for convenience of

writing U’s instructions. It incorporated the wild card feature and the oVset

associated with each instruction, but the oVset did not alter the way it responded

to its instructions, only making it faster. When the design of U is complete and its

instructions have been loaded, T� will behave as the universal machine U.

A simple editor was written to help the user write and amend the instruction

tables for T� and prepare a starting tape for T� which holds the coded instruc-

tions for the emulated Turing machine T.

For T, the example given by Turing on p. 62 was used. It prints a sequence of

increasing strings of ones, such as 001011011101111011111 . . . This program in

its explicit form would have 23 instructions and 18 states. To make it simpler, it

was rewritten without the ‘alternate squares’ principle and it then had 12

instructions and 6 states. It may be interesting to see how the wild card feature

operates by studying this example, shown below.

As a Wrst step, the example was loaded into the program space of T� and run,

thus testing the mechanism of T� as well as the example in the table below.

Then the example was coded for the initial part of the tape of T�, so that it

would cause U to emulate it as the target T. The program of U was loaded in

many stages, debugging each by testing its part in the whole operation of U. Two

serious program errors were found. One was in the operation sh which prints the

output of T between the snapshots of T’s evolution. The other was in the

correction to Turing’s scheme which wrote a blank symbol (D) at the end of

the tape. It had been inserted at the wrong place. With these and several minor

120 | Donald Davies

errors corrected the redesigned U performed as expected and the evolution of T

agreed with expectation and with its earlier running, directly on T�. Only this

one example of Twas tried, but it probably does test the universal machine fully.

The full results are given below.

Because of the diVerences between the version of U that was tested and

Turing’s design with my corrections, the testing must be regarded as incomplete.

A compiler could be written to take the design in the form of skeleton tables and

generate the explicit machine, which could then be run to emulate examples of

the target machine. This would be extraordinarily slow.

12. The Program for T

The instructions for T are given in the standard Wve-part form: state, scanned

symbol, written symbol, movement, and resultant state. The images are shown

for the Wrst eleven moves, in the standard form with the state-symbol (a to e,

printed bold) preceding the scanned symbol.

The blank space symbol is a hyphen and the other symbols are 0, 1, x, and y.

The program writes a block of xs followed by a y, then converts the xs

successively to 1s and the y to a 0, while writing the next block of xs and a y,

increasing the number of xs by one.

s � 0 R a print 0 : 0 a �
a � y R b print y at end : 0 y b � : 0 0 x a �
a * * R a : 0 0 x y b �
b � x L c print x at end : 0 c y x : 0 0 x c y x

b * * R b

c y y L d run back to y : d 0 y x : 0 0 d x y x

c * * L c

d x 1 R b change x to 1 : 0 0 1 b y x

d 0 0 R e none left : 0 e y x

d * * L d

e y 0 R a change y to 0 : 0 0 a x

e * * R e

13. Results of the Test

Here is a copy of the symbols on the tape of T� after 22 evolutions of U. The part
up to the symbol % represents the 12 instructions for T. Then follow the 23

images, separated by colons. Whenever U prints a 0 or 1, this is also an output of

T. To make this explicit (following Turing’s practice) the strings ‘1 :’ or ‘0 :’ are

Corrections and Critiques | 121

inserted into the tape (bold in our table). So the whole set of evolutions shown

has printed ‘0 0 1 0’. The tape shown is printed on alternate spaces, except for the

initial ‘e e’. The Wnal F is a device of my own to make it easy to Wnd the end of the

written area of tape.

e e; M C S S C R M D ; M D S S C D R M C C ; M D S E S E R M D ;

M C C S S C C LMCD ;M C C S E S E RMCC ;M CD S C D S C D LMDC ;

M C D S E S E L M C D ; M D C S C C S D RM C C ; M D C S C S C RMDD ;

M D C S E S E LMD C ; M DD S C D S C RMD ; M DD S E S E RMDD% :

M C S : 0 : S C M D S : S C S C D M C C S : S C M C D S C D S C C :

M D C S C S C D S C C : S C M D D S C D S C C : 0 : S C S C M D S C C :

S C S C S C C M D S : S C S C S C C S C D M C C S :

S C S C S C C M C D S C D S C C : S C S C M D C S C C S C D S C C : 1 :

S C S C S D M C C S C D S C C : S C S C S D S C D M C C S C C :

S C S C S D S C D S C C M C C S : S C S C S D S C D M C D S C C S C C :

S C S C S D M C D S C D S C C S C C : S C S C M D C S D S C D S C C S C C :

S C M D C S C S D S C D S C C S C C : S C S C M D D S D S C D S C C S C C :

S C S C S D M D D S C D S C C S C C : 0 : S C S C S D S C M D S C C S C C :

S C S C S D S C S C C M D S C C : S C S C S D S C S C C S C C M D S F

As an aid to understanding this tape, here are the symbols and states of T in

U’s notation:

– S s MC

0 SC a MD

1 SD b MCC

x SCC c MCD

y SCD d MDC

* SE e MDD

The Wrst few snapshots therefore read:

s � : 0 : 0 a � : 0 y b � : 0 c y x : d 0 y x : 0 e y x : 0 : 0 0 a x : 0 0 a x � :

0 0 x y b � : 0 0 x c y x : 0 0 d x y x : 1 : 0 0 1 b y x : 0 0 1 y b x : 0 0 1 y x b � :

0 0 1 y c x x : 0 0 1 c y x x :

The Wnal conWguration of the above tape is 0 0 1 0 x x a � :

14. The Corrected Tables for U: Summary

The table for f(A, B, a) is unchanged on p. 63.

On p. 64, e(A, B, a) and e(B, a) are unchanged, but note that the state q used

in the explanation of e(B, a) is a local notation, unrelated to the states of that

name on p. 66.

122 | Donald Davies

On p. 65, pe(A, b), l(A), f 0(A, B, a), and c(A, B, a) are unchanged, but r(A) and

f 00(A, B, a), deWned on that page, are not used again.

On pp. 65–66, ce(A, B, a), ce(B, a), cp(A, B, C, a, b), cpe(A, B, C, a, b), and

cpe(A, B, a, b) are unchanged but re(A, B, a, b), re(B, a, b), cr(A, B, a), and

cr(B, a) are not used again.

On p. 66, q(A), pe2(A, a, b), and e(A) are unchanged. Also, ce2(B, a, b) and

ce3(B, a, b, c) are deWned, but it is ce5(B, a, b, c, d, e), derived in an analogous

way, which is actually used, in the inst function.

On p. 70, con(A, a) is unchanged, but the remark that ‘C is left unmarked’ is

confusing and is best ignored.

In the table for U, which begins on p. 70, the state b1 should have the following

action: R, R, P :, R, R, PD, R, R, PA, R, R, PD, in order to print ‘: D A D’ on the F

squares, so that a blank symbol D is available for matching with an instruction.

On p. 70 the table for anf should lead to q(anf1, :).

If the set of instructions for the target machine T is deWcient, so that a

state-symbol pair is created which has no matching instruction, machine U

will attempt to search beyond the left-hand end of its tape. What happens

then is undeWned. To make it deWnite, kom (p. 71) can be augmented by the

line:

kom e fail1,

which indicates the failure, and the last line will be:

kom not z nor ; nor e kom

The table for kmp (p. 71) should read:

kmp cpe(e(e(anf, x), y), sim, x, y),

since e(A, B, a) should return to anf, to restore the markings deleted by cpe.

On p. 71, sim2 with scanned symbol ‘not A’ should have the action L, Pu, R, R, R.

The Wrst line of mk (p. 71) should lead to q(mk1, :). On this same page, sh is

unchanged.

On p. 72, inst should lead to q(l(inst1), u) and the line for inst1(N) should

read

inst1(N) ce5(ov, v, x, y, u, w)

The instruction for inst1(L) (p. 72) could try to move the target machine left

beyond its end of tape, but there is no way for U to represent this condition, so T

will seem not to move. To make this kind of error explicit, these changes can be

made:

inst1(L) f(inst4, fail2, x)

Corrections and Critiques | 123

inst4 ce5(ov, v, y, x, u, w)

To correct the fundamental Xaw that a right movement inst1(R) (p. 72) could

move the state-symbol to the right of all other symbols, making a future match

with an instruction impossible, the following change is needed:

inst1 (R) ce5(q(inst2, A), v, x, u, y, w) Wnds the last A on the tape

inst2 R, R inst3 move to start of scanned symbol

inst3
none PD ov

D ov

n
if blank space, print D

but not if a symbol follows

Finally, ov (p. 72) is unchanged.

124 | Donald Davies

CHAPTER 3

Systems of Logic Based on Ordinals (1938)

Alan Turing

Introduction
Jack Copeland

The Princeton Years, 1936–38

On 23 September 1936 Turing left England on a vessel bound for New York.1 His

destination was Princeton University, where the Mathematics Department and

the Institute for Advanced Study combined to make Princeton a leading centre

for mathematics. Turing had applied unsuccessfully for a Visiting Fellowship to

Princeton in the spring of 1935.2 When a year later he learned of Church’s

work at Princeton on the Entscheidungsproblem, which paralleled his own (see

‘Computable Numbers: A Guide’), Turing ‘decided quite deWnitely’ to go

there.3 He planned to stay for a year.

In mid-1937 the oVer of a Visiting Fellowship for the next academic year

persuaded him to prolong his visit, and he embarked on a Ph.D. thesis. Already

advanced in his academic career, Turing was an unusual graduate student (in the

autumn of 1937, he himself was appointed by Cambridge University to examine

a Ph.D. thesis). By October 1937 Turing was looking forward to his thesis being

‘done by about Christmas’. It took just a little longer: ‘Systems of Logic Based on

Ordinals’ was accepted on 7 May 1938 and the degree was awarded a few weeks

later.4 The following year the thesis was published in the Proceedings of the

London Mathematical Society.

‘Systems of Logic Based on Ordinals’ was written under Church’s supervision.

His relationship to Turing—whose formalization of the concept of an eVective

1 S. Turing, Alan M. Turing (Cambridge: HeVer, 1959), 51.

2 Letter from Turing to Sara Turing, his mother, 24 May 1935 (in the Turing Papers, Modern Archive

Centre, King’s College Library, Cambridge (catalogue reference K 1)).

3 Letter from Turing to Sara Turing, 29 May 1936 (Turing Papers, catalogue reference K 1).

4 Letter from Turing to Sara Turing, 7 May 1938 (see below); Turing, Alan M. Turing, 54. The thesis is

held in the Seeley G. Mudd Manuscript Library at Princeton University (catalogue reference P685.1938.47).

procedure and work on the Entscheidungsproblem was ‘possibly more convincing’

than Church’s own5—was hardly the usual one of doctoral supervisor to gradu-

ate student. In an interview given in 1984, Church remarked that Turing ‘had the

reputation of being a loner’ and said: ‘I forgot about him when I was speaking

about my own graduate students—truth is, he was not really mine.’6 Neverthe-

less Turing and Church had ‘a lot of contact’ and Church ‘discussed his

dissertation with him rather carefully’.7 Church’s inXuence was not all for

the good, however. In May 1938 Turing wrote:

My Ph.D. thesis has been delayed a good deal more than I had expected. Church made a

number of suggestions which resulted in the thesis being expanded to an appalling length.

I hope the length of it won’t make it diYcult to get it published.8

Moreover, Turing elected to couch ‘Systems of Logic Based on Ordinals’ in the

notationofChurch’s lambda calculus, somakinghisworkmuch less accessible than

itmight otherwise have been. (By that time evenChurch’s student Kleene, who had

contributed importantly to the development of the lambda calculus, had turned

away from it. Kleene said: ‘I myself, perhaps unduly inXuenced by rather chilly

receptions from audiences around 1933–35 to disquisitions on l-deWnability,

chose, after general recursiveness had appeared, to put my work in that format.’9)

In a letter written not long after Turing’s death, Turing’s friend Robin Gandy

said: ‘Alan considered that his paper on ordinal logics had never received the

attention it deserved (he wouldn’t admit that it was a stinker to read).’10

Notwithstanding its notational obscurity, ‘Systems of Logic Based on Ordin-

als’ is a profound work of Wrst rank importance. Among its achievements are the

exploration of a means of circumventing Gödel’s incompleteness theorems; the

introduction of the concept of an ‘oracle machine’, thereby opening the Weld of

relative computability; and, in the wake of the demolition of the Hilbert pro-

gramme (by Gödel, Turing, and Church), an analysis of the place of intuition in

mathematics and logic.

Turing’s two years at Princeton are the best documented of his life, thanks to a

series of letters that he wrote to Sara Turing. (Of the Wfty-Wve letters that he sent

her from 1932 until his death, twenty-seven are from the Princeton period.) The

following excerpts give a glimpse of his time there. All were written from the

Graduate College, Princeton University.11

5 See the subsection ‘Church’s contribution’ of ‘Computable Numbers: A Guide’.

6 Church in interview with William Aspray (17 May 1984); transcript no. 5 in the series ‘The Princeton

Mathematics Community in the 1930s’, Princeton University.

7 Ibid.

8 See below.

9 S. C. Kleene, ‘Origins of Recursive Function Theory’, Annals of the History of Computing, 3 (1981),

52–67 (62).

10 Letter from Gandy to Max Newman, n.d. (Turing Papers, catalogue reference A 8).

11 All the letters are in the Turing Papers (catalogue reference K 1).

126 | Jack Copeland

Excerpts from Turing’s Letters Home

6 October 193612

I reached here late last Tuesday evening.13We were practically in New York at 11:00 a.m. on

Tuesday but what with going through quarantine and passing the immigration oYcers we

were not oV the boat until 5:30 p.m. Passing the immigration oYcers involved waiting in a

queue for over two hours with screaming children round me. Then, after getting through

the customs I had to go through the ceremony of initiation to the U.S.A., consisting of

being swindled by a taxi driver. I considered his charge perfectly preposterous, but as I had

already been charged more than double English prices for sending my luggage, I thought it

was possibly right. However, more knowing people say it was too much. . . .

The mathematics department here comes fully up to expectations. There is a great

number of the most distinguished mathematicians here. J. v. Neumann, Weyl, Courant,

Hardy, Einstein, Lefschetz, as well as hosts of smaller fry. Unfortunately there are not

nearly so many logic people here as last year. Church is here of course, but Gödel, Kleene,

Rosser and Bernays who were here last year have left. I don’t think I mind very much

missing any of these except Gödel. Kleene and Rosser are, I imagine, just disciples of

Church and have not much to oVer that I could not get from Church. Bernays [I] think is

getting rather ‘vieux jeu’: that is the impression I get from his writing, but if I were to meet

him I might get a diVerent impression.

The graduate students include a very large number who are working in mathematics,

and none of them mind talking shop. It is very diVerent from Cambridge in that way.

I have seen Church two or three times and I get on with him very well. He seems quite

pleased with my paper14 and thinks it will help him to carry out a programme of work he

has in mind. I don’t know how much I shall have to do with this programme of his, as I

am now developping [sic] the thing in a slightly diVerent direction, and shall probably

start writing a paper on it in a month or two.15 After that I may write a book.

The proofs16 have been sent direct to me here. They arrived last Saturday, and I have

just Wnished them and sent them oV. It should not be long now before the paper comes

out. I have arranged for the reprints17 to be sent to you, and will get you, if you would

not mind, to send out the ones that are to go to people in Europe, and to send some of

the remainder on to me. . . .

These Americans have various peculiarities in conversation which catch the ear some-

how. Whenever you thank them for any thing they say ‘You’re welcome’. I rather liked it at

Wrst, thinking that I was welcome, but now I Wnd it comes back like a ball thrown against a

wall, and become positively apprehensive. Another habit they have is to make the sound

12 Editor’s note. Sara Turing’s dating of the letters is followed where dates are absent or incomplete.

13 Editor’s note. Turing’s previous letter to Sara on 28 Sept. 1936 was written on board the vessel

Berengaria bound for New York.

14 Editor’s note. Presumably ‘On Computable Numbers, with an Application to the Entscheidungs-

problem’.

15 Editor’s note. This may refer to the ‘development of the theory of functions of a real variable’

mentioned by Turing on p. 58 of Chapter 1. No such paper ever appeared, nor a book.

16 Editor’s note. Here the letter is marked ‘ ‘‘On Computable Numbers’’ ’ in Sara’s hand.

17 Editor’s note. The author’s copies of ‘On Computable Numbers’.

Systems of Logic Based on Ordinals | 127

described by authors as ‘Aha’. They use it when they have no suitable reply to a remark, but

think that silence would be rude.

Maurice Pryce has just got a Fellowship at Trinity.18

14 October 193619

I have just discovered a possible application of the kind of thing I am working on at

present. It answers the question ‘What is the most general kind of code or cipher possible’,

and at the same time (rather naturally) enables one to construct a lot of particular and

interesting codes. One of them is pretty well impossible to decode without the key and

very quick to encode. I expect I could sell them to H. M. Government for quite a

substantial sum, but am rather doubtful about the morality of such things. . . .

Church had me out to dinner the other night. Considering that the guests were all

university people I found the conversation rather disappointing. They seem, from what I

can remember of it, to have discussed nothing but the diVerent States that they came

from. Description of travel and places bores me intensely.

I had a nasty shock when I got into Church’s house. I think I had told you that Church

was half blind in one eye. Well I saw his father in the house and he was quite blind (and

incidentally very deaf). I should have thought very little of it had it not been for Church

being rather blind himself. Any hereditary defects of that kind give me the shudders.

Hardy is here for this term. At Wrst he was very standoYsh or possibly shy. I met him in

Maurice Pryce’s rooms the day I arrived, and he didn’t say a word to me. But he is getting

much more friendly now.

3 November 1936

Church has just suggested to me that I should give a lecture to the Mathematical Club here

on my Computable Numbers. I hope I shall be able to get an opportunity to do this, as it

will bring the thing to people’s attention a bit. . . .

I have got one or two things on hand at present not connected with my work in logic,

but in theory of groups.20 One of them is something I did about a year ago and left in cold

storage, and which Baer thinks is quite useful; but of course am not taking these things so

seriously as the logic.

Tonight is the evening of election day and all results are coming out over the wireless

(‘radio’ they say in the native language). My method of getting the results is to go to bed

and read them in the paper next morning.

11 November 1936

One of the Commonwealth Fellows, Francis Price (not to be confused with Maurice Pryce

or Bobby Price) arranged a hockey match the other day between the Graduate College and

18 Editor’s note. Trinity College, Cambridge.

19 Editor’s note. Sara has written ‘probably’ against the date.

20 Editor’s note. In 1938 Turing published two papers in group theory: ‘Finite Approximations to Lie

Groups’ (Annals of Mathematics, 39: 105–11), which developed a method due to R. Baer, and ‘The

Extensions of a Group’ (Compositio Mathematica, 5: 357–67).

128 | Alan Turing

Vassar, a women’s college (amer.)/university (engl.) some 130 miles away. He got up a

team of which only half had ever played before. We had a couple of practice games

and went to Vassar in cars on Sunday. It was raining slightly when we arrived, and

what was our horror when we were told the ground was not Wt for play. However we

persuaded them to let us play a pseudo-hockey game in their gymn. at wh. we defeated

them 11–3. Francis is trying to arrange a return match, which will certainly take place on a

Weld.

22 November 1936

I am sending you some cuttings about Mrs Simpson as representative sample of what we

get over here on this subject. I don’t suppose you have even heard of her, but some days it

has been ‘front page stuV ’ here.

The hockey here has become a regular Wxture three days a week. It’s great fun.

1 December 1936

I spent a good deal of my time in New York pottering about Manhattan getting used to

their traYc and subways (underground). I went to the Planetarium. . . .

I am giving my lecture to the Maths Club tomorrow.

3 December 1936

I am horriWed at the way people are trying to interfere with the King’s marriage. It may be

that the King should not marry Mrs Simpson, but it is his private concern. I should

tolerate no interference by bishops myself and I don’t see that the King need either.

11 December 1936

I suppose this business of the King’s abdication has come as rather a shock to you. I gather

practically nothing was known of Mrs Simpson in England till about ten days ago. I am

rather divided on my opinion of the whole matter. At Wrst I was wholly in favour of the

King retaining the throne and marrying Mrs Simpson, and if this were the only issue it

would still be my opinion. However I have heard talk recently which seems to alter it

rather. It appears that the King was extremely lax about state documents leaving them

about and letting Mrs Simpson and friends see them. There had been distressing leakages.

Also one or two other things of same character, but this is the one I mind about most.

December 1936 (no day)

. . . Talking of Christmas reminds me that as a small child I was quite unable to predict

when it would fall, I didn’t even realise that it came at regular intervals.

1 January 1937

I have been away with Maurice skiing in New Hampshire. . . .

I am sorry that Edward VIII has been bounced into abdicating. I believe the Govern-

ment wanted to get rid of him and found Mrs Simpson a good opportunity. Whether they

were wise to try to get rid of him is another matter. I respect Edward for his courage. As

Systems of Logic Based on Ordinals | 129

for the Archbishop of Canterbury I consider his behaviour disgraceful. He waited until

Edward was safely out of the way and then unloaded a whole lot of quite uncalled-for

abuse. He didn’t dare do it whilst Edward was King. Further he had no objections to the

King having Mrs Simpson as a mistress, but marry her, that wouldn’t do at all. I don’t see

how you can say that Edward was guilty of wasting his ministers time and wits at a critical

moment. It was Baldwin who opened the subject.

There was rather bad attendance at the Maths Club for my lecture on Dec 2. One

should have a reputation if one hopes to be listened to. The week following my lecture

G. D. BirkhoV came down. He has a very good reputation and the room was packed.

But his lecture wasn’t up to standard at all. In fact everyone was just laughing about it

afterwards.

27 January 1937

I have just Wnished a paper21 in group theory; not a very exciting one this time. I shall send

it oV in a day or two to the L. M. S22 or possibly to the ‘Annals of Mathematics’, which

is the Princeton mathematical journal.

There was a problem in the ‘Caliban’ volume of the N S & N23 a few weeks ago set by

Eddington. It was phrased in Alice through the Looking Glass language and called

‘Looking Glass Zoo’. The solution picked out for publication was also in looking glass

language and sent by ‘Champ’, i.e. Champernowne.24 It started oV ‘There couldn’t have

been more than three girls’ reXected Humpty Dumpty ‘because a girl is always the

square root of minus one, and there are only 12 of those, they taught us that at

school’. . . .

Maurice and Francis Price arranged a party with a Treasure Hunt last Sunday. There

were 13 clues of various kinds, cryptograms, anagrams and others completely obscure to

me. It was all very ingenious, but I am not much use at them.

11 February 1937

The printers for the L. M. S have been rather ineYcient, sending the reprints straight on to

me instead of looking at the address I had Wlled up on their form. Unfortunately I had not

kept a second copy of all the addresses I gave you, so as they are rather tiresome to Wnd I

am sending some of the reprints back to you to deal with if you can Wnd time before you

go. . . . I have dealt with

All King’s addresses

Littlewood

Wittgenstein

Newman

Atkins

Eperson

21 Editor’s note. Presumably ‘Finite Approximations to Lie Groups’ (see above).

22 Editor’s note. London Mathematical Society.

23 Editor’s note. New Statesman and Nation.

24 Editor’s note. See the introduction to Chapter 16.

130 | Alan Turing

I am told that Bertrand Russell is inclined to be ashamed of his peerage, so the situation

calls for tact. I suggest that the correct address for an earl be used on envelope, but

that you mark the reprint itself ‘Bertrand Russell’ on the top right hand corner of the

cover.

22 February 1937

I went to the Eisenhart’s regular Sunday tea yesterday, and there they took me in relays to

try and persuade me to stay another year. Mrs Eisenhart mostly put forward social or

semi-moral semi sociological reasons why it would be a good thing to have a second year.

The Dean25 weighed in with hints that the Procter Fellowship26 was mine for the asking

(this is worth $2,000 p.a.). I said I thought King’s would probably prefer that I return,

but gave some vague promise that I would sound them on the matter. Whether I want

to stay is another matter. The people I know here will all be leaving, and I don’t much

care about the idea of spending a long summer in this country. . . . I think it is most

likely I shall come back to England.

I have had two letters asking for reprints27, one from Braithwaite28 at King’s and

one from a proVessor [sic] in Germany29 . . . They seemed very much interested in

the paper. I think possibly it is making a certain amount of impression. I was

disappointed by its reception here. I expected Weyl who had done some work

connected quite closely with it some years ago at least to have made a few remarks

about it.

15 March 1937 30

I only wrote to the Provost31 last week so don’t expect to hear from him just yet.

I was rather diYdent and apologetic and told him most probably I should be coming

back.

29 March 1937

I have been sent a notice of lecturers in mathematics to be appointed next term, by Philip

Hall.32Maurice and I are both putting in for it, though I don’t suppose either of us will get

it: I think it is a good thing to start putting in for these things early, so as to get one’s

existence recognised.33 It’s a thing I am rather liable to neglect. Maurice is much more

conscious of what are the right things to do to help his career. He makes great social

eVorts with the mathematical bigwigs. . . .

25 Editor’s note. Luther Eisenhart, Dean of the Graduate College.

26 Editor’s note. The Jane Eliza Procter Visiting Fellowship.

27 Editor’s note. Reprints of ‘On Computable Numbers’.

28 Editor’s note. See Chapter 14.

29 Editor’s note. H. Scholz. Scholz’s postcard is in the Turing Papers (catalogue reference D 5).

30 Editor’s note. Turing wrote ‘15 Feb ’37’; ‘Feb’ has been corrected on the letter to ‘Mar’.

31 Editor’s note. Provost of King’s College, Cambridge.

32 Editor’s note. Hall was a Fellow of King’s. In 1938 Hall became Secretary of the London Mathematical

Society.

33 Editor’s note. Turing did not get the lectureship.

Systems of Logic Based on Ordinals | 131

I am now working out some new ideas in logic.34 Not so good as the computable

numbers, but quite hopeful.

18 April 1937

The temperature here is going right up already. It’s almost like June now. Tennis has

started. They play on courts of dry clay. Easier on the feet (and probably on the pocket)

than our hard courts, but not very quick at recovering from showers.

There was a return hockey match on Sunday against Vassar, who came over to us this

time. We defeated them quite easily, but I think only because we could run faster.

I shall certainly be coming back in July.35

19 May 1937

I have just made up my mind to spend another year here, but I shall be going back to

England for most of summer in accordance with previous programme. Thank you very

much for your oVer of help with this: I shall not need it, for if I have this Procter as the

Dean suggests I shall be a rich man, and otherwise I shall go back to Cambridge. Another

year here on the same terms would be rather an extravagance. I don’t think there can be

any reasonable doubt I shall have the Procter: the Dean would hardly have made any

remarks about it unless they meant something. . . .

My boat sails June 23. I might possibly do a little travelling here before the boat goes, as

there will be very little doing here during the next month and it’s not a fearfully good

time of year for work. More likely I shall not as I don’t usually travel for the sake of

travelling.

15 June 1937

Have just been back from Cousin Jack’s a couple of days. I went up north with Maurice in

his car and Maurice stayed a night with Cousin Jack, and made a good impression there.

I enjoyed the time I spent at Cousin Jack’s. He is an energetic old bird. He has a little

observatory with a telescope that he made for himself. He told me all about the grinding

of mirrors. . . . I think he comes into competition with Aunt Sybil for the Relations Merit

Diploma. Cousin Mary is a little bit of a thing you could pick up and put in your pocket.

She is very hospitable and rather timid: she worships Cousin Jack. Cousin Mary’s sister

Annie also lives in the house. I forgot her surname very soon after I was told it, which put

me at rather a disadvantage.

I am just starting in on packing etc.

4 October 1937

Journey36 completed without any mishap more serious than loss of my fountain pen a few

hours after getting on board. . . .

A vast parcel of manuscript arrived for me from the L. M. S secretary the other day. It

was a paper for me to referee; 135 pages. Also have just heard from Bernays.

34 Editor’s note. Presumably the ideas that formed ‘Systems of Logic Based on Ordinals’.

35 Editor’s note. To England.

36 Editor’s note. From England to the United States.

132 | Alan Turing

19 October 1937

The refereeing business rather petered out. The author’s mathematical technique was

hopelessly faulty, and his work after about p. 30 was based on so many erroneous notions

as to be quite hopeless. So I had to send it back and say so. Rather distressing as the man

has apparently been working on it for 18 months or so.

I am working on my Ph.D thesis now. Should have it done by about Christmas.

Scholz ofMünster sentme a photolithoprinted reprint the otherday, containing the gist of

my paper37 in the L. M. S, apparently as ‘vorgetragt’38 in Münster. It was most delight-

fully done, with most excellent translations into the German of the expressions I

had used.

2 November 1937

Have just been playing in a hockey match, the Wrst we have had this year. The team is not

so good as last year’s, our two brilliant players from New College no longer being in

Princeton. I have found I get involved with making a good deal of arrangements for these

games, but it has not yet got to the point of being really tiresome. . . .

I am getting rather more competent with the car . . .

23 November 1937

I had a letter the other day from the Secretary of the Faculty Board of Mathematics

at Cambridge asking if I would be a Ph.D examiner: the candidate is the same man whose

paper I refereed for L. M. S. After some hesitation I decided to take this thing on.

I thought it might be rather unsuitable for me to be connected with it twice, but I talked

to Newman (who is here for a term) about it, and he thought such scruples were rather

foolish. . . .

There is a mysterious woman in Virginia who has invited me to stay for Christmas. She

gets the names of Englishmen living in the Graduate College from Mrs Eisenhart.

c. New Year 39

Did I tell you that a very nice man called Martin (the i is mute in this country) asked me to

go and stay with him in South Carolina before Christmas. We drove down from here in

two days and then I stayed there for two or three days before I came back to Virginia to

stay with Mrs Welbourne. It was quite as far south as I had ever been—about 348.
The people seem to be all very poor down there still, even though it is so long since the

civil war.

Mrs Welbourne and her family were all very agreeable, though I didn’t make much

conversational progress with any of them.

Two short papers of mine have just come out in the Journal of Symbolic Logic.40

37 Editor’s note. ‘On Computable Numbers’.

38 Editor’s note. ‘Lectured’.

39 Editor’s note. The letter is undated and marked ‘Recd. Jan 14. 38’.

40 Editor’s note. ‘Computability and l-DeWnability’ (Journal of Symbolic Logic, 2 (1937), 153–63), and

‘The ‘p’-Function in l-K-Conversion’ (Journal of Symbolic Logic, 2 (1937), 164).

Systems of Logic Based on Ordinals | 133

7 March 1938

I went to ‘Murder in the Cathedral’ last Saturday with Will James. Was very much

impressed with it. It was very much easier to understand when acted than when read.

Most particularly this was so with the choruses. . . .

I can’t say for certain yet when I will be back. I haven’t yet booked a passage. Most

probably it will be about the same time and I shall be going up for the Long41 again.

12 April 1938

Have found out now about my Fellowship: it has been renewed. When Daddy wrote me

about getting a job here I thought it was time to get King’s to say something deWnite, so I

sent them a cable. I can’t think why they didn’t let me know before. They are usually rather

strong on formal notiWcations: it all seems rather out of character.

I have just been to see the Dean and ask him about possible jobs over here; mostly

for Daddy’s information, as I think it unlikely I shall take one unless you are actually

at war before July. He didn’t know of one at present, but said he would bear it all in

mind.

Have just been down to Washington and Annapolis with Will James. Will went to visit

some people who are running St John’s College Annapolis, and we both went to lunch

there. They have a scheme in operation for teaching people by making them read a vast

syllabus of 100% concentrated classics. Kant’s ‘Critique of Pure Reason’ is a fairly typical

example. The trouble about it is that they are so deep that any one of them really needs

several years study to be understood. Presumably their undergraduates will only get

something very superWcial out of them.

We also went and listened to the Senate for a time. They seemed very informal. There

were only six or eight of them present and few of them seemed to be attending.

7 May 1938

There was quite a good performance of ‘H. M. S. Pinafore’ and ‘Trial by Jury’ here last

week-end. The ‘Pinafore’ didn’t seem to be so good as when we saw it in Hertford (and

picked up measles). ‘Trial by Jury’ was very good: I think I like it better than any other

Gilbert and Sullivan.

My Ph.D. thesis has been delayed a good deal more than I had expected. Church made a

number of suggestions which resulted in the thesis being expanded to an appalling length.

I hope the length of it won’t make it diYcult to get it published. I lost some time too when

getting it typed by a professional typist here. I took it to a Wrm which was very well spoken

of, but they put a very incompetent girl onto it. She would copy things down wrong on

every page from the original, which was almost entirely in type. I made long lists of

corrections to be done and even then it would not be right. . . .

The thesis has just been accepted to-day.

I expect to leave here at the beginning of July. Shall probably go direct to Cambridge.

I had an oVer of a job here as von Neumann’s assistant at $1,500 a year but decided not

to take it.

41 Editor’s note. The Cambridge long vacation.

134 | Alan Turing

The Purpose of Ordinal Logics

Turing explained the purpose of his ‘ordinal logics’ in Section 11 of ‘Systems of

Logic Based on Ordinals’. He Wrst distinguished between what he called ‘intu-

ition’ and ‘ingenuity’ (a distinction that is discussed again in Chapter 4 in his

letters to Newman):

Mathematical reasoning may be regarded rather schematically as the exercise of a com-

bination of two faculties, which we may call intuition and ingenuity. The activity of the

intuition consists in making spontaneous judgments which are not the result of conscious

trains of reasoning. These judgments are often but by no means invariably correct (leaving

aside the question what is meant by ‘correct’). Often it is possible to Wnd some other way

of verifying the correctness of an intuitive judgment. We may, for instance, judge that all

positive integers are uniquely factorizable into primes; a detailed mathematical argument

leads to the same result. This argument will also involve intuitive judgments, but they will

be less open to criticism than the original judgment about factorization. I shall not

attempt to explain this idea of ‘intuition’ any more explicitly.

The exercise of ingenuity in mathematics consists in aiding the intuition through

suitable arrangements of propositions, and perhaps geometrical Wgures or drawings. It

is intended that when these are really well arranged the validity of the intuitive steps which

are required cannot seriously be doubted.

The parts played by these two faculties diVer of course from occasion to occasion, and

from mathematician to mathematician. This arbitrariness can be removed by the intro-

duction of a formal logic. The necessity for using the intuition is then greatly reduced by

setting down formal rules for carrying out inferences which are always intuitively valid.

When working with a formal logic, the idea of ingenuity takes a more deWnite shape. In

general a formal logic will be framed so as to admit a considerable variety of possible steps

in any stage in a proof. Ingenuity will then determine which steps are the more proWtable

for the purpose of proving a particular proposition. (p. 192)

The intuition/ingenuity distinction is illustrated by the Gentzen-style formal

logic described in ‘Computable Numbers: A Guide’ (see the subsection ‘A tutorial

on Wrst-order predicate calculus’). Most people see intuitively that, for example,

the rule
X ‘ Y

‘ not(X & not Y)

is valid. In order to grasp that the rule is valid, it is necessary only to reXect on

the rule’s meaning, namely:

If Y can be concluded from X, then it can be concluded that not both X and the

denial of Y are true.

With only a dozen or so basic rules, this formal logic places very little demand on

intuition. Once one has accepted these few rules as valid, proofs can be

constructed in the system without the need for any further exercise of

intuition. Nevertheless, constructing proofs can place considerable strain on

Systems of Logic Based on Ordinals | 135

one’s ingenuity. To form a proof one must—playing always by the rules—devise

a chain of propositions culminating in the proposition that is to be proved. As

Turing remarked, at each point in the chain there are always various possibilities

for the next move. Typically, most of these possible moves are of no help at all,

and it may require signiWcant ingenuity to Wnd a sequence of moves that leads to

the desired conclusion.

Important though ingenuity is in practice, it is in principle unnecessary so

long as unlimited time and paper are available. This perhaps surprising fact is

clear from ‘On Computable Numbers’. Once intuition has supplied the materials

from which proofs are to be constructed—the basic inference rules, in the case of

the logical system under discussion—then a suitably programmed Turing ma-

chine is able to grind out all the valid proofs of the system one by one. No

ingenuity is required to apply the rules of the system blindly, making legal move

after legal move. If a proposition is provable in the system then a machine

operating in this ‘blind’ fashion will sooner or later prove it (so long as the

machine is programmed in such a way that no legal moves are missed):

We are always able to obtain from the rules of a formal logic a method of enumerating the

propositions proved by its means. We then imagine that all proofs take the form of a

search through this enumeration for the theorem for which a proof is desired. In this way

ingenuity is replaced by patience. (p. 193)

Intuition, on the other hand, cannot be replaced by patience. This is a lesson

of Gödel’s incompleteness results.

In pre-Gödel times it was thought by some that it would probably be possible to carry this

programme [the setting down of formal rules] to such a point that all the intuitive

judgments of mathematics could be replaced by a Wnite number of these rules. The

necessity for intuition would then be entirely eliminated. (pp. 192–3)

Turing is here referring to the Hilbert programme. The Hilbert programme

aimed to bring mathematics to order by setting down a Wnite system of formal

rules (a ‘concrete basis on which everyone can agree’42) by means of which all the

inWnitely many intuitively true mathematical statements could be proved without

further appeals to intuition—without ‘mysterious arts’, as Hilbert put it.43 (See

further ‘Computable Numbers: A Guide’.) Following Gödel, it was clear

that this cannot be done. No matter which rules are selected, there will

always be statements that a mathematician can see intuitively are true but

which cannot be proved using the rules.

42 D. Hilbert, ‘Über das Unendliche’ [On the InWnite], Mathematische Annalen, 95 (1926), 161–90 (180);

English translation by E. Putnam and G. Massey in R. L. Epstein and W. A. Carnielli, Computability:

Computable Functions, Logic, and the Foundations of Mathematics (2nd edn. Belmont, Calif.: Wadsworth,

2000).

43 D. Hilbert, ‘Probleme der Grundlegung der Mathematik’ [Problems Concerning the Foundation of

Mathematics], Mathematische Annalen, 102 (1930), 1–9 (9).

136 | Jack Copeland

While it had been shown that intuition cannot be replaced by such a system of

rules, there remained the question whether it might nevertheless be possible to

circumscribe the use made of intuition, so that the mathematician is only

required to use intuition in judging the truth of (an unlimited number of)

propositions of a very speciWc form. This would not achieve the elimination of

intuition desired by Hilbertians, but would achieve something in that direction.

The truths of mathematics could be derived, not by using a set of formal rules

alone, but by using a set of formal rules together with intuitive judgements of

that very speciWc form. To those wary of intuition, this is certainly preferable to

the uncontrolled use of ‘mysterious arts’. Although not eliminated, the use of

intuition would at least be brought under strict control.

This successor to the defeated Hilbert programme44 is the subject of investi-

gation of ‘Systems of Logic Based on Ordinals’:

In our discussions . . . we have gone to the opposite extreme [to Hilbertians] and elimin-

ated not intuition but ingenuity, and this in spite of the fact that our aim has been in

much the same direction. We have been trying to see how far it is possible to eliminate

intuition, and leave only ingenuity. (p. 193)

In consequence of the impossibility of Wnding a formal logic which wholly eliminates the

necessity of using intuition, we naturally turn to ‘non-constructive’ systems of logic with

which not all the steps in a proof are mechanical, some being intuitive. . . . What proper-

ties do we desire a non-constructive logic to have if we are to make use of it for the

expression of mathematical proofs? We want it to show quite clearly when a step makes

use of intuition, and when it is purely formal. The strain put on the intuition should be a

minimum. (ibid.)

The following extension of the Gentzen-style formal logic just discussed is a

simple example of a logical system that incorporates, as well as formal rules,

intuitive judgements of a very speciWc kind. In this extended system, each step in

a proof is either a derivation from previous statements in the proof, using a

formal rule (as before), or else—and this is the new part—is the assertion of a

(true) proposition of form ‘Un(m)’. ‘Un(m)’ is a construction saying ‘At some

point, Turing machine m prints 0’ (see Section 11 of ‘On Computable Numbers’,

and the subsection ‘The proof of the undecidability of FOPC’ of ‘Computable

Numbers: A Guide’). Steps of this second sort are non-mechanical, in the sense

that no Turing machine—no eVective procedure—is able to determine, for all

propositions of the form ‘Un(m)’, which are true and which false. Nevertheless,

when one is proving theorems in this system, one is allowed to include, at any

point in a proof where it is helpful to do so, an intuitively true proposition of the

form ‘Un(m)’. No other type of intuitive step is permitted in the system—the

44 This post-Gödelian programme was also investigated by Church’s student Barkley Rosser in his ‘Gödel

Theorems for Non-Constructive Logics’, Journal of Symbolic Logic, 2 (1937), 129–37.

Systems of Logic Based on Ordinals | 137

strain put on the intuition is ‘a minimum’. The result is a system whose theorems

go far beyond what is provable in the Wrst-order predicate calculus alone.

The question of how much mathematics can be captured by a system in which

the use of intuition is strictly controlled in this manner is the crucial one for the

success or otherwise of this post-Hilbertian programme.

Ordinal Logics and Gödel’s Incompleteness Theorem

To say that a system is complete with respect to some speciWed set of formulae S,

e.g. the set of arithmetical truths, is to say that every formula in S is provable in

the system. Gödel showed that not all arithmetical truths can be proved in the

formal system of arithmetic set out by Whitehead and Russell in Principia

Mathematica. Turing’s work enabled this result to be extended to any mechanical

procedure for producing truths of arithmetic (see Section 14 of ‘Computable

Numbers: A Guide’).

Gödel established his incompleteness result by showing how to construct an

arithmetical formula—call it G—that is not provable in the system and yet is

true. In order to show that G is true, Gödel appealed to the way he constructed

G. G is of such a nature that G in eVect says that it itself is not provable in the

system—and so, since G is not provable, what G says is true.

Can the incomplete formal system of arithmetic be made complete by adding

G to it as a new axiom (thereby making it the case—trivially—that G is provable

in the system)? No. This is because, once G is added, producing a new system, the

Gödel construction can be applied once again to produce a true formula G1 that

is unprovable in the new system. And when G1 is itself added as a new axiom,

producing a further system, there is a true but unprovable G2, and so on ad

inWnitum.

Following Turing’s notation (p. 146), let the system of arithmetic that forms

the starting point of this inWnite progression be called L. The result of adding G

to L is called L1; the result of adding G1 to L1 is L2, and so on. Taken together, the

systems in the inWnite progression L, L1, L2, L3, . . . form a non-constructive

logic of the sort described by Turing in the above quotation. New axioms are

seen to be true by intuition, but otherwise only ingenuity (or patience) is

required in proving theorems in any of the systems.

There are a lot of systems in the progression L, L1, L2, L3, . . . Saying merely

that there are inWnitely many oversimpliWes matters. Not only is there a system

for each one of the inWnitely many Wnite ordinal numbers 1, 2, 3, . . . There is a

system that contains the theorems of every one of the systems Li , where i is a

Wnite ordinal. This system is called Lv (v being the Wrst ‘transWnite’ ordinal

number). The system Lv is ‘bigger’ than any one of the systems Li in the sense

that, no matter which Li is considered, Lv includes all the theorems of Li, but not

138 | Jack Copeland

vice versa. If P1 is the set of provable formulae of L1, P2 of L2, and so on, then Pv
is the union of all the sets P1, P2, P3, . . . But even Lv has a true but unprovable

Gv. Adding Gv to Lv produces Lvþ1, adding Gvþ1 to Lvþ1 produces Lvþ2, and so

on and so on. The progression of systems L, L1, L2, L3, . . . , Lv, Lvþ1, Lvþ2, . . .
is an example of an ordinal logic.

As Turing noted in the Wrst paragraph of ‘Systems of Logic Based on Ordinals’,

each Li is ‘more complete’ than its predecessor: some of the true formulae

unprovable in L are provable in the less incomplete L1, and so on. This raises

the possibility of our being able to construct a progression of systems—an

ordinal logic—that is complete, the systems in the progression proving between

them all the truths of arithmetic. If so, then not every systematic formulation of

arithmetic falls prey to Gödel’s theorem. Such an ordinal logic would ‘avoid as

far as possible the eVects of Gödel’s theorem’, Turing said (p. 178):

Gödel’s theorem shows that such a system cannot be wholly mechanical; but with a

complete ordinal logic we should be able to conWne the non-mechanical steps . . . (p. 180)

In his investigations Turing considered sequences of systems in which the non-

mechanical steps consist, not of recognizing that Gödel-formulae (the Gs) are

true, but of recognizing that certain formulae are what he called ordinal formu-

lae. The concept of an ordinal formula is deWned in terms of operations of the

lambda calculus (p. 162). Roughly, a formula of the lambda calculus is an ordinal

formula if it represents a (constructive) ordinal number. The important point

is that there is no eVective procedure for determining, of any given formula

of the calculus, whether or not it is an ordinal formula; Turing proved this

on p. 170.

Turing gave examples of ordinal logics of three diVerent types, the logic LP

(p. 177), the logic LH (p. 178), and his ‘Gentzen type’ ordinal logics (Section

12).45 (The ‘P ’ in ‘LP ’ refers to Gödel’s 1931 system P, equivalent to the system of

arithmetic given by Whitehead and Russell in Principia Mathematica. Seemingly

‘H’ was for Hilbert.)

Ordinal Logics and Proof-Finding Machines

In one of his letters to Newman (Chapter 4), Turing outlined the relationship

between an ordinal logic and a hierarchy of theorem-proving Turing machines

(p. 215):

One imagines diVerent machines allowing diVerent sets of proofs, and by choosing a

suitable machine one can approximate ‘truth’ by ‘provability’ better than with a less

suitable machine, and can in a sense approximate it as well as you please.

45 The ‘Gentzen-type’ logics of Section 12 are diVerent from the Gentzen-style formulation of Wrst-order

predicate calculus discussed above (although, as the names imply, both are suggested by work of Gentzen).

Systems of Logic Based on Ordinals | 139

If one wants a particular true statement to be proved by a Turing machine (in the

sense described earlier, where ‘ingenuity is replaced by patience’), then, since no

single Turing machine can prove every true arithmetical statement, one must

pick a suitable machine, a machine that actually is able to prove the statement

in question. The selection of a suitable machine typically ‘involves intuition’

(p. 215).

The intuition involved in choosing a suitable proof-Wnding machine is, Turing

went on to say in the letter, ‘interchangeable’ with the intuition required

for selecting a system, from among a progression of systems, in which the

statement is provable. Furthermore, if rather than following the rules of

a particular logical system, one were to prove the statement free-style, then this

too would require intuition, and the necessary intuition would be inter-

changeable with that required for choosing a suitable proof-Wnding machine

or for choosing a suitable logical system. (See further the introduction to

Chapter 12.)

Completeness of Ordinal Logics

Let l1, l2, l3, . . . be any progression of logical systems indexed by (expressions

for) ordinals. To say that l1, l2, l3, . . . is complete with respect to some set of

formulae S is to say that for each formula x in S, there is some ordinal a such that

x is provable in la.

Turing proved the following ‘completeness theorem’: his ordinal logic LP

is complete with respect to the set of all true formulae of the form ‘for every

integer x, f (x) ¼ 0’, where f is a primitive recursive function (pp. 187–190).

Many mathematically interesting theorems are of this form. In modern termin-

ology, formulae of this form are called ‘P0
1 formulae’. Turing referred to them as

being of the form ‘f(x) vanishes identically’ (by ‘f(x) vanishes’ is meant

‘f (x) ¼ 0’).

This completeness theorem shows that LP circumvents Gödel’s incomplete-

ness result in the way discussed above. Solomon Feferman, who in the 1960s

continued Turing’s work on ordinal logics, commented on the theorem: ‘[This]

partial completeness result . . . could have been regarded as meeting the . . . aim of

‘‘overcoming’’ the incompleteness phenomena discovered by Gödel, since these

only concerned true but unprovable P0
1 statements.’46

In his letter to Newman from the Crown (Chapter 4), Turing pointed out that

this ‘completeness theorem . . . is of course completely useless for the purpose of

actually producing proofs’ (p. 213). Why this is so is explained by means of an

example in ‘Systems of Logic Based on Ordinals’ (p. 191):

46 S. Feferman, ‘Turing in the Land of O(z)’, in R. Herken (ed.), The Universal Turing Machine: A Half-

Century Survey (Oxford: Oxford University Press, 1988), 122–3.

140 | Jack Copeland

Although [the completeness theorem] shows, for instance, that it is possible to prove

Fermat’s last theorem with LP (if it is true) yet the truth of the theorem would really be

assumed by taking a certain formula as an ordinal formula.

Nevertheless, as Turing went on to say in the letter, the completeness theorem does

succeed perfectly well in its purpose of providing ‘an insurance against certain

sorts of ‘‘Gödel incompleteness theorems’’ being proved about the ordinal logic’.

Not all true arithmetical statements are ofP0
1 form (this is why the completeness

theorem is only a partial result). Turing was especially concerned with formulae

of the form (x)(9y)f (x, y) ¼ 0 (where f is a primitive recursive function). In

modern terminology, formulae of this form are called ‘P0
2 formulae’. Turing called

(true) formulae of this form ‘number-theoretic theorems’ (p. 152). (The choice of

this term is curious; he defended it in a footnote to p. 152.) In Section 5, Turing

explained why he regarded number-theoretic theorems as having ‘an importance

which makes it worth while to give them special consideration’ (mentioning also,

on p. 155, that a number of unsolved mathematical problems are number-theor-

etic). Turing conjectured that LP is complete with respect to the set of all trueP0
2

formulae, but said ‘I cannot at present give a proof of this’ (p. 187).

Unfortunately Turing’s conjecture that LP is complete with respect to true P0
2

formulae was proved incorrect by Feferman, in work published in 1962.47 Is

there nevertheless some ordinal logic that is complete with respect to this wider

class of truths? A negative answer would represent a spectacular incompleteness

result. Commenting on his refutation of Turing’s conjecture, Feferman said:

A general incompleteness theorem for recursive progressions . . . would have been dramatic

proof of the far-reaching extent of incompleteness phenomena. However, the situation has

not turned out in this way. . . . [A]ll true sentences of elementary number theory are

provable in the recursive progression based on [a principle studied by ShoenWeld].48

At the end of Section 11, Turing gave some reasons for being dissatisWed with

the logics LH and LP , and moved on to the Gentzen-type ordinal logics of

Section 12. He said of the last of his three examples of Gentzen-type logics, LG
3,

that it ‘appears to be adequate for most purposes’, adding ‘How far this is the case

can, of course, only be determined by experiment’ (p. 202).

Oracle Machines

In Section 4, ‘A type of problem which is not number-theoretic’, Turing intro-

duced the concept of an o-machine. An o-machine is like a Turing machine

47 S. Feferman, ‘TransWnite Recursive Progressions of Axiomatic Theories’, Journal of Symbolic Logic, 27

(1962), 259–316.

48 Ibid. 261; J. R. ShoenWeld, ‘On a Restricted v-Rule’, Bulletin de l’Académie Polonaise des Sciences, 7

(1959), 405–7.

Systems of Logic Based on Ordinals | 141

except that the machine is endowed with an additional basic operation of a type

that no Turing machine can simulate. For example, the new operation may be

that of displaying the answer to any question of the form ‘Is Turing machine m

circle-free?’ (A circle-free machine is one that prints an inWnite number of binary

digits; see Sections 8 and 11 of ‘Computable Numbers: A Guide’.) Turing called

the new operation the ‘oracle’. He did not go into the nature of the oracle: it

works by ‘some unspeciWed means’ (p. 156).

The question ‘Is Turing machinem circle-free?’ may be presented to the oracle

simply bywriting out, on successive F-squares of the o-machine’s tape, the descrip-

tion number of the Turingmachine in question (marking the E-squares at the start

and Wnish of the description number with some special symbol, e.g. ‘@’). As in the

case of an ordinary Turingmachine, the behaviour of an o-machine is governed by

a table of instructions. Among the states of the o-machine is a state that is used to

call in the oracle.When an instruction in the table places the machine in that state,

themarked description is ‘referred to the oracle’ (p. 156). The oracle determines by

unspeciWed means whether or not the Turing machine so numbered is circle-free,

and delivers its pronouncement by shifting the machine into one or other of two

states, one indicating the aYrmative answer and the other the negative.

Turing’s aim in Section 4, paralleling his aim in ‘On Computable Numbers’,

was to prove the existence of mathematical problems that cannot be solved by

o-machine. Just as no Turing machine can decide, of arbitrarily selected Turing-

machine description numbers, which are numbers of circle-free machines, no

o-machine can decide, of arbitrarily selected o-machine description numbers,

which are numbers of circle-free o-machines. Turing showed this by reworking

the argument that he gave in ‘On Computable Numbers’ (p. 72V of ‘On

Computable Numbers’ and p. 157 of ‘Systems of Logic Based on Ordinals’).

The connection with number-theoretic problems is via an equivalence pointed

out by Turing in Section 3: ‘every number-theoretic theorem is equivalent to the

statement that a corresponding [Turing] machine is circle free’ (p. 154). In the

light of this equivalence, an oracle for deciding whether or not Turing machines

are circle-free is in eVect an oracle for deciding whether or not statements are

number-theoretic theorems. (Indeed, Turing introduced o-machines in terms of

an oracle for ‘solving number-theoretic problems’ (p. 156).)

Given that an o-machine is able to solve all number-theoretic problems, the

o-machine satisfactoriness problem—the problem of deciding whether arbitrar-

ily selected o-machine description numbers are numbers of circle-free ma-

chines—is an example of a type of problem that is not number-theoretic.

Turing has shown, then, that there are types of mathematical truth that cannot

be proved by means of an eVective method augmented by pronouncements of

the oracle. If the project is to formalize mathematics by means of Hilbertian

inference rules augmented by a strictly circumscribed use of intuition, then the

intuitive steps cannot be limited to true propositions of the form ‘Turing

142 | Jack Copeland

machine m is circle-free’. Equivalently, the intuitive steps cannot be limited to

number-theoretic theorems.

In Section 9, Turing generalized his oracle-machine argument, considering

ordinal logics that ‘prove more general theorems than number-theoretic ones’

(p. 179). An ordinal logic itself provides the materials for the formulation, via the

oracle-machine construction, of a problem that it cannot solve. Consider an oracle

for a class of problemsmore extensive than the number-theoretic problems, and let

the notion of an o-machine be broadened to include machines availing themselves

of thisoracle. It canbe shown,by the same formof argument asbefore, that there are

problems ‘which cannot be solved by a uniform process even with the help of this

oracle’ (p. 180). Thus there are true mathematical statements not provable in an

ordinal logic in which all the intuitive steps correspond to pronouncements of the

oracle.

This negative result of Turing’s exposes the limitations of the post-Hilbertian

programme that is his focus, just as his attack in ‘On Computable Numbers’

exposed the limitations of Hilbert’s own programme. Turing tempered this

negative result with the pragmatic view that an appropriate ordinal logic (per-

haps LG
3) would be ‘adequate for most purposes’ (p. 202).

Generalized Recursion Theory and Degrees of Unsolvability

The oracle-machine concept has in fact had a considerably greater impact on

mathematical logic than the parent concept of an ordinal logic. Turing’s introduc-

tion of the o-machine led to the development of the rich and important Weld of

mathematical logic known as generalized recursion theory. Generalized recursion

theory extends the concept of an algorithm. In his textbook Degrees of Unsolvabil-

ity Joseph ShoenWeld introduces the Weld in this way:

We extend the notion of an algorithm to allow the use of oracles. The extension consists of

allowing a new instruction to appear in the algorithm. This new instruction tells us that

the next computation step is to be the value given by the oracle for the argument obtained

at the last computation step.49

Much of the credit for laying the foundations of generalized recursion theory

belongs to Emil Post, who in the 1940s further developed what Turing had begun

in ‘Systems of Logic Based on Ordinals’.50 In 1944 Post introduced the term

‘Turing-reducible’ into the literature, saying that the decision problem for a

(recursively enumerable) set of positive integers A—i.e. the problem of correctly

49 J. R. ShoenWeld, Degrees of Unsolvability (Amsterdam: North-Holland, 1971), 15.

50 E. L. Post, ‘Recursively Enumerable Sets of Positive Integers and their Decision Problems’, Bulletin of

the American Mathematical Society, 50 (1944), 284–316; E. L. Post, ‘Recursive Unsolvability of a Problem of

Thue’, Journal of Symbolic Logic, 12 (1947), 1–11; E. L. Post, ‘Degrees of Recursive Unsolvability - Preliminary

Report’, Bulletin of the American Mathematical Society, 54 (1948), 641–2.

Systems of Logic Based on Ordinals | 143

answering the question ‘Is x in A?’ for each positive integer x—is Turing-redu-

cible to the decision problem for a (recursively enumerable) set of positive

integers B when the Wrst problem is solvable by an o-machine with an oracle

for solving the second.51 If the decision problem for A is Turing-reducible to

the decision problem for B, A is said to be computable relative to B.

In the same article Post introduced the concept of degrees of unsolvability. It is

natural to think of the problems that are solvable by an o-machine as being

harder than those solvable by a Turing machine unaided by an oracle. Problems

solvable by an unaided Turing machine are said to be of the lowest degree.

Problems of equal hardness are said to be of the same degree.

o-machines whose oracle answers questions of the form ‘Is Turing machine m

circle-free?’ are sometimes called Wrst-order oracle machines. Problems that are

solvable by an o-machine whose oracle answers questions of the form ‘Is Wrst-

order o-machine m circle-free?’—a second-order o-machine—are of a higher

degree than (harder than) problems solvable by Wrst-order o-machines. Problems

that are solvable by a third-order o-machine are of a higher degree again than

problems solvable by a second-order o-machine, and so on.

Post wrote:

For unsolvable problems the concept of reducibility leads to the concept of degree of

unsolvability, two unsolvable problems being of the same degree of unsolvability if each is

reducible to the other, one of lower degree of unsolvability than another if it is reducible

to the other, but that other is not reducible to it, of incomparable degrees of unsolvability

if neither is reducible to the other.52

Post called problems other than those of the lowest degree ‘unsolvable’ (Turing

comments on this terminology in Chapter 17). He pointed out that, in Section 4

of ‘Systems of Logic Based on Ordinals’, Turing proved ‘a result which immedi-

ately generalizes to the result that for any ‘‘recursively given’’ unsolvable problem

there is another of higher degree of unsolvability’.53

In the modern literature the degrees of unsolvability generated by Turing-

reducibility are known simply as Turing degrees.54

Further reading

Barendregt, H. P., The Lambda-Calculus, its Syntax and Semantics (Amsterdam: North-

Holland, 1984).

Davis, M., Computability and Unsolvability (New York: McGraw-Hill, 1958).

51 ‘Recursively Enumerable Sets of Positive Integers and their Decision Problems’, 311.

52 Ibid. 289.

53 Ibid. 289–90.

54 I am grateful to Peter Hilton and Gualtiero Piccinini for their comments on a draft of this introduc-

tion.

144 | Jack Copeland

Feferman, S., ‘Turing in the Land of O(z)’, in R. Herken (ed.), The Universal Turing

Machine: A Half-Century Survey (Oxford: Oxford University Press, 1988).

Kleene, S. C., Mathematical Logic (New York: Wiley, 1967).

Rogers, H., Theory of Recursive Functions and EVective Computability (New York: McGraw-

Hill, 1967).

ShoenWeld, J. R., Degrees of Unsolvability (Amsterdam: North-Holland, 1971).

Simpson, S. G., ‘Degrees of Unsolvability: A Survey of Results’, in J. Barwise (ed.),

Handbook of Mathematical Logic (Amsterdam: North-Holland, 1977).

Soare, R. I., Recursively Enumerable Sets and Degrees (Berlin: Springer-Verlag, 1987).

Systems of Logic Based on Ordinals | 145

Systems of Logic Based on Ordinals

Introduction 146

1. The conversion calculus. Gödel representations 147

2. Effective calculability. Abbreviation of treatment 150

3. Number-theoretic theorems 152

4. A type of problem which is not number-theoretic 156

5. Syntactical theorems as number-theoretic theorems 157

6. Logic formulae 158

7. Ordinals 161

8. Ordinal logics 170

9. Completeness questions 178

10. The continuum hypothesis. A digression 191

11. The purpose of ordinal logics 192

12. Gentzen type ordinal logics 194

Index of definitions 202

Bibliography 203

The well-known theorem of Gödel (Gödel [1], [2]) shows that every system of

logic is in a certain sense incomplete, but at the same time it indicates means

whereby from a system L of logic a more complete system L0 may be obtained.1

By repeating the process we get a sequence L, L1 ¼ L0, L2 ¼ L1
0, . . . each more

complete than the preceding. A logic Lv may then be constructed in which the

provable theorems are the totality of theorems provable with the help of the

logics L, L1, L2, . . . We may then form L2v related to Lv in the same way as Lv
was related to L. Proceeding in this way we can associate a system of logic with

any constructive ordinal.2 It may be asked whether a sequence of logics of this

kind is complete in the sense that to any problem A there corresponds an

ordinal a such that A is solvable by means of the logic La. I propose to

investigate this question in a rather more general case, and to give some

other examples of ways in which systems of logic may be associated with

constructive ordinals.

This article Wrst appeared in Proceedings of the London Mathematical Society, Series 2, 45 (1939),

161–228. It is reprinted with the permission of the London Mathematical Society and the Estate of Alan

Turing.

1 This paper represents work done while a Jane Eliza Procter Visiting Fellow at Princeton University,

where the author received most valuable advice and assistance from Prof. Alonzo Church.

2 The situation is not quite so simple as is suggested by this crude argument. See pages [162–73],

[181–3].

1. The calculus of conversion. Gödel representations

It will be convenient to be able to use the ‘‘conversion calculus’’ of Church for the

description of functions and for some other purposes. This will make greater

clarity and simplicity of expression possible. I give a short account of this

calculus. For detailed descriptions see Church [3], [2], Kleene [1], Church and

Rosser [1].

The formulae of the calculus are formed from the symbols {, }, (,) , [,], l, d,

and an inWnite list of others called variables; we shall take for our inWnite list

a, b, . . . , z, x0, x00, . . . Certain Wnite sequences of such symbols are called well-

formed formulae (abbreviated to W.F.F.); we deWne this class inductively,

and deWne simultaneously the free and the bound variables of a W.F.F. Any

variable is a W.F.F.; it is its only free variable, and it has no bound variables. d is a

W.F.F. and has no free or bound variables. IfM and N are W.F.F. then {M}(N) is a

W.F.F., whose free variables are the free variables of M together with the free

variables of N, and whose bound variables are the bound variables of M together

with those of N. IfM is a W.F.F. and V is one of its free variables, then lV[M] is a

W.F.F. whose free variables are those of M with the exception of V, and whose

bound variables are those of M together with V. No sequence of symbols is a

W.F.F. except in consequence of these three statements.

In metamathematical statements we use heavy type letters to stand for variable

or undetermined formulae, as was done in the last paragraph, and in future such

letters will stand for well-formed formulae unless otherwise stated. Small letters

in heavy type will stand for formulae representing undetermined positive inte-

gers (see below).

AW.F.F. is said to be in normal form if it has no parts of the form {lV[M]}(N)

and none of the form {d}(M)f g(N), where M and N have no free variables.

We say that one W.F.F. is immediately convertible into another if it is obtained

from it either by:

(i) Replacing one occurrence of a well-formed part lV[M] by lU[N], where

the variable U does not occur in M, and N is obtained from M by

replacing the variable V by U throughout.

(ii) Replacing a well-formed part {lV[M]}(N) by the formula which is

obtained from M by replacing V by N throughout, provided that the

bound variables ofM are distinct both from Vand from the free variables

of N.

(iii) The process inverse to (ii).

(iv) Replacing a well-formed part {d}(M)f g(M) by

lf lx[{f } {f }(x)ð Þ]½ �
if M is in normal form and has no free variables.

Systems of Logic Based on Ordinals | 147

(v) Replacing a well-formed part {d}(M)f g(N) by
lf lx[{f }(x)]½ �

if M and N are in normal form, are not transformable into one another by

repeated application of (i), and have no free variables.

(vi) The process inverse to (iv).

(vii) The process inverse to (v).

These rules could have been expressed in such a way that in no case could

there be any doubt about the admissibility or the result of the transformation [in

particular this can be done in the case of process (v)].

A formula A is said to be convertible into another B (abbreviated to ‘‘A conv

B’’) if there is a Wnite chain of immediate conversions leading from one formula

to the other. It is easily seen that the relation of convertibility is an equivalence

relation, i.e. it is symmetric, transitive, and reXexive.

Since the formulae are liable to be very lengthy, we need means for abbreviat-

ing them. If we wish to introduce a particular letter as an abbreviation for a

particular lengthy formula we write the letter followed by ‘‘!’’ and then by the

formula, thus

I ! lx[x]

indicates that I is an abbreviation for lx[x]. We also use the arrow in less sharply

deWned senses, but never so as to cause any real confusion. In these cases the

meaning of the arrow may be rendered by the words ‘‘stands for’’.

If a formula F is, or is represented by, a single symbol we abbreviate {F}(X) to

F(X). A formula {F}(X)f g(Y) may be abbreviated to

{F}(X, Y),

or to F(X, Y) if F is, or is represented by, a single symbol. Similarly for

{F}(X)g(Y)g(Z)ff , etc. A formula lV1 lV2 . . . lVr[M]½ � . . .½ � may be abbreviated

to lV1V2 . . .Vr :M.

We have not as yet assigned any meanings to our formulae, and we do not

intend to do so in general. An exception may be made for the case of the positive

integers, which are very conveniently represented by the formulae

lfx : f (x), lfx : f f (x)ð Þ, . . . In fact we introduce the abbreviations

1! lfx : f (x)

2! lfx : f f (x)ð Þ
3! lfx : f f f (x)ð Þð Þ, etc:,

and we also say, for example, that lfx : f f (x)ð Þ, or in full

lf lx {f } {f }(x)ð Þ½ �½ �,

148 | Alan Turing

represents the positive integer 2. Later we shall allow certain formulae to

represent ordinals, but otherwise we leave them without explicit meaning; an

implicit meaning may be suggested by the abbreviations used. In any case where

any meaning is assigned to formulae it is desirable that the meaning should be

invariant under conversion. Our deWnitions of the positive integers do not

violate this requirement, since it may be proved that no two formulae represent-

ing diVerent positive integers are convertible the one into the other.

In connection with the positive integers we introduce the abbreviation

S ! lufx : f u(f, x)ð Þ:
This formula has the property that, if n represents a positive integer, S(n) is

convertible to a formula representing its successor.3

Formulae representing undetermined positive integers will be represented by

small letters in heavy type, and we adopt once for all the convention that, if a

small letter, n say, stands for a positive integer, then the same letter in heavy type,

n, stands for the formula representing the positive integer. When no confusion

arises from so doing, we shall not trouble to distinguish between an integer and

the formula which represents it.

Suppose that f(n) is a function of positive integers taking positive integers as

values, and that there is a W.F.F. F not containing d such that, for each positive

integer n, F(n) is convertible to the formula representing f(n). We shall then say

that f(n) is l-deWnable or formally deWnable, and that F formally deWnes f(n).

Similar conventions are used for functions of more than one variable. The sum

function is, for instance, formally deWned by labfx : a f, b(f, x)ð Þ; in fact, for any

positive integers m, n, p for which mþ n ¼ p, we have

labfx : a f, b(f, x)ð Þf g(m, n) conv p:

In order to emphasize this relation we introduce the abbreviation

Xþ Y! labfx : a f, b(f, x)ð Þf g(X, Y)
and we shall use similar notations for sums of three or more terms, products, etc.

For any W.F.F. G we shall say that G enumerates the sequence G(1), G(2), . . .

and any other sequence whose terms are convertible to those of this sequence.

When a formula is convertible to another which is in normal form, the second is

described as a normal form of the Wrst, which is then said to have a normal form. I

quote here some of the more important theorems concerning normal forms.

(A) If a formula has two normal forms they are convertible into one another by

the use of (i) alone. (Church and Rosser [1], 479, 481.)

(B) If a formula has a normal form then every well-formed part of it has a

normal form. (Church and Rosser [1], 480–481.)

3 This follows from (A) below.

Systems of Logic Based on Ordinals | 149

(C) There is (demonstrably) no process whereby it can be said of a formula

whether it has a normal form. (Church [3], 360, Theorem XVIII.)

We often need to be able to describe formulae by means of positive integers.

The method used here is due to Gödel (Gödel [1]). To each single symbol s of the

calculus we assign an integer r[s] as in the table below.

s {, (, or [},), or] l d a . . . z x0 x00 x000 . . .

r[s] 1 2 3 4 5 . . . 30 31 32 33 . . .

If s1, s2, . . . , sk is a sequence of symbols, then 2r[s1]3r[s2] . . . pr[sk]k (where pk is

the k-th prime number) is called the Gödel representation (G.R.) of that sequence

of symbols. No two W.F.F. have the same G.R.

Two theorems on G.R. of W.F.F. are quoted here.

(D) There is a W.F.F. ‘‘form’’ such that if a is the G.R. of a W.F.F. A without

free variables, then form (a) conv A. (This follows from a similar theorem

to be found in Church [3], 53 66. Metads are used there in place of G.R.)

(E) There is a W.F.F. Gr such that, if A is a W.F.F. with a normal form without

free variables, then Gr(A) conv a, where a is the G.R. of a normal form of A.

[Church [3], 53, 66, as (D).]

2. Effective calculability. Abbreviation of treatment

A function is said to be ‘‘eVectively calculable’’ if its values can be found by some

purely mechanical process. Although it is fairly easy to get an intuitive grasp of

this idea, it is nevertheless desirable to have some more deWnite, mathematically

expressible deWnition. Such a deWnition was Wrst given by Gödel at Princeton in

1934 (Gödel [2], 26), following in part an unpublished suggestion of Herbrand,

and has since been developed by Kleene [2]). These functions were described as

‘‘general recursive’’ by Gödel. We shall not be much concerned here with this

particular deWnition. Another deWnition of eVective calculability has been given

by Church (Church [3], 356–358), who identiWes it with l-deWnability. The

author has recently suggested a deWnition corresponding more closely to the

intuitive idea (Turing [1], see also Post [1]). It was stated above that ‘‘a function

is eVectively calculable if its values can be found by some purely mechanical

process’’. We may take this statement literally, understanding by a purely mech-

anical process one which could be carried out by a machine. It is possible to

give a mathematical description, in a certain normal form, of the structures

of these machines. The development of these ideas leads to the author’s deWni-

tion of a computable function, and to an identiWcation of computability

150 | Alan Turing

with eVective calculability.4 It is not diYcult, though somewhat laborious, to

prove that these three deWnitions are equivalent (Kleene [3], Turing [2]).

In the present paper we shall make considerable use of Church’s identiWcation

of eVective calculability with l-deWnability, or, what comes to the same thing, of

the identiWcation with computability and one of the equivalence theorems. In

most cases where we have to deal with an eVectively calculable function, we shall

introduce the corresponding W.F.F. with some such phrase as ‘‘the function f is

eVectively calculable, let F be a formula l deWning it’’, or ‘‘let F be a formula such

that F(n) is convertible to . . . whenever n represents a positive integer’’. In such

cases there is no diYculty in seeing how a machine could in principle be

designed to calculate the values of the function concerned; and, assuming this

done, the equivalence theorem can be applied. A statement of what the formula F

actually is may be omitted. We may immediately introduce on this basis a W.F.F.

$ with the property that

$(m,n) conv r,

if r is the greatest positive integer, if any, for which mr divides n and r is 1 if there

is none. We also introduce Dt with the properties

Dt(n,n) conv 3,

Dt(nþm, n) conv 2,

Dt(n,nþm) conv 1:

There is another point to be made clear in connection with the point of view

that we are adopting. It is intended that all proofs that are given should be

regarded no more critically than proofs in classical analysis. The subject matter,

roughly speaking, is constructive systems of logic, but since the purpose is

directed towards choosing a particular constructive system of logic for practical

use, an attempt at this stage to put our theorems into constructive form would be

putting the cart before the horse.

Those computable functions which take only the values 0 and 1 are of

particular importance, since they determine and are determined by computable

properties, as may be seen by replacing ‘‘0’’ and ‘‘1’’ by ‘‘true’’ and ‘‘false’’. But,

besides this type of property, we may have to consider a diVerent type, which is,

roughly speaking, less constructive than the computable properties, but more so

than the general predicates of classical mathematics. Suppose that we have a

computable function of the natural numbers taking natural numbers as values,

then corresponding to this function there is the property of being a value of the

function. Such a property we shall describe as ‘‘axiomatic’’; the reason for using

4 We shall use the expression ‘‘computable function’’ to mean a function calculable by a machine, and we

let ‘‘eVectively calculable’’ refer to the intuitive idea without particular identiWcation with any one of these

deWnitions. We do not restrict the values taken by a computable function to be natural numbers; we may for

instance have computable propositional functions.

Systems of Logic Based on Ordinals | 151

this term is that it is possible to deWne such a property by giving a set of axioms,

the property to hold for a given argument if and only if it is possible to deduce

that it holds from the axioms.

Axiomatic properties may also be characterized in this way. A property c of

positive integers is axiomatic if and only if there is a computable property f of

two positive integers, such that c(x) is true if and only if there is a positive

integer y such that f(x, y) is true. Or again c is axiomatic if and only if there is a

W.F.F. F such that c(n) is true if and only if F(n) conv 2.

3. Number-theoretic theorems

By a number-theoretic theorem5 we shall mean a theorem of the form ‘‘y(x)
vanishes for inWnitely many natural numbers x’’, where y(x) is a primitive

recursive function.6

We shall say that a problem is number-theoretic if it has been shown that any

solution of the problem may be put in the form of a proof of one or more

number-theoretic theorems. More accurately we may say that a class of problems

is number-theoretic if the solution of any one of them can be transformed (by a

uniform process) into the form of proofs of number-theoretic theorems.

I shall now draw a few consequences from the deWnition of ‘‘number theoretic

theorems’’, and in section 5 I shall try to justify conWning our consideration to

this type of problem.

An alternative form for number-theoretic theorems is ‘‘for each natural

number x there exists a natural number y such that f(x, y) vanishes’’, where

f(x, y) is primitive recursive. In other words, there is a rule whereby, given the

5 I believe that there is no generally accepted meaning for this term, but it should be noticed that we are

using it in a rather restricted sense. The most generally accepted meaning is probably this: suppose that we

take an arbitrary formula of the functional calculus of the Wrst order and replace the function variables by

primitive recursive relations. The resulting formula represents a typical number-theoretic theorem in this

(more general) sense.

6 Primitive recursive functions of natural numbers are deWned inductively as follows. Suppose that

f (x1, . . . , xn�1), g(x1, . . . , xn), h(x1, . . . , xnþ1) are primitive recursive, then f(x1, . . . , xn) is primitive

recursive if it is deWned by one of the sets of equations (a) to (e).

(a) f x1, . . . , xnð Þ ¼ h x1, . . . , xm�1, g x1,ðð . . . , xnÞ, xmþ1, . . . , xn�1, xmÞ (1 < m < n);

(b) f x1, . . . , xnð Þ ¼ f x2, . . . , xnð Þ;
(c) f x1ð Þ ¼ a, where n ¼ 1 and a is some particular natural number;

(d) f x1ð Þ ¼ x1 þ 1 (n ¼ 1);

(e) f x1, . . . , xn�1, 0ð Þ ¼ f x1, . . . , xn�1ð Þ;
f x1, . . . , xn�1, xn þ 1ð Þ ¼ h x1, . . . , xn, f x1, . . . , xnð Þð Þ:

The class of primitive recursive functions is more restricted than the class of computable functions, but it

has the advantage that there is a process whereby it can be said of a set of equations whether it deWnes a

primitive recursive function in the manner described above.

If f x1, . . . , xnð Þ is primitive recursive, then f x1, . . . , xnð Þ ¼ 0 is described as a primitive recursive

relation between x1, . . . , xn.

152 | Alan Turing

function y(x), we can Wnd a function f(x, y), or given f(x, y), we can Wnd a

function y(x), such that ‘‘y(x) vanishes inWnitely often’’ is a necessary and

suYcient condition for ‘‘for each x there is a y such that f(x, y) ¼ 0’’. In fact,

given y(x), we deWne

f(x, y) ¼ y(x)þ a(x, y),

where a(x, y) is the (primitive recursive) function with the properties

a(x, y) ¼ 1 (y < x),

¼ 0 (y > x):

If on the other hand we are given f(x, y) we deWne y(x) by the equations

y1(0) ¼ 3,

y1(xþ1)¼2 1þˆ2 y1(x)ð Þð Þs f ˆ3 y1(x)ð Þð �1,ˆ2 y1(x)ð Þð ÞÞ3ˆ3 y1(x)ð Þþ1�s f ˆ3 y1(x)ð Þ�1,ˆ2 y1(x)ð Þð Þð Þ,
y(x) ¼ f $3 y1(x)ð Þ � 1, $2 y1(x)ð Þð Þ,

where ˆr(x) is deWned so as to mean ‘‘the largest s for which rs divides x’’. The

function s(x) is deWned by the equations s(0) ¼ 0, s(x þ 1) ¼ 1. It is easily

veriWed that the functions so deWned have the desired properties.

We shall now show that questions about the truth of the statements of the

form ‘‘does f (x) vanish identically’’, where f (x) is a computable function, can be

reduced to questions about the truth of number-theoretic theorems. It is under-

stood that in each case the rule for the calculation of f (x) is given and that we are

satisWed that this rule is valid, i.e. that the machine which should calculate f (x) is

circle free ([p. 60]). The function f (x), being computable, is general recursive in

the Herbrand–Gödel sense, and therefore, by a general theorem due to Kleene7, is

expressible in the form

c ey[f(x, y) ¼ 0]ð Þ, (3:2)

where ey[A(y)] means ‘‘the least y for which A(y) is true’’ and c(y) and f(x, y)
are primitive recursive functions. Without loss of generality, we may suppose

that the functions f,c take only the values 0, 1. Then, if we deWne r(x) by the

equations (3.1) and

r(0) ¼ c(0) 1� y(0)ð Þ,
r(x þ 1) ¼ 1� 1� r(x)ð Þ s 1þ y(x)� c ˆ2 y1(x)ð Þf g½ �

it will be seen that f (x) vanishes identically if and only if r(x) vanishes for

inWnitely many values of x.

7 Kleene [3], 727. This result is really superXuous for our purpose, since the proof that every computable

function is general recursive proceeds by showing that these functions are of the form (3.2). (Turing [2],

161).

Systems of Logic Based on Ordinals | 153

The converse of this result is not quite true. We cannot say that the question

about the truth of any number-theoretic theorem is reducible to a question

about whether a corresponding computable function vanishes identically; we

should have rather to say that it is reducible to the problem of whether a certain

machine is circle free and calculates an identically vanishing function. But more

is true: every number-theoretic theorem is equivalent to the statement that a

corresponding machine is circle free. The behaviour of the machine may be

described roughly as follows: the machine is one for the calculation of the

primitive recursive function y(x) of the number-theoretic problem, except that

the results of the calculation are Wrst arranged in a form in which the Wgures 0

and 1 do not occur, and the machine is then modiWed so that, whenever it has

been found that the function vanishes for some value of the argument, then 0 is

printed. The machine is circle free if and only if an inWnity of these Wgures are

printed, i.e. if and only if y(x) vanishes for inWnitely many values of the

argument. That, on the other hand, questions of circle freedom may be reduced

to questions of the truth of number-theoretic theorems follows from the fact that

y(x) is primitive recursive when it is deWned to have the value 0 if a certain

machine M prints 0 or 1 in its (x þ 1)-th complete conWguration, and to have

the value 1 otherwise.

The conversion calculus provides another normal form for the number-the-

oretic theorems, and the one which we shall Wnd the most convenient to use.

Every number-theoretic theorem is equivalent to a statement of the form ‘‘A(n) is

convertible to 2 for every W.F.F. n representing a positive integer’’, A being a

W.F.F. determined by the theorem; the property of A here asserted will be

described brieXy as ‘‘A is dual’’. Conversely such statements are reducible to

number-theoretic theorems. The Wrst half of this assertion follows from our

results for computable functions, or directly in this way. Since y(x � 1)þ 2 is

primitive recursive, it is formally deWnable, say, by means of a formula G. Now

there is (Kleene [1], 232) a W.F.F. P with the property that, if T(r) is convertible

to a formula representing a positive integer for each positive integer r, then

P(T, n) is convertible to s, where s is the n-th positive integer t (if there is one)

for which T(t) conv 2; if T(t) conv 2 for less than n values of t then P(T, n) has

no normal form. The formula G P(G, n)ð Þ is therefore convertible to 2 if and

only if y(x) vanishes for at least n values of x, and is convertible to 2 for every

positive integer x if and only if y(x) vanishes inWnitely often. To prove the second

half of the assertion, we take Gödel representations for the formulae of the

conversion calculus. Let c(x) be 0 if x is the G.R. of 2 (i.e. if x is 23: 310: 5 : 73:

1128: 13 : 17 : 1910: 232: 29 : 31 : 3710: 412: 43 : 4728 : 532: 592: 612: 672) and let c(x)

be 1 otherwise. Take an enumeration of the G.R. of the formulae into which

A(m) is convertible: let a(m, n) be the n-th number in the enumeration. We can

arrange the enumeration so that a(m, n) is primitive recursive. Now the state-

ment that A(m) is convertible to 2 for every positive integer m is equivalent to

154 | Alan Turing

the statement that, corresponding to each positive integer m, there is a positive

integer n such that c a(m, n)ð Þ ¼ 0; and this is number-theoretic.

It is easy to show that a number of unsolved problems, such as the problem

of the truth of Fermat’s last theorem, are number-theoretic. There are, how-

ever, also problems of analysis which are number-theoretic. The Riemann

hypothesis gives us an example of this. We denote by z(s) the function deWned

for Rs ¼ s > 1 by the series
P1
n¼1

n�s and over the rest of the complex plane with

the exception of the point s ¼ 1 by analytic continuation. The Riemann hypoth-

esis asserts that this function does not vanish in the domain s > 1
2
. It is easily

shown that this is equivalent to saying that it does not vanish for

2 > s > 1
2
, Fs ¼ t > 2, i.e. that it does not vanish inside any rectangle

2 > s > 1
2
þ 1=T , T > t > 2, where T is an integer greater than 2. Now the

function satisWes the inequalities

z(s)�
XN
1

n�s � N 1�s

s � 1

�����
����� < 2t(N � 2)�

1
2, 2 < s < 1

2
, t > 2,

z(s)� z(s0)j j < 60t s � s0j j, 2 < s0 < 1
2
, t 0 > 2,

9>>=
>>;

and we can deWne a primitive recursive function x(l, l 0, m, m0, N , M) such that

x(l, l0, m, m0, N , M)�M
XN
1

n�s þ N 1�s

s � 1

�����
�����

�����
����� < 2, s ¼ l

l0
þ i

m

m0

	

,

and therefore, if we put

x l, M , m, M , M2 þ 2, M
� � ¼ X(l, m, M),

we have

z
l þ W
M
þ i

mþ W
M

	
����
���� > X(l, m, M)� 122T

M
,

provided that

1
2
þ 1

T
<

l � 1

M
<

l þ 1

M
< 2� 1

M
, 2 <

m� 1

M
<

mþ 1

M
< T

(�1 < W < 1, �1 < W0 < 1):

If we deWne B(M, T) to be the smallest value of X(l, m, M) for which

1
2
þ 1

T
þ 1

M
<

l

M
< 2� 1

M
, 2þ 1

M
<

m

M
< T � 1

M
,

then the Riemann hypothesis is true if for each T there is an M satisfying

B(M , T) > 122T :

Systems of Logic Based on Ordinals | 155

If on the other hand there is a T such that, for all M , B(M , T) < 122T , the

Riemann hypothesis is false; for let lM , mM be such that

X lM , mM , Mð Þ < 122T ,

then z
lM þ imM

M

	
����
���� < 244T

M
:

Now if a is a condensation point of the sequence (lM þ imM)=M then since z(s)
is continuous except at s ¼ 1 we must have z(a) ¼ 0 implying the falsity of the

Riemann hypothesis. Thus we have reduced the problem to the question whether

for each T there is an M for which

B(M , T) > 122T :

B(M, T) is primitive recursive, and the problem is therefore number-theoretic.

4. A type of problem which is not number-theoretic8

Let us suppose that we are supplied with some unspeciWed means of solving

number-theoretic problems; a kind of oracle as it were. We shall not go any

further into the nature of this oracle apart from saying that it cannot be a

machine. With the help of the oracle we could form a new kind of machine

(call them o-machines), having as one of its fundamental processes that of

solving a given number-theoretic problem. More deWnitely these machines are

to behave in this way. The moves of the machine are determined as usual by a

table except in the case of moves from a certain internal conWguration o. If the
machine is in the internal conWguration o and if the sequence of symbols marked

with l is then the well-formed9 formula A, then the machine goes into the

internal conWguration p or t according as it is or is not true that A is dual.

The decision as to which is the case is referred to the oracle.

These machines may be described by tables of the same kind as those used for

the description of a-machines, there being no entries, however, for the internal

conWguration o. We obtain description numbers from these tables in the same

way as before. If we make the convention that, in assigning numbers to internal

conWgurations, o, p, t are always to be q2, q3, q4, then the description numbers

determine the behaviour of the machines uniquely.

Given any one of these machines we may ask ourselves the question whether or

not it prints an inWnity of Wgures 0 or 1; I assert that this class of problem is not

number-theoretic. In view of the deWnition of ‘‘number-theoretic problem’’ this

means that it is not possible to construct an o-machine which, when supplied

8 Compare Rosser [1].

9 Without real loss of generality we may suppose that A is always well formed.

156 | Alan Turing

with the description of any other o-machine, will determine whether that

machine is o-circle free.10 The argument may be taken over directly from Turing

[1], § 8. We say that a number is o-satisfactory if it is the description number of

an o-circle free machine. Then, if there is an o-machine which will determine of

any integer whether it is o-satisfactory, there is also an o-machine to calculate the

values of the function 1� fn(n). Let r(n) be the n-th o-satisfactory number and

let fn(m) be the m-th Wgure printed by the o-machine whose description

number is r (n). This o-machine is circle free and there is therefore an o-satisfac-

tory number K such that fK (n) ¼ 1� fn(n) for all n. Putting n ¼ K yields a

contradiction. This completes the proof that problems of circle freedom of

o-machines are not number-theoretic.

Propositions of the form that an o-machine is o-circle free can always be put in

the form of propositions obtained from formulae of the functional calculus of

the Wrst order by replacing some of the functional variables by primitive recursive

relations. Compare foot-note [5] on page [152].

5. Syntactical theorems as number-theoretic theorems

I now mention a property of number-theoretic theorems which suggests that

there is reason for regarding them as of particular importance.

Suppose that we have some axiomatic system of a purely formal nature. We do

not concern ourselves at all in interpretations for the formulae of this system;

they are to be regarded as of interest for themselves. An example of what is in

mind is aVorded by the conversion calculus (§1). Every sequence of symbols ‘‘A

conv B’’, where A and B are well formed formulae, is a formula of the axiomatic

system and is provable if the W.F.F. A is convertible to B. The rules of conversion

give us the rules of procedure in this axiomatic system.

Now consider a new rule of procedure which is reputed to yield only formulae

provable in the original sense. We may ask ourselves whether such a rule is valid.

The statement that such a rule is valid would be number-theoretic. To prove this,

let us take Gödel representations for the formulae, and an enumeration of the

provable formulae; let f(r) be the G.R. of the r-th formula in the enumeration.

We may suppose f(r) to be primitive recursive if we are prepared to allow

repetitions in the enumeration. Let c(r) be the G.R. of the r-th formula obtained

by the new rule, then the statement that this new rule is valid is equivalent to the

assertion of

(r)(9s)[c(r) ¼ f(s)]

(the domain of individuals being the natural numbers). It has been shown in §3

that such statements are number-theoretic.

10 Compare Turing [1], §6, 7.

Systems of Logic Based on Ordinals | 157

It might plausibly be argued that all those theorems of mathematics which

have any signiWcance when taken alone are in eVect syntactical theorems of this

kind, stating the validity of certain ‘‘derived rules’’ of procedure. Without going

so far as this, I should assert that theorems of this kind have an importance

which makes it worth while to give them special consideration.

6. Logic formulae

We shall call a formula L a logic formula (or, if it is clear that we are speaking of a

W.F.F., simply a logic) if it has the property that, if A is a formula such that L(A)

conv 2, then A is dual.

A logic formula gives us a means of satisfying ourselves of the truth of

number-theoretic theorems. For to each number-theoretic proposition there

corresponds a W.F.F. A which is dual if and only if the proposition is true.

Now, if L is a logic and L(A) conv 2, then A is dual and we know that the

corresponding number-theoretic proposition is true. It does not follow that, if L

is a logic, we can use L to satisfy ourselves of the truth of any number-theoretic

theorem.

If L is a logic, the set of formulae A for which L(A) conv 2 will be called the

extent of L.

It may be proved by the use of (D), (E), p. [150], that there is a formula X such

that, if M has a normal form, has no free variables and is not convertible to 2,

then X(M) conv 1, but, if M conv 2, then X(M) conv 2. If L is a logic, then

lx :X L(x)ð Þ is also a logic whose extent is the same as that of L, and which has

the property that, if A has no free variables, then

lx :X L(x)ð Þf g(A)
either is always convertible to 1 or to 2 or else has no normal form. A logic with

this property will be said to be standardized.

We shall say that a logic L0 is at least as complete as a logic L if the extent of L is

a subset of the extent of L0. The logic L0 is more complete than L if the extent of L

is a proper subset of the extent of L0.
Suppose that we have an eVective set of rules by which we can prove formulae

to be dual; i.e. we have a system of symbolic logic in which the propositions

proved are of the form that certain formulae are dual. Then we can Wnd a logic

formula whose extent consists of just those formulae which can be proved to be

dual by the rules; that is to say, there is a rule for obtaining the logic formula

from the system of symbolic logic. In fact the system of symbolic logic enables us

to obtain a computable function of positive integers whose values run through

the Gödel representations of the formulae provable by means of the given rules.11

11 Compare Turing [1], [p. 77, n. 7], [2], 156.

158 | Alan Turing

By the theorem of equivalence of computable and l-deWnable functions, there is

a formula J such that J(1), J(2), . . . are the G.R. of these formulae. Now let

W ! ljv :P lu : d j(u), vð Þ, 1, I , 2ð Þ:
Then I assert that W(J) is a logic with the required properties. The properties of

P imply thatP(C, 1) is convertible to the least positive integer n for which C(n)

conv 2, and has no normal form if there is no such integer. Consequently

P(C, 1, I , 2) is convertible to 2 if C(n) conv 2 for some positive integer n, and

it has no normal form otherwise. That is to say that W(J, A) conv 2 if and only if

d J(n), Að Þ conv 2, some n, i.e. if J(n) conv A some n.

There is conversely a formula W 0 such that, if L is a logic, then W 0(L)
enumerates the extent of L. For there is a formula Q such that Q(L, A, n) conv

2 if and only if L(A) is convertible to 2 in less than n steps. We then put

W 0 ! lln : form $ 2, P lx :Q l, form $(2, x)ð Þ, $(3, x)ð Þ, nð Þð Þð Þ:
Of course, W 0 W (J)ð Þ normally entirely diVerent from J and W W 0(L)ð Þ from L.

In the case where we have a symbolic logic whose propositions can be inter-

preted as number-theoretic theorems, but are not expressed in the form of the

duality of formulae, we shall again have a corresponding logic formula, but its

relation to the symbolic logic is not so simple. As an example let us take the case

where the symbolic logic proves that certain primitive recursive functions vanish

inWnitely often. As was shown in §3, we can associate with each such proposition a

W.F.F. which is dual if and only if the proposition is true. When we replace the

propositions of the symbolic logic by theorems on the duality of formulae in this

way, our previous argument applies and we obtain a certain logic formula L.

However, L does not determine uniquely which are the propositions provable in

the symbolic logic; for it is possible that ‘‘y1(x) vanishes inWnitely often’’ and

‘‘y2(x) vanishes inWnitely often’’ are both associated with ‘‘A is dual’’, and that the

Wrst of these propositions is provable in the system, but the second not. However, if

we suppose that the system of symbolic logic is suYciently powerful to be able to

carry out the argument on pp. [154–5] then this diYculty cannot arise. There is

also the possibility that there may be formulae in the extent of Lwith no propos-

itions of the form ‘‘y(x) vanishes inWnitely often’’ corresponding to them. But to

each such formula we can assign (by a diVerent argument) a proposition p of the

symbolic logic which is a necessary and suYcient condition for A to be dual. With

p is associated (in the Wrst way) a formulaA0. Now L can always bemodiWed so that

its extent contains A0 whenever it contains A.
We shall be interested principally in questions of completeness. Let us suppose

that we have a class of systems of symbolic logic, the propositions of these

systems being expressed in a uniform notation and interpretable as number-

theoretic theorems; suppose also that there is a rule by which we can assign to

each proposition p of the notation a W.F.F. Ap which is dual if and only if p is

Systems of Logic Based on Ordinals | 159

true, and that to each W.F.F. A we can assign a proposition pA which is a

necessary and suYcient condition for A to be dual. pAp
is to be expected to

diVer from p. To each symbolic logic C we can assign two logic formulae LC and

LC
0. A formula A belongs to the extent of LC if pA is provable in C, while the

extent of LC
0 consists of all Ap, where p is provable in C. Let us say that the class

of symbolic logics is complete if each true proposition is provable in one of them:

let us also say that a class of logic formulae is complete if the set-theoretic sum of

the extents of these logics includes all dual formulae. I assert that a necessary

condition for a class of symbolic logics C to be complete is that the class of logics

LC is complete, while a suYcient condition is that the class of logics LC
0 is

complete. Let us suppose that the class of symbolic logics is complete; consider

pA, where A is arbitrary but dual. It must be provable in one of the systems, C say.

A therefore belongs to the extent of LC , i.e. the class of logics LC is complete.

Now suppose the class of logics LC
0 to be complete. Let p be an arbitrary true

proposition of the notation; Ap must belong to the extent of some LC
0 , and this

means that p is provable in C.

We shall say that a single logic formula L is complete if its extent includes all

dual formulae; that is to say, it is complete if it enables us to prove every true

number-theoretic theorem. It is a consequence of the theorem of Gödel (if

suitably extended) that no logic formula is complete, and this also follows

from (C), p. [150], or from the results of Turing [1], §8, when taken in conjunction

with §3 of the present paper. The idea of completeness of a logic formula is not

therefore very important, although it is useful to have a term for it.

Suppose Y to be a W.F.F. such that Y(n) is a logic for each positive integer n.

The formulae of the extent of Y(n) are enumerated by W Y(n)ð Þ, and the

combined extents of these logics by

lr :W Y $(2, r), $(3, r)ð Þð Þ:
If we put

G! ly :W 0 lr :W y $(2, r), $(3, r)ð Þð Þð Þ,
then G(Y) is a logic whose extent is the combined extent of

Y(1), Y(2), Y(3), . . .

To each W.F.F. L we can assign a W.F.F. V(L) such that a necessary and suYcient

condition for L to be a logic formula is that V(L) is dual. Let Nm be a W.F.F.

which enumerates all formulae with normal forms and no free variables. Then

the condition for L to be a logic is that L Nm(r), sÞð conv 2 for all positive

integers r, s, i.e. that

la : L Nm $(2, a)ð Þ, $(3, a)ð Þ

160 | Alan Turing

is dual. We may therefore put

V ! lla : l Nm $(2, a)ð Þ, $(3, a)ð Þ:

7. Ordinals

We begin our treatment of ordinals with some brief deWnitions from the Cantor

theory of ordinals, but for the understanding of some of the proofs a greater

amount of the Cantor theory is necessary than is set out here.

Suppose that we have a class determined by the propositional function D(x)

and a relation G(x, y) ordering its members, i.e. satisfying

G(x, y) &G(y, z) � G(x, z), (i)

D(x) &D(y) � G(x, y) v G(y, x) v x ¼ y, (ii)

G(x, y) � D(x) &D(y), (iii)

� G(x, x): (iv)

9>>>=
>>>; (7:1)

The class deWned by D(x) is then called a series with the ordering relation G(x, y).

The series is said to be well ordered and the ordering relation is called an ordinal if

every sub-series which is not void has a Wrst term, i.e. if

(D 0) (9x) D 0(x)ð Þf & (x) D 0(x) � D(x)ð Þ
� (9z)(y) D 0(z) & D 0(y) � G(z, y) v z ¼ yð Þ½ �g: (7:2)

The condition (7.2) is equivalent to another, more suitable for our purposes,

namely the condition that every descending subsequence must terminate; for-

mally

(x) D 0(x) � D(x) & (9y) D 0(y) &G(y, x)ð Þf g � (x) � D 0(x)ð Þ: (7:3)

The ordering relation G(x, y) is said to be similar to G0(x, y) if there is a one–
one correspondence between the series transforming the one relation into the

other. This is best expressed formally, thus

(9M) (x){D(x)½ � (9x0)M(x, x0)} & (x0){D 0(x0) � (9x)M(x, x0)}
& M(x, x0) &M(x, x00)ð Þ v M(x0, x) &M(x00, x)ð Þ � x0 ¼ x00f g
& M(x, x0) &M(y, y 0) � G(x, y) 	 G(x0, y 0)ð Þf g�: (7:4)

Ordering relations are regarded as belonging to the same ordinal if and only if

they are similar.

We wish to give names to all the ordinals, but this will not be possible until

they have been restricted in some way; the class of ordinals, as at present deWned,

is more than enumerable. The restrictions that we actually impose are these: D(x)

is to imply that x is a positive integer; D(x) and G(x, y) are to be computable

Systems of Logic Based on Ordinals | 161

properties. Both of the propositional functions D(x), G(x, y) can then be

described by means of a single W.F.F. V with the properties:

V(m, n) conv 4 unless both D(m) and D(n) are true,

V(m, m) conv 3 if D(m) is true,

V(m, n) conv 2 if D(m), D(n), G(m, n), � (m ¼ n) are true,

V(m, n) conv 1 if D(m), D(n), � G(m, n), � (m ¼ n) are true.

In consequence of the conditions to which D(x), G(x, y) are subjected, V must

further satisfy:

(a) if V(m, n) is convertible to 1 or 2, then V(m, m) and V(n, n) are

convertible to 3,

(b) if V(m, m) andV(n, n) are convertible to 3, then V(m, n) is convertible

to 1, 2, or 3,

(c) if V(m, n) is convertible to 1, then V(n, m) is convertible to 2 and

conversely,

(d) if V(m, n) and V(n, p) are convertible to 1, then V(m, p) is also,

(e) there is no sequence m1, m2, . . . such that V(miþ1, mi) conv 2 for each

positive integer i,

(f) V(m, n) is always convertible to 1, 2, 3, or 4.

If a formula V satisWes these conditions then there are corresponding propos-

itional functionsD(x),G(x, y).We shall therefore say thatV is an ordinal formula if

it satisWes the conditions (a)–(f). It will be seen that a consequence of this

deWnition is that Dt is an ordinal formula; it represents the ordinal v. The

deWnition that we have given does not pretend to have virtues such as elegance

or convenience. It has been introduced rather to Wx our ideas and to show how it is

possible in principle to describe ordinals by means of well-formed formulae. The

deWnitions could be modiWed in a number of ways. Some such modiWcations are

quite trivial; they are typiWed by modiWcations such as changing the numbers 1, 2,

3, 4, used in the deWnition, to others. Two such deWnitions will be said to be

equivalent; in general, we shall say that two deWnitions are equivalent if there are

W.F.F. T, T0 such that, if A is an ordinal formula under one deWnition and

represents the ordinal a, then T0(A) is an ordinal formula under the second

deWnition and represents the same ordinal; and, conversely, if A0 is an ordinal

formula under the second deWnition representing a, then T(A0) represents a

under the Wrst deWnition. Besides deWnitions equivalent in this sense to our

original deWnition, there are a number of other possibilities open. Suppose for

instance that we do not require D(x) and G(x, y) to be computable, but that we

require only that D(x) and G(x, y) & x < y are axiomatic.12 This leads to a

12 To require G(x, y) to be axiomatic amounts to requiring G(x, y) to be computable on account of (7.1)

(ii).

162 | Alan Turing

deWnition of an ordinal formula which is (presumably) not equivalent to the

deWnition that we are using.13 There are numerous possibilities, and little to

guide us in choosing one deWnition rather than another. No one of them

could well be described as ‘‘wrong’’; some of them may be found more

valuable in applications than others, and the particular choice that we

have made has been determined partly by the applications that we have in

view. In the case of theorems of a negative character, one would wish to

prove them for each one of the possible deWnitions of ‘‘ordinal formula’’.

This programme could, I think, be carried through for the negative results of

§9, 10.

Before leaving the subject of possible ways of deWning ordinal formulae, I must

mention another deWnition due to Church and Kleene (Church and Kleene [1]).

We can make use of this deWnition in constructing ordinal logics, but it is more

convenient to use a slightly diVerent deWnition which is equivalent (in the sense

just described) to the Church–Kleene deWnition as modiWed in Church [4].

Introduce the abbreviations

U ! lufx : u ly : f y(I , x)ð Þð Þ,
Suc! laufx : f a(u, f, x)ð Þ:

We deWne Wrst a partial ordering relation ‘‘<’’ which holds between certain pairs

of W.F.F. [conditions (1)–(5)].

(1) If A conv B, then A < C implies B < C and C < A implies C < B.

(2) A < Suc (A).

(3) For any positive integers m and n, lufx :R(n) < lufx :R(m) implies

lufx :R(n) < lufx : u(R).

(4) If A < B and B < C, then A < C. (1)–(4) are required for any W.F.F.

A, B, C, lufx :R:

(5) The relation A < B holds only when compelled to do so by (1)–(4).

We deWne C-K ordinal formulae by the conditions (6)–(10).

(6) If A conv B and A is a C-K ordinal formula, then B is a C-K ordinal

formula.

(7) U is a C-K ordinal formula.

(8) If A is a C-K ordinal formula, then Suc (A) is a C-K ordinal formula.

(9) If lufx :R(n) is a C-K ordinal formula and

lufx :R(n) < lufx :R S(n)ð Þ

13 On the other hand, if D(x) is axiomatic and G(x, y) is computable in the modiWed sense that there is a

rule for determining whether G(x, y) is true which leads to a deWnite result in all cases where D(x) and D(y)

are true, the corresponding deWnition of ordinal formula is equivalent to our deWnition. To give the proof

would be too much of a digression. Probably other equivalences of this kind hold.

Systems of Logic Based on Ordinals | 163

for each positive integer n, then lufx : u(R) is a C-K ordinal formula.14

(10) A formula is a C-K ordinal formula only if compelled to be so by

(6)–(9).

The representation of ordinals by formulae is described by (11)–(15).

(11) If A conv B and A represents a, then B represents a.

(12) U represents 1.

(13) If A represents a, then Suc (A) represents aþ 1.

(14) If lufx :R(n) represents an for each positive integer n, then lufx : u(R)

represents the upper bound of the sequence a1, a2, a3, . . .

(15) A formula represents an ordinal only when compelled to do so by

(11)–(14).

We denote any ordinal represented by A by XA without prejudice to the

possibility that more than one ordinal may be represented by A. We shall write

A < B to mean A < B or A conv B.

In proving properties of C-K ordinal formulae we shall often use a kind of

analogue of the principle of transWnite induction. If f is some property and we

have:

(a) If A conv B and f(A), then f(B),

(b) f(U),

(c) If f(A), then f Suc (A)ð Þ,
(d) If f lufx :R(n)ð Þ and lufx :R(n) < lufx :R S(n)ð Þ

for each positive integer n, then

f lufx : u(R)ð Þ;

9>>>>>>>>>=
>>>>>>>>>;

(7:5)

then f(A) for each C-K ordinal formula A. To prove the validity of this principle

we have only to observe that the class of formulae A satisfying f(A) is one of

those of which the class of C-K ordinal formulae was deWned to be the smallest.

We can use this principle to help us to prove:

(i) Every C-K ordinal formula is convertible to the form lufx :B, where B is

in normal form.

(ii) There is a method by which for any C-K ordinal formula, we can

determine into which of the forms U, Suc (lufx :B), lufx : u(R) (where

14 If we also allow lufx : u(R) to be a C-K ordinal formula when

lufx : n(R) conv lufx : S(n, R)

for all n, then the formulae for sum, product and exponentiation of C-K ordinal formulae can be much

simpliWed. For instance, if A and B represent a and b, then

lufx :B(u, f, A(u, f, x))

represents aþ b. Property (6) remains true.

164 | Alan Turing

u is free in R) it is convertible, and by which we can determine B, R. In

each case B, R are unique apart from conversions.

(iii) If A represents any ordinal, XA is unique. If XA, XB exist and A < B, then

XA < XB.

(iv) If A, B, C are C-K ordinal formulae and B < A, C < A, then either

B < C, C < B, or B conv C.

(v) A formula A is a C-K ordinal formula if:

(A) U < A,

(B) If lufx : u(R) < A and n is a positive integer, then

lufx :R(n) < lufx :R S(n)ð Þ,
(C) For any two W.F.F. B, C with B < A, C < A we have B < C, C < B,

or B conv C, but never B < B,

(D) There is no inWnite sequence B1, B2, . . . for which

Br < Br�1 < A

for each r.

(vi) There is a formula H such that, if A is a C-K ordinal formula, then H(A)

is an ordinal formula representing the same ordinal. H(A) is not an

ordinal formula unless A is a C-K ordinal formula.

Proof of (i). Take f(A) to be ‘‘A is convertible to the form lufx :B, where B is

in normal form’’. The conditions (a) and (b) are trivial. For (c), suppose that A

conv lufx :B, where B is in normal form; then

Suc (A) conv lufx : f (B)

and f (B) is in normal form. For (d) we have only to show that u(R) has a normal

form, i.e. that R has a normal form; and this is true since R(1) has a normal form.

Proof of (ii). Since, by hypothesis, the formula is a C-Kordinal formula we have

only to perform conversions on it until it is in one of the forms described. It is not

possible to convert it into two of these three forms. For suppose that

lufx : f A(u, f, x)ð Þ conv lufx : u(R) and is a C-K ordinal formula; it is then

convertible to the form lufx :B, where B is in normal form. But the normal

form of lufx : u(R) can be obtained by conversions on R, and that of

lufx : f A(u, f, x)ð Þ by conversions on A(u, f, x) (as follows from Church and

Rosser [1], Theorem 2); this, however, would imply that the formula in question

had two normal forms, one of form lufx : u(S) and one of form lufx : f (C), which

is impossible. Or let U conv lufx : u(R), where R is a well formed formula with u

as a free variable. We may suppose R to be in normal form. Now U is

lufx : u ly : f y(I , x)ð Þð Þ. By (A), p. [149], R is identical with ly : f y(I , x)ð Þ,
which does not have u as a free variable. It now remains to show only that if

Systems of Logic Based on Ordinals | 165

Suc (lufx :B) conv Suc (lufx :B0) and lufx : u(R) conv lufx : u(R0),

then B conv B0 and R conv R0.

If Suc (lufx :B) conv Suc (lufx :B0),

then lufx : f (B) conv lufx : f (B0);

but both of these formulae can be brought to normal form by conversions on B,

B0 and therefore B conv B0. The same argument applies in the case in which

lufx : u(R) conv lufx : u(R0).

Proof of (iii). To prove the Wrst half, take f(A) to be ‘‘XA is unique’’. Then (7.5)

(a) is trivial, and (b) follows from the fact thatU is not convertible either to the form

Suc (A) or to lufx : u(R), where R has u as a free variable. For (c): Suc (A) is not

convertible to the form lufx : u(R); the possibility that Suc (A) represents an

ordinal on account of (12) or (14) is therefore eliminated. By (13), Suc (A)

represents a0 þ 1 if A0 represents a0 and Suc (A) conv Suc (A0). If we suppose that
A representsa, thenA,A0, beingC-Kordinal formulae, are convertible to the forms

lufx :B, lufx :B0; but then, by (ii), B conv B0, i.e.A conv A0, and thereforea ¼ a0

by the hypothesisf(A). ThenXSuc (A) ¼ a0 þ 1 is unique. For (d):lufx : u(R) is not

convertible to the form Suc (A) or to U if R has u as a free variable. If lufx : u(R)

represents an ordinal, it is so therefore in virtue of (14), possibly together with (11).

Now, if lufx : u(R) conv lufx : u(R0), then R conv R0, so that the sequence

lufx :R(1), lufx :R(2), . . . in (14) is unique apart from conversions. Then, by the

induction hypothesis, the sequencea1, a2, a3, . . . is unique. The only ordinal that

is representedbylufx : u(R) is the upper boundof this sequence; and this is unique.

For the second half we use a type of argument rather diVerent from our

transWnite induction principle. The formulae B for which A < B form the

smallest class for which:

Suc (A) belongs to the class:

If C belongs to the class, then Suc (C) belongs to it:

If lufx :R(n) belongs to the class and

lufx :R(n) < lufx :R(m),

where m, n are some positive integers, then lufx :u(R) belongs to it:

If C belongs to the class and C conv C0, then C0 belongs to it:

9>>>>>>>>>=
>>>>>>>>>;

(7:6)

It will be suYcient to prove that the class of formulae B for which either XB

does not exist or XA < XB satisWes the conditions (7.6). Now

XSuc (A) ¼ XA þ 1 > XA,

XSuc (C) > XC > XA if C is in the class:

166 | Alan Turing

If Xlufx :R(n) does not exist, then Xlufx : u(R) does not exist, and therefore

lufx : u(R) is in the class. If Xlufx :R(n) exists and is greater than XA, and

lufx :R(n) < lufx :R(m), then

Xlufx : u(R) > Xlufx :R(n) > XA,

so that lufx : u(R) belongs to the class.

Proof of (iv). We prove this by induction with respect to A. Take f(A) to be

‘‘whenever B < A and C < A then B < C or C < B or B conv C0’’. f(U) follows

from the fact that we never have B < U . If we have f(A) and B < Suc (A), then

either B < A or B conv A; for we can Wnd D such that B < D, and then

D < Suc (A) can be proved without appealing either to (1) or (5); (4) does not

apply, sowemust haveD conv A. Then, if B < Suc (A) andC < Suc (A), we have

four possibilities,

B conv A, C conv A,

B conv A, C < A,

B < A, C conv A,

B < A, C < A:

In the Wrst case B conv C, in the second C < B, in the third B < C, and in the

fourth the induction hypothesis applies.

Now suppose that lufx :R(n) is a C-K ordinal formula, that

lufx :R(n) < lufx :R S(n)ð Þ and f R(n)ð Þ,
for each positive integer n, and that A conv lufx : u(R). Then, if B < A, this

means that B < lufx :R(n) for some n; if we have also C < A, then

B < lufx :R(q), C < lufx :R(q) for some q. Thus, for these B and C, the

required result follows from f lufx :R(q)ð Þ.

Proof of (v). The conditions (C), (D) imply that the classes of interconvertible

formulaeB, B < A arewell-orderedby the relation ‘‘<’’.Weprove (v) by (ordinary)

transWnite induction with respect to the order type a of the series formed by these

classes; (a is, in fact, the solution of the equation 1þ a ¼ XA, but we do not need

this).We suppose then that (v) is true for all order types less thana. IfE < A, thenE

satisWes the conditions of (v) and the corresponding order type is smaller: E is

therefore a C-K ordinal formula. This expresses all consequences of the induction

hypothesis that we need. There are three cases to consider:

(x) a ¼ 0:

(y) a ¼ bþ 1:

(z) a is of neither of the forms (x), (y):

Systems of Logic Based on Ordinals | 167

In case (x) we must have A conv U on account of (A). In case (y) there is a

formula D such that D < A, and B < D whenever B < A. The relation D < A

must hold in virtue of either (1), (2), (3), or (4). It cannot be in virtue of (4); for

then there would be B, B < A, D < B contrary to (C), taken in conjunction with

the deWnition of D. If it is in virtue of (3), then a is the upper bound of a

sequence a1, a2, . . . of ordinals, which are increasing by reason of (iii) and the

conditions lufx :R(n) < lufx :R S(n)ð Þ in (B). This is inconsistent with

a ¼ bþ 1. This means that (2) applies [after we have eliminated (1) by

suitable conversions on A, D] and we see that A conv Suc (D); but, since

D < A, D is a C-K ordinal formula, and A must therefore be a C-K ordinal

formula by (8). Now take case (z). It is impossible for A to be of the form Suc

(D), for then we should have B < D whenever B < A, and this would mean that

we had case (y). Since U < A, there must be an F such that F < A is demon-

strable either by (2) or by (3) (after a possible conversion on A); it must of

course be demonstrable by (3). Then A is of the form lufx : u(R). By (3), (B)

we see that lufx :R(n) < A for each positive integer n; each lufx :R(n) is

therefore a C-K ordinal formula. Applying (9), (B) we see that A is a C-K ordinal

formula.

Proof of (vi). To prove the Wrst half, it is suYcient to Wnd a method whereby

from a C-K ordinal formula Awe can Wnd the corresponding ordinal formulaV.

For then there is a formula H1 such that H1(a) conv p if a is the G.R. of A and p is

that of V. H is then to be deWned by

H ! la : form H1 Gr(a)ð Þð Þ:
The method of Wnding V may be replaced by a method of Wnding V(m, n),

given A and any two positive integers m, n. We shall arrange the method so that,

whenever A is not an ordinal formula, either the calculation of the values does

not terminate or else the values are not consistent with V being an ordinal

formula. In this way we can prove the second half of (vi).

Let Ls be a formula such that Ls(A) enumerates the classes of formulae

B,B < A [i.e. if B < A there is one and only one positive integer n for which

Ls(A, n) conv B]. Then the rule for Wnding the value of V(m, n) is as follows:

First determine whether U < A and whether A is convertible to the form

r(Suc, U). This terminates if A is a C-K ordinal formula.

If A conv r(Suc, U) and either m > r þ 1 or n > r þ 1, then the value is 4. If

m < n < r þ 1, the value is 2. If n < m < r þ 1, the value is 1. If

m ¼ n < r þ 1, the value is 3.

If A is not convertible to this form, we determine whether either A or Ls(A,m)

is convertible to the form lufx : u(R); and if either of them is, we verify that

lufx :R(n) < lufx :R S(n)ð Þ. We shall eventually come to an aYrmative answer

if A is a C-K ordinal formula.

168 | Alan Turing

Having checked this, we determine concerning m and n whether

Ls(A, m) < Ls(A, n), Ls(A, n) < Ls(A, m), or m ¼ n, and the value is to be

accordingly 1, 2, or 3.

If A is a C-K ordinal formula, this process certainly terminates. To see that

the values so calculated correspond to an ordinal formula, and one representing

XA, Wrst observe that this is so when XA is Wnite. In the other case (iii) and (iv)

show that XB determines a one–one correspondence between the ordinals

b, 1 < b < XA, and the classes of interconvertible formulae B, B < A. If we

take G(m, n) to be Ls(A, m) < Ls(A, n), we see that G(m, n) is the ordering

relation of a series of order type XA and on the other hand that the values of

V(m, n) are related to G(m, n) as on p. [162].15

To prove the second half suppose that A is not a C-K ordinal formula. Then

one of the conditions (A)–(D) in (v) must not be satisWed. If (A) is not satisWed

we shall not obtain a result even in the calculation of V(1, 1). If (B) is not

satisWed, we shall have for some positive integers p and q,

Ls(A, p) conv lufx : u(R)

but not lufx :R(q) < lufx :R S(q)ð Þ. Then the process of calculating V(p, q)

will not terminate. In case of failure of (C) or (D) the values of V(m, n) may all

be calculable, but if so conditions (a)–(f), p. [162], will be violated. Thus, if A is

not a C-K ordinal formula, then H(A) is not an ordinal formula.

I propose now to deWne three formulae Sum, Lim, Inf of importance in

connection with ordinal formulae. Since they are comparatively simple, they

will for once be given almost in full. The formula Ug is one with the property

that Ug(m) is convertible to the formula representing the largest odd integer

dividing m: it is not given in full. P is the predecessor function; P S(m)ð Þ conv m,

P(1) conv 1.

Al! lpxy : p lguv : g(v, u), luv : u(I , v), x, yð Þ,
Hf ! lm : P m lguv : g v, S(u)ð Þ, luv : v(I , u), 1, 2ð Þð Þ,
Bd! lww 0aa0x :Al lf :w a, a, w 0(a0, a0, f)ð Þ, x, 4ð Þ,
Sum! lww 0pq :Bd w, w 0, Hf(p), Hf(q),ð

Al p, Al q, w 0 Hf(p), Hf(q)ð Þ, 1ð Þ, Al S(q), w Hf(p), Hf(q)ð Þ, 2ð Þð ÞÞ,
Lim! lzpq : lab :f Bd z(a), z(b), Ug(p), Ug(q), Al Dt(a, b)þ Dt(b, a),ðð

Dt(a, b), z a, Ug(p), Ug(q)ð ÞÞÞg $(2, p), $(2, q)ð Þ,
Inf ! lwapq :Al lf :w a, p, w(a, q, f)ð Þ, w(p, q), 4ð Þ:

The essential properties of these formulae are described by:

15 The order type is b, where 1þ b ¼ XA ; but b ¼ XA , since XA is inWnite.

Systems of Logic Based on Ordinals | 169

Al(2r� 1, m, n) conv m, Al(2r, m, n) conv n,

Hf(2m) conv m, Hf(2m� 1) conv m,

Bd(V, V0, a, a0, x) conv 4, unless both

V(a, a) conv 3 and V0(a0, a0) conv 3,

it is then convertible to x.

If V, V0 are ordinal formulae representing a, b respectively, then

Sum(V, V0) is an ordinal formula representing aþ b. If Z is a W.F.F. enumer-

ating a sequence of ordinal formulae representing a1, a2, . . . , then Lim(Z) is an

ordinal formula representing the inWnite sum a1 þ a2 þ a3 . . . IfV is an ordinal

formula representing a, then Inf(V) enumerates a sequence of ordinal formulae

representing all the ordinals less than a without repetitions other than repeti-

tions of the ordinal 0.

To prove that there is no general method for determining about a formula

whether it is an ordinal formula, we use an argument akin to that leading to the

Burali-Forti paradox; but the emphasis and the conclusion are diVerent. Let us

suppose that such an algorithm is available. This enables us to obtain a recursive

enumeration V1, V2, . . . of the ordinal formulae in normal form. There is a

formula Z such that Z(n) conv Vn. Now Lim (Z) represents an ordinal greater

than any represented by an Vn, and it has therefore been omitted from the

enumeration.

This argument proves more than was originally asserted. In fact, it proves that,

if we take any class E of ordinal formulae in normal form, such that, if A is any

ordinal formula, then there is a formula in E representing the same ordinal as A,

then there is no method whereby one can determine whether a W.F.F. in normal

form belongs to E.

8. Ordinal logics

An ordinal logic is a W.F.F.L such that L(V) is a logic formula wheneverV is an

ordinal formula.

This deWnition is intended to bring under one heading a number of ways of

constructing logics which have recently been proposed or which are suggested by

recent advances. In this section I propose to show how to obtain some of these

ordinal logics.

Suppose that we have a classWof logical systems. The symbols used in each of

these systems are the same, and a class of sequences of symbols called ‘‘formulae’’

is deWned, independently of the particular system inW. The rules of procedure of

a system C deWne an axiomatic subset of the formulae, which are to be described

as the ‘‘provable formulae of C ’’. Suppose further that we have a method whereby,

from any system C ofW, we can obtain a new system C 0, also inW, and such that

170 | Alan Turing

the set of provable formulae of C 0 includes the provable formulae of C (we shall

be most interested in the case in which they are included as a proper subset). It is

to be understood that this ‘‘method’’ is an eVective procedure for obtaining the

rules of procedure of C 0 from those of C.

Suppose that to certain of the formulae of W we make number-theoretic

theorems correspond: by modifying the deWnition of formula, we may suppose

that this is done for all formulae. We shall say that one of the systems C is valid if

the provability of a formula in C implies the truth of the corresponding number-

theoretic theorem. Now let the relation of C 0 to C be such that the validity of C

implies the validity of C 0, and let there be a valid system C0 inW. Finally, suppose

that, given any computable sequence C1, C2, . . . of systems in W, the ‘‘limit

system’’, in which a formula is provable if and only if it is provable in one of the

systems Cj , also belongs to W. These limit systems are to be regarded, not as

functions of the sequence given in extension, but as functions of the rules of

formation of their terms. A sequence given in extension may be described by

various rules of formation, and there will be several corresponding limit systems.

Each of these may be described as a limit system of the sequence.

In these circumstances we may construct an ordinal logic. Let us associate

positive integers with the systems in such a way that to each C there corresponds

a positive integer mC , and that mC completely describes the rules of procedure of

C. Then there is a W.F.F. K, such that

K mCð Þ conv mC 0

for each C in W, and there is a W.F.F. Q such that, if D(r) conv mCr
for each

positive integer r, then Q(D) conv mC , where C is a limit system of C1, C2, . . .

With each system C of W it is possible to associate a logic formula LC : the

relation between them is that, if G is a formula of W and the number-theoretic

theorem corresponding to G (assumed expressed in the conversion calculus

form) asserts that B is dual, then LC(B) conv 2 if and only if G is provable in

C. There is a W.F.F. G such that

G mCð Þ conv LC

for each C of W. Put

N! la :G a(Q, K, mC0
)ð Þ:

I assert that N(A) is a logic formula for each C-K ordinal formula A, and that, if

A < B, then N(B) is more complete than N(A), provided that there are formulae

provable in C 0 but not in C for each valid C of W.

To prove this we shall show that to each C-K ordinal formula A there

corresponds a unique system C[A] such that:

(i) A(Q, K, mC0
) conv mC[A],

and that it further satisWes:

Systems of Logic Based on Ordinals | 171

(ii) C[U] is a limit system of C0
0, C0

0, . . . ,
(iii) C [Suc (A)] is (C[A])0,
(iv) C[lufx : u(R)] is a limit system of C[lufx :R(1)], C[lufx :R(2)], . . . ,

A and lufx : u(R) being assumed to be C-K ordinal formulae. The uniqueness

of the system follows from the fact that mC determines C completely. Let us try

to prove the existence of C[A] for each C-K ordinal formula A. As we have seen

(p. 164) it is suYcient to prove

(a) C[U] exists,

(b) if C[A] exists, then C[Suc (A)] exists,

(c) if C[lufx :R(1)], C[lufx. R(2)], . . . exist, then C[lufs . u(R)] exists.

Proof of (a).

ly :K y(I , mC0
)ð Þf g(n) conv K(mC0

) conv mC0
0

for all positive integers n, and therefore, by the deWnition of Q, there is a system,

which we call C[U] and which is a limit system of C0
0, C0

0, . . ., satisfying

Q ly :K y(I , mC0
)ð Þð Þ conv mC[U]:

But, on the other hand,

U Q, K, mC0
ð Þ conv Q ly :Kðy(I , mC0

)ð ÞÞ:
This proves (a) and incidentally (ii).

Proof of (b).

Suc (A, Q, K, mC0
) conv K A(Q, K, mC0

)ð Þ
conv K(mC[A])

conv m(C[A])0:

Hence C[Suc (A)] exists and is given by (iii).

Proof of (c).

{lufx :R}(Q, K, mC0
)f g(n) conv {lufx :R(n)}(Q, K, mC0

)

conv mC[lufx :R(n)]

by hypothesis. Consequently, by the deWnition of Q, there exists a C which is a

limit system of

C[lufx :R(1)], C[lufx :R(2)], . . . ,

and satisWes

Q {lufx : u(R)}(Q, K, mC0
)ð Þ conv mC :

172 | Alan Turing

We deWne C[lufx : u(R)] to be this C. We then have (iv) and

{lufx : u(R)}(Q, K, mC0
) conv Q {lufx :R}(Q, K, mC0

)ð Þ
conv mC[lufx : u(R)]:

This completes the proof of the properties (i)–(iv). From (ii), (iii), (iv), the

fact that C0 is valid, and that C 0 is valid when C is valid, we infer that C[A] is

valid for each C-K ordinal formula A: also that there are more formulae provable

in C[B] than in C[A] when A < B. The truth of our assertions regarding N now

follows in view of (i) and the deWnitions of N and G.

We cannot conclude that N is an ordinal logic, since the formulae A are C-K

ordinal formulae; but the formula H enables us to obtain an ordinal logic from

N. By the use of the formula Gr we obtain a formula Tn such that, if A has a

normal form, then Tn(A) enumerates the G.R.’s of the formulae into which A is

convertible. Also there is a formula Ck such that, if h is the G.R. of a formula

H(B), then Ck(h) conv B, but otherwise Ck(h) conv U. Since H(B) is an

ordinal formula only if B is a C-K ordinal formula, Ck Tn(V, n)ð Þ is a C-K

ordinal formula for each ordinal formulaV and each integer n. For many ordinal

formulae it will be convertible to U, but, for suitable V, it will be convertible to

any given C-K ordinal formula. If we put

L! lwa :G ln :N Ck Tn(w, n)ð Þð Þ, að Þ,
L is the required ordinal logic. In fact, on account of the properties of

G, L(V, A) will be convertible to 2 if and only if there is a positive integer n

such that

N Ck Tn(V, n)ð Þ, Að Þ conv 2:

If V conv H(B), there will be an integer n such that Ck Tn(V, n)ð Þ conv B, and

then

N Ck Tn(V, n)ð Þ, Að Þ conv N(B, A):

For any n, Ck Tn(V, n)ð Þ is convertible to U or to some B, where V conv H(B).

Thus L(V, A) conv 2 if V conv H(B) and N(B, A) conv 2 or if N(U, A) conv 2,

but not in any other case.

We may now specialize and consider particular classes W of systems. First let

us try to construct the ordinal logic described roughly in the introduction. ForW

we take the class of systems arising from the system of Principia Mathematica16

by adjoining to it axiomatic (in the sense described on p. [151]) sets of axioms.17

16 Whitehead and Russell [1]. The axioms and rules of procedure of a similar system P will be found in a

convenient form in Gödel [1], and I follow Gödel. The symbols for the natural numbers in P are

0, f 0, ff 0, . . . , f (n)0 . . . Variables with the suYx ‘‘0’’ stand for natural numbers.

17 It is sometimes regarded as necessary that the set of axioms used should be computable, the intention

being that it should be possible to verify of a formula reputed to be an axiom whether it really is so. We can

Systems of Logic Based on Ordinals | 173

Gödel has shown that primitive recursive relations can be expressed by

means of formulae in P.18 In fact, there is a rule whereby, given the recursion

equations deWning a primitive recursive relation, we can Wnd a formula

A[x0, . . . , z0] such that

A[f (m1)0, . . . , f (mr)0]

is provable in P if F(m1, . . . , mr) is true, and its negation is provable otherwise.19

Further, there is a method by which we can determine about a formula

A[x0, . . . , z0] whether it arises from a primitive recursive relation in this way,

and by which we can Wnd the equations which deWned the relation. Formulae of

this kind will be called recursion formulae. We shall make use of a property that

they possess, which we cannot prove formally here without giving their deWni-

tion in full, but which is essentially trivial. Db[x0, y0] is to stand for a certain

recursion formula such that Db[f (m)0, f (n)0] is provable in P if m ¼ 2n and its

negation is provable otherwise. Suppose that A[x0], B[x0] are two recursion

formulae. Then the theorem which I am assuming is that there is a recursion

relation CA, B[x0] such that we can prove

CA, B[x0] 	 (9y0) (Db[x0, y0] :A[y0]) v (Db[fx0, fy0] :B[y0])ð Þ (8:1)

in P.

The signiWcant formulae in any of our extensions of P are those of the form

(x0)(9y0)A[x0, y0], (8:2)

where A[x0, y0] is a recursion formula, arising from the relation R(m, n) let us

say. The corresponding number-theoretic theorem states that for each natural

number m there is a natural number n such that R(m, n) is true.

The systems inW which are not valid are those in which a formula of the form

(8.2) is provable, but at the same time there is a natural number,m say, such that,

for each natural number n, R(m, n) is false. This means to say that

� A[f (m)0, f (n)0] is provable for each natural number n. Since (8.2) is provable,

(9x0)A[f (m)0, y0] is provable, so that

(9y0)A[f (m)0, y0], �A[f (m)0, 0], � A[f (m)0, f 0], . . . (8:3)

are all provable in the system. We may simplify (8.3). For a givenm we may prove

a formula of the form A[f (m)0, y0] 	 B[y0] in P, where B[x0] is a recursion

obtain the same eVect with axiomatic sets of axioms in this way. In the rules of procedure describing which

are the axioms, we incorporate a method of enumerating them, and we also introduce a rule that in the

main part of the deduction, whenever we write down an axiom as such, we must also write down its

position in the enumeration. It is possible to verify whether this has been done correctly.

18 A relation F(m1, . . . , mr) is primitive recursive if it is a necessary and suYcient condition for the

vanishing of a primitive recursive function f(m1, . . . , mr).

19 Capital German letters will be used to stand for variable or undetermined formulae in P. An expression

such as A[B, C] stands for the result of substituting B and C for x0 and y0 in A.

174 | Alan Turing

formula. Thus we Wnd that a necessary and suYcient condition for a system ofW

to be valid is that for no recursion formula B[x0] are all of the formulae

(9x0)B[x0], � B[0], � B[f 0], . . . (8:4)

provable. An important consequence of this is that, if

A1[x0], A2[x0], . . . , An[x0]

are recursion formulae, if

(9x0)A1[x0] v . . . v (9x0)An[x0] (8:5)

is provable in C, and C is valid, then we can prove Ar[f
(a)0] in C for some

natural numbers r, a, where 1 < r < n. Let us deWne Dr to be the formula

(9x0)A1[x0] v . . . v (9x0)Ar[x0]

and then deWne Er[x0] recursively by the condition that E1[x0] is A1[x0] and

Erþ1[x0] be CEr , Arþ1 [x0]. Now I say that

Dr � (9x0)Er[x0] (8:6)

is provable for 1 < r < n. It is clearly provable for r ¼ 1: suppose it to be

provable for a given r. We can prove

(y0)(9x0)Db[x0, y0]
and (y0)(9x0)Db[fx0, fy0],
from which we obtain

Er[y0] � (9x0) (Db[x0, y0] :Er[y0]) v (Db[fx0, fy0] :Arþ1[y0])ð Þ
and

Arþ1[y0] � (9x0) (Db[x0, y0] :Er[y0]) v (Db[fx0, fy0] :Arþ1[y0])ð Þ:
These together with (8.1) yield

(9y0)Er[y0] v (9y0)Arþ1[y0] � (9x0)CEr , Arþ1 [x0],

which is suYcient to prove (8.6) for r þ 1. Now, since (8.5) is provable in C,

(9x0)En[x0] must also be provable, and, since C is valid, this means that

En[f
(m)0] must be provable for some natural number m. From (8.1) and the

deWnition of En[x0] we see that this implies that Ar[f
(a)0] is provable for some

natural numbers a and r, 1 < r < n.

To any system C of W we can assign a primitive recursive relation PC(m, n)

with the intuitive meaning ‘‘m is the G.R. of a proof of the formula whose G.R. is

n’’. We call the corresponding recursion formula ProofC[x0, y0] (i.e.

ProofC[f
(m)0, f (n)0] is provable when PC(m, n) is true, and its negation is

Systems of Logic Based on Ordinals | 175

provable otherwise). We can now explain what is the relation of a system C 0 to its

predecessor C. The set of axioms which we adjoin to P to obtain C 0 consists of
those adjoined in obtaining C, together with all formulae of the form

(9x0) ProofC[x0, f (m)0] � F, (8:7)

where m is the G.R. of F.
We want to show that a contradiction can be obtained by assuming C 0 to be

invalid but C to be valid. Let us suppose that a set of formulae of the form (8.4) is

provable in C 0. Let A1, A2, . . . , Ak be those axioms of C 0 of the form (8.7)

which are used in the proof of (9x0)B[x0]. We may suppose that none of them is

provable in C. Then by the deduction theorem we see that

(A1 :A2 . . .Ak) � (9x0)B[x0] (8:8)

is provable in C. Let Al be (9x0) ProofC[x0, f (ml)0] � Fl . Then from (8.8) we

Wnd that

(9x0) ProofC[x0, f (m1)0] v . . . v (9x0) ProofC[x0, f (mk)0] v (9x0) B[x0]

is provable in C. It follows from a result which we have just proved that

either B[f (c)0] is provable for some natural number c, or else

ProofC[f
(n)0, f (ml)0] is provable in C for some natural number u and some

l, 1 < l < k: but this would mean that Fl is provable in C (this is one of the

points where we assume the validity of C) and therefore also in C 0, contrary to

hypothesis. Thus B[f (c)0] must be provable in C 0; but we are also assuming

� B[f (c)0] to be provable in C 0. There is therefore a contradiction in C 0. Let us
suppose that the axioms A1

0
, . . . ,Ak0

0
, of the form (8.7), when adjoined to C are

suYcient to obtain the contradiction and that none of these axioms is that

provable in C. Then

� A1
0
v � A2

0
v . . . v � Ak0

0

is provable in C, and if Al
0
is (9x0) ProofC[x0, f (ml

0)0] � Fl
0
then

(9x0) ProofC[x0, f (m1
0)0] v . . . v (9x0) Proof[x0, f (mk0

0)0]

is provable in C. But, by repetition of a previous argument, this means that Al
0
is

provable for some l, 1 < l < k0, contrary to hypothesis. This is the required

contradiction.

We may now construct an ordinal logic in the manner described on pp. [171–

3]. We shall, however, carry out the construction in rather more detail, and with

some modiWcations appropriate to the particular case. Each system C of our set

Wmay be described by means of a W.F.F. MC which enumerates the G.R.’s of the

axioms of C. There is a W.F.F. E such that, if a is the G.R. of some proposition F,
then E(MC , a) is convertible to the G.R. of

176 | Alan Turing

(9x0) ProofC[x0, f (a)0] � F:

If a is not the G.R. of any proposition in P, then E(MC , a) is to be convertible to

the G.R. of 0 = 0. From E we obtain a W.F.F. K such that K(MC , 2nþ 1) conv

MC(n),K(MC , 2n) conv E(MC ,n). The successor system C 0 is deWned by K (MC)

convMC
0. Let us choose a formula G such that G(MC ,A) conv 2 if and only if the

number-theoretic theorem equivalent to ‘‘A is dual’’ is provable in C. Then we

deWne LP by

LP ! lwa :G ly :G Ck Tn(w, y),lmn :m $(2, n),$(3, n)ð Þ,K ,MPð Þð Þ, að Þ:
This is an ordinal logic provided that P is valid.

Another ordinal logic of this type has in eVect been introduced by Church.20

SuperWcially this ordinal logic seems to have no more in common with LP than

that they both arise by the method which we have described, which uses C-K

ordinal formulae. The initial systems are entirely diVerent. However, in the

relation between C and C 0 there is an interesting analogy. In Church’s method

the step from C to C 0 is performed by means of subsidiary axioms of which the

most important (Church [2], p. 88, lm) is almost a direct translation into his

symbolism of the rule that we may take any formula of the form (8.4) as an

axiom. There are other extra axioms, however, in Church’s system, and it is

therefore not unlikely that it is in some respects more complete than LP .

There are other types of ordinal logic, apparently quite unrelated to the type

that we have so far considered. I have in mind two types of ordinal logic, both of

which can be best described directly in terms of ordinal formulae without any

reference to C-K ordinal formulae. I shall describe here a specimen LH of one of

these types of ordinal logic. Ordinal logics of this kind were Wrst considered by

Hilbert (Hilbert [1], 183V.), and have also been used by Tarski (Tarski [1],

395V.); see also Gödel [1], foot-note 48a.

Suppose that we have selected a particular ordinal formula V. We shall

construct a modiWcation PV of the system P of Gödel (see foot-note [16] on

p. [173]. We shall say that a natural number n is a type if it is either even or

2p � 1, where V(p, p) conv 3. The deWnition of a variable in P is to be modiWed

by the condition that the only admissible subscripts are to be the types in our

sense. Elementary expressions are then deWned as in P : in particular the deWni-

tion of an elementary expression of type 0 is unchanged. An elementary formula

is deWned to be a sequence of symbols of the form AmAn, where Am,An are

elementary expressions of types m, n satisfying one of the conditions (a), (b), (c).

(a) m and n are both even and m exceeds n,

(b) m is odd and n is even,

(c) m ¼ 2p � 1, n ¼ 2q � 1, and V(p, q) conv 2.

20 In outline Church [1], 279–280. In greater detail Church [2], Chap. X.

Systems of Logic Based on Ordinals | 177

With these modiWcations the formal development of PV is the same as that of

P. We want, however, to have a method of associating number-theoretic the-

orems with certain of the formulae of PV. We cannot take over directly the

association which we used in P. Suppose that G is a formula in P interpretable as

a number-theoretic theorem in the way described in the course of constructing

LP (p. [174]). Then, if every type suYx in G is doubled, we shall obtain a

formula in PV which is to be interpreted as the same number-theoretic theorem.

By the method of §6 we can now obtain from PV a formula LV which is a logic

formula if PV is valid; in fact, givenV there is a method of obtaining LV, so that

there is a formula LH such that LH (V) conv LV for each ordinal formula V.

Having now familiarized ourselves with ordinal logics by means of these

examples we may begin to consider general questions concerning them.

9. Completeness questions

The purpose of introducing ordinal logics was to avoid as far as possible the

eVects of Gödel’s theorem. It is a consequence of this theorem, suitably modiWed,

that it is impossible to obtain a complete logic formula, or (roughly speaking

now) a complete system of logic. We were able, however, from a given system to

obtain a more complete one by the adjunction as axioms of formulae, seen

intuitively to be correct, but which the Gödel theorem shows are unprovable in

the original system; from this we obtained a yet more complete system by a

repetition of the process, and so on.21We found that the repetition of the process

gave us a new system for each C-K ordinal formula. We should like to know

whether this process suYces, or whether the system should be extended in other

ways as well. If it were possible to determine about a W.F.F. in normal form

whether it was an ordinal formula, we should know for certain that it was

necessary to make extensions in other ways. In fact for any ordinal formula L

it would then be possible to Wnd a single logic formula L such that, if L(V,A)

conv 2 for some ordinal formula V, then L(A) conv 2. Since L must be

incomplete, there must be formulae A for which L(V,A) is not convertible to

2 for any ordinal formula V. However, in view of the fact, proved in §7, that

there is no method of determining about a formula in normal form whether it is

an ordinal formula, the case does not arise, and there is still a possibility that

some ordinal logics may be complete in some sense. There is a quite natural way

of deWning completeness.

DeWnition of completeness of an ordinal logic. We say that an ordinal logic L is

complete if corresponding to each dual formula A there is an ordinal formulaVA

such that L(VA,A) conv 2.

21 In the case of P we adjoined all of the axioms (9x0) Proof [x0, f (m)0] � F, wherem is the G.R. of F; the

Gödel theorem shows that some of them are unprovable in P.

178 | Alan Turing

As has been explained in §2, the reference in the deWnition to the existence of

VA for each A is to be understood in the same naı̈ve way as any reference to

existence in mathematics.

There is room for modiWcation in this deWnition: we might require that there

is a formula X such that X(A) convVA, X(A) being an ordinal formula whenever

A is dual. There is no need, however, to discuss the relative merits of these two

deWnitions, because in all cases in which we prove an ordinal logic to be complete

we shall prove it to be complete even in the modiWed sense; but in cases in which

we prove an ordinal logic to be incomplete, we use the deWnition as it stands.

In the terminology of §6, L is complete if the class of logics L(V) is complete

when V runs through all ordinal formulae.

There is another completeness property which is related to this one. Let us for

the moment describe an ordinal logic L as all inclusive if to each logic formula L

there corresponds an ordinal formulaV(L) such thatL(V(L)) is as complete as L.

Clearly every all inclusive ordinal logic is complete; for, if A is dual, then d(A) is a

logic with A in its extent. But, if L is complete and

Ai! lkw :G lra : d 4, d 2, k w,V Nm(r)ð Þð Þð Þ þ d 2, Nm(r , a)ð Þð Þð Þ,
then Ai(L) is an all inclusive ordinal logic. For, if A is in the extent of L(VA) for

each A, and we put V(L) ! VV (L), then I say that, if B is in the extent of L, it

must be in the extent of Ai(L,V(L)). In fact, we see that Ai(L,VV (L),B) is

convertible to

G lra : d 4, d 2,L VV (L),V Nm(r)ð Þð Þð Þ þ d 2, Nm(r , a)ð Þð Þ,Bð Þ:
For suitable n, Nm(n) conv L and then

L VV (L),V Nm(n)ð Þð Þ conv 2,

Nm(n,B) conv 2,

and therefore, by the properties of G and d

Ai(L,VV (L),B) conv 2:

Conversely Ai(L,VV (L),B) can be convertible to 2 only if both Nm(n, B) and

L VV (L),V Nm(n)ð Þð Þ are convertible to 2 for some positive integer n; but, if

L VV (L),V Nm(n)ð Þð Þ conv 2, then Nm(n) must be a logic, and, since Nm(n, B)

conv 2, B must be dual.

It should be noticed that our deWnitions of completeness refer only to

number-theoretic theorems. Although it would be possible to introduce formu-

lae analogous to ordinal logics which would prove more general theorems than

number-theoretic ones, and have a corresponding deWnition of completeness,

yet, if our theorems are too general, we shall Wnd that our (modiWed) ordinal

logics are never complete. This follows from the argument of §4. If our ‘‘oracle’’

Systems of Logic Based on Ordinals | 179

tells us, not whether any given number-theoretic statement is true, but whether a

given formula is an ordinal formula, the argument still applies, and we Wnd that

there are classes of problem which cannot be solved by a uniform process even

with the help of this oracle. This is equivalent to saying that there is no ordinal

logic of the proposed modiWed type which is complete with respect to these

problems. This situation becomes more deWnite if we take formulae satisfying

conditions (a)–(e), (f 0) (as described at the end of §12) instead of ordinal

formulae; it is then not possible for the ordinal logic to be complete with respect

to any class of problems more extensive than the number-theoretic problems.

We might hope to obtain some intellectually satisfying system of logical

inference (for the proof of number-theoretic theorems) with some ordinal

logic. Gödel’s theorem shows that such a system cannot be wholly mechanical; but

with a complete ordinal logic we should be able to conWne the non-mechanical

steps entirely to veriWcations that particular formulae are ordinal formulae.

We might also expect to obtain an interesting classiWcation of number-

theoretic theorems according to ‘‘depth’’. A theorem which required an ordinal

a to prove it would be deeper than one which could be proved by the use of an

ordinal b less than a. However, this presupposes more than is justiWed. We now

deWne

Invariance of ordinal logics. An ordinal logic L is said to be invariant up to

an ordinal a if, whenever V,V0 are ordinal formulae representing the same

ordinal less than a, the extent of L(V) is identical with the extent of L(V0).
An ordinal logic is invariant if it is invariant up to each ordinal represented by an

ordinal formula.

Clearly the classiWcation into depths presupposes that the ordinal logic used is

invariant.

Among the questions that we should now like to ask are

(a) Are there any complete ordinal logics?

(b) Are there any complete invariant ordinal logics?

To these we might have added ‘‘are all ordinal logics complete?’’; but this is

trivial; in fact, there are ordinal logics which do not suYce to prove any number-

theoretic theorems whatever.

We shall now show that (a) must be answered aYrmatively. In fact, we can

write down a complete ordinal logic at once. Put

Od! la : lfmn :Dt f (m), f (n)ð Þf g ls :P lr : r I , a(s)ð Þ, 1, sð Þð ÞÞ

and Comp! lwa : d w, Od(a)ð Þ:
I shall show that Comp is a complete ordinal logic.

For if, Comp(V, A) conv 2, then

180 | Alan Turing

V conv Od (A)

conv lmn :Dt P lr : r I , A(m)ð Þ, 1, mð Þ, P lr : r I , A(n)ð Þ, 1, nð Þð ÞÞ:
V(m,n) has a normal form if V is an ordinal formula, so that then

P lr : r I , A(m)ð Þ, 1ð Þ
has a normal form; this means that r I , A(m)ð Þ conv 2 some r, i.e. A(m) conv 2.

Thus, if Comp(V, A) conv 2 and V is an ordinal formula, then A is dual. Comp

is therefore an ordinal logic. Now suppose conversely that A is dual. I shall show

that Od(A) is an ordinal formula representing the ordinal v. For

P lr : r I , A(m)ð Þ, 1, mð Þ conv P lr : r(I , 2), 1, mð Þ
conv 1(m) conv m,

Od(A, m, n) conv Dt(m, n),

i.e. Od(A) is an ordinal formula representing the same ordinal as Dt. But

Comp Od(A), Að Þ conv d Od(A), Od(A)ð Þ conv 2:

This proves the completeness of Comp.

Of course Comp is not the kind of complete ordinal logic that we should really

wish to use. The use of Comp does not make it any easier to see that A is dual. In

fact, if we really want to use an ordinal logic, a proof of completeness for that

particular ordinal logic will be of little value; the ordinals given by the complete-

ness proof will not be ones which can easily be seen intuitively to be ordinals. The

only value in a completeness proof of this kind would be to show that, if any

objection is to be raised against an ordinal logic, it must be on account of

something more subtle than incompleteness.

The theorem of completeness is also unexpected in that the ordinal formulae

used are all formulae representing v. This is contrary to our intentions in

constructing LP for instance; implicitly we had in mind large ordinals expressed

in a simple manner. Here we have small ordinals expressed in a very complex and

artiWcial way.

Before trying to solve the problem (b), let us see how far LP and LH are

invariant. We should certainly not expect LP to be invariant, since the extent of

LP(V) will depend on whether V is convertible to a formula of the form H(A):

but suppose that we call an ordinal logic L ‘‘C-K invariant up to a’’ if the extent

of L H(A)ð Þ is the same as the extent of L H(B)ð Þ whenever A and B are C-K

ordinal formulae representing the same ordinal less than a. How far is LP C-K

invariant? It is not diYcult to see that it is C-K invariant up to any Wnite ordinal,

that is to say up to v. It is also C-K invariant up to vþ 1, as follows from the fact

that the extent of

LP H lufx : u(R)ð Þð Þ

Systems of Logic Based on Ordinals | 181

is the set-theoretic sum of the extents of

LP H lufx :R(1)ð Þð Þ, LP H lufx :R(2)ð Þð Þ, . . .
However, there is no obvious reason for believing that it is C-K invariant up to

vþ 2, and in fact it is demonstrable that this is not the case (see the end of this

section). Let us Wnd out what happens if we try to prove that the extent of

LP H Suc lufx : u(R1)ð Þð Þð Þ
is the same as the extent of

LP H Suc lufx : u(R2)ð Þð Þð Þ,
where lufx : u(R1) and lufx : u(R2) are two C-K ordinal formulae representing v.

We should have to prove that a formula interpretable as a number-theoretic

theorem is provable in C Suc lufx : u(R1)ð Þ½ � if, and only if, it is provable

in C Suc lufx : u(R2)ð Þ½ �. Now C Suc lufx : u(R1)ð Þ½ � is obtained from

C[lufx : u(R1)] by adjoining all axioms of the form

(9x0) ProofC[lufx : u(R1)][x0, f
(m)0] � F, (9:1)

where m is the G.R. of F, and C Suc lufx : u(R2)ð Þ½ � is obtained from

C[lufx : u(R2)] by adjoining all axioms of the form

(9x0) ProofC[lufx : u(R2)][x0, f
(m)0] � F: (9:2)

The axioms which must be adjoined to P to obtain C[lufx : u(R1)] are essentially

the same as those which must be adjoined to obtain the system C[lufx : u(R2)]:

however the rules of procedure which have to be applied before these axioms can

be written down are in general quite diVerent in the two cases. Consequently (9.1)

and (9.2) are quite diVerent axioms, and there is no reason to expect their

consequences to be the same. A proper understanding of this will make our

treatment of question (b) much more intelligible. See also footnote [17] on

page [173].

Now let us turn to LH . This ordinal logic is invariant. Suppose that V, V0

represent the same ordinal, and suppose that we have a proof of a number-

theoretic theorem G in PV. The formula expressing the number-theoretic the-

orem does not involve any odd types. Now there is a one–one correspondence

between the odd types such that if 2m� 1 corresponds to 2m0 � 1 and 2n� 1 to

2n0 � 1 then V(m, n) conv 2 implies V0(m0, n0) conv 2. Let us modify the odd

type-subscripts occurring in the proof of G, replacing each by its mate in the

one–one correspondence. There results a proof in P
V
0 with the same end formula

G. That is to say that if G is provable in PV it is provable in P
V
0 . LH is invariant.

The question (b) must be answered negatively. Much more can be proved, but

we shall Wrst prove an even weaker result which can be established very quickly,

in order to illustrate the method.

182 | Alan Turing

I shall prove that an ordinal logic L cannot be invariant and have the property

that the extent ofL(V) is a strictly increasing function of the ordinal represented

by V. Suppose that L has these properties; then we shall obtain a contradiction.

Let A be a W.F.F. in normal form and without free variables, and consider the

process of carrying out conversions on A(1) until we have shown it convertible to

2, then converting A(2) to 2, then A(3) and so on: suppose that after r steps we

are still performing the conversion on A(mr). There is a formula Jh such that

Jh(A, r) convmr for each positive integer r. Now let Z be a formula such that, for

each positive integer n, Z(n) is an ordinal formula representing vn, and suppose

B to be a member of the extent of L Suc Lim(Z)ð Þð Þ but not of the extent of

L Lim(Z)ð Þ. Put
K� ! la :L Suc Lim lr : Z Jh(a, r)ð Þð Þð Þ, Bð Þ;

then K� is a complete logic. For, if A is dual, then

Suc Lim lr :Z Jh(A, r)ð Þð Þð Þ
represents the ordinal vv þ 1, and therefore K�(A) conv 2; but, if A(c) is not

convertible to 2, then

Suc Lim lr :Z Jh(A, r)ð Þð Þð Þ
represents an ordinal not exceeding vc þ 1, and K�(A) is therefore not convert-
ible to 2. Since there are no complete logic formulae, this proves our assertion.

We may now prove more powerful results.

Incompleteness theorems. (A) If an ordinal logic L is invariant up to an

ordinal a, then for any ordinal formula V representing an ordinal b, b < a,

the extent of L(V) is contained in the (set-theoretic) sum of the extents of the

logics L(P), where P is Wnite.

(B) If an ordinal logic L is C-K invariant up to an ordinal a, then for any C-K

ordinal formula A representing an ordinal b, b < a, the extent of L H(A)ð Þ is
contained in the (set-theoretic) sum of the extents of the logics L H(F)ð Þ, where
F is a C-K ordinal formula representing an ordinal less than v2.

Proof of (A). It is suYcient to prove that, if V represents an ordinal

g, v < g < a, then the extent of L(V) is contained in the set-theoretic sum

of the extents of the logics L(V0), where V0 represents an ordinal less than g.

The ordinal g must be of the form g0 þ r, where r is Wnite and represented by P

say, and g0 is not the successor of any ordinal and is not less than v. There are

two cases to consider; g0 ¼ v and g0 > 2v. In each of them we shall obtain a

contradiction from the assumption that there is a W.F.F. B such that L(V, B)

conv 2 whenever V represents g, but is not convertible to 2 if V represents a

smaller ordinal. Let us take Wrst the case g0 > 2v. Suppose that g0 ¼ vþ g1,

Systems of Logic Based on Ordinals | 183

and that V1 is an ordinal formula representing g1. Let A be any W.F.F. with a

normal form and no free variables, and let Z be the class of those positive integers

which are exceeded by all integers n for which A(n) is not convertible to 2. Let E

be the class of integers 2p such that V(p,n) conv 2 for some n belonging to Z.

The class E, together with the class Q of all odd integers, is constructively

enumerable. It is evident that the class can be enumerated with repetitions,

and since it is inWnite the required enumeration can be obtained by striking

out the repetitions. There is, therefore, a formula En such that En(V, A, r) runs

through the formulae of the class E þ Q without repetitions as r runs through

the positive integers. We deWne

Rt! lwamn : Sum Dt, w, En(w, a, m), En(w, a, n)ð Þ:
Then Rt(V1, A) is an ordinal formula which represents g0 if A is dual, but a

smaller ordinal otherwise. In fact

Rt(V1, A, m, n) conv {Sum(Dt, V1)} En(V1, A, m), En(V1, A, n)ð Þ:
Now, if A is dual, E þ Q includes all integers m for which

{Sum(Dt, V1)}(m, m) conv 3:

(This depends on the particular form that we have chosen for the formula Sum.)

Putting ‘‘En(V1, A, p) conv q’’ for M(p, q), we see that condition (7.4) is

satisWed, so that Rt(V1, A) is an ordinal formula representing g0. But, if A is

not dual, the set E þ Q consists of all integers m for which

{Sum(Dt, V1)}(m, r) conv 2,

where r depends only on A. In this case Rt(V1, A) is an ordinal formula

representing the same ordinal as Inf Sum(Dt, V1), rð Þ, and this is smaller than

g0. Now consider K:

K! la :L Sum Rt(V1, A), Pð Þ, Bð Þ:
If A is dual, K(A) is convertible to 2 since Sum Rt(V1, A), Pð Þ represents g. But,
if A is not dual, it is not convertible to 2, since Sum Rt(V1, A), Pð Þ then

represents an ordinal smaller than g. In K we therefore have a complete logic

formula, which is impossible.

Now we take the case g0 ¼ v. We introduce a W.F.F. Mg such that if n is the

D.N. of a computing machine M , and if by the m-th complete conWguration of

M the Wgure 0 has been printed, then Mg(n, m) is convertible to lpq :Al

4(P, 2p þ 2q), 3, 4ð Þ (which is an ordinal formula representing the ordinal 1),

but if 0 has not been printed it is convertible to lpq : p(q, I , 4) (which represents

0). Now consider

M! ln :L Sum Lim Mg(n)ð Þ,Pð Þ,Bð Þ:

184 | Alan Turing

If the machine never prints 0, then Lim lr : Mg(n, r)ð Þ represents v and

Sum Lim Mg(n)ð Þ,Pð Þ represents g. This means that M(n) is convertible to 2.

If, however, M never prints 0, Sum Lim Mg(n)ð Þ,Pð Þ represents a Wnite ordinal

and M(n) is not convertible to 2. In M we therefore have means of determining

about a machine whether it ever prints 0, which is impossible (Turing [1], §8).22

This completes the proof of (A).

Proof of (B). It is suYcient to prove that, if C represents an ordinal

g,v2 < g < a, then the extent of L H(C)ð Þ is included in the set-theoretic sum

of the extents ofL H(G)ð Þ, where G represents an ordinal less than g. We obtain a

contradiction fromthe assumption that there is a formulaBwhich is in the extent of

L H(G)ð Þ ifG representsg, but not if it represents any smallerordinal.Theordinalg

is of the form dþ v2 þ x, where x < v2. Let D be a C-K ordinal formula repre-

senting d and lufx : Q u, f,A(u, f, x)ð Þ one representing aþ x whenever A

represents a.

We now deWne a formula Hg. Suppose that A is a W.F.F. in normal form and

without free variables; consider the process of carrying out conversions on A(1)

until it is brought into the form 2, then converting A(2) to 2, then A(3), and so

on. Suppose that at the r-th step of this process we are doing the nr-th step in the

conversion of A(mr). Thus, for instance, if A is not convertible to 2,mr can never

exceed 3. Then Hg(A, r) is to be convertible to lf : f mr , nrð Þ for each positive

integer r. Put

Sq! ldmn : n Suc,m laufx : u ly : y Suc, a(u, f , x)ð Þð Þ, d(u, f , x)ð Þð Þ,
M! laufx :Q u, f , u ly :Hg a, y, Sq(D)ð Þð Þð Þ,
K1 ! la : L M(a),Bð Þ,

then I say that K1 is a complete logic formula. Sq(D, m, n) is a C-K ordinal

formula representing dþmvþ n, and therefore Hg A, r, Sq(D)ð Þ represents an
ordinal zr which increases steadily with increasing r, and tends to the limit

dþ v2 if A is dual. Further

Hg A, r, Sq(D)ð Þ < Hg A, S(r), Sq(D)ð Þ
for each positive integer r. Therefore lufx : u ly :Hg A, y, Sq(D)ð Þð Þ is a C-K

ordinal formula and represents the limit of the sequence z1, z2, z3, . . . This is

dþ v2 if A is dual, but a smaller ordinal otherwise. LikewiseM(A) represents g if

A is dual, but is a smaller ordinal otherwise. The formula B therefore belongs to

the extent of L H M(A)ð Þð Þ if and only if A is dual, and this implies that K1 is a

complete logic formula, as was asserted. But this is impossible and we have the

required contradiction.

22 This part of the argument can equally well be based on the impossibility of determining about two

W.F.F. whether they are interconvertible. (Church [3], 363.)

Systems of Logic Based on Ordinals | 185

As a corollary to (A) we see that LH is incomplete and in fact that the extent of

LH(Dt) contains the extent of LH (V) for any ordinal formula V. This result,

suggested to me Wrst by the solution of question (b), may also be obtained more

directly. In fact, if a number-theoretic theorem can be proved in any particular

PV, it can also be proved in Plmn :m(n, I, 4). The formulae describing number-

theoretic theorems in P do not involve more than a Wnite number of types, type 3

being the highest necessary. The formulae describing the number-theoretic

theorems in any PV will be obtained by doubling the type subscripts. Now

suppose that we have a proof of a number-theoretic theorem G in PV and that

the types occurring in the proof are among 0, 2, 4, 6, t1, t2, t3, . . .We may suppose

that they have been arranged with all the even types preceding all the odd types,

the even types in order of magnitude, and the type 2m� 1 preceding 2n� 1 if

V(m,n) conv 2. Now let each tr be replaced by 10þ 2r throughout the proof of

G. We thus obtain a proof of G in Plmn : (n, I, 4).

As with problem (a), the solution of problem (b) does not require the use of

high ordinals [e.g. if we make the assumption that the extent of L(V) is a

steadily increasing function of the ordinal represented by V we do not have to

consider ordinals higher than vþ 2]. However, if we restrict what we are to call

ordinal formulae in some way, we shall have corresponding modiWed problems

(a) and (b); the solutions will presumably be essentially the same, but will involve

higher ordinals. Suppose, for example, that Prod is a W.F.F. with the property

that Prod(V1, V2) is an ordinal formula representing a1a2 when V1, V2 are

ordinal formulae representing a1,a2 respectively, and suppose that we call a

W.F.F. a 1-ordinal formula when it is convertible to the form Sum

Prod(V, Dt), Pð Þ, where V,P are ordinal formulae of which P represents a

Wnite ordinal. We may deWne 1-ordinal logics, 1-completeness and 1-invariance

in an obvious way, and obtain a solution of problem (b) which diVers from the

solution in the ordinary case in that the ordinals less than v2 take the place of the

Wnite ordinals. More generally the cases that I have in mind are covered by the

following theorem.

Suppose that we have a class V of formulae representing ordinals in some

manner which we do not propose to specify deWnitely, and a subset U of the class

V such that:

(i) There is a formula F such that if T enumerates a sequence of members of

U representing an increasing sequence of ordinals, thenF(T) is a member

of U representing the limit of the sequence.23

(ii) There is a formula E such that E(m, n) is a member of U for each pair of

positive integers m, n and, if it represents em, n, then em, n < em0, n0 if either
m < m0 or m ¼ m0, n < n0.

23 The subset U wholly supersedes V in what follows. The introduction of V serves to emphasise the fact

that the set of ordinals represented by members of U may have gaps.

186 | Alan Turing

(iii) There is a formula G such that, if A is a member of U, then G(A) is a

member of U representing a larger ordinal than does A, and such that

G E(m, n)ð Þ always represents an ordinal not larger than em, nþ1.

We deWne a V-ordinal logic to be a W.F.F.L such thatL(A) is a logic whenever

A belongs to V. L is V-invariant if the extent of L(A) depends only on the

ordinal represented by A. Then it is not possible for a V-ordinal logic L to be V-

invariant and have the property that, if C1 represents a greater ordinal than C2

(C1 and C2 both being members of U), then the extent of L(C1) is greater than

the extent of L(C2).

We suppose the contrary. Let B be a formula belonging to the extent of

L F lr :E(r , 1)ð Þð Þð Þ but not to the extent of L F lr :E(r , 1)ð Þð Þ,
and let

K0 ! la :L G F lr :Hg(a, r , E)ð Þ,Bð Þ:ð
Then K0 is a complete logic. For

Hg(A, r,E) conv E(mr ,nr):

E(mr , nr) is a sequence of V-ordinal formulae representing an increasing se-

quence of ordinals. Their limit is represented by F lr :Hg(A, r , E)ð Þ; let us see
what this limit is. First suppose that A is dual: then mr tends to inWnity as r tends

to inWnity, and F lr :Hg(A, r , E)ð Þ therefore represents the same ordinal as

F lr :E(r , 1)ð Þ. In this case we must have

K0(A) conv 2:

Now suppose that A is not dual: mr is eventually equal to some constant number,

a say, and F lr :Hg(A, r ,E)ð Þ represents the same ordinal as F lr :E(a, r)ð Þ,
which is smaller than that represented by F lr :E(r , 1)ð Þ. B cannot therefore

belong to the extent of L G F lr :Hg(A, r , E)ð Þð Þð Þ, and K0(A) is not convertible
to 2. We have proved that K0 is a complete logic, which is impossible.

This theorem can no doubt be improved in many ways. However, it is

suYciently general to show that, with almost any reasonable notation for ordin-

als, completeness is incompatible with invariance.

We can still give a certain meaning to the classiWcation into depths with highly

restricted kinds of ordinals. Suppose that we take a particular ordinal logicL and

a particular ordinal formula C representing the ordinal a say (preferably a large

one), and that we restrict ourselves to ordinal formulae of the form Inf(C, a).

We then have a classiWcation into depths, but the extents of all the logics which

we so obtain are contained in the extent of a single logic.

We now attempt a problem of a rather diVerent character, that of the complete-

ness of LP . It is to be expected that this ordinal logic is complete. I cannot at

present give a proof of this, but I can give a proof that it is complete as regards a

Systems of Logic Based on Ordinals | 187

simpler type of theorem than the number-theoretic theorems, viz. those of form

‘‘y(x) vanishes identically’’, where y(x) is primitive recursive. The proofwill have to

bemuch abbreviated sincewedonotwish to go into the formal details of the system

P.Also there is acertain lackofdeWniteness in theproblemasatpresent stated,owing

to the fact that the formulaeG,E,MP werenot completelydeWned.Ourattitudehere

is that it is open to the sceptical reader to givedetaileddeWnitions for these formulae

and then verify that the remaining details of the proof can be Wlled in, using his

deWnition. It is not asserted that these details can be Wlled in whatever be the

deWnitions of G, E, MP consistent with the properties already required of them,

only that they can be Wlled in with the more natural deWnitions.

I shall prove the completeness theorem in the following form. If B x0½ � is a
recursion formula and ifB[0],B[f 0], . . . are all provable in P, then there is a C-

K ordinal formula A such that x0)B x0½ �ð is provable in the system PA of logic

obtained from P by adjoining as axioms all formulae whose G.R.’s are of the form

A lmn :m ˆ(2, n),ˆ(3, n)ð Þ,K ,MP , rð Þ
(provided they represent propositions).

First let us deWne the formula A. Suppose that D is a W.F.F. with the property

that D(n) conv 2 if B f (n�1)0
� �

is provable in P, but D(n) conv 1 if�B f (n�1)0
� �

is provable in P (P is being assumed consistent). Let Q be deWned by

Q! lvu : u v(v, u)ð Þf g lvu : u v(v, u)ð Þð Þ,
and let Vi be a formula with the properties

Vi(2) conv lu : u(Suc,U),

Vi(1) conv lu : u I ,Q(Suc)ð Þ:
The existence of such a formula is established in Kleene [1], corollary on p. 220.

Now put

A� ! lufx : u ly :Vi D(y), y, u, f, xð Þð Þ,
A! Suc (A�):

I assert that A�, A are C-K ordinal formulae whenever it is true thatB[0],B[f 0],

. . . are all provable in P. For in this case A� is lufx : u(R), where

R! ly :Vi D(y), y, u, f, xð Þ,
and then

lufx :R(n) conv lufx :Vi D(n), n, u, f, xð Þ
conv lufx :Vi(2, n, u, f, x)

conv lufx : {ln : n(Suc,U)}(n, u, f, x)

conv lufx : n(Suc,U , u, f, x), which is a C-K ordinal formula,

188 | Alan Turing

and
lufx : S(n, Suc,U , u, f, x) conv Suc lufx : n(Suc,U , u, f, x)ð Þ:

These relations hold for an arbitrary positive integer n and therefore A� is a C-K
ordinal formula [condition (9) p. [163]]: it follows immediately that A is also a

C-K ordinal formula. It remains to prove that (x0)B[x0] is provable in PA. To do

this it is necessary to examine the structure of A� in the case in which (x0)B[x0]

is false. Let us suppose that � B[f (a�1)0] is true, so that D(a) conv 1, and let us

consider B where

B! lufx :Vi D(a), a, u, f, xð Þ:
If A� was a C-K ordinal formula, then B would be a member of its fundamental

sequence; but

B conv lufx :Vi(1, a, u, f, x)

conv lufx : lu : u I , Q(Suc)ð Þf g(a, u, f, x)
conv lufx :Q(Suc, u, f, x)

conv lufx : lu : u Q(u)ð Þf g(Suc, u, f, x)
conv lufx : Suc Q(Suc), u, f, xð Þ
conv Suc lufx :Q(Suc, u, f, x)ð Þ
conv Suc (B): (9:3)

This, of course, implies that B < B and therefore that B is no C-K ordinal

formula. This, although fundamental in the possibility of proving our complete-

ness theorem, does not form an actual step in the argument. Roughly speaking,

our argument amounts to this. The relation (9.3) implies that the system PB is

inconsistent and therefore that PA� is inconsistent and indeed we can prove in P

(and a fortiori in PA) that � (x0)B[x0] implies the inconsistency of PA�: On the

other hand in PA we can prove the consistency of PA�. The inconsistency of PB is

proved by the Gödel argument. Let us return to the details.

The axioms in PB are those whose G.R.’s are of the form

B lmn :m $(2, n), $(3, n)ð Þ, K , MP , rð Þ:
When we replace B, by Suc (B), this becomes

Suc B, lmn :m $(2, n), $(3, n)ð Þ, K , MP , rð Þ
conv K B lmn :m $(2, n), $(3, n)ð Þ, K , MP , rð Þð Þ
conv B lmn :m $(2, n), $(3, n)ð Þ, K , MP , pð Þ

if r conv 2pþ 1,

conv E B lmn :m $(2, n), $(3, n)ð Þ, K , MPð Þ, pð Þ
if r conv 2p.

Systems of Logic Based on Ordinals | 189

When we remember the essential property of the formula E, we see that the

axioms of PB include all formulae of the form

(9x0) ProofPb[x0, f
(q)0] � F,

where q is the G.R. of the formula F.
Let b be the G.R. of the formula A.

� (9x0)(9y0){ProofPb[x0, y0] : Sb[z0, z0, y0]}: (A)

Sb[x0, y0, z0] is a particular recursion formula such that Sb[f (l)0, f (m)0, f (n)0]

holds if and only if n is the G.R. of the result of substituting f (m)0 for z0 in the for-

mulawhose G.R. is l at all points where z0 is free. Let p be the G.R. of the formulaC.

� (9x0)(9y0){ProofPb[x0, y0] : Sb[f
(b)0, f (b)0, y0]}: (C)

Then we have as an axiom in P

(9x0)ProofPb[x0, f
(p)0] � C,

and we can prove in PA

(x0){Sb[f
(b)0, f (b)0, x0] 	 x0 ¼ f (p)0}, (9:4)

since C is the result of substituting f (b)0 for z0 in A; hence

� (9y0)ProofPb[y0, f
(p)0] (9:5)

is provable in P. Using (9.4) again, we see that C can be proved in PB. But, if we

can prove C in PB, then we can prove its provability in PB, the proof being in P;

i.e. we can prove

(9x0)ProofPb[x0, f
(p)0]

in P (since p is the G.R. of C). But this contradicts (9.5), so that, if

� B[f (a�1)0]

is true, we can prove a contradiction in PB or in PA� . Now I assert that the whole

argument up to this point can be carried through formally in the system P, in

fact, that, if c is the G.R. of � (0 ¼ 0), then

� (x0)B[x0] � (9v0)ProofPA
� [v0, f

(c)0] (9:6)

is provable in P. I shall not attempt to give any more detailed proof of this

assertion.

The formula

(9x0)ProofPa� [x0, f
(c)0] � � (0 ¼ 0) (9:7)

is an axiom in PA. Combining (9.6), (9.7) we obtain (x0)B[x0] in PA.

190 | Alan Turing

This completeness theorem as usual is of no value. Although it shows, for

instance, that it is possible to prove Fermat’s last theorem with LP (if it is true)

yet the truth of the theorem would really be assumed by taking a certain formula

as an ordinal formula.

That LP is not invariant may be proved easily by our general theorem;

alternatively it follows from the fact that, in proving our partial completeness

theorem, we never used ordinals higher than vþ 1. This fact can also be used to

prove that LP is not C-K invariant up to vþ 2.

10. The continuum hypothesis. A digression

The methods of §9 may be applied to problems which are constructive analogues

of the continuum hypothesis problem. The continuum hypothesis asserts that

2@0 ¼ @1, in other words that, if v1 is the smallest ordinal a greater than v such

that a series with order type a cannot be put into one–one correspondence with

the positive integers, then the ordinals less than v1 can be put into one–one

correspondence with the subsets of the positive integers. To obtain a constructive

analogue of this proposition we may replace the ordinals less than v1 either by

the ordinal formulae, or by the ordinals represented by them; we may replace the

subsets of the positive integers either by the computable sequences of Wgures 0, 1,

or by the description numbers of the machines which compute these sequences.

In the manner in which the correspondence is to be set up there is also more than

one possibility. Thus, even when we use only one kind of ordinal formula, there

is still great ambiguity concerning what the constructive analogue of the con-

tinuum hypothesis should be. I shall prove a single result in this connection.24

A number of others may be proved in the same way.

We ask ‘‘Is it possible to Wnd a computable function of ordinal formulae

determining a one-one correspondence between the ordinals represented by

ordinal formulae and the computable sequences of Wgures 0, 1?’’ More accurately,

‘‘Is there a formula F such that ifV is an ordinal formula and n a positive integer

then F(V, n) is convertible to 1 or to 2, and such that F(V, n) conv F(V0, n) for
each positive integer n, if and only ifV andV0 represent the same ordinal?’’ The

answer is ‘‘No’’, as will be seen to be a consequence of the following argument:

there is no formula F such that F(V) enumerates one sequence of integers (each

being 1 or 2) when V represents v and enumerates another sequence when V

represents 0. If there is such an F, then there is an a such that F(V, a) conv (Dt,

a) ifV represents v but F(V, a) and F(Dt, a) are convertible to diVerent integers

(1 or 2) if V represents 0. To obtain a contradiction from this we introduce

24 A suggestion to consider this problem came to me indirectly from F. Bernstein. A related problem was

suggested by P. Bernays.

Systems of Logic Based on Ordinals | 191

a W.F.F. Gm not unlike Mg. If the machine M whose D.N. is n has printed 0 by

the time the m-th complete conWguration is reached then

Gm(n, m) conv lmn :m(n, I , 4);

otherwise Gm(n, m) conv lpq :Al 4(P, 2p þ 2q), 3, 4ð Þ. Now consider F(Dt, a)

and F Lim Gm(n)ð Þ, að Þ. If M never prints 0, Lim Gm(n)ð Þ represents the ordinal
v. Otherwise it represents 0. Consequently these two formulae are convertible to

one another if and only if M never prints 0. This gives us a means of determin-

ing about any machine whether it ever prints 0, which is impossible.

Results of this kind have of course no real relevance for the classical con-

tinuum hypothesis.

11. The purpose of ordinal logics

Mathematical reasoning may be regarded rather schematically as the exercise of a

combination of two faculties, which we may call intuition and ingenuity.25 The

activity of the intuition consists in making spontaneous judgments which are not

the result of conscious trains of reasoning. These judgments are often but by no

means invariably correct (leaving aside the question what is meant by ‘‘correct’’).

Often it is possible to Wnd some other way of verifying the correctness of an

intuitive judgment. We may, for instance, judge that all positive integers are

uniquely factorizable into primes; a detailed mathematical argument leads to the

same result. This argument will also involve intuitive judgments, but they will be

less open to criticism than the original judgment about factorization. I shall not

attempt to explain this idea of ‘‘intuition’’ any more explicitly.

The exercise of ingenuity in mathematics consists in aiding the intuition

through suitable arrangements of propositions, and perhaps geometrical Wgures

or drawings. It is intended that when these are really well arranged the validity of

the intuitive steps which are required cannot seriously be doubted.

The parts played by these two faculties diVer of course from occasion to

occasion, and from mathematician to mathematician. This arbitrariness can be

removed by the introduction of a formal logic. The necessity for using the

intuition is then greatly reduced by setting down formal rules for carrying out

inferences which are always intuitively valid. When working with a formal logic,

the idea of ingenuity takes a more deWnite shape. In general a formal logic, will

be framed so as to admit a considerable variety of possible steps in any stage in a

proof. Ingenuity will then determine which steps are the more proWtable for the

purpose of proving a particular proposition. In pre-Gödel times it was thought

25 We are leaving out of account that most important faculty which distinguishes topics of interest from

others; in fact, we are regarding the function of the mathematician as simply to determine the truth or falsity

of propositions.

192 | Alan Turing

by some that it would probably be possible to carry this programme to such a

point that all the intuitive judgments of mathematics could be replaced by a

Wnite number of these rules. The necessity for intuition would then be entirely

eliminated.

In our discussions, however, we have gone to the opposite extreme and

eliminated not intuition but ingenuity, and this in spite of the fact that our

aim has been in much the same direction. We have been trying to see how far it is

possible to eliminate intuition, and leave only ingenuity. We do not mind how

much ingenuity is required, and therefore assume it to be available in unlimited

supply. In our metamathematical discussions we actually express this assumption

rather diVerently. We are always able to obtain from the rules of a formal logic a

method of enumerating the propositions proved by its means. We then imagine

that all proofs take the form of a search through this enumeration for the

theorem for which a proof is desired. In this way ingenuity is replaced by

patience. In these heuristic discussions, however, it is better not to make this

reduction.

In consequence of the impossibility of Wnding a formal logic which wholly

eliminates the necessity of using intuition, we naturally turn to ‘‘non-construct-

ive’’ systems of logic with which not all the steps in a proof are mechanical, some

being intuitive. An example of a non-constructive logic is aVorded by any ordinal

logic. When we have an ordinal logic, we are in a position to prove number-

theoretic theorems by the intuitive steps of recognizing formulae as ordinal

formulae, and the mechanical steps of carrying out conversions. What properties

do we desire a non-constructive logic to have if we are to make use of it for the

expression of mathematical proofs? We want it to show quite clearly when a step

makes use of intuition, and when it is purely formal. The strain put on the

intuition should be a minimum. Most important of all, it must be beyond all

reasonable doubt that the logic leads to correct results whenever the intuitive

steps are correct.26 It is also desirable that the logic shall be adequate for the

expression of number-theoretic theorems, in order that it may be used in

metamathematical discussions (cf. §5).

Of the particular ordinal logics that we have discussed, LH and LP certainly

will not satisfy us. In the case of LH we are in no better position than with a

constructive logic. In the case of LP (and for that matter also LH) we are by no

means certain that we shall never obtain any but true results, because we do not

know whether all the number-theoretic theorems provable in the system P are

true. To take LP as a fundamental non-constructive logic for metamathematical

26 This requirement is very vague. It is not of course intended that the criterion of the correctness of the

intuitive steps be the correctness of the Wnal result. The meaning becomes clearer if each intuitive step is

regarded as a judgment that a particular proposition is true. In the case of an ordinal logic it is always a

judgment that a formula is an ordinal formula, and this is equivalent to judging that a number-theoretic

proposition is true. In this case then the requirement is that the reputed ordinal logic is an ordinal logic.

Systems of Logic Based on Ordinals | 193

arguments would be most unsound. There remains the system of Church which

is free from these objections. It is probably complete (although this would not

necessarily mean much) and it is beyond reasonable doubt that it always leads to

correct results.27 In the next section I propose to describe another ordinal

logic, of a very diVerent type, which is suggested by the work of Gentzen and

which should also be adequate for the formalization of number-theoretic

theorems. In particular it should be suitable for proofs of metamathema-

tical theorems (cf. §5).

12. Gentzen type ordinal logics

In proving the consistency of a certain system of formal logic Gentzen (Gentzen

[1]) has made use of the principle of transWnite induction for ordinals less than

e0, and has suggested that it is to be expected that transWnite induction carried

suYciently far would suYce to solve all problems of consistency. Another

suggestion of basing systems of logic on transWnite induction has been made

by Zermelo (Zermelo [1]). In this section I propose to show how this method of

proof may be put into the form of a formal (non-constructive) logic, and

afterwards to obtain from it an ordinal logic.

We can express the Gentzen method of proof formally in this way. Let us take

the system P and adjoin to it an axiom AV with the intuitive meaning that the

W.F.F. V is an ordinal formula, whenever we feel certain that V is an ordinal

formula. This is a non-constructive system of logic which may easily be put into

the form of an ordinal logic. By the method of §6 we make correspond to the

system of logic consisting of P with the axiom AV adjoined a logic formula

LV: LV is an eVectively calculable function ofV, and there is therefore a formula

LG
1 such that LG

1(V) conv LV for each formula V. LG
1 is certainly not an

ordinal logic unless P is valid, and therefore consistent. This formalization of

Gentzen’s idea would therefore not be applicable for the problem with which

Gentzen himself was concerned, for he was proving the consistency of a system

weaker than P. However, there are other ways in which the Gentzen method of

proof can be formalized. I shall explain one, beginning by describing a certain

logical calculus.

The symbols of the calculus are f, x, 1, 1, 0, S, R, G, D, E, j,
 , !, (,), ¼, and
the comma ‘‘,’’. For clarity we shall use various sizes of brackets (,) in the

following. We use capital German letters to stand for variable or undetermined

sequences of these symbols.

27 This ordinal logic arises from a certain system C0 in essentially the same way as LP arose from P. By

an argument similar to one occurring in §8 we can show that the ordinal logic leads to correct results if

and only if C0 is valid; the validity of C0 is proved in Church [1], making use of the results of Church and

Rosser [1].

194 | Alan Turing

It is to be understood that the relations that we are about to deWne hold only

when compelled to do so by the conditions that we lay down. The conditions

should be taken together as a simultaneous inductive deWnition of all the

relations involved.

Suffixes

1 is a suYx. If S is a suYx then S1 is a suYx.

Indices
1 is an index. If I is an index then I1

is an index.

Numerical variables

If S is a suYx then xS is a numerical variable.

Functional variables

IfS is a suYx and I is an index, then fSI is a functional variable of index I.

Arguments

(,) is an argument of index 1. If (A) is an argument of index I andT is a term,

then (AT,) is an argument of index I1
.

Numerals

0 is a numeral.

If N is a numeral, then S(, N,) is a numeral.

In metamathematical statements we shall denote the numeral in which S

occurs r times by S(r)(, 0,).

Expressions of a given index

A functional variable of index I is an expression of index I.
R, S are expressions of index 111, 11 respectively.

If N is a numeral, then it is also an expression of index 1.

Suppose that G is an expression of index I, H one of index I1
and K one of

index I111
; then (GG) and (DG) are expressions of index I, while (EG) and

(GjH) and (G
K) and (G !H !K) are expressions of index I1
.

Function constants

An expression of index I in which no functional variable occurs is a function

constant of index I. If in addition R does not occur, the expression is called a

primitive function constant.

Terms

0 is a term.

Every numerical variable is a term.

Systems of Logic Based on Ordinals | 195

If G is an expression of index I and (A) is an argument of index I, then
G(A) is a term.

Equations

If T and T0 are terms, then T ¼ T0 is an equation.

Provable equations

We deWne what is meant by the provable equations relative to a given set of

equations as axioms.

(a) The provable equations include all the axioms. The axioms are of the form

of equations in which the symbols G, D, E, j,
 , ! do not appear.

(b) IfG is an expression of index I11
and (A) is an argument of index I, then

(GG)(Ax1, x11,) ¼ G(Ax11, x1,)

is a provable equation.

(c) IfG is an expression of index I1
, and (A) is an argument of index I, then

(DG)(Ax1,) ¼ G(, x1 A)

is a provable equation.

(d) IfG is an expression of index I, and (A) is an argument of index I, then

(EG)(Ax1,) ¼ G(A)

is a provable equation.

(e) If G is an expression of index I and H is one of index I1
, and (A) is an

argument of index I, then

(GjH)(A) ¼ H(AG(A),)
is a provable equation.

(f) If N is an expression of index 1, then N(,) ¼ N is a provable equation.

(g) If G is an expression of index I and K one of index I111
, and (A) an

argument of index I1
, then

(G
K)(A0,) ¼ G(A)

and (G
K)(AS(, x1,),) ¼ K(Ax1, S(, x1,), (G
K)(Ax1,),)
are provable equations. If in additionH is an expression of index I1 and

R

	
,G(AS(, x1,),), x1,

¼ 0

is provable, then

(G !K !H)(A0,) ¼ G(A)

and

196 | Alan Turing

(G !K !H)
�
AS(, x1,),

�
¼ K

	�
AH(AS(, x1,),

�
, S(, x1,), (G !K !H)ðAH

�
AS(, x1,),

�
, Þ,

are provable.

(h) If T ¼ T0 and U ¼ U0 are provable, where T, T0, U and U0 are terms,

then U0 ¼ U and the result of substituting U0 for U at any particular

occurrence in T ¼ T0 are provable equations.
(i) The result of substituting any term for a particular numerical variable

throughout a provable equation is provable.

(j) Suppose that G, G0 are expressions of index I1
, that (A) is an argument

of index I not containing the numerical variable X and that

G(A0,) ¼ G0(A0,) is provable. Also suppose that, if we add

G(AX,) ¼ G0(AX,)

to the axioms and restrict (i) so that it can never be applied to the

numerical variable X, then

G(AS(, X,),) ¼ G0(AS(, X),)
becomes a provable equation; in the hypothetical proof of this equation

this rule (j) itself may be used provided that a diVerent variable is chosen

to take the part of X.
Under these conditions G(AX,) ¼ G0(AX,) is a provable equation.

(k) Suppose that G, G0, H are expressions of index I1
, that (A) is an

argument of index I not containing the numerical variable X and that

G(A0,) ¼ G0(A0,) and R

	
, HðAS(, X,), Þ, S(, X,),

¼ 0

are provable equations. Suppose also that, if we add

G

	
AH(AS(, X,),)

¼ G0

	
AH(AS(, X,),)

to the axioms, and again restrict (i) so that it does not apply to X, then

G(AX,) ¼ G0(AX,) (12:1)

becomes a provable equation; in the hypothetical proof of (12.1) the rule

(k) may be used if a diVerent variable takes the part of X.
Under these conditions (12.1) is a provable equation.

We have now completed the deWnition of a provable equation relative to a

given set of axioms. Next we shall show how to obtain an ordinal logic from this

calculus. The Wrst step is to set up a correspondence between some of the

equations and number-theoretic theorems, in other words to show how they

Systems of Logic Based on Ordinals | 197

can be interpreted as number-theoretic theorems. Let G be a primitive function

constant of index 111.G describes a certain primitive recursive function f(m, n),

determined by the condition that, for all natural numbers m, n, the equation

G(, S(m)(, 0,), S(n)(, 0,),) ¼ S(f(m, n))(, 0,)

is provable without using the axioms (a). Suppose also that H is an expression of

index I. Then to the equation

G(, x1, H(, x1,),) ¼ 0

we make correspond the number-theoretic theorem which asserts that for each

natural number m there is a natural number n such that f(m, n) ¼ 0. (The

circumstance that there is more than one equation to represent each number-

theoretic theorem could be avoided by a trivial but inconvenient modiWcation of

the calculus.)

Now let us suppose that some deWnitemethod is chosen for describing the sets of

axioms by means of positive integers, the null set of axioms being described by the

integer 1. By an argument used in §6 there is a W.F.F. S such that, if r is the integer

describing a set A of axioms, then S(r) is a logic formula enabling us to prove

just those number-theoretic theorems which are associated with equations

provable with the above described calculus, the axioms being those described by

the number r.

I explain two ways in which the construction of the ordinal logic may be

completed.

In the Wrst method we make use of the theory of general recursive functions

(Kleene [2]). Let us consider all equations of the form

R(, S(m)(, 0,), S(n)(, 0,),) ¼ S(p)(, 0,) (12:2)

which are obtainable from the axioms by the use of rules (h), (i). It is a conse-

quence of the theorem of equivalence of l-deWnable and general recursive func-

tions (Kleene [3]) that, if r(m, n) is any l-deWnable function of two variables, then

we can choose the axioms so that (12.2) with p¼ r(m, n) is obtainable in this way

for each pair of natural numbers m, n, and no equation of the form

S(m)(, 0,) ¼ S(n)(, 0,) (m 6¼ n) (12:3)

is obtainable. In particular, this is the case if r(m, n) is deWned by the condition that

V(m, n) conv S(p) implies p ¼ r(m, n),

r(0, n) ¼ 1, all n > 0, r(0, 0) ¼ 2,

whereV is an ordinal formula. There is a method for obtaining the axioms given

the ordinal formula, and consequently a formula Rec such that, for any ordinal

198 | Alan Turing

formula V, Rec (V) conv m, where m is the integer describing the set of axioms

corresponding to V. Then the formula

LG
2 ! lw :S(ðRec (w))

is an ordinal logic. Let us leave the proof of this aside for the present.

Our second ordinal logic is to be constructed by a method not unlike the one

which we used in constructing LP . We begin by assigning ordinal formulae to all

sets of axioms satisfying certain conditions. For this purpose we again consider

that part of the calculus which is obtained by restricting ‘‘expressions’’ to be

functional variables or R or S and restricting the meaning of ‘‘term’’ accordingly;

the new provable equations are given by conditions (a), (h), (i), together with an

extra condition (l).

(l) The equation

R(, 0, S(, x1,),) ¼ 0

is provable.

We could design a machine which would obtain all equations of the form

(12.2), with m 6¼ n, provable in this sense, and all of the form (12.3), except that

it would cease to obtain any more equations when it had once obtained one of

the latter ‘‘contradictory’’ equations. From the description of the machine we

obtain a formula V such that

V(m, n) conv 2 if R(, S(m�1)(, 0,), S(n�1)(, 0,),) ¼ 0

is obtained by the machine,

V(m, n) conv 1 if R(, S(n�1)(, 0,), S(m�1)(, 0,),) ¼ 0

is obtained by the machine, and

V(m, m) conv 3 always:

The formula V is an eVectively calculable function of the set of axioms, and

therefore also of m: consequently there is a formula M such that M(m) conv V

whenm describes the set of axioms. Now let Cm be a formula such that, if b is the

G.R. of a formula M(m), then Cm(b) conv m, but otherwise Cm(b) conv 1. Let

LG
3 ! lwa :G

	
ln :SðCm(Tn(w, n)Þ, a

:

Then LG
3 (V, A) conv 2 if and only if V conv M(m), where m describes a set of

axioms which, taken with our calculus, suYces to prove the equation which is,

roughly speaking, equivalent to ‘‘A is dual’’. To prove thatLG
3 is an ordinal logic, it

is suYcient to prove that the calculus with the axioms described bym proves only

true number-theoretic theorems whenV is an ordinal formula. This condition on

Systems of Logic Based on Ordinals | 199

m may also be expressed in this way. Let us put m� n if we can prove

R(, S(m)(, 0,), S(n)(, 0,),) ¼ 0 with (a), (h), (i), (l): the condition is that

m� n is a well ordering of the natural numbers and that no contradictory

equation (12.3) is provable with the same rules (a), (h), (i), (l). Let us say that

such a set of axioms is admissible. LG
3 is an ordinal logic if the calculus leads to

none but true number-theoretic theorems when an admissible set of axioms is

used.

In the case of LG
2, Rec (V) describes an admissible set of axioms whenever V

is an ordinal formula. LG
2 therefore is an ordinal logic if the calculus leads to

correct results when admissible axioms are used.

To prove that admissible axioms have the required property, I do not attempt

to do more than show how interpretations can be given to the equations of the

calculus so that the rules of inference (a)–(k) become intuitively valid methods of

deduction, and so that the interpretation agrees with our convention regarding

number-theoretic theorems.

Each expression is the name of a function, which may be only partially

deWned. The expression S corresponds simply to the successor function. If G is

either R or a functional variable and has p þ 1 symbols in its index, then it

corresponds to a function g of p natural numbers deWned as follows. If

G(, S(r1)(, 0,), S(r2)(, 0,), . . . , S(rp)(, 0,),) ¼ S(l)(, 0,)

is provable by the use of (a), (h), (i), (l) only, then g(r1, r2, . . . , rp) has the value

p. It may not be deWned for all arguments, but its value is always unique, for

otherwise we could prove a ‘‘contradictory’’ equation and M(m) would then not

be an ordinal formula. The functions corresponding to the other expressions are

essentially deWned by (b)–(f). For example, if g is the function corresponding to

G and g 0 that corresponding to (GG), then

g 0(r1, r2, . . . , rp, l, m) ¼ g(r1, r2, . . . , rp, m, l):

The values of the functions are clearly unique (when deWned at all) if given by one

of (b)–(e). The case (f) is less obvious since the function deWned appears also in the

deWniens. I do not treat the case of (G
K), since this is thewell-known deWnition

by primitive recursion, but I shall show that the values of the function correspond-

ing to (G !K !H) are unique. Without loss of generality we may suppose that (A)

in (f) is of index 1. We have then to show that, if h(m) is the function corres-

ponding to H and r(m, n) that corresponding to R, and k(u, v, w) is a given

function and a a given natural number, then the equations

l(0) ¼ a, (a)

l(mþ 1) ¼ k

	
h(mþ 1), mþ 1, lðh(mþ 1)Þ

(b)

200 | Alan Turing

do not ever assign two diVerent values for the function l(m). Consider those

values of r for which we obtain more than one value of l(r), and suppose that

there is at least one such. Clearly 0 is not one, for l(0) can be deWned only by (a).

Since the relation � is a well ordering, there is an integer r0 such that

r0 > 0, l(r0) is not unique, and if s 6¼ r0 and l(s) is not unique then r0 � s. We

may put s ¼ h(r0), for, if l(h(r0)) were unique, then l(r0), deWned by (b),

would be unique. But r(h(r0), r0) ¼ 0 i:e: s � r0. There is, therefore, no inte-

ger r for which we obtain more than one value for the function l(r).

Our interpretation of expressions as functions gives us an immediate inter-

pretation for equations with no numerical variables. In general we interpret an

equation with numerical variables as the (inWnite) conjunction of all equations

obtainable by replacing the variables by numerals. With this interpretation (h),

(i) are seen to be valid methods of proof. In (j) the provability of

G(AS(, x1,),) ¼ G0(AS(, x1,),)
when G(Ax1,) ¼ G0(Ax1,) is assumed to be interpreted as meaning that the

implication between these equations holds for all substitutions of numerals for

x1. To justify this, one should satisfy oneself that these implications always hold

when the hypothetical proof can be carried out. The rule of procedure (j) is now

seen to be simply mathematical induction. The rule (k) is a form of transWnite

induction. In proving the validity of (k) we may again suppose (A) is of index 1.

Let r(m, n), g(m), g1(m), h(n) be the functions corresponding respectively to

R, G, G0, H. We shall prove that, if g(0) ¼ g 0(0) and r(h(n), n) ¼ 0 for each

positive integer n and if g(nþ 1) ¼ g 0(nþ 1) whenever g(h(nþ 1))
¼ g 0(h(nþ 1)), then g(n) ¼ g 0(n) for each natural number n. We consider

the class of natural numbers for which g(n) ¼ g 0(n) is not true. If the class is

not void it has a positive member n0 which precedes all other members in the

well ordering �. But h(n0) is another member of the class, for otherwise we

should have

g(h(n0)) ¼ g 0(h(n0))
and therefore g(n0) ¼ g 0(n0), i:e: n0 would not be in the class. This implies

n0 � h(n0) contrary to r(h(n0), n0) ¼ 0. The class is therefore void.

It should be noticed that we do not really need to make use of the fact that V

is an ordinal formula. It suYces that V should satisfy conditions (a)–(e)

(p. [162]) for ordinal formulae, and in place of (f) satisfy (f 0).
(f 0) There is no formula T such that T(n) is convertible to a formula repre-

senting a positive integer for each positive integer n, and such that V(T(n), n)
conv 2, for each positive integer n for which V(n, n) conv 3.

The problem whether a formula satisWes conditions (a)–(e), (f 0) is number-

theoretic. If we use formulae satisfying these conditions instead of ordinal

Systems of Logic Based on Ordinals | 201

formulae with LG
2 or LG

3, we have a non-constructive logic with certain

advantages over ordinal logics. The intuitive judgments that must be made are

all judgments of the truth of number-theoretic theorems. We have seen in §9 that

the connection of ordinal logics with the classical theory of ordinals is quite

superWcial. There seem to be good reasons, therefore, for giving attention to

ordinal formulae in this modiWed sense.

The ordinal logic LG
3 appears to be adequate for most purposes. It should, for

instance, be possible to carry out Gentzen’s proof of consistency of number

theory, or the proof of the uniqueness of the normal form of a well-formed

formula (Church and Rosser [1]) with our calculus and a fairly simple set of

axioms. How far this is the case can, of course, only be determined by experi-

ment.

One would prefer a non-constructive system of logic based on transWnite

induction rather simpler than the system which we have described. In particular,

it would seem that it should be possible to eliminate the necessity of stating

explicitly the validity of deWnitions by primitive recursions, since this principle

itself can be shown to be valid by transWnite induction. It is possible to make

such modiWcations in the system, even in such a way that the resulting system is

still complete, but no real advantage is gained by doing so. The eVect is always, so

far as I know, to restrict the class of formulae provable with a given set of axioms,

so that we obtain no theorems but trivial restatements of the axioms. We have

therefore to compromise between simplicity and comprehensiveness.

Index of definitions

No attempt is being made to list heavy type formulae since their meanings are

not always constant throughout the paper. Abbreviations for deWnite well-

formed formulae are listed alphabetically.

Page

Ai. 179

Al . 169

Bd . 169

Ck . 173

Cm .. 199

Comp 180

Dt . 151

E . 176

form.. 150

G. 177

Gm .. 192

Page

Gr .. .150

H. 165, 168

H1 168

Hf........................... 169

Hg 185

I 148

Inf 169

Jh 183

K 177

Lim......................... 169

Ls 168

Page

M. 199

MP . 177

Mg .. 184

Nm.. 160

Od .. 180

P. 169

Prod 186

Q . 159

Rec . 198

Rt . 184

S. 149

202 | Alan Turing

Bibliography

Alonzo Church, [1]. ‘‘A proof of freedom from contradiction’’, Proc. Nat. Acad. Sci. 21

(1935), 275–281.

——[2]. Mathematical logic, Lectures at Princeton University (1935–6), mimeographed,

113 pp.

——[3]. ‘‘An unsolvable problem of elementary number theory’’, American J. of Math. 58

(1936), 345–363.

——[4]. ‘‘The constructive second number class’’, Bull. American Math. Soc. 44 (1938),

224–238.

G. Gentzen, [1]. ‘‘Die Widerspruchsfreiheit der reinen Zahlentheorie’’,Math. Annalen, 112

(1936), 493–565.

K. Gödel, [1]. ‘‘Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme, I’’, Monatshefte für Math. und Phys. 38 (1931), 173–189.

——[2]. On undecidable propositions of formal mathematical systems, Lectures at the

Institute for Advanced Study, Princeton, N.J., 1934, mimeographed, 30 pp.

D. Hilbert, [1]. ‘‘Über das Unendliche’’, Math. Annalen, 95 (1926), 161–190.

S. C. Kleene, [1]. ‘‘A theory of positive integers in formal logic’’, American J. of Math. 57

(1935), 153–173 and 219–244.

——[2]. ‘‘General recursive functions of natural numbers’’,Math. Annalen, 112 (1935–6),

727–742.

——[3]. ‘‘l-deWnability and recursiveness’’, Duke Math. Jour. 2 (1936), 340–353.

E. L. Post, [1]. ‘‘Finite combinatory processes—formulation 1’’, Journal Symbolic Logic,

1 (1936), 103–105.

J. B. Rosser, [1]. ‘‘Gödel theorems for non-constructive logics’’, Journal Symbolic Logic, 2

(1937), 129–137.

A. Tarski, [1]. ‘‘Der WahrheitsbegriV in den formalisierten Sprachen’’, Studia Philosophica,

1 (1936), 261–405 (translation from the original paper in Polish dated 1933).

A. M. Turing, [1]. ‘‘On computable numbers, with an application to the Entscheidungs-

problem’’. [Chapter 1].

——[2]. ‘‘Computability and l-deWnability’’, Journal Symbolic Logic, 2 (1937), 153–163.

Sum 169

Sq. 185

Tn . 173

Ug . 169

V. 160

Vi. 188

W . 159

W 0 . 159

X .158

Z .183

G .160

d .147

Q .188

LG
1 .194

LG
2 .199

LG
3 199

LH 178

LP . 177

ˆ. 151

S . 198

1, 2, 3, 148

P . 15428

28 Editor’s note. The remainder of Turing’s index has been incorporated into the general index at the rear

of the book.

Systems of Logic Based on Ordinals | 203

E. Zermelo, [1]. ‘‘Grundlagen einer allgemeiner Theorie der mathematischen Satzsysteme,

I’’, Fund. Math. 25 (1935), 136–146.

Alonzo Church and S. C. Kleene, [1]. ‘‘Formal deWnitions in the theory of ordinal

numbers’’, Fund. Math. 28 (1936), 11–21.

Alonzo Church and J. B. Rosser, [1]. ‘‘Some properties of conversion’’, Trans. American

Math. Soc. 39 (1936), 472–482.

D. Hilbert and W. Ackermann, [1]. Grundzüge der theoretischen Logik (2nd edition revised,

Berlin, 1938), 130 pp.

A. N. Whitehead and Bertrand Russell, [1]. Principia Mathematica (2nd edition, Cam-

bridge, 1925–1927), 3 vols.

[Received 31 May, 1938.—Read 16 June, 1938.]

204 | Alan Turing

CHAPTER 4

Letters on Logic to Max Newman (c.1940)

Alan Turing

Introduction
Jack Copeland

At the outbreak of war with Germany in September 1939, Turing left Cambridge

to take up work as a codebreaker at Bletchley Park, the wartime headquarters of

the Government Code and Cypher School (see ‘Enigma’, below). In the early

months of 1940, Turing received a letter from the Cambridge mathematician

M. H. A. Newman, his teacher, colleague, and friend. Turing replied on 23

March, writing from his lodgings at the Crown Inn (situated in the small village

of Shenley Brook End): ‘Dear Newman, Very glad to get your letter, as I needed

some stimulus to make me start thinking about logic.’ This was to be the Wrst of

Wve letters that Turing wrote to Newman during the seventeen months before

Newman too left Cambridge for Bletchley Park.

In his Wrst letter Turing agreed (presumably at Newman’s request—Newman’s

letters seem not to have been preserved) to ‘let [Newman] in on . . . the tricks of

the conversion calculus’. The conversion calculus, or ‘l-calculus’, is due to

Alonzo Church, with whom Turing studied in Princeton from 1936 to 1938

(see the introduction to Chapter 3).1 Turing’s letters consist for the most part of

detailed remarks on the conversion calculus, often elucidating material from

what Turing calls ‘Church’s notes’—a substantial typescript entitled ‘Mathemat-

ical Logic’ which was in circulation at Princeton and elsewhere and which

Newman was evidently reading.2

Their correspondence on Church’s work issued in their joint paper ‘A Formal

Theorem in Church’s Theory of Types’, which was submitted to Church’s Journal

1 Turing and Church also corresponded at this time. A letter from Church addressed to Turing at the

Crown is dated 15 May 1940 and replies to Turing’s of 15 April. I am grateful to Alonzo Church’s son,

Alonzo Church Jnr, for sending me a copy of Church’s letter.

2 The title page reads: ‘mathematical logic Lectures by Alonzo Church Princeton University,

October 1935–January 1936. (Notes by F. A. Ficken, H. G. Landau, H. Ruja, R. R. Singleton, N. E. Steenrod,

J. H. Sweer, F. J. Weyl).’ I am grateful to Alonzo Church Jnr for information concerning this typescript.

of Symbolic Logic in May 1941 and published in March 1942.3 The paper was

written while Turing played a leading role in the battle to break Naval Enigma

(see ‘Enigma’ and Chapters 5–8). Turing would spend his occasional nights oV

duty ‘coming in as usual . . . , doing his own mathematical research at night, in

the warmth and light of the oYce, without interrupting the routine of daytime

sleep’.4

The two most interesting items of the correspondence, which are printed here,

contain substantial passages in which Turing departs from his commentary on

Church’s work and expounds his own views. These elegant passages provide

information about Turing’s thoughts on the logical foundations of mathematics

which is not to be found elsewhere in his writings.

Of particular importance are the sections headed ‘Intuition. Inspiration.

Ingenuity’, in which he discusses the unsolvability and incompleteness results

in logic and explains the basic idea underlying his ordinal logics (Chapter 3);

‘Ingenuity and Intuition’, discussing the extent to which provability by Turing

machine approximates mathematical truth; ‘The Completeness Theorem’, con-

cerning the completeness theorem established in Chapter 3; and ‘Consequences’,

in which two notions of logical consequence are compared. These sections

contain occasional formulae of the conversion calculus, but the formulae are

not necessary to Turing’s points, and readers unfamiliar with the notation of the

calculus should not be deterred.

M. H. A. Newman: Mathematician, Codebreaker,

and Computer Pioneer

Max Newman played an important part in Turing’s intellectual life over many

years. It was Newman who, in a lecture in Cambridge in 1935, launched Turing

on the research that led to the universal Turing machine:

I believe it all started because he attended a lecture of mine on foundations of mathemat-

ics and logic . . . I think I said in the course of this lecture that what is meant by saying that

[a] process is constructive is that it’s a purely mechanical machine—and I may even have

said, a machine can do it.

And this of course led [Turing] to the next challenge, what sort of machine, and this

inspired him to try and say what one would mean by a perfectly general computing

machine.5

3 M. H. A. Newman and A. M. Turing, ‘A Formal Theorem in Church’s Theory of Types’, Journal of

Symbolic Logic, 7 (1942), 28–33.

4 J. Murray, ‘Hut 8 and Naval Enigma, Part I’, in H. Hinsley and A. Stripp (eds.), Codebreakers: The Inside

Story of Bletchley Park (Oxford: Oxford University Press, 1993), 117.

5 Newman in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of

Computing’ (London: Science Museum)).

206 | Jack Copeland

In April 1936, Turing presented Newman with the draft typescript of ‘On

Computable Numbers’.6 Not long after, an oVprint of Church’s paper proving

the undecidability of Wrst-order predicate calculus arrived in Cambridge.7 New-

man proved a staunch ally at what must have been a painful time for Turing. On

29 May 1936 Turing wrote in a letter to his mother:

Meanwhile a paper has appeared in America, written by Alonzo Church, doing the same

things in a diVerent way. Mr Newman and I have decided however that the method is

suYciently diVerent to warrant the publication of my paper too.8

It was clear to Newman that ‘Turing’s ‘‘machine’’ had a signiWcance going far

beyond this particular application [the Entscheidungsproblem]’.9 Turing’s paper

contained (in Newman’s words) ‘this extraordinary deWnition of a perfectly

general . . . computable function, thus giving the Wrst idea . . . of a perfectly gen-

eral computing machine.’10 Newman advised Turing during the Wnal stages of

preparation of ‘On Computable Numbers’, and he wrote to the Secretary of the

London Mathematical Society saying that Church’s prior publication should not

stand in the way of Turing’s paper appearing in the Proceedings.11

In 1942 Newman received a letter from Frank Adcock, another Cambridge man

and a veteran of Room 40 (the forerunner of the Government Code and Cypher

School): ‘Dear Newman, There is some work going at a government institution

which would I think interest you and which is certainly important for the War

. . .’.12 Newman wrote to the Master of St John’s to request leave of absence and at

the end of August 1942 he joined the Research Section at Bletchley Park.

The Research Section was attempting to break the German cipher machine

they nicknamed ‘Tunny’. Used mainly by the German Army, Tunny was one of

three types of German machine—collectively referred to as ‘Fish’ by the British—

for enciphering the binary teleprinter alphabet (the other two were ‘Sturgeon’,

used mainly by the German Air Force, and ‘Thrasher’). From the autumn of 1942

Tunny was used in preference to Enigma for the encryption of messages between

the German High Command and the various Army Group commanders in the

Weld—intelligence of the highest grade.

6 A. Hodges, Alan Turing: The Enigma (London: Vintage, 1992), 109.

7 M. H. A. Newman, ‘Alan Mathison Turing, 1912–1954’, Biographical Memoirs of Fellows of the Royal

Society, 1 (1955), 253–63 (258). On the paper by Church, ‘A Note on the Entscheidungsproblem’, see

‘Computable Numbers: A Guide’.

8 The letter is among the Turing Papers in the Modern Archive Centre, King’s College Library,

Cambridge (catalogue reference K 1).

9 Newman, ‘Alan Mathison Turing, 1912–1954’, 258.

10 Newman in interview with Christopher Evans (see n. 5).

11 See further ‘Max Newman: Mathematician, Codebreaker and Computer Pioneer’, by William Newman

(Max’s son), to appear in B. J. Copeland (ed.), Colossus: The First Electronic Computer (Oxford University

Press).

12 Quoted in W. Newman, ‘Max Newman: Mathematician, Codebreaker and Computer Pioneer’.

Letters on Logic to Max Newman | 207

In November 1942 William Tutte found a way of breaking Tunny messages

known as the ‘Statistical Method’.13 The rub was that the method seemed

impractical, involving a very large amount of time-consuming work—basically,

the comparing of two streams of 0s and 1s, counting the number of times that

each had 0 in the same position. If the comparing and counting were done by

hand, the intelligence in the message would be stale before the work was

completed. Tutte explained his method to Newman and Newman suggested

using electronic counters. It was a brilliant idea. In December 1942 Newman

was given the job of developing the necessary machinery.14 The electronic

counters were designed by C. E. Wynn-Williams at the Telecommunications

Research Establishment (TRE) in Malvern. Construction of the new machine

was carried out at the Post OYce Research Station at Dollis Hill in London and

at TRE. In June 1943 the completed machine began work in the ‘Newmanry’, a

newly created section at Bletchley Park headed by Newman.

This Wrst machine—known as ‘Heath Robinson’, after a popular cartoonist

who drew bizarre contraptions—was relay-based, with some electronic circuits

for counting and for performing simple logical (i.e. boolean) operations. Heath

Robinson was unreliable and slow, and its high-speed paper tapes tended to

stretch and tear, but it proved the worth of Newman’s approach. Newman

ordered a dozen more Robinsons from the Post OYce.

During the design phase of Heath Robinson there had been diYculties with

the logic unit—the ‘combining unit’ in the terminology of 1942. At Turing’s

suggestion Newman had approached the Post OYce engineer Thomas H. Flowers

for help (Flowers had previously assisted Turing with the design of a machine for

use against Enigma).15 Flowers and his switching group at Dollis Hill successfully

redesigned the combining unit; but Flowers did not think much of the overall

design of the Robinson, and in February 1943 presented Newman with the

alternative of a fully electronic machine. This idea received little encouragement

from Bletchley Park, however, where opinion was that a machine containing as

many electronic valves (vacuum tubes) as Flowers was proposing—about

2,000—would not work reliably. Flowers, with over ten years’ experience of

electronic valves, knew better, and on his own initiative began building the

machine he could see was necessary, working independently at the Post OYce

Research Station. Flowers has said that he was probably the only person in

13 W. T. Tutte, ‘At Bletchley Park’, to appear in Copeland (ed.), Colossus: The First Electronic Com-

puter.

14 Part 1 of ‘General Report on Tunny’. ‘General Report on Tunny’ was written in 1945 by Jack Good,

Donald Michie, and GeoVrey Timms, all members of Newman’s section at GC & CS. This document was

released by the British government in 2000 to the Public Record OYce at Kew (document reference HW 25/

4, HW 25/5). A digital facsimile of the document is available in The Turing Archive for the History of

Computing <www.AlanTuring.net/tunny_report>.

15 Flowers in interview with Copeland (July 1996, July 1998).

208 | Jack Copeland

www.AlanTuring.net/tunny_report

Britain who understood at this time that electronic valves could be used in large

numbers for high-speed digital computing.16

Flowers’ ‘Colossus’, the Wrst large-scale electronic digital computing machine,

was installed in the Newmanry on 8 December 1943 (see the introduction to

Chapter 9). By the end of the war, there were nine more Colossi working in the

Newmanry. The Colossi gave the Allies access to the most secret German radio

communications, including messages from Hitler to his front-line generals.

Intelligence obtained via Colossus was vital to the planning of the D-day

landings and played a major role in the subsequent defeat of Hitler.17

In September 1945 Newman took up the Fielden Chair of Mathematics at the

University of Manchester. Five months later he wrote the following to the

Princeton mathematician and computer pioneer John von Neumann:

I am . . . hoping to embark on a computing machine section here, having got very

interested in electronic devices of this kind during the last two or three years. By about

eighteen months ago I had decided to try my hand at starting up a machine unit when I

got out. . . . I am of course in close touch with Turing.18

Newman lost no time in establishing the Royal Society Computing Machine

Laboratory at the University. He introduced the engineers Frederick Williams

and Thomas Kilburn—newly recruited to Manchester University from the Tele-

communications Research Establishment, where they had worked on radar (they

knew nothing of the top-secret Colossus)—to Turing’s idea of a stored-pro-

gramme computer and explained to them what facilities were necessary in a

computer (see the introduction to Chapter 9).19 It was in Newman’s Computing

Machine Laboratory that Kilburn and Williams built the world’s Wrst electronic

stored-programme digital computer. Their prototype ran its Wrst programme on

21 June 1948 (see further the introduction to Chapter 9).

That same year Newman recruited Turing to Manchester from the National

Physical Laboratory, appointing him Deputy Director of the Computing Ma-

chine Laboratory (see the introduction to Chapter 10). Turing remained at

Manchester until his death in 1954.

16 Flowers in interview with Copeland (July 1996).

17 F. H. Hinsley et al., British Intelligence in the Second World War, vol. iii, part 2 (London: Her Majesty’s

Stationery OYce, 1988), 53, 799.

18 Letter from Newman to von Neumann, 8 Feb. 1946 (in the von Neumann Archive at the Library of

Congress, Washington, DC; a digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/newman_vonneumann_8feb46>).

19 Williams in interview with Christopher Evans in 1976 (‘The Pioneers of Computing: An Oral History

of Computing’ (London: Science Museum)).

Letters on Logic to Max Newman | 209

www.AlanTuring.net/newman_vonneumann_8feb46

Further reading

Barendregt, H. P., The Lambda-Calculus, its Syntax and Semantics (Amsterdam: North-

Holland, 1984).

Church, A., ‘A Set of Postulates for the Foundation of Logic’, Annals of Mathematics, 33

(1932), 346–66.

—— ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Math-

ematics, 58 (1936), 345–63.

——The Calculi of Lambda-Conversion (Princeton: Princeton University Press, 1941).

Copeland, B. J., ‘Colossus and the Dawning of the Computer Age’, in R. Erskine and

M. Smith (eds.), Action This Day (London: Bantam, 2001).

Lalement, R., Computation as Logic (Hemel Hempstead: Prentice Hall, 1993).

Provenance

What follows are transcriptions of Turing’s letters. The original letters are among

the Turing Papers in the Modern Archive Centre, King’s College Library, Cam-

bridge.20

20 Catalogue reference D 2. The letters are published with the permission of the Estate of Alan Turing.

210 | Jack Copeland

Letter from The Crown, Shenley Brook End

April 21 The Crown

Shenley Brook End

Bletchley

Dear Newman,

The d-function. One certainly can manage without d for deWning computable

functions. The purpose for which it is really brought in in Church’s notes is to

enable one to ‘describe the syntax of the system within itself ’ i.e. at any rate to

deWne the formula Gr (or something like it) such that Gr(A) conv G.R of a

certain normal form of A (if there is one & if A has no free variables, otherwise

Gr(A) has no normal form)

Gr! la .P(1, lu . d(form(u), a) & Norm(u))1

where Norm(u) conv 2 if u is G.R of a formula in normal form

conv 1 otherwise

(form can be deWned without d)

2 & 1 conv 1

1 & 2 conv 1

1 & 1 conv 1

2 & 2 conv 2

I do not know that it has been proved that a Gr cannot be obtained without d,

but at any rate deWning Gr without d would be equivalent to deWning a formula

without d which would have the properties of d. I haven’t got Church’s notes

with me, but I think most of his bracket technique was in connection with his

‘metads’ (sort of G.Rs).2

There can be no very general picking out function, even using d. The formulae

to be picked out must certainly have no free variables (if D1 picks out Wrst term

of two then D1(x, y) conv x and 1.h.s3 has diVerent free variables from right) but

also they must have normal forms, for a formula without normal form will

poison any formula in which it enters. If all the formulae involved have normal

forms one can pick out with d e.g. in this way –

Gr(-[A, B -]) is G:R of -[A, B -]

1 Editor’s note. See S. C. Kleene, ‘ATheory of Positive Integers in Formal Logic, Part II’, American Journal

of Mathematics, 57 (1935), 219–44 (231–2).

2 Editor’s note. ‘Metad’ is defined in Kleene, ‘A Theory of Positive Integers in Formal Logic’, 233.

3 Editor’s note. Presumably ‘left-hand side’.

there is a l-deWnable function (deWned by D say) which gives G.R of A as

function of G.R of -[A, B -]

Then A conv form(D(Gr(-[A, B-])))

Intuition. Inspiration. Ingenuity

I am not sure whether my use of the word ‘intuition’ is right or whether your

‘inspiration’ would be better. I rather think that you are using ‘inspiration’ to

cover what I had called ‘ingenuity’. To give a concrete example of ingenuity,

suppose I want a formula Q with the property

Q(x) conv x(Q(x))4

I can of course search through an enumeration of all formulae Q and perform

conversions on Q(x) (saving time over the possibly inWnite conversion processes,

by the ‘diagonal process’), but if while I am doing this some bystander writes

down

Q! {lw .w(w)} (lvu . u(v(v, u)))

and says ‘try that’, I should say he had found a formula by ‘ingenuity’.5 In such

cases there is no need to worry about how the formula is arrived at. That it is

right is veriWed by a simple conversion, or something equally uncontroversial.

Isn’t this what you would call inspiration?

The straightforward unsolvability or incompleteness results about systems of

logic amount to this

a) One cannot expect to be able to solve the Entscheidungsproblem for a

system

b) One cannot expect that a system will cover all possible methods of proof

(does not apply to ‘restricted function calculus’)

It seemed to me that in your account of what we want a system of logic to do

you had a) in mind but not b). I should agree with your point of view, in so far

as we can shut our eyes to b) i.e. we do not really want to make proofs by

hunting through enumerations for them, but by hitting on one and then

checking up to see that it is right. However this method is always theoretically,

though not practically, replacable by the longer method if one has got a method

of checking up. The enumeration of proofs is for instance obtained from an

enumeration of all possible sequences of symbols by striking out those which do

not pass the test. When one takes b) into account one has to admit that not one

but many methods of checking up are needed. In writing about ordinal logics

4 Editor’s note. Presumably this should read: Q(x) conv lx . x(Q(x)).

5 Editor’s note. Turing’s example concerns a formula that he himself found and published in his ‘The

p-Function in l-K-Conversion’ (Journal of Symbolic Logic, 2 (1937), 164). The published formula is

Q! {lvu . u(v(v, u))} (lvu . u(v(v, u))).

212 | Alan Turing

I had this kind of idea in mind.6 In proofs there is actually an enormous amount

of sheer slogging, a certain amount of ingenuity, while in most cases the actual

‘methods of proof ’ are quite well known. Cannot we make it clearer where the

slogging comes in, where there is ingenuity involved, and what are the methods

of proof? In fact can we not express quite shortly what is the status of each proof?

The ordinals were meant to give concise notations for the status of proofs.

The Completeness Theorem

The proof of my completeness theorem (PA etc) is of course completely useless

for the purpose of actually producing proofs. PA will only be a convincing logic if

A is rather simple, and easily recognized as an ordinal formula. The completeness

theorem was written from a rather diVerent point of view from most of the rest,

and therefore tends to lead to confusion. I think that all this proof does is to

provide an insurance against certain sorts of ‘Gödel incompleteness theorems’

being proved about the ordinal logic.

As soon as any question arises of having to prove that the formulae one is

using are ordinal formulae one is returning to the single logic point of view,

unless the kind of proof to be used is something diVerent, being a kind of

propaganda rather than formal proof.

The exercise

I have no complaints at all about this. You have evidently got the tools necessary

for barging through anywhere where one can get through. I don’t remember,

even if I ever knew, what the standard way of doing this job is. I have toyed for

half an hour or so with trying to do it with things of form

-[A, -[B, -[C, . . . -] -] . . . -] instead of -[A, B, . . . -]

One might in that way avoid the trouble of looking after the number of variables.

One will need a ‘picking out function’ L which will satisfy

L(-[m, -[n, . . . -]-]) conv m

but I cannot Wnd one independent of the number of variables.

Church tells me he is going to publish his form of Principia involving the use

of l, and simple theory of types. I am very glad of it, as the system makes things

much clearer than any other I know and is not too cumbrous to be used.

Gödel’s paper has reached me at last. I am very suspicious of it now but will

have to swot up the Zermelo–v. Neumann system a bit before I can put objec-

tions down in black & white.

Yours sincerely

A. M. Turing

6 Editor’s note. Turing is referring to ‘Systems of Logic Based on Ordinals’ (Chapter 3).

Letters on Logic to Max Newman | 213

Letter from King’s College, Cambridge

Sunday King’s College

Cambridge

Dear Newman,

Church’s notes certainly are rather a mouthful. I have never worked steadily

through them myself, but have taken them in much the same spirit as you are

doing. Fortunately I was able to go to the fountainhead for information.

i) Metads certainly are a form of ‘Gödel representation’ which Ch. Wnds it

convenient to use in his system.

ii) I think the point of using the peculiar form of negation is that one wants Th 1,

2, 3 p 487 to hold in the form in which they stand. If one has �! lx . 3 . x (i.e.

�! lx . 3 (p, x)),�A will have a normal form sometimes when A is not convert-

ible to 1 or 2 e.g. if A conv 3 (also incidentally, as there is no 0, 3 . x has the value

1 in this case and this would be bad apart from the normal form diYculty, but this

is more easily corrected).

iii) Consequences. I think one wants here to distinguish two ideas a) ‘conse-

quences of an assumption’ (p. 82, 14)8, b) consequences of an assumption

relative to a set of rules of procedure. The Wrst of these is an ‘intuitive’ idea

which one tries to approximate by the second with suitable sets of rules of

procedure. To get the idea of ‘consequences of an assumption’ imagine that the

underlined letters are admitted as parts of formulae in a new system. I will use

only letters for variable underlined letters, and variable formulae involving

underlined letters. Then if A, B are such formulae involving underlined letters

X, Y, . . . , Z, we say that B is a consequence of A if, for all substitutions of

formulae (in original sense, with d) for X, Y, . . . , Z it happens that B conv 2

whenever A conv 2. This of course implies two diVerent uses of underlined

letters from Chap X9 onwards, but I think Church is really doing this. The idea of

consequences of an assumption relative to given rules of procedure I think

explains itself. One tries of course to make the rules of procedure such that the

consequences will be consequences in the sense a), but also to get as many

consequences as one can consistent with this. Of course one cannot get all

such with one set of rules.

iv) The Pm’s. These certainly are much the same as my ordinal logics, that is

to say that the rule by which the Pm’s are formed can easily be used to help

one construct an ordinal logic. They are better and better approximations by

7 Editor’s note. A reference to Church’s ‘Mathematical Logic’ (see p. 205 n. 2).

8 Editor’s note. A reference to Church’s ‘Mathematical Logic’.

9 Editor’s note. Chapter X of Church’s ‘Mathematical Logic’ is entitled ‘The Universal Quantifier’.

consequences of type b) above to the consequences of type a). The meaning of

the Pm’s is this. One has deWned the rules 1m . . . 7m and 1r . . . 7r with r < m.

Taking all these and 1 . . . 63 we have a set of rules of procedure Procm say. From

them we get Pm which is such that Pm(F , G) conv 2 if and only if F and G are

metads of formulae A, B such that B is a consequence of A relative to Procm.

(There is some confusion between underlined letters and ordinary variables in

this deWnition of the Pm’s, as metads are names of formulae without underlined

letters. Probably you have to regard all the free variables in the formulae

described by the metads as replaced by underlined letters if we are to follow

my description under iii).)

v) Ingenuity and Intuition. I think you take a much more radically Hilbertian

attitude about mathematics than I do. You say ‘If all this whole formal outWt is

not about Wnding proofs which can be checked on a machine it’s diYcult to

know what it is about.’ When you say ‘on a machine’ do you have in mind that

there is (or should be or could be, but has not been actually described anywhere)

some Wxed machine on which proofs are to be checked, and that the formal outWt

is, as it were, about this machine. If you take this attitude (and it is this one that

seems to me so extreme Hilbertian) there is little more to be said: we simply have

to get used to the technique of this machine and resign ourselves to the fact that

there are some problems to which we can never get the answer. On these lines my

ordinal logics would make no sense. However I don’t think you really hold quite

this attitude because you admit that in the case of the Gödel example one can

decide that the formula is true i.e. you admit that there is a fairly deWnite idea of

a true formula which is quite diVerent from the idea of a provable one.

Throughout my paper on ordinal logics I have been assuming this too.10 It

mostly takes the form of talking about such things as a formula A such that

A(n) conv 2 for all pos. integers n.

If you think of various machines I don’t see your diYculty. One imagines

diVerent machines allowing diVerent sets of proofs, and by choosing a suitable

machine one can approximate ‘truth’ by ‘provability’ better than with a less

suitable machine, and can in a sense approximate it as well as you please. The

choice of a proof checking machine involves intuition, which is interchangeable

with the intuition required for Wnding an V if one has an ordinal logic L, or as a

third alternative one may go straight for the proof and this again requires

intuition: or one may go for a proof Wnding machine. I am rather puzzled why

you draw this distinction between proof Wnders and proof checkers. It seems to

me rather unimportant as one can always get a proof Wnder from a proof checker,

and the converse is almost true: the converse fails if for instance one allows the

proof Wnder to go through a proof in the ordinary way, and then, rejecting the

steps, to write down the Wnal formula as a ‘proof ’ of itself. One can easily think

10 Editor’s note. Turing is referring to ‘Systems of Logic Based on Ordinals’ (Chapter 3).

Letters on Logic to Max Newman | 215

up suitable restrictions on the idea of proof which will make this converse true

and which agree well with our ideas of what a proof should be like.

I am afraid this may be more confusing to you than enlightening. If so I will try

again.

Yours sincerely

A. M. Turing

216 | Alan Turing

Enigma
Jack Copeland

1. Turing Joins the Government Code and Cypher School 217

2. The Enigma Machine 220

3. The Polish Contribution, 1932–1940 231

4. The Polish Bomba 235

5. The Bombe and the Spider 246

6. Naval Enigma 257

7. Turing Leaves Enigma 262

1. Turing Joins the Government Code and Cypher School

Turing’s personal battle with the Enigma machine began some months before the

outbreak of the SecondWorldWar.1At this time there was nomore than a handful

of people in Britain tackling the problem of Enigma. Turing worked largely in

isolation, paying occasional visits to the London oYce of the Government Code

andCypher School (GC&CS) for discussions withDillwynKnox.2 In 1937, during

the Spanish Civil War, Knox had broken the type of Enigma machine used by the

ItalianNavy.3However, themore complicated formof Enigma used by theGerman

military, containing the Steckerbrett or plug-board, was not so easily defeated.

On 4 September 1939, the day following Chamberlain’s announcement of war

with Germany, Turing took up residence at the new headquarters of the Govern-

ment Code and Cypher School, Bletchley Park.4 GC & CS was a tiny organization

1 Letters from Peter Twinn to Copeland (28 Jan. 2001, 21 Feb. 2001). Twinn himself joined the attack on

Enigma in February 1939. Turing was placed on Denniston’s ‘emergency list’ (see below) in March 1939,

according to ‘StaV and Establishment of G.C.C.S.’ (undated), held in the Public Record OYce: National

Archives (PRO), Kew, Richmond, Surrey (document reference HW 3/82). (I am grateful to Ralph Erskine

for drawing my attention to this document.)

2 Letters from Twinn to Copeland (see n. 1).

3 M. Batey, ‘Breaking Italian Naval Enigma’, in R. Erskine and M. Smith (eds.), Action This Day (London:

Bantam, 2001), 98.

4 Letter from A. G. Denniston to T. J. Wilson of the Foreign OYce (7 Sept. 1939). PRO document

reference FO 366/1059.

ill prepared for war. By 1942, however, Bletchley Park had become a veritable

factory, and with the help of the codebreaking machines called ‘bombes’—

designed by Turing, Gordon Welchman, and, on the engineering side, Harold

Keen—GC & CS was deciphering about 39,000 Enigma messages each month.5

By 1945 almost 9,000 people were employed at Bletchley Park.6 It is estimated

that the breaking of Enigma—and in particular the breaking of Home Waters

Naval Enigma, in which Turing played the crucial role—may have shortened the

war in Europe by some two years.7

Figure 1. The Mansion, Bletchley Park.

Source: Bletchley Park Trust.

The Government Code and Cypher School had developed from the old ‘Room

40’, established by the Admiralty during the First World War for the purpose of

reading enemy ciphers.8 A branch of the Foreign OYce, GC & CS was located in

5 F. H. Hinsley et al., British Intelligence in the Second World War, vol. ii (London: Her Majesty’s

Stationery OYce, 1981), 29.

6 F. H. Hinsley et al., British Intelligence in the Second World War, vol. iii, part 1 (London: Her Majesty’s

Stationery OYce, 1984), 461.

7 This estimate was given by Hinsley, oYcial historian of the British Secret Service, on p. 12 of his and

Alan Stripp’s edited volume Codebreakers: The Inside Story of Bletchley Park (Oxford: Oxford University

Press, 1993). If, wrote Hinsley, the achievements of GC & CS ‘had not prevented the U-boats from

dominating the Atlantic . . . it is not unreasonable to believe that . . . Overlord [the invasion of Normandy,

1944] would have had to be deferred till 1946’.

8 The older spelling ‘cypher’ and the newer ‘cipher’ were both in use at GC & CS during 1939–45. Mahon

used ‘cypher’ in a 1945 document, part of which forms Chapter 5, and Turing used ‘cipher’ in a 1940

document, parts of which appear in Chapters 5 and 6.

218 | Jack Copeland

Whitehall until the summer of 1939.9 By the beginning of 1938 the Director of

Naval Intelligence, Admiral Hugh Sinclair, was looking for premises outside

London to which GC & CS could move in the event of war. Bletchley Park—a

large Victorian mansion with ample grounds situated in the town of Bletchley, a

major railway junction linking London, Oxford, and Cambridge—was pur-

chased in the spring of 1938 (out of Sinclair’s own pocket, it is said).

In the course of 1937 and 1938 Commander Alastair Denniston, Head of GC &

CS and a veteran of Room 40, supervised a clandestine programme of recruitment,

centred largely on Oxford and Cambridge. Denniston’s aim was to build up what

he described as an ‘emergency list [of] men of the Professor type’10.

At certain universities . . . there were men now in senior positions who had worked in our

ranks during 1914–18. These men knew the type required. Thus it fell out that our most

successful recruiting occurred from these universities. During 1937 and 1938 we were able

to arrange a series of courses to which we invited our recruits to give them even a dim idea

of what would be required of them . . . These men joined up in September 1939.11

(Frank Adcock and Frank Birch, the two veterans of Room 40 who were most

active in recruitment as the new war approached, were both from the same

college as Turing, King’s.12) In the days following the outbreak of war in

September 1939 a group of about thirty people assembled at Bletchley Park,

many of them—including Turing—drawn from Denniston’s ‘emergency list’.13

An organizational structure rapidly began to emerge at Bletchley, newly formed

sections being known simply as ‘Hut 4’, ‘Hut 6’, and so on. The ‘huts’ were single-

storey wooden structures hastily constructed in the grounds of the mansion. Here

dons worked among uniformed Naval and Army personnel. Military discipline

never took root among the ‘men of the Professor type’ and parts of Bletchley Park

had something of the atmosphere of an Oxbridge college. There were some

notable eccentrics among the codebreakers. Dilly Knox, another fellow of King’s

and veteran of Room 40, liked to work in a hot bath. Once, at his lodgings, Knox

stayed so long in the bathroom that his fellow-lodgers at last forced the door. They found

him standing by the bath, a faint smile on his face, his gaze Wxed on abstractions, both taps

full on and the plug out. What then was passing in his mind could possibly have solved a

problem that was to win a battle.14

9 Probably in August (R. Erskine, ‘GC and CS Mobilizes ‘‘Men of the Professor Type’’ ’, Cryptologia, 10

(1986), 50–9 (50)).

10 Letter from Denniston to Wilson (3 Sept. 1939). PRO document reference FO 366/1059.

11 A. G. Denniston, ‘The Government Code and Cypher School between the Wars’, in C. W. Andrew

(ed.), Codebreaking and Signals Intelligence (London: Cass, 1986), 52.

12 Andrew, Codebreaking and Signals Intelligence, 4.

13 S. Milner-Barry, ‘Hut 6: Early Days’, in Hinsley and Stripp (eds.), Codebreakers, 90; ‘StaV and

Establishment of G.C.C.S.’; Erskine, ‘GC and CS Mobilizes ‘‘Men of the Professor Type’’ ’, 50.

14 E. R. Vincent, Unpublished Memoirs, Corpus Christi College Archives, Cambridge; quoted in C. W.

Andrew, Secret Service: The Making of the British Intelligence Community (London: Guild, 1985), 94.

Enigma | 219

It was Knox’s Research Section that Turing joined upon his arrival at Bletchley

Park.

2. The Enigma Machine

The Enigma machine had something of the appearance of an old-fashioned

typewriter. Designed by the Berlin engineer Arthur Scherbius, Enigma was

marketed commercially from 1923.15 In 1926 the German Navy adopted Enigma,

followed by the German Army in 1928 and the German Air Force in 1935.16 At the

outbreak of war with Britain, Enigma was the Germans’ principal method for

protecting their military communications. In 1930, the German military had

considerably enhanced the security of the machine by adding the Steckerbrett or

plug-board (see Figure 4).17 It is this form of Enigma—German military, or

Wehrmacht, Enigma—that is dealt with here. Successive modiWcations were

made to the operating procedures of the military machine, resulting in substantial

variation both over time and from one branch of the armed services to another.

Battery powered and highly portable, theWehrmacht Enigmamachine could be

used from a general’s oYce in Berlin, an armoured vehicle, a submarine, or a

trench. The machine’s keyboard had twenty-six keys, each marked with a letter

(Figure 4). Instead of an arrangement for typing letters onto paper, the machine

had a lampboard consisting of twenty-six bulbs, each of which shone through a

stencil on which a letter of the alphabet was marked. The operator of the Enigma

machine would be handed a message in plain text. His job was to type the message

at the keyboard of the machine. Each time he pressed a key, a letter on the lamp-

board would light up. The operator’s assistant kept a note of which letters lit up on

the lampboard. This enciphered form of the message was then sent to its recipient,

if by radio then in Morse code. The sending radio operator would preface the

message with his radio call-sign, followed by that of the intended receiver. The

Germans also sent Enigma messages by land-lines; for these messages, Morse was

not used. (Land-lines are not mentioned further in this introduction, since

German message traYc sent in this way was not intercepted in Britain.)

Each time the operator pressed a key, one or more wheels turned inside

the machine, and each time a wheel moved it altered the wiring between the

keyboard and the lampboard. So if, for example, the operator repeatedly de-

pressed the O-key, the connections between the key and the lampboard would

change with each key press, resulting in a succession of diVerent letters lighting

up, for example Q M P WA J Y R.

15 F. L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology (Berlin: Springer-Verlag, 2nd edn.

2000), 107.

16 F. H. Hinsley et al. British Intelligence in the Second World War, vol. iii, part 2 (London: Her Majesty’s

Stationery OYce, 1988), 946.

17 M. Rejewski, ‘Remarks on Appendix 1 to British Intelligence in the Second World War by F. H.

Hinsley’, Cryptologia, 6 (1982), 75–83 (76).

220 | Jack Copeland

Figure 2. A three-wheel Enigma with the plug-board (at the front of the machine)

exposed. The lampboard is behind the keyboard. The three wheel-slots are visible behind

the lampboard. Beside each wheel-slot is a window through which letters marked on the

wheels are visible to the operator.

Source : Science and Society Picture Library, National Museum of Science and Industry.

Enigma | 221

Figure 3. Enigma machine with the three wheels exposed.

Source : Science and Society Picture Library, National Museum of Science and Industry.

The letter O itself would never appear in this succession of letters, however.

Because of the action of the reXector, a letter was never enciphered as itself (see

Figure 4). This rule was very useful to the codebreakers at Bletchley Park.

At the receiving end of the radio link, the message would be converted from

Morse into ordinary letters. This cipher text was then typed at the keyboard of

the recipient’s Enigma machine. The letters that lit up on the lampboard would

be the very same letters that the sender had keyed in—the plain text with which

the process had begun. The design of the Enigma machines was such that if a key

was pressed on one machine, say O, and the letter that lit up on the machine’s

222 | Jack Copeland

plug-board

keyboard

lampboard

reflector
Y

N
entry plate

middle wheel
slow wheel

ring wheel core
wheel-adjuster

fast wheel

G
H

F
E
D
C
B
A
Z
Y

E
D
C
B
A
Z
Y
X

V
W

E
F

D
C
B
A
Z
Y
X
W

Start HereQ W E R T Z U I O

A S D F G H J K

P Y X C V B N M L

WQ RE ZT I OU

A DS GF J KH

P XY VC N M LB

Q W E R T Z U I O

A S D F G H J K

Y X C V B N M LP

Figure 4. Path of electric current through the Enigma. Pressing a key at the keyboard

causes a letter to light up at the lampboard. The core of each wheel contains a maze of 26

insulated wires, with each wire joining one of 26 contacts on the right hand side of the

wheel to one of 26 contacts on the left-hand side. The wiring is different in each wheel.

Diagram by Dustin A. Barrett.

lampboard was keyed into a second machine, then—provided the two machines

had been set up in exactly the same way by their respective operators—the

second machine would light up O on its lampboard.

Enigma | 223

BAD

Figure 5. View of the wheels with the case closed. The three wheel-adjusters protrude

through slots in the case. The windows allow the operator to see one letter from the ring

of each wheel. The ‘message setting’ is the triple of letters visible at the start of typing a

message.

Diagram by Dustin A. Barrett.

In a word, the letter-substitutions were reversible: if O produced Q (for

example) then, at the same machine-settings, Q produced O. This was the

basic principle of the Enigma system, hard-wired into the machine. Figure 4

indicates how this was achieved. If Q were pressed at the keyboard, current

would Xow along a wire leading to Q at the plug-board, then across the plug-

board to Yand through the wheels in the reverse direction to that shown, exiting

the wheels at N, crossing the plug-board to O, and lighting O at the lampboard.

The Plug-Board (Steckerbrett) and Wheels

The operator could make various changes to the settings of his machine before

he began typing a message at the keyboard. The recipient would set up his own

machine in the same way in order to decode the message. How the recipient

knew which settings to use is explained in what follows.

The settings of the machine could be changed in the following ways. (See

Figure 4.)

1. The operator could make alterations to the plug-board (Steckerbrett) on the

front of the machine, pulling electrical leads out of sockets and plugging

them back into diVerent sockets. This altered some of the connections

between the keyboard and the lampboard. (The plug-board was absent

from the commercial version of the machine.18)

18 The commercial model remained on sale after the German military adopted Enigma. The Germans

knew how to break the commercial model and from 1938 several hundred were sold to neutral Switzerland

by the German manufacturers. The commercial model was also sold by Germany to Hungary during the

war. Commercial model Enigmas sold to Spain were used during the Spanish Civil War. (I am grateful to

Frode Weierud for this information (personal communication).)

224 | Jack Copeland

2. The operator could alter the positions of the rotating wheels inside the

machine (sometimes also called ‘rotors’) by turning them manually. Part of

the circumference of each wheel protruded through the case of the machine

enabling the operator to click the wheels round with his thumb or Wnger

(Figure 5). In the early years of the war there were three rotatable wheels

inside the machine; in 1941, the Wrst Naval machines with a fourth rotat-

able wheel came into use (see the introduction to Chapter 8).19 (Another

two components of the Enigma are sometimes referred to as wheels or

rotors, the Umkehrwalze (described by Mahon on p. 269 of Chapter 5) and

the Eintrittwalze. In the forms of German military Enigma discussed here,

both these components were stationary, and they will be referred to as the

reXector and the entry plate respectively (Figure 4).)

3. The operator could open the case of the machine, lift out two or more of the

wheels, and replace them in a diVerent order. For example, he might switch

the left- and right-hand wheels, leaving the centre wheel untouched. Each

wheel was wired diVerently inside. Since the electrical pathways from the

keyboard to the lampboard passed through the wheels, changing the order of

the wheels altered the pathways. Alternatively, rather than simply switching

the order of the wheels in the machine, the operator might replace one or

more of them with diVerent wheels from a box that accompanied the ma-

chine. FromDecember 1938until about the beginning of thewar, therewere a

total of Wve wheels, numbered I–V, and any three of the Wve might be inside

themachine at anyone time. For example, thewheels in usemight be I, II, and

IV, in the order IV/I/II. From 1940 (or possibly as early as 1939) Enigma

machines used by the German Navy were equipped with additional wheels

and the operator would select three from a total of eight (numbered I–VIII).

The wheels were somewhat analogous to the wheels of a combination lock,

turning through a number of discrete positions. Each wheel had a total of

twenty-six possible rotational positions, A–Z. The wheel on the right, the Wrst

on the path from keyboard to lampboard, would always turn on one ‘click’ each

time a key was pressed. Hence the term ‘fast wheel’ (Figure 4). After a certain

number of clicks, this wheel would cause the centre wheel to turn one click.

Likewise, the centre wheel would at some point cause the wheel on the left—

the ‘slow wheel’—to move one click. (An extra complication: when this

happened, the centre wheel would itself turn forward one click also.20)

19 The fourth wheel diVered from the other three in that once the operator had set it to one of its twenty-

six positions, it remained stationary during the encipherment of the message. (That the fourth wheel came

into Naval use in 1941 is documented in R. Erskine, ‘Breaking German Naval Enigma on Both Sides of the

Atlantic’, in Erskine and Smith (eds.), Action this Day, 181.

20 H. Alexander, ‘Cryptographic History of Work on the German Naval Enigma’ (no date (c.1945), PRO

document reference HW 25/1), 3; a digital facsimile of Alexander’s typescript is available in The Turing

Archive for the History of Computing <www.AlanTuring.net/alexander_naval_enigma>.

Enigma | 225

www.AlanTuring.net/alexander_naval_enigma

Figure 6. A dismantled wheel.

Source : Science and Society Picture Library, National Museum of Science and Industry.

Precisely when awheel would cause its neighbour to turnwas determined by the

position of a notch cut into the ring of the wheel. Since wheels I–V all had their

notches in diVerent places, changing or rearranging wheels could aVect the ‘turn-

overs’ (Bletchley’s term for the points at which wheels would cause their neigh-

bours to turn). The Naval wheels VI–VIII were slightly diVerent. These had their

notches in the same places as one another, andmoreover each had two notches (see

pp. 268, 285 below). The extra notchmeant that in the course of one revolution, the

doubly notched wheel would cause its neighbour to move twice.

Which letter lit up on the lampboard depended, therefore, not only on which

key was depressed, but also on how the plug-board was connected up, which of

the possible wheels were inside the machine, what order these wheels were

arranged in, and which of its twenty-six rotational positions each wheel occupied

at the time the key was pressed. In fact, by altering these variables, the operator

was able to set up a machine with a total of three wheels in excess of a thousand

million million diVerent ways. The message remained protected even if the

enemy captured an Enigma machine of the type that the sender was using. In

order for a recipient to decipher the message, he or she needed to know which

of the astronomically many possible settings the sender had used to encipher

the text.

226 | Jack Copeland

Enigma Keys

The sender and the (authorized) recipient were issued with printed tables of

settings so that they could set up their machines in the same way. A group of

Enigma-users operating with the same tables is called a network. A set of tables

covered a period of one month and speciWed how, on any given day, the members

of the network should set up their machines. DiVerent networks used diVerent

tables.

GC & CS referred to a network of Enigma-users as a ‘key’. Each key was given a

name—Yellow, Red, Green, Light Blue, Shark, Dolphin, Porpoise, Kestrel, Phoe-

nix, Locust, Snowdrop, etc. At the beginning of the war, the number of known

keys was small enough for GC & CS to be able to represent them on a chart by

means of coloured pencils, the colour used becoming the name of the key. As the

war progressed, the number of keys became much larger.

The term ‘network’ is perhaps clearer than ‘key’, especially since at Bletchley,

‘key’ was used ambiguously for a network of Enigma-users and in the term ‘daily

key’ (whose meaning is explained below). Some writers prefer ‘crypto-net’ to

‘network’, since the former term makes it clear that it is an Enigma network and

not a radio network that is being described.21 One and the same radio network

could carry the message traYc of several crypto-nets.

Wheel Order, Stecker, and Ringstellung

The wheel order for a particular day for a certain network or key might be III/I/

II, for example.

Stecker is short for Steckerverbindungen, meaning ‘plug connections’. The

Stecker, or plug-board conWguration, for a particular day might be A/C, D/V,

F/M, H/W, L/X, R/I. Corresponding to each letter on the plug-board is a pair of

sockets, one for a cable leading to another letter, and one for a cable leading from

another letter (Figure 4). The operator would set up the plug-board by connecting

together the pair of sockets labelled ‘A’ and the pair of sockets labelled ‘C’ bymeans

of a short cable with a double plug at each end. Likewise for the ‘D’ sockets and the

‘V’ sockets, and so on. The Germans’ use of double plugs meant that if A is

steckered to C, then C is steckered to A—a fatal simpliWcation, as we shall see.

Ringstellung means ‘ring position’. The ring is like a tyre mounted round the

core of each wheel. It is marked with the letters of the alphabet, one for each of

the twenty-six rotational positions of the wheel (Figure 4). (Sometimes the

numerals ‘01’ to ‘26’ were used instead of letters.) The ring could be moved

around the wheel core to a selected position and then Wxed in position with a

clip. The day’s ring position for a given wheel was speciWed by a single letter, say

X. The operator would turn the ring until the letter X was aligned against a Wxed

21 See, for example, G. Welchman, The Hut Six Story: Breaking the Enigma Codes (Kidderminster: M. &

M. Baldwin, 2nd edn. 1997), 205.

Enigma | 227

index mark embossed on the wheel and then would Wx the ring in this position.

The complete Ringstellung for the day would consist of a trigram, say XYZ, one

letter for each wheel in the machine.

The Daily Key

The daily wheel order, Stecker, and Ringstellung for the machine were speciWed in

the tables issued to each Enigma network. Stecker, wheel order, and Ringstellung

were elements of the daily key, or basic settings for the day for a given network of

Enigma users.

The reason for changing the basic settings daily was to minimize the number

of messages encoded at the same settings. The Germans knew that security could

be compromised if too many messages were encoded at the same basic settings.

During the later years of the war, some networks changed the Stecker, wheel

order, and Ringstellung not daily but every eight hours.22

The Message Setting

Setting up the sender’s and recipient’s machines in accordance with the speciWed

Stecker, wheel order, and Ringstellung did not suYce to place the two machines

completely in register. There was also the question of the rotational positions of

the three wheels at the start of the message.

Once the ring position was set, the rotational position of a wheel could be

described by saying which of the letters on the ring was uppermost when the

wheel was in place inside the machine. The machine’s case was Wtted with three

small windows, one above each wheel, so that the operator could see the

uppermost letter (Figure 5).

The positions occupied by the wheels at the start of typing a message were

speciWed by a trigram, for example QVZ, meaning that Q is visible in the window

over the left-hand wheel, V in the window over the middle wheel, and Z in the

window over the right-hand wheel. QVZ was known as the message setting.23

Notice that knowing the message setting does not reveal the rotational pos-

itions of the wheels at the start of the message unless the Ringstellung is also

known—QVZ may specify any one of the 26 � 26 � 26 possible positions,

depending on which ring positions have been selected.

22 M. Rejewski, ‘Summary of our Methods for Reconstructing Enigma and Reconstructing Daily Keys,

and of German EVorts to Frustrate Those Methods’, in W. Kozaczuk, Enigma: How the German Machine

Cipher Was Broken, and How It Was Read by the Allies in World War Two, trans. C. Kasparek (London: Arms

and Armour Press, 1984), 243.

23 Rejewski’s accounts of the work of the Polish cryptanalysts use ‘message key’ instead of the Bletchley

term ‘message setting’. See, for example, M. Rejewski, ‘Jak Matematycy polscy rozszyfrowali Enigme’ [How

the Polish Mathematicians Broke Enigma], Annals of the Polish Mathematical Society, Series II: Mathematical

News, 23 (1980), 1–28. (This article appears in an English translation by C. Kasparek as appendix D of

Kozaczuk, Enigma; another translation, by J. Stepenske, appears in Annals of the History of Computing, 3

(1981), 213–34, under the title ‘How Polish Mathematicians Deciphered the Enigma’.)

228 | Jack Copeland

Operating Procedures

In order to decode the message, a recipient needs the wheel order, the Stecker, the

Ringstellung, and the message setting. The most direct way to make the message

setting available to the authorized recipient would be to make it an element of

the daily key printed in the monthly tables. The operator would then simply look

up the speciWed trigram for the day in question, and ensure that it was visible in

the windows at the start of each message. This was the procedure used with the

commercial form of Enigma.24 But this method provided very weak security,

reducing the problem of breaking a day’s messages to that of solving a number of

substitution ciphers.

The substitution cipher is an ancient and simple form of cipher in which the

alphabet is paired with a ‘scrambled’ alphabet. For example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z Y X W V U T S R Q P O

THE ESSENTIAL TURING = GSV VHHVMGRZO GFIRMT

N M L K J I H G F E D C B A

The great Polish cryptanalyst Marian Rejewski explained the weakness of en-

ciphering a day’s Enigma traYc at the same message setting:

the Wrst letters of all the messages . . . constituted an ordinary substitution cipher, a very

primitive cipher easily soluable given suYcient material, and all the second letters of the

messages . . . constituted another substitution cipher, and so on. These are not merely

theoretical deliberations. It was in that very way that in France in 1940 we solved the Swiss

Enigma cipher machine.25

The German armed forces employed more secure methods for making the

message setting known to the intended recipient. The method adopted varied

from service to service and from time to time, generally speaking with increasingly

secure methods being used as time went on. From 1937 the German Navy used a

particularly complicated method—although Turing did manage to break it. This

method is described by Patrick Mahon in Chapter 5, which is an extract from

Mahon’s previously unpublished ‘TheHistory ofHut 8’. (Written in 1945,Mahon’s

‘History’ was kept secret by the British and American governments until 1996.26)

From the autumn of 1938 until May 1940 the German Army and Air Force

used the following—as it turned out, highly insecure—method for sending the

24 Rejewski, ‘Remarks on Appendix 1 to British Intelligence in the Second World War by F. H. Hinsley’,

79.

25 Rejewski, ‘How the Polish Mathematicians Broke Enigma’, trans. Kasparek, 251.

26 Mahon’s ‘The History of Hut 8’ is in the US National Archives and Records Administration (NARA) in

Washington, DC (document reference: RG 457, Historic Cryptographic Collection, Box 1424, NR 4685) and

in the UK Public Record OYce (document reference HW 25/2). A digital facsimile of the original typescript

is available in The Turing Archive for the History of Computing <www.AlanTuring.net/mahon_hut_8>.

Enigma | 229

www.AlanTuring.net/mahon_hut_8

message setting to the recipient.27 The sender would select two trigrams at

random, say RBG and VAK. RBG is the message setting. VAK speciWes the

starting positions of the wheels that will be used not when encoding the message

itself but when encoding the message setting prior to broadcasting it to the

recipient. VAK would be broadcast to the recipient as part of an unencoded

preamble to the encoded message. (The preamble could also include, for

example, the time of origin of the message, the number of letters in the encoded

message, and a group of letters called a discriminant, identifying the Enigma

network to which the message belonged (e.g. Red).28 The preamble might also

contain an indication that the message was the second (or later) part of a two-

part or multi-part message; see Mahon’s discussion of ‘forts’ on pp. 278–9

below.)

The Indicator and Indicator Setting

Having selected the two trigrams, the sender would Wrst set up VAK in the

windows of his machine. He would then type RBGRBG. The group of six letters

that lit up, say PRUKAC, is called the indicator. VAK is called the indicator setting

(or ‘Grundstellung’).29 The indicator would be broadcast immediately before the

enciphered message. The reason for sending the encipherment of RBGRBG,

rather than simply of RBG, was to provide the recipient with a check that the

message setting had been correctly received, radio reception sometimes being

poor.

Once the sender had enciphered the message setting to form the indicator, he

would set up RBG in the windows of his machine and type the plain text. Then

the whole thing would be sent oV to the recipient—preamble, indicator, and

enciphered text.

The authorized recipient of the message would Wrst rotate the wheels of his

machine (already set up in accordance with the daily key) until VAK appeared in

the windows. He would then type the indicator PRUKAC and the letters

RBGRBG would light up at the lampboard. Now equipped with the message

setting, he would set his wheels to RBG and retrieve the plain text by typing the

encoded message.

27 Rejewski, ‘How the Polish Mathematicians Broke Enigma’, trans. Kasparek, 265–6; Hinsley, British

Intelligence in the Second World War, vol. iii, part 2, 949, 953.

28 G. Bloch and R. Erskine, ‘Enigma: The Dropping of the Double Encipherment’, Cryptologia, 10 (1986),

134–41.

29 The term ‘indicator’ is used by Mahon and Turing in the next chapter and is listed in ‘A Cryptographic

Dictionary’, GC & CS (1944). (‘A Cryptographic Dictionary’ was declassified in 1996 (NARA document

reference: RG 457, Historic Cryptographic Collection, Box 1413, NR 4559); a digital facsimile is available in

The Turing Archive for the History of Computing <www.AlanTuring.net/crypt_dic_1944>.) However, the

term ‘indicator setting’, which is from Welchman (The Hut Six Story, 36, 46) may not have been in use at

Bletchley Park, where the German term Grundstellung (or ‘Grund’) was used (see e.g. pp. 272–3, below), as it

was by the Poles (letter from Rejewski to Woytak, quoted on p. 237 of Kozaczuk, Enigma).

230 | Jack Copeland

www.AlanTuring.net/crypt_dic_1944

The method just described of selecting and making known the message setting

is an example of what is called an indicator system.

3. The Polish Contribution, 1932–194030

Unknown to GC & CS, the Biuro Szyfrów—the Polish Cipher Bureau—had

already broken Wehrmacht Enigma, with assistance from the French secret

service. The Biuro read the message traYc of the German Army regularly from

1933 to the end of 1938, and at other times during this period read the message

traYc of other branches of the military, including the Air Force. Statistics

gathered by the Biuro early in 1938 showed that, at that time, about 75 per

cent of all intercepted Enigma material was being successfully decoded by the

Biuro Szyfrów.

Towards the end of 1932 Rejewski had devised a method for reconstructing a

day’s message settings from the indicators, given about sixty messages sent on the

day. He was helped by the fact that, in this early period, the indicator system was

simpler than the later system just described. The daily key included an indicator

setting for the day, e.g. VAK. The sender would choose his own message setting

for each message, e.g. RBG. With the wheels in the positions speciWed in the daily

key (VAK), he would type RBGRBG to produce the indicator. Then he would set

the wheels to RBG and type the plain text of the message. The encoded message

was sent prefaced by the preamble and the indicator—but, of course, there was

no need to send the indicator setting.

Using information obtained from his attack on the indicators, Rejewski

devised a method that enabled him to determine the internal wiring of wheels

I–III (in those early days there were no additional wheels). This was one of the

most far-reaching achievements in the history of cryptanalysis. Rejewski was

assisted by the French secret service, whose agent Hans-Thilo Schmidt, a German

employed in the cipher branch of the German Army, supplied photographs of

two tables setting out the daily keys—Stecker, wheel order, Ringstellung, and the

daily indicator setting—for September and October 1932. Rejewski describes this

material as the ‘decisive factor in breaking the machine’s secrets’.31

30 The sources for this section are: ‘A Conversation with Marian Rejewski’ (in Kozaczuk, Enigma),

Rejewski’s articles ‘How the Polish Mathematicians Broke Enigma’, ‘Summary of our Methods for Recon-

structing Enigma and Reconstructing Daily Keys, and of German EVorts to Frustrate Those Methods’, ‘The

Mathematical Solution of the Enigma Cipher’ (in Kozaczuk, Enigma), and ‘Remarks on Appendix 1 to

British Intelligence in the Second World War by F. H. Hinsley’, together with Hinsley, vol. iii, part 2,

appendix 30 ‘The Polish, French and British Contributions to the Breaking of the Enigma: A Revised

Account’. (Appendix 30 replaces the sometimes very inaccurate appendix 1, ‘The Polish, French and British

Contributions to the Breaking of the Enigma’, of Hinsley et al., British Intelligence in the Second World War,

vol. i (London: Her Majesty’s Stationery OYce, 1979).

31 Rejewski, ‘How Polish Mathematicians Deciphered the Enigma’, trans. Stepenske, 221.

Enigma | 231

In 1931 the French had attempted to interest the British in documents

obtained by Schmidt, including operating manuals for German military Enigma.

It is said that the British showed little interest, however, and declined to help the

French meet the costs of obtaining them. It was not until 1936 that GC & CS

began to study Enigma seriously. By the middle of 1939, Knox had discovered

something like the Polish method for obtaining the message settings from the

indicators (for German Army traYc).32 However, he was unable to determine

the internal wiring of the wheels. Without the wiring, it was impossible to use the

method to decode the messages. GC & CS probably discovered a version of

the same method that Rejewski had used to determine the wiring of the wheels,

calling the method a ‘Saga’ (Mahon mentions it brieXy on p. 278 of the next

chapter). Knox is said to have outlined a ‘more complicated version’ of the

Rejewski method at a meeting in Paris in January 1939.33 However, he was

never able to use this method to Wnd the wiring of the wheels. This was because

he was never able to discover the pattern of Wxed wiring leading from the plug-

board to the right-hand wheel via the entry plate (see Figure 4)—the

‘QWERTZU’, as he liked to call this unknown pattern, after the letters along

the top row of the Enigma keyboard. This entirely humdrum feature of the

military machine was what defeated Knox. Rejewski himself discovered the

pattern by a lucky guess.

Once Rejewski had worked out the internal wiring of the wheels, he attacked

the problem of how to determine the daily keys. This he solved early in 1933. At

this stage, Rejewski was joined by Henryk Zygalski and Jerzy Różycki. Zygalski,

Różycki, and Rejewski had graduated together from a course in cryptology that

the Biuro Szyfrów had given in 1928–9. (Rejewski said later that it could have

been the Biuro’s fruitless eVorts to break Enigma during 1928—the year in which

the Wrst messages were intercepted—that prompted the organization of the

course at which the three were recruited.34)

Now that the Polish cryptanalysts were able to Wnd the daily keys on a regular

basis, they needed access to Enigma machines in order to decipher the daily

traYc. Using what Rejewski had found out concerning the wiring of the wheels,

copies of the Wehrmacht Enigma were built by a Warsaw factory. Initially about

half a dozen clerical staV were employed by the Biuro Szyfrów to operate the

replica Enigmas. The clerical staV were ‘put into a separate room, with the sole

assignment of deciphering the stream of messages, the daily keys to which we

soon began supplying’.35 The number of replica Enigmas in use at the Biuro

increased to about a dozen by mid-1934.

32 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, 951.

33 Ibid.

34 Letter from Rejewski to Richard Woytak, 15 Apr. 1979; the letter is printed in Kozaczuk, Enigma,

237–8.

35 Rejewski, ‘How the Polish Mathematicians Broke Enigma’, trans. Kasparek, 261.

232 | Jack Copeland

This state of aVairs persisted until September 1938, when the German Army

and Air Force abandoned the indicator system that Rejewski had broken in 1932.

They switched to the indicator system described above: the indicator setting was

no longer supplied in the tables giving the daily key, but was made up by the

sender himself. Overnight the Poles’ methods for determining the daily keys and

message settings became useless. (In German Naval Enigma, the system broken

by Rejewski had been abandoned in May 1937, when the complicated indicator

system described by Mahon in the next chapter was adopted. Mahon outlines the

Polish work on Naval Enigma to 1937.)

Within a few weeks of the September change, however, the Poles had devised

two new methods of attack. One involved the use of perforated sheets of paper to

determine the daily key, starting from a suYcient number of messages whose

indicators displayed certain patterns of repeated letters. (Knox devised a similar

method and was planning to use marks on photographic Wlm rather than

perforations, but was unable to put the method into practice without knowing

the internal wiring of the wheels.36) The Poles’ other method involved an electro-

mechanical apparatus, designed by Rejewski and (on the engineering side)

Antoni Palluth.37 This was the bomba (plural ‘bomby’), forerunner of the

Bletchley Park bombe. How the bomba worked is explained in the next section.

Six bomby were in operation by mid-November 1938.

The bomby and the perforated sheets depended on the fact that the indicator

was formed by enciphering the message setting twice (e.g. enciphering RGBRGB

rather than simply RGB). If the indicator system were changed so that the

message setting was enciphered only once, the bomby and the perforated sheets

would become unusable. This is precisely what was to happen in May 1940. Well

before this, however, the bomby became overwhelmed by other changes designed

to make Enigma more secure.

In December 1938 the Germans introduced the two extra wheels, IV and V.

The Poles were able to determine the internal wiring of the new wheels by

the method used in 1932 (thanks to the fact that one Enigma network—the

intelligence service of the Nazi party—had not adopted the indicator system that

came into force on other networks in September 1938 and was still using the

system that the Poles could break by their earlier methods). But the material

resources of the Biuro Szyfrów were insuYcient to enable the Poles to cope with

the increase in the number of wheel orders that the two new wheels produced.

Where previously there had been only six possible wheel orders, there were now

sixty. In order to investigate the new wheel orders, at least thirty-six replicas

of each new wheel were required. The factory could not produce replicas fast

enough.

36 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, 951.

37 Rejewski, ‘How the Polish Mathematicians Broke Enigma’, 267.

Enigma | 233

Work with the perforated sheets was aVected in the same way. The drawback

of the sheet method had always been that the manufacture of a single sheet

required the cutting of about 1,000 tiny perforations in exactly the right pos-

itions, with twenty-six sheets being required for each possible wheel order.

Suddenly a huge number of additional sheets was required.

The result of the addition of the new wheels was that the Poles were able to

read German Army and Air Force messages on only those days when it happened

that wheels I, II, and III were in the machine—on average one day in ten.

Pyry and After

In July 1939 the Poles invited members of the British and French intelligence

services to a meeting at Pyry near Warsaw. Denniston and Knox represented GC

& CS. At this meeting, Rejewski relates, ‘we told everything that we knew and

showed everything that we had’—a replica Enigma, the bomba, the perforated

sheets, and of course the all-important internal wiring of the wheels, which Knox

still had not been able to work out.38 Without the Poles, Knox and Turing might

not have found out the wiring of the wheels until May 1940, when the British

captured several intact Enigma machines from the German Army in Norway.

Knox’s Wrst question to the Poles was ‘What is the QWERTZU?’39 The answer

was almost a joke—the connections were in alphabetical order, with the A-socket

of the plug-board connected to the Wrst terminal inside the entry plate, the B-

socket to the second, and so on. Knox was ecstatic to know the answer at last,

chanting in a shared taxi ‘Nous avons le QWERTZU, nous marchons ensemble’

(‘We have the QWERTZU, we march along together’).40

At Pyry the Poles also undertook to supply their British and French allies with

two replica Enigma machines. The replica destined for GC & CS was couriered

from Paris to London on 16 August 1939 by two men, Gustave Bertrand, head of

the codebreaking section of the French Intelligence Service, and ‘Uncle Tom’, a

diplomatic courier for the British Embassy in Paris. On the platform of Victoria

Station they handed the machine over to Admiral Sinclair’s deputy, Colonel

Stewart Menzies. Menzies, on his way to an evening engagement, was dressed in a

dinner jacket and he sported the rosette of the Légion d’Honneur in his button-

hole. Accueil triomphal—a triumphant welcome, Bertrand declared.41

Following the invasion of Poland, Rejewski and his colleagues moved to

France. By January 1940 GC & CS, with its superior resources, had produced

two complete sets of perforated sheets. The Poles received one of the sets in

instalments. Turing delivered some of the sheets himself.

38 Ibid. 269.

39 Ibid. 257; P. Twinn, ‘The Abwehr Enigma’, in Hinsley and Stripp (eds.), Codebreakers, 126.

40 Twinn, ‘The Abwehr Enigma’, 126–7.

41 G. Bertrand, Enigma, ou la plus grande énigme de la guerre 1939–1945 (Paris: Plon, 1973), 60–1.

234 | Jack Copeland

Rejewski recollected: ‘We treated [Turing] as a younger colleague who had

specialized in mathematical logic and was just starting out in cryptology.

Our discussions, if I remember correctly, pertained to the commutator [plug-

board] and plug connections (Steckerverbindungen) that were Enigma’s strong

point.’42 Little did Rejewski know that Turing had already devised the brilliant

method of dealing with the Steckerverbindungen on which the British bombe was

based.

For several months the British and the Poles worked in cooperation. The Wrst

break of wartime traYc since September 1939 was achieved by the Poles in mid-

January 1940, followed a few days later by further breaks at GC & CS. During the

period of fruitful collaboration that ensued, the Poles with their lesser resources

were responsible for about 17 per cent of the daily keys broken.

Then, in May 1940, everything changed. The new indicator system introduced

by the German Army and Air Force on 1 May made the perforated sheets useless

for all networks except one, Yellow, which continued to employ the old system.

Even Yellow, an inter-services key in use during the Norway campaign, went out

of service on 14 May.43 The change of indicator system and the German

occupation of France eVectively ended the attack on Enigma by the exiled

Biuro Szyfrów.

The British were able to continue reading German Air Force messages (from

20 May) by means of methods developed at GC & CS which exploited the bad

habits of some German Enigma operators. One was the habit of enciphering the

message setting at the position that the wheels happened to be in at the end of

the previous message, or at a closely neighbouring position (obtained e.g. by

lazily turning only one wheel some small number of clicks).

From the summer of 1940 the codebreakers at GC & CS began to receive

assistance from Turing’s radically redesigned version of the Polish bomba.

4. The Polish Bomba

Origin of the Name ‘Bomba’

In Chapter 5, Mahon says that the British bombe ‘was so called because of the

ticking noise it made, supposedly similar to that made by an infernal machine

regulated by a clock’ (p. 291). This story was well entrenched among Blet-

chleyites. The need-to-know principle meant that few were aware of the Polish

bomba. Similarly, the explanation that circulated at Bletchley Park of why certain

patterns, involving repetitions of letters at the same places, were known as

‘females’ took no account of the fact that the terminology had been borrowed

42 Quoted in Kozaczuk, Enigma, 97. On Turing’s visit to the Poles, see ibid 96–7; Welchman, The Hut Six

Story, 220; and R. Erskine, ‘Breaking Air Force and Army Enigma’, in Erskine and Smith, Action This Day, 54.

43 Erskine, ‘Breaking Air Force and Army Enigma’, 55.

Enigma | 235

from the Poles. The equivalent Polish term ‘samiczki’, meaning ‘females’, was

quite likely the result of a play on words, ‘samiczki’ being used as short for a

Polish phrase meaning ‘the same places.’44

Why the Poles chose the name ‘bomba’ seems not to have been recorded.

Rejewski’s only comment was that the name was used ‘for lack of a better idea’.45

As well as meaning ‘bomb’, ‘bomba’ is the Polish word for a type of ice-cream

dessert—bombe in French. Tadeusz Lisicki, who corresponded with Rejewski

during the years before the latter’s death in 1980, is quoted as saying: ‘The

name ‘‘bomba’’ was given by Różycki . . . [T]here was in Warsaw [an] ice-

cream called [a] bomba . . . [T]he idea [for] the machine came while they were

eating it.’46

A diVerent story is told in recently declassiWed American documents. As

explained later in this section, the bomba is required to stop immediately it

detects a certain feature. How this was achieved by the Polish engineers is not

known for sure. The American documents suggest that the stopping mechanism

involved the dropping of weights, and the claim is made that this is how the

name arose.

[A] bank of Enigma Machines now has the name ‘bombe’. This term was used by the Poles

and has its origin in the fact that on their device when the correct position was reached a

weight was dropped to give the indication.47

When a possible solution was reached a part would fall oV the machine onto the Xoor with

a loud noise. Hence the name ‘bombe’.48

It is not implausible that falling weights were used to disengage the bomba’s

drive mechanism (a printer designed by Babbage as part of his DiVerence Engine

used a similar idea). However, the two American documents in question were

written some years after Rejewski and his colleagues destroyed all six bomby in

193949 and neither cites a source for the claim quoted (the documents are dated

1943 and 1944). Moreover, both documents contain inaccurate claims concerning

the Polish attack on Enigma (for example, that the bomba was ‘hand operated’,

and that the military Enigma machine had no plug-board until ‘about 1938’).50

The sketch of the bomba that accompanies Rejewski’s ‘TheMathematical Solution

44 Kozaczuk, Enigma, 63.

45 Rejewski, ‘How the Polish Mathematicians Broke Enigma’, 267.

46 Tadeusz Lisicki quoted in Kozaczuk, Enigma, 63.

47 Untitled typescript dated 11 Oct. 1943 (NARA, document reference RG 457, Historic Cryptographic

Collection, Box 705, NR 4584), 1.

48 ‘Operations of the 6312th Signal Security Detachment, ETOUSA’, 1 Oct. 1944 (NARA, document

reference: RG 457, Historic Cryptographic Collection, Box 970, NR 2943), 5. (Thanks to Ralph Erskine for

drawing my attention to this quotation and to Frode Weierud for sending me a copy of the document.)

49 Rejewski, ‘Remarks on Appendix 1 to British Intelligence in the SecondWorldWar by F. H. Hinsley’, 81.

50 Untitled typescript dated 11 Oct. 1943, 2; ‘Operations of the 6312th Signal Security Detachment,

ETOUSA’, 5.

236 | Jack Copeland

of the Enigma Cipher’ shows no system of falling weights—although nor is an

alternative system for stopping the bomba depicted.51

Simple Enigma and a Mini Bomba

Let us suppose, for purposes of illustration, that we are dealing with an imagin-

ary, highly simpliWed, version of the Enigma machine called Simple Enigma.

Simple Enigma has one wheel rather than three and no plug-board; in other

respects it is the same as a full-scale Enigma.

Suppose that we have a message to decode beginning NYPN. . . Suppose

further that we have a crib. A crib is a series of letters or words that are thought

likely to occur in the plain language message that the cipher text encrypts. Say we

have good reason to believe that the Wrst and fourth letters of the plain text are

both E (perhaps a prisoner gasped out the Wrst four letters of the plain text before

he died, but his second and third gasps were inaudible). We will use a machine to

help us Wnd the message setting—i.e. the rotational position of the wheel at

which the sender began typing the message.

Our code-breaking machine consists of two replicas of the Simple Enigma

machine plus some additional devices. There is a mechanism for holding down

any selected key at the keyboards of the replicas, thereby keeping the current

Xowing from key to wheel. The wheel of each replica can be locked in step with

the other, and there is an electric motor that will click the wheels round in unison

through their twenty-six rotational positions, one position at a time. Additional

circuitry bridging the two lampboards detects whether a selected letter—E, for

example—lights up simultaneously at each lampboard. A switch or relay is wired

in such a way that if the selected letter does light simultaneously, the electric

motor is turned oV, with the result that the wheels stop turning at exactly

the position that caused the simultaneous lighting of the letter. This is called

a ‘stop’.

Assuming that the crib is correct, we know that if the intended recipient of the

message sets the wheel of Simple Enigma to the message setting and types the

Wrst letter of the cipher text, N, the letter E will light up at the lampboard. The

recipient will then type the next two letters of the cipher text, YP, causing

unknown letters to light, followed by the fourth letter of the cipher text, N,

which will cause E to light up again. Each time the recipient presses a key at the

keyboard, the wheel advances one click. So the position of the wheel at which the

fourth letter of the cipher text decodes as E is three clicks on from the position at

which the Wrst letter of the cipher text decodes as E. This is expressed by saying

that these two positions are at a distance of three from each other. What we want

our codebreaking machine to do is to search through the twenty-six possible

positions of the wheel, looking for a position p that satisWes these two conditions:

51 Kozaczuk, Enigma, figure E-8, 289.

Enigma | 237

1. At position p, keying N causes E to light;

2. At position p þ 3 (i.e. the position three on from p), keying N again causes

E to light.

We set up the codebreakingmachine to perform this search by turning one of the

two identical wheels so that it is three positions ahead of the other. For example, we

might turn the wheel on the right so that, of the twenty-six letters marked around

its ring, Z is uppermost, and then position the wheel on the left three clicks further

on, i.e. with Cuppermost. The twowheels are then locked together so that they will

maintain their position relative to one another while the motor rotates them. The

locked wheels are described as being at an oVset of three clicks.

Next we set up the additional circuitry at the lampboards so that the simul-

taneous lighting of the letter E at each board will produce a stop. Finally, we

clamp down the N-key at each of the two keyboards and start the electric motor.

The motor turns the wheels from position to position. If all goes well, a point

is reached where E lights at both boards and the machine stops. If at that stage

the wheels have not yet completed a full revolution, we note the position at

which the stop occurred and then start the motor again, since there might be

more than one position at which conditions 1 and 2 are jointly satisWed. (If, after

a complete revolution, there are no stops, our crib was incorrect.)

If a complete revolution brings only one stop, then the position of the right-

hand wheel of the pair must be the position at which the sender began encoding

the message. We pass this setting to a clerk sitting at another replica of the Simple

Enigma, who turns the wheel to that position and keys in the cipher text,

producing the plain text at the lampboard. If there were several stops, then the

clerk has to try each of the possible settings in turn until one is found that yields

German at the lampboard.

Notice that we have not discovered the actual message setting—the letter

visible in the window of the sender’s machine at the start of typing the message

(and enciphered to form the indicator). Which letter is visible in the window

depends on how the sender has positioned the ring around the ‘core’ of the

wheel. Leaving the core in one position, the operator could make any one of

the twenty-six letters appear in the window by twisting the ring around the core.

What we have found is the position of the wheel core at the start of the message.

At GC & CS this was called the ‘rod-position’ of the wheel. The rod-position is all

we need to be able to decipher the message.

Of course, with only twenty-six positions to search through, there is hardly

any need for the electric motor, the detector circuitry at the lampboards, and so

forth, because one could quite quickly conduct the search simply by turning the

wheels of two replica machines manually. However, the additional equipment is

certainly necessary when it is the full-scale Enigma machine that is being

attacked, since the existence of three wheels and six possible wheel orders

238 | Jack Copeland

means that one must search through not 26 but 6� 26� 26� 26 ¼ 105, 456

possible positions. (This Wgure ignores the small complications introduced by

double-notching and by the extra movement of the middle wheel described

above.)

The Actual Bomba

The Polish bomba was a more complicated version of the mini bomba just

described. It consisted in eVect of six replica Enigma machines, with six sets of

duplicates of wheels I, II, and III—eighteen wheels in all. Each of the six replica

Enigmas in a single bomba was usually set up with the same wheel order, for

example III/I/II. The wheels used in a bomba had no rings (and so no notches for

producing a ‘turnover’ of the adjacent wheel).

The six replica Enigmas were linked in pairs to form three double-Enigmas—

just as in the example of the mini bomba, where two Simple Enigmas are linked

to form a double Simple Enigma. Each of these double-Enigmas included three

pairs of wheels and equipment equivalent to two keyboards and two lampboards.

The complete bomba consisted of the three double-Enigmas plus the electric

motor, a mechanism for detecting simultaneities and producing stops, and

arrangements for holding constant the letter going into each double-Enigma.

At this point it may be helpful to repeat that the Wrst, or outermost, of the

three wheels in an Enigma machine—the wheel linked directly to the keyboard

and plug-board and which moved once with every key-stroke—was always the

right-hand member of the trio. For example, if the wheel order is I/II/III, it is

wheel III that is the outermost of the three wheels.

As in the mini bomba, the identical wheels of a double-Enigma were locked in

step, sometimes with one member of a pair a number of positions ahead of the

other member. For example, the two IIIs might be locked in step at an oVset of

three clicks (as above), while the two IIs are locked in step with no oVset, and

likewise the two Is.

The corresponding wheels of diVerent double-Enigmas in the same bomba

were also locked in step with one another. For example, the locked pair of III

wheels of one double-Enigma might be locked in step (at an oVset of twelve

clicks, say) with the locked pair of III wheels of another double-Enigma.

Once all the wheels were appropriately linked, the electric motor would be

started and the bomba’s six replica Enigmas would move in synchronization,

each passing through 26� 26� 26 positions. This took about two hours, each

outer wheel moving through 676 revolutions, each middle wheel through 26

revolutions, and each left-hand wheel through one revolution. In the space of

roughly two hours, the bomba could do the same work that would occupy a

human computer for about 200 hours.52

52 See p. 40.

Enigma | 239

The Indicator Method

In the previous example, we imagined using a mini bomba to discover wheel

positions consistent with a crib concerning the Wrst and fourth letters of the

cipher text. The method employed by the Poles was diVerent and did not involve

text-cribbing (although the method that Turing would later devise for the British

bombe did). The Poles focused on the indicator (to recapitulate: the six-letter

group preceding the cipher text and produced by enciphering the message setting

twice, at an indicator setting that the sender broadcast ‘in clear’ as part of the

preamble to the message).

In a proportion of the intercepted messages, the Wrst and fourth letters of the

indicator would be the same, as for example in the indicator WAHWIK.53 Since

an indicator is produced by typing a three-letter message setting twice, the Wrst

and fourth letters of any indicator both encode the same letter as each other. This

is true also of the second and Wfth letters of any indicator, and the third and

sixth. So both the occurrences of W in WAHWIK encode the same letter; and

moreover three clicks of the right-hand wheel separate the two positions at which

W encodes this unknown letter.

Let me use ‘pR’ when referring to a position of the Enigma’s right-hand wheel,

and similarly ‘pM ’ in the case of the middle wheel and ‘pL’ in the case of the left-

hand wheel. We could attempt to use the bomba to search for rod-positions

pL, pM , and pR such that at position pR and position pR þ 3, Wencodes the same

letter. As I will explain, this is not in fact an eVective way to proceed, but in order

to get the feel of the bomba, let’s brieXy consider how to carry out this search.

We select one of the double-Enigmas, pick a wheel order, say I/II/III, and put

the three pairs of wheels into this order. We then lock the right-hand pair, the IIIs,

in step at an oVset of three (just as in the example of the mini bomba). The

wheels in the middle pair (the IIs) are locked in step at the same position as

one another, and likewise the wheels in the left-hand pair (the Is). Finally, we set

the detector circuits to produce a stop whenever the same letter—any letter—

lights simultaneously in both Enigmas. (The remaining two double-Enigmas are

not needed for this search.) The motor is switched on and each replica Enigma

moves through its 26� 26� 26 positions. Any stops give pairs of positions,

three clicks of the right-hand wheel apart, at which typing W produces the same

letter at the lampboard. Another Wve runs of the bomba are required to explore

all six wheel orders. (Alternatively we might use all three double-Enigmas, each

53 The indicators and indicator settings used in this example are adapted from p. 266 of Kasparek’s

translation of Rejewski’s ‘Jak Matematycy polscy rozszyfrowali Enigme’ in Kozaczuk, Enigma. The present

description of the bomby has been reconstructed from Rejewski’s rather compressed account appearing on

that page. Unfortunately, Stepenske’s translation of these same paragraphs in the Annals of the History of

Computing is marred by an error that seriously aVects the sense. The phrase that Stepenske translates ‘by

striking key W three times in a row, the same lamp would light’ (p. 226) should be translated ‘if key W is

struck the same lamp will light again after three more strokes’.

240 | Jack Copeland

with a diVerent wheel order, so enabling the bomba to explore three wheel orders

simultaneously. In this case only two runs of the bomba are necessary to cover all

the possible wheel orders.)

Notice that an assumption is being made here concerning ‘turnovers’. As

previously explained, the movement of the right-hand wheel of the Enigma

machine at some point causes the centre wheel to turn forward one click; and

the movement of the centre wheel at some point causes the left-hand wheel to

advance one click. The positions at which these turnovers occur are determined

by the Ringstellung. In locking the pair of II wheels (the middle wheels) of the

double-Enigma together in the same position as one another, we are assuming

that, as the sender’s machine lights up the letters WAHWIK, no movement of the

middle wheel occurs during the three clicks forward of the right-hand wheel that

lie between the production of the Wrst and second occurrences of W. And in

locking the left-hand wheels of the double-Enigma together in the same position,

we are making the same assumption about the left-hand wheel of the sender’s

machine.

Of course, these assumptions might be wrong, in which case the search will

fail. This is no less true in the case of the full-blooded search described below

involving three indicators. However, the assumption that only the right-hand

wheel moves in the course of typing a group of six letters is true much more

often than not, and so searches based on this assumption will, other things being

equal, succeed much more often than not.

The problem with the method of searching just described is that it would

typically produce excessively many stops—many triples of positions pL, pM , pR
are liable to satisfy the rather mild constraint that W encodes the same letter at

both pR and pR þ 3. It would take the clerk who tries out each stop by hand on a

further replica Enigma far, far too long to winnow out the correct wheel

positions. It is necessary to Wnd additional indicators from the same day’s

traYc that can be used to narrow the focus of the bomba’s search. Here is

what the Poles actually did.

In order to put a bomba to work eVectively, it is necessary to Wnd in a single

day’s traYc (i.e. traYc encoded with the same wheel order and Stecker) three

messages whose indicators exhibit the following patterns of repetitions. One

indicator must display the pattern just discussed—the same letter repeated at the

Wrst and fourth positions, as in the example

WAHWIK.

A second indicator must have the selfsame letter that is at positions 1 and 4 in the

Wrst indicator at its second and Wfth positions, as in

DWJMWR.

A third indicator must have that same letter at its third and sixth positions, as in

Enigma | 241

RAWKTW.

The Poles called these patterns ‘females’ (see above). At Bletchley Park the

three patterns were referred to as a 1–4 female, a 2–5 female, and a 3–6 female

respectively. It is because this indicator system admits three types of female that

the bomba contains three double-Enigmas, each one utilizing the information

contained in one of the three females.

Let the position of the right-hand wheel when the Wrst letter of the Wrst

indicator was produced be pR and the position of the right-hand wheel when

the Wrst letter of the second indicator was produced be qR , and likewise rR in the

case of the third indicator. We know from the patterns of repeated letters in

the indicators that:

Keying W produces a simultaneity at pR and pR þ 3 (i.e. at pR and pR þ 3 the

same letter lights). Keying W produces another simultaneity at qR þ 1 and

qR þ 4 (possibly involving a diVerent letter at the lampboard). Keying W

produces a third simultaneity at rR þ 2 and rR þ 5.

In fact we know more than this. A rich source of information has not yet been

used—the indicator settings which appear in clear in the preambles to the

messages. Suppose these are as follows.

indicator setting indicator

RTJ WAHWIK

DQY DWJMWR

HPB RAWKTW

Without the wheel order and the Ringstellung for the day in question, which of

course we do not yet possess, the indicator setting cannot be used straightfor-

wardly to decode the indicator. Nevertheless, the indicator settings are far from

useless to us, because they contain information about the relative positions of the

wheels when the indicators were produced; and using this information, we can

deduce the relationship between pR , qR , and rR .

The right-hand letter of each indicator setting speciWes the position of the

right-hand wheel when the encryption—or equivalently the decryption—of each

message setting begins. Similarly, the middle letter speciWes the position of the

middle wheel when the encryption of the message setting begins, and the left-

hand letter the position of the left-hand wheel. Picture the letters of the alphabet

arranged evenly around the circumference of a circle, as on the ring of a wheel.

The right-hand letter of the second indicator setting, Y, is Wfteen letters further

on than the right-hand letter of the Wrst indicator setting, J. Therefore the

position of the right-hand wheel at which the Wrst letter of the second indicator

was produced, qR , is Wfteen clicks on from the position at which the Wrst letter of

the Wrst indicator was produced, pR :

242 | Jack Copeland

qR ¼ pR þ 15

The right-hand letter of the third indicator setting, B, is eighteen letters on

from J (JKLMNOPQRSTUVWXYZAB). Therefore the position of the right-

hand wheel at which the Wrst letter of the third indicator was produced, rR , is

eighteen clicks on from pR :

rR ¼ pR þ 18

Inserting this additional information into the above statement about simulta-

neities gives:

Keying W produces a simultaneity at pR and pR þ 3; another simultaneity at

(pR þ 15)þ1 and (pR þ 15)þ 4; and a third simultaneity at (pRþ18)þ2 and

(pRþ18)þ 5.

Or more simply:

Keying W produces a simultaneity at pR and pR þ 3; another simultaneity at

pR þ 16 and pR þ 19; and a third simultaneity at pR þ 20 and pR þ 23.

Now we have a much stronger constraint on pR and can use the bomba to

search for pR and the accompanying positions of the other wheels in the

expectation that the number of stops will be small enough to be manageable.

Using the Bomba

The bomba is set up for the search as follows. The stopping mechanism is

arranged to produce a stop whenever the eighteen wheels move into a conWgura-

tion that causes a simultaneity at each of the three double-Enigmas at once. The

three simultaneities need not involve the same lampboard letter as each other. W

is input continuously into the Enigmas.

One double-Enigma is set up as above: the wheel order is I/II/III, the III wheels

are locked together at an oVset of three, and the other pairs of wheels are locked

with no oVset (the assumption being, as before, that neither the middle nor the

left-hand wheel of the sender’s machine moved during the production ofWAH-

WIK). Call this double-Enigma’s III wheels l1 and r1 (for the left and right

members of the pair); r1 is three clicks ahead of l1.

The second double-Enigma is set up with the same wheel order. Call its III

wheels l2 and r2. l2 is locked in step with l1 at an oVset of 16, and r2 is locked in

step with l2 at an oVset of 3 (so r2 is nineteen clicks ahead of l1). As with the Wrst

double-Enigma, the II wheels are locked in step with no oVset, and likewise the

Is. The third double-Enigma is also set up with wheel order I/II/III. Its III wheels

are l3 and r3. l3 is locked in step with l1 at an oVset of 20, and r3 is locked in step

with l3 at an oVset of 3 (so r3 is twenty-three clicks ahead of l1). Again, the II

wheels are locked in step with no oVset, and the same for the Is.

Next, each double-Enigma must have its pair of II wheels suitably synchron-

ized with those of its neighbours, and similarly its I wheels. This is achieved as in

Enigma | 243

the case of the III wheels by making use of the information contained in the

indicator settings about the relative positions of the wheels of the sender’s

machine when the indicators were produced.

The middle letter of the second indicator setting, Q, is twenty-three places

ahead of the middle letter of the Wrst indicator setting, T. So the middle wheels of

the second double-Enigma—the IIs—are locked in step with the middle wheels

of the Wrst at an oVset of 23. The middle letter of the third indicator setting, P, is

twenty-Wve places ahead of the middle letter of the second indicator setting, Q,

so the middle wheels of the third double-Enigma are locked in step with the

middle wheels of the second at an oVset of 25. The left-hand letter of the second

indicator setting, D, is twelve places ahead of the left hand letter of the Wrst

indicator setting, R, so the left-hand wheels of the second double-Enigma—the

Is—are locked in step with the left-hand wheels of the Wrst double-Enigma at an

oVset of 12. Finally, the left-hand letter of the third indicator setting, H, is four

places ahead of the left-hand letter of the second indicator setting, D, so the left-

hand wheels of the third double-Enigma are locked in step with the left-hand

wheels of the second at an oVset of 4.

The motor is switched on. As before, the stops that are produced during a run

through all 26� 26� 26 positions are noted and then tested by a clerk. If none

works, it is necessary to set up the bomba again with a diVerent wheel order. Six

runs are required to search through all the wheel orders—approximately twelve

hours of bomba time in total. By running six bomby simultaneously, one

for each wheel order, the Poles reduced the search time to no more than two

hours.

The clerk at the replica Enigma tests the various positions at which the stops

occurred. He or she eventually Wnds one that deciphers each indicator into

something of the form XYZXYZ. The cryptanalysts now know the message

settings and the rod-positions of the wheels at which the message settings were

enciphered.

To use the message settings to decode the messages it is necessary to know

the Ringstellung (since a message setting XYZ could specify any one of the

26� 26� 26 positions, depending on the position of the ring). However, the

Ringstellung lies only a step away. It can be deduced by comparing the rod-

positions of the wheels at which the Wrst letter of any of the indicators was

produced with the corresponding indicator setting.

For example, if the Ringstellung is set correctly, then what should appear in the

windows when the wheel cores lie in the positions at which the Wrst W of

WAHWIKwas produced is RTJ. Since these rod-positions are know, it is a simple

matter to take replicas of the wheels and to twist the rings until the letters R, T

and J are uppermost at these rod-positions. Once the rings are correctly pos-

itioned, a wheel’s ring setting is given by the position of the ring against the

embossed index mark on the wheel core: whatever letter lies against the index

244 | Jack Copeland

mark is the ring setting for that wheel. The complete Ringstellung is the trigram

consisting of the letter for each wheel arranged in the wheel order for the day.

Now the messages can be decoded on a replica Enigma, as can other inter-

cepted messages with the same wheel order and Ringstellung.

The Plug-Board Problem

It remains to explain how the permutations introduced by the plug-board were

dealt with. In the military Enigma machine, the plug-board or stecker-board lay

in the path both of current Xowing from the keyboard to the wheels and of

current Xowing from the wheels to the lampboard (see Figure 4). Not every

keyboard key was aVected by the plug-board. When the bomba Wrst came into

operation, the Germans were using the plug-board to scramble between ten and

sixteen of the twenty-six keys (in eVect by swapping the output wires of pairs of

keys). The remaining keys were unaVected, being ‘self-steckered’.

It was speciWed in the daily key which (keyboard) keys were to be aVected on

any given day and how the aVected (keyboard) keys were to be paired up. For

example, suppose the daily key says that T and K are to be ‘steckered’. The

operator connects together the plug-board sockets labelled T and K (by means

of a cord with a plug at each end). The result of this extra twist is that pressing

the T-key at the keyboard produces the eVect at the wheels which pressing the

K-key would have produced had there been no scrambling of the letters at

the plug-board. Likewise pressing the K-key produces the eVect which

pressing the T-key would have produced in the unsteckered case.

The plug-board comes into play a second time, in between the wheels and the

lampboard. If K lights up in the steckered case, then the selfsame output from the

wheels would have caused T to light up had T been one of the letters unaVected

by the plug-board. Likewise if T lights up, the output would have caused K to

light up had K been unaVected by the plug-board.

The bomba took no account at all of Stecker. If the females in the chosen

indicators had been produced without interference from the plug-board (i.e. if

all the letters in the indicators were self-steckered), then the bomba could

produce the correct message setting. But if stecker-substitutions were involved,

the bomba would be looking for the wrong thing. Returning to the above

example, it would not be W that produces simultaneities at pR and pR þ 3, and

so on, but the letter to which W happened to be steckered; and so the bomba’s

search would fail.

The success of the bomby depended on the fact that, with between ten and

sixteen letters unaVected by the plug-board, there was a reasonable chance of the

day’s traYc containing three indicators unpolluted by Stecker and displaying the

requisite females.

Once the wheel order and Ringstellung had been discovered, messages could be

deciphered using a replica Enigma on which all letters were self-steckered. The

Enigma | 245

result would be German words peppered with incorrect letters produced by plug-

board substitutions. These incorrect letters gave away the plug-board connec-

tions of the sender’s machine.

On 1 January 1939 the Germans increased the number of letters aVected by

Stecker (from between Wve and eight pairs of letters to between seven and ten

pairs). The eVectiveness of the bomba—already severely compromised by the

introduction of wheels IV and V in December 1938—diminished still further.

5. The Bombe and the Spider

At Pyry, Knox observed that the indicator system exploited by the bomba might

‘at any moment be cancelled’—as did indeed happen in May 1940 (see above).54

It was clear to Knox that even if the problems engendered by the increases in the

number of wheels and the number of steckered letters could be solved, the

modiWed bomba might become unusable overnight. After the Warsaw meeting

Knox and Turing considered the possibility of using a bomba-like machine to

attack not the indicators but the message text itself, via cribs.55 The decision was

taken to build a Xexible machine that could be used both in the Polish manner

against the indicators and also with cribs.

Turing was responsible for the logical design of the machine—the ‘bombe’. He

passed his design to Harold ‘Doc’ Keen at the factory of the British Tabulating

Machine Company in Letchworth. Keen handled the engineering side of the

design. Notes dated 1 November 1939 signed by Knox, Turing, Twinn, and

Welchman refer to ‘the machine now being made at Letchworth, resembling

but far larger than the Bombe of the Poles (superbombe machine)’ and state: ‘A

large 30 enigma bomb [sic] machine, adapted to use for cribs, is on order and

parts are being made at the British Tabulating Company.’56

Knox himself appears to have made little or no contribution to the design and

development of the bombe. His greatest achievements during the war were

breaking the versions of Enigma used by the Italian Navy and by the Abwehr,

the secret intelligence service of the German High Command.57 He died in

February 1943.

In its mature form the bombe contained thirty-six replica Enigmas. (The

replicas were made at Letchworth and in Chapter 6 Turing refers to them as

‘Letchworth Enigmas’.) The intricate bombe contained some ten miles of wire

and one million soldered connections. Enclosed in a cabinet, the bombe stood 6

feet 6‰ inches tall (5 feet 10 inches without its 8‰ inch castors), 7 feet 3� inches

54 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, p. 954.

55 Ibid.

56 ‘Enigma—Position’ and ‘Naval Enigma Situation’, notes dated 1 Nov. 1939 and signed by Knox, Twinn,

Welchman, and Turing. Both notes are in the Public Record OYce (document reference HW 14/2).

57 Batey, ‘Breaking Italian Naval Enigma’; Twinn, ‘The Abwehr Enigma’.

246 | Jack Copeland

Figure 7. A Bletchley bombe.

Source : Science and Society Picture Library, National Museum of Science and Industry.

long, and 2 feet 7 inches deep.58 From the front, nine rows of rotating drums

were visible. Each drum mimicked a single Enigma wheel.59 The drums (which

were almost 5 inches in diameter and 1 3
4
inches deep) were removable and could

be arranged to correspond to diVerent wheel orders. Colour-coding was used to

indicate which wheel, e.g. IV, a particular drum mimicked. The drums were

interconnected by means of a large panel at the rear of the bombe (a panel that

‘almost deWes description—a mass of dangling plugs on rows of letters and

numbers’, according to one WRN operator; Mahon says that when viewed

from the rear, the bombe appeared to consist ‘of coils of coloured wire, reminis-

cent of a Fair Isle sweater’ (p. 291, below)).60 The replica Enigmas in the bombe

could be connected together arbitrarily, according to the demands of whatever

crib was being run.

58 ‘Operations of the 6312th Signal Security Detachment, ETOUSA’, 60. (Thanks to John Harper for

additional information.)

59 ‘Operations of the 6312th Signal Security Detachment, ETOUSA’, 67.

60 D. Payne, ‘The Bombes’, in Hinsley and Stripp (eds.), Codebreakers, 134. The coils of wire described by

Mahon were probably red in colour. Red wire and very rarely black wire were used by the Letchworth bombe

factory (letter from John Harper to Copeland (25 Feb. 2003), reporting interviews with engineers who

worked on the bombes at the Letchworth factory).

Enigma | 247

Figure 8. Rear panel of a bombe.

Source : Science and Society Picture Library, National Museum of Science and Industry.

Cribs

Cribs resulted both from the stereotyped nature of the messages sent by the

Germans and from the thoughtlessly insecure habits of some operators. For

example, weather stations regularly sent messages beginning in stereotyped ways,

such as ‘wetter fuer die nacht ’ (‘Weather for the night’) and ‘zustand

ost waertiger kanal ’ (‘Situation Eastern Channel’). In Chapter 5 Mahon

relates how a certain station transmitted the conWrmation ‘feuer brannten

wie befohlen ’ each evening (‘Beacons lit as ordered’).

The position of the cribbed phrase within the cipher text could often be

found by making use of the fact that the Enigma never encoded a letter as itself.

The cryptanalyst would slide a suspected fragment of plain text (e.g. zustand)

along the cipher text, looking for positions at which there were no matches.

In order to uncover cribs, a ‘cribster’ often had to read through large quan-

tities of decrypts, keeping meticulous records. As the war progressed, ‘cribbing’

developed to a Wne art. The discovering of cribs presupposes that the message

traYc is already being read: the period of work from January 1940 with the

perforated sheets and other hand methods was an essential preliminary to the

success of the bombe.

248 | Jack Copeland

In the earlier Wctitious example, a mini bomba was used in conjunction with a

two-letter crib. One replica of the Simple Enigma was dedicated to the Wrst letter

of the crib and another to the second (with the two replicas being set in step at a

distance of three, as dictated by the crib). Setting all complications to one side—

and in particular Stecker—the bombe functions in its bare essentials like the mini

bomba in that example.

Suppose we have a message whose Wrst seven letters are

1 2 3 4 5 6 7

B I M Q E R P

and the one-word crib

Z U S T A N D

In a world without Stecker, we can exploit the crib by connecting seven replica

Enigmas together in such a way that the right-hand wheel (or drum) of the second

is one position further on than the right-hand wheel of the Wrst, the right-hand

wheel of the third is one position further on than the right-hand wheel of the

second, and so on. The sevenmiddle wheels are locked in step in the same position

as one another, and likewise the left-hand wheels. As with the set-up procedure for

the bomba, this assumes that the middle and left-hand wheels of the sender’s

machine do not turn over during the Wrst seven letters of the message.

During each run, B is input continuously into the Wrst replica Enigma, I into

the second, and so on. The electric motor moves the wheels of each replica

Enigma through all their possible positions, one by one. The bombe is set up to

stop whenever the letters Z U S TA N D light simultaneously at the seven replica

Enigmas. When this happens, the positions of the wheels of the Wrst of the seven

are noted. These are candidates for the rod-positions of the wheels at the start of

the message.

Each stop is tested by hand, using either a replica Enigma or a British Typex

cipher machine set up to emulate an Enigma. (The Typex—also written ‘Type

X’—was in eVect an improved form of the Enigma.61) If the rest of the message

decodes—or at any rate that part of it up to the point where a turnover of the

middle or left wheel occurred—then the correct rod-positions have been found.

The seven replica Enigmas all have the same wheel order. By using more

replicas, set up in the same way but with diVerent wheel orders, several wheel

orders can be tested simultaneously. Several runs of the bombe are required to

test all the possible wheel orders.

If there is no success under the assumption that there were no turn-overs of

the middle and left-hand wheels during the enciphering of zustand , then it is

necessary to carry out more runs of the bombe, testing the various possibilities

61 Bauer, Decrypted Secrets, 112, 135.

Enigma | 249

for when a turnover occurred. Turing describes this procedure in Chapter 6,

p. 316.

Once the correct rod-positions are discovered, the wheel order is known and

with some trial and error theRingstellung can beworked out. In a steckerless world,

the codebreakers now have the daily key and all the intercepted messages encoded

on that key can be deciphered. This was done by Typex operators. The messages

were decoded by following exactly the same steps that the intended recipient

would: the indicator setting, transmitted in clear in the message preamble, was

used to decrypt the three-letter indicator, producing the message setting.

Turing’s Method for Finding the Plug-Board Settings

Turing employed a simple but brilliant idea in order to deal with the substitu-

tions brought about by the plug-board. He describes this in Chapter 6, which is

an extract from his ‘Treatise on the Enigma’.62 (Released in 1996, this material has

not previously been published.) ‘Treatise on the Enigma’ was written in the

summer or autumn of 1940 and seems to have been intended for use as a form

of training manual.63 It was known aVectionately at Bletchley Park as ‘Prof ’s

Book’ (‘Prof ’ being Turing’s nickname among his colleagues).

Turing’s method for Wnding the plug-board settings dates from 1939. In the

example just given, the replica Enigmas are connected ‘in parallel’. Turing’s

idea was to make provision for replica Enigmas (without plug-boards) to be

connected nose to tail, with the letter that exits from the wheels of the Wrst being

fed into the next in the chain as if it were unsteckered keyboard input. These chains

of replica Enigmas could be of varying length, as demanded by the crib.

Each chain exploited a feature of the cribbed message that Turing called a

‘closure’, but which might equally well be called a ‘loop’. There are no closures in

the zustand example. The following, longer, crib (discussed by Turing in

Chapter 6, pp. 315V) contains several examples of closures. (The meaning of

the crib is ‘No additions to preliminary report’.)

62 The title ‘Treatise on the Enigma’ was probably added to Turing’s document by a third party outside

GC & CS and quite probably in the United States. The copy of the otherwise untitled document held in the

US National Archives and Records Administration (document reference RG 457, Historic Cryptographic

Collection, Box 201, NR 964) is prefaced by a page typed some years later than the document itself. It is this

page that bears the title ‘Turing’s Treatise on the Enigma’. Another copy of the document held in the British

Public Record OYce (document reference HW 25/3) carries the title ‘Mathematical theory of ENIGMA

machine by A M Turing’; this, too, was possibly added at a later date. Mahon refers to the document simply

as ‘Prof ’s Book’. The PRO copy is complete, and much more legible than the incomplete NARA copy, which

lacks many figures. A digital facsimile of the PRO typescript is available in The Turing Archive for the

History of Computing <www.AlanTuring.net/profs_book>. A retyped version of the complete work,

prepared by Ralph Erskine, Philip Marks, and Frode Weierud, is available at <http://home.cern.ch/frode/

crypto>.

63 See J. Murray, ‘Hut 8 and Naval Enigma, Part I’, in Hinsley and Stripp (eds.), Codebreakers, 116. The

date of composition of the document, summer 1940, is given by Hinsley, British Intelligence in the Second

World War, vol. iii, part 2, appendix 30, 955.

250 | Jack Copeland

www.AlanTuring.net/profs_book
http://home.cern.ch/frode/crypto
http://home.cern.ch/frode/crypto

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D A E D A Q O Z S I Q M M K B I L G M P W H A I V

K E I N E Z U S A E T Z E Z U M V O R B E R I Q T

One closure or loop occurs at positions 2 and 5 and is shown in Figure 9. At

position 2, E encodes as A and at position 5, A decodes as E. Using an upward-

pointing arrow to mean ‘encodes’ and a downward-pointing arrow to mean

‘decodes’, the loop is as shown in Figure 9.

(Notice that it is equally true that at position 2,Adecodes as E, and at position 5, E

encodes as A. It is also true—because the letter substitutions produced by the

Enigma are reversible (see p. 224)—that at position 2, A encodes as E, and at

position 5, E decodes as A. Any of these equivalent ways of describing the loop

will do.)

Another closure, this time involving three letters, occurs at positions 5, 10, and

23 (Figure 10). At position 5, E encodes as A, at position 23, A decodes as I, and

at position 10, I decodes as E.

E is called the central letter of these two closures. The crib contains a number

of other closures with central letter E (see Turing’s Figure 59 on p. 317).

The point about closures is that they are, as Turing says, ‘characteristics of the

crib which are independent of the Stecker’ (p. 316). Figure 9 tells us that there is

A

E

2 5

Figure 9. A loop or ‘closure’.

A

E

5 I

23

10

Figure 10. A closure involving three letters.

Enigma | 251

some letter which, when fed into the wheels at position 2, produces a letter which,

if fed into the wheels at position 5, gives the original letter again. At the present

stage, we have no idea which letter this is, since unless the central letter E

happens to be self-steckered, the letter that goes into the wheels at position 2 is

not E itself but whichever letter it is that E is connected to at the plug-board.

Turing calls E’s mate at the plug-board the ‘stecker value’ of E. Equally, we have

no idea which letter it is that comes out of the wheels at position 2—unless A is

self-steckered, the letter that emerges will not be A but A’s stecker value.

Figure 10 also represents an assertion about the wheels that is true independ-

ently of how the plug-board is set up. There is some letter, x, which when fed into

the wheels at position 5—that is to say, with the right-hand wheel four clicks

further on than at the start of the message—produces some letter, y, which when

fed into the wheels at position 23, produces some letter, z, which when fed into

the wheels at position 10, produces x again.

As explained below, these closures are used in determining the stecker value of

E. Once E’s stecker-mate has been found, then the stecker values of the other

letters in the loops are easily found out. For example, A’s stecker value is whatever

letter emerges from the wheels at position 2 when E’s stecker-mate is fed in.

Using the Turing Bombe

In Turing’s bombe, replica Enigmas without plug-boards are connected into

chains that mimic the loops in the crib. In general, a crib containing three or

more loops was necessary for Turing’s bombe to work successfully.

In the case of the loop in Figure 9, two replica Enigmas are connected nose to

tail. The right-hand wheel of the second machine is three clicks further on than

the right-hand wheel of the Wrst (because three clicks separate positions 2 and 5).

As usual, the wheels are locked in step. To deal with the loop in Figure 10, three

replica Enigmas are connected nose to tail. The right-hand wheel of the Wrst

machine in the chain is set three clicks ahead of the right-hand wheel of the

Wrst machine in the chain that corresponds to Figure 9 (three clicks separating

positions 2 and 5). The right-hand wheel of the second machine in the chain of

three is eighteen clicks ahead of the right-hand wheel of the Wrst machine in that

chain (since eighteen clicks separate positions 5 and 23). The right-hand wheel of

the third machine in the chain is Wve clicks ahead of the right-hand wheel of the

Wrst (since Wve clicks separate positions 5 and 10). Other chains are set up for

other closures in the crib also having E as central letter (see Turing’s Figure 59 on

p. 317).

The bombe works like this. We are going to input the same letter into each of

the chains. What we are looking for is the stecker value of the central letter, E. We

are going to set about Wnding it by trying out each of the twenty-six possibilities

in turn. First we try the hypothesis that E’s stecker-mate is A. So we input A into

each of the chains.

252 | Jack Copeland

The bombe is set up to stop whenever the wheels move into a conWguration

that produces the input letter—A, during the Wrst run—as the output letter of

each of the chains. At any stops during the run, we note not only the positions of

the wheels, but also the output letter of each of the replica Enigmas in each chain.

If the input letter is indeed E’s stecker-mate, and the wheel positions are correct,

then these ‘interior’ letters are the stecker-mates of the intermediate letters of the

various closures.

If, in searching through all the possible wheel positions, we Wnd no case inwhich

the last machine in every chain produces A as output, then the hypothesis that E is

steckered to Amust be incorrect. If, however, we domanage to get A lighting up at

the end of every chain, the hypothesis that A is E’s stecker-mate remains in the

running, and is passed on to someone else to investigate further by hand.

Once the Wrst run is complete, we proceed to the hypothesis that E’s stecker-

mate is B, and again the wheels are moved through all their positions. And so on,

taking each of the twenty-six stecker hypotheses in turn.

Additional runs may be required to test various hypotheses concerning the

turnover of the middle and left wheels (as mentioned above). There is also the

question of the wheel orders. Typically several diVerent wheel orders will be

tested simultaneously. (A thirty-six-Enigma bombe could usually test three wheel

orders simultaneously, assuming that no more than twelve Enigmas were re-

quired for the loops in the crib.) In the case of an ‘all wheel order crib’, where no

information is available to rule out some of the wheel orders, a number of

successive runs, or simultaneous runs on several bombes, will be required in

order to examine each possible wheel order.

Unless the data provided by a crib is especially scanty, in which case there

might be many stops, this procedure would usually produce a manageably small

number of stops. These were tried out manually in another building on a replica

Enigma or Typex. Usually the stops were tested more or less as they occurred. As

soon as one was found that turned part of the remaining ciphertext into

German—albeit German peppered with incorrect letters—the instruction

would be telephoned back to the bombe operators to strip the bombe and

ready it for the next cribbed message in the queue.

The prototype Turing bombe, named ‘Victory’, was installed at Bletchley Park

on 18 March 1940.64 It seems to have been used exclusively by Turing and other

members of Hut 8 in their attempt to break Naval Enigma.65

64 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, 954. When Mahon

says in the next chapter that the ‘first bombe arrived in April 1940’ (p. 292), he is probably referring to the

time at which the bombe became available to the codebreakers.

65 ‘Squadron Leader Jones, Section’ (Public Record OYce, document reference HW 3/164). (Thanks to

Ralph Erskine for sending me a copy of this document.)

Enigma | 253

Simultaneous Scanning

The eYciency of the bombe could be increased greatly by—instead of, as just

described, trying out one stecker hypothesis at all positions of the wheels before

moving on to the next hypothesis—allowing all the twenty-six possible stecker

hypotheses for the central letter (E to A, E to B, etc.) to be tried out together in the

short interval before the wheels (drums) shifted from one position to the next.

This is ‘simultaneous scanning’. Turing’s original intention was to include add-

itional electrical apparatus in the prototype bombe to implement simultaneous

scanning and he outlines a way of doing this in Chapter 6 (see the section ‘Pye

simultaneous scanning’—Pye was an electronics company located in Cambridge).

However, the problem proved diYcult for the engineers and the additional

apparatus was not ready in time to be incorporated in Victory.66 Turing explains

in Chapter 6 that the method the engineers were proposing would ‘probably have

worked if they had had a fewmoremonths experimenting’, but that their work was

in the end overtaken by the discovery of a solution ‘which was more along

mathematical than along electrical engineering lines’ (p. 319).

Turing presents this mathematical solution in two stages in Chapter 6. First he

explains (what will in this introduction be called) his feedback method (see his

section ‘The Spider’). This Turing describes as ‘a way of getting simultaneous

scanning on the Bombe’ (p. 323). Then he goes on to explain the role of

Welchman’s dazzlingly ingenious invention, the diagonal board (see Turing’s

section ‘The Spider. A Second Description. Actual Form’). Welchman’s diagonal

board brought about a dramatic increase in the eVectiveness of the bombe.

Turing’s Feedback Method

Let us reconsider the previous search for the stecker value of the central letter E.

We Wrst tried the hypothesis that E’s stecker-mate is A. Inputting A, we rotated

the wheels looking for a position at which the letter to emerge is again A. The

feedback method is this.67 Before the wheels are shifted from the current position

to the next, whichever letter emerges from the suitably interconnected

Enigmas—which will in all probability not be A—is fed back in as the new

input letter. (This is done automatically via a braid of twenty-six wires.) This

step is then repeated: whichever letter emerges is fed back in, and so on. Unless

the Wrst attempt produced A, the eVect of these cycles of feedback is that diVerent

stecker hypotheses are tested at the current position of the wheels.

If the wheel position is not the starting position for the message then, given a

crib with suYcient loops, all twenty-six letters will usually be produced as output

during the cycles of feedback. So if the emerging letters are imagined as appearing

at a lampboard, all twenty-six lamps will light. At some positions, however—the

66 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, p. 954.

67 Welchman gives an account of the method, The Hut Six Story, 237–41.

254 | Jack Copeland

interesting positions—not all the lamps light. At these positions it is usually

true (again given a crib with suYcient loops) either that only one lamp lights, or

that only one remains unlit (a reXection of the fact that the Enigma’s letter-

substitutions are reversible). Either way, the letter on the odd lamp out is a

candidate for the stecker value of the central letter, and the position of the wheels

is a candidate for the starting position. Letters produced by other Enigmas within

the chains are candidates for the stecker values of other letters of the loops.

The Diagonal Board

Welchman conceived the diagonal board as a way of increasing the eVectiveness

of the bombe by further exploiting the reciprocal character of the stecker-

substitutions. (The substitutions are reciprocal in the sense that if letter L1
is steckered to L2 then—owing to the design of the plug-board—L2 is inevitably

steckered to L1.) With the diagonal board in operation, the bombe could work

cribs containing fewer than three closures and even cribs containing no closures

at all (as in the zustand example) provided the length of the crib was

suYcient. (If Welchman’s diagonal board had never been conceived, bombes of

the earlier type could have been used successfully against Enigma networks

producing enough cribs with at least three closures—although at the expense

of greater amounts of bombe time.68)

Once Welchman had thought of the diagonal board, Turing quickly saw that it

could be used to implement simultaneous scanning. Joan Clarke, who worked

alongside Turing in Hut 8, said: ‘Turing soon jumped up, saying that Welchman’s

diagonal board would provide simultaneous scanning.’69 (Clarke was one of

Welchman’s mathematics students at Cambridge. For a short period in 1941,

she and Turing were engaged to be married.)

The new form of bombe with the diagonal board was initially called the

‘Spider’ to distinguish it from Turing’s earlier form, but soon simply ‘bombe’

prevailed. (Possibly the name ‘Spider’ arose in virtue of the practice of using

‘web’ as a term to refer to the connected parts of a diagram depicting the loops in

a crib; see Chapter 6, pp. 325, 329.70) The Wrst Spider was installed on 8 August

1940.71 It was known as ‘Agnus’, short for ‘Agnus Dei’ (the name later became

corrupted to ‘Agnes’ and ‘Aggie’).72 Agnus contained thirty replica Enigmas, six

fewer than in later models. Both Hut 8 (Naval Enigma) and Hut 6 (Army and Air

Force Enigma) were given access to the new machine.73

68 C. A. Deavours and L. Kruh, ‘The Turing Bombe: Was It Enough?’, Cryptologia, 14 (1990), 331–49

(346–8).

69 Murray (née Clarke), ‘Hut 8 and Naval Enigma, Part I’, 115.

70 I am indebted to Frank Carter for this suggestion.

71 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, 955.

72 ‘Squadron Leader Jones, Section’ (see n. 65); R. Erskine, ‘Breaking Air Force and Army Enigma’, in

Erskine and Smith, Action this Day, 56.

73 ‘Squadron Leader Jones, Section’.

Enigma | 255

Figure 11. Working in a bombe room at Out Station Eastcote. ‘Menus’ for the outstation

bombes were received from Bletchley Park over a teleprinter line.

Source : Photograph from ‘Operations of the 6312th Signal Security Detachment, ETOUSA’, 1 October 1944

(NARA, document reference: RG 457, Historic Cryptographic Collection, Box 970, NR 2943).

Subsequent Developments

At Wrst the number of bombes increased relatively slowly, and much of the code-

breakers’ energy went into the use of hand methods—such as Turing’s method of

Banburismus—designed to reduce the amount of bombe time required to break a

crib. By June 1941 there were only Wve bombes in operation, rising to Wfteen by

November.74 The picture changed markedly when a new factory dedicated to the

production of bombes came into operation at Letchworth. The output of Enigma

decrypts produced by GC & CS more than doubled during 1942 and 1943, rising

to some 84,000 per month by the autumn of 1943.75 Groups of bombes were

housed in ‘outstations’ in the district surrounding Bletchley Park, and then

subsequently at three large satellite sites in the suburbs of London, with dedicated

teletype and telephone links to Bletchley Park.76 By the end of the war there were

around 200 bombes in continuous operation at these various sites.77 From August

1943, US Navy bombes began to go into operation inWashington, DC. About 125

were in operation by the time Germany fell.78 Good cable communications

74 Alexander ‘Cryptographic History of Work on the German Naval Enigma’, 31, 35.

75 Hinsley, British Intelligence in the Second World War, ii. 29.

76 Welchman, The Hut Six Story, 139–41, 147.

77 Ibid. 147.

78 Erskine, ‘Breaking German Naval Enigma on Both Sides of the Atlantic’, 192–3.

256 | Jack Copeland

enabled Bletchley to use the Washington bombes ‘almost as conveniently as if

they had been at one of our outstations 20 or 30 miles away’.79

6. Naval Enigma

Turing’s Break

Between 1934 and 1937 the Poles had enjoyed some success against German

Naval Enigma. However, on 1 May 1937 a major change of indicator procedure

rendered Naval Enigma impenetrable.

During much of 1940 German Air Force traYc was being read in large

quantities by GC & CS, but Naval traYc—including the all-important messages

to and from the wolf-packs of U-boats in the North Atlantic—remained cloaked.

The German strategy was to push Britain toward defeat by sinking the convoys of

merchant ships that were Britain’s lifeline, bringing food, raw materials, and

other supplies across the Atlantic from North America. From the outbreak of war

to December 1940 a devastating total of 585 merchant ships were sunk by

U-boats, compared to 202 merchant vessels sunk by aircraft during the same

period.80 If Home Waters Naval Enigma (Heimische Gewässe)—called ‘Dolphin’

at Bletchley Park—could be broken, the positions of the wolf-packs in the North

Atlantic would be known and convoys could be routed around them.

When Turing took up residence at Bletchley Park in September 1939 no work

was being done on Naval Enigma, which some thought unbreakable. As late as

the summer of 1940 Denniston declared to Birch, the head of the Naval Section

at GC & CS (Hut 4): ‘You know, the Germans don’t mean you to read their stuV,

and I don’t suppose you ever will.’81 This was never the opinion of Birch and

Turing. Alexander’s history of the attack on Naval Enigma (written at the end of

the war and kept secret by the British government until very recently) recounted:

Birch thought it could be broken because it had to be broken and Turing thought it could

be broken because it would be so interesting to break it . . . Turing Wrst got interested in the

problem for the typical reason that ‘no one else was doing anything about it and I could

have it to myself ’.82

The chief reason why Dolphin was so diYcult to break was that the indicator

system required the sender to encipher the message setting by two diVerent

methods before broadcasting it—once by means of the Enigma machine, as

was usual, and once by hand. Mahon describes the procedure in detail in

Chapter 5. The hand encipherment was performed by means of a set of bigram

tables. These tables speciWed substitutions for pairs of letters, such as ‘DS’ for

79 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 90.

80 S. W. Roskill, The War at Sea 1939–1945 (London: HMSO, 1954), 615–16.

81 C. Morris, ‘Navy Ultra’s Poor Relations’, in Hinsley and Stripp (eds.), Codebreakers, 237.

82 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 19–20.

Enigma | 257

‘HG’ and ‘YO’ for ‘NB’. Enigma operators were issued with a set of nine complete

tables, each table giving substitutions for all the 676 possible bigrams.83 Which

table was to be used on any given day was set out in a calendar issued with the

tables. New sets of tables came into force periodically. Crews were under strict

instructions to destroy the tables before abandoning ship or if the enemy was

about to board.

Turing started his attack exactly where the Poles had left oV over two years

before, studying 100 or so messages from the period 1–8May 1937 whose message

settings were known. Before the end of 1939 he had fathomed out exactly how the

complicated indicator systemworked. Chapter 5 contains an extract fromTuring’s

‘Treatise on the Enigma’ (published here for the Wrst time) in which Turing

explains how he performed this remarkable piece of cryptanalysis.

Hut 8

In 1940 Turing established Hut 8, the section devoted to breaking Naval Enigma.

Initially theNaval Enigma group consisted of Turing, Twinn, and ‘two girls’.84Early

in 1940 they were joined by Tony Kendrick, followed by Joan Clarke in June of that

year, and then in 1941 by Shaun Wylie, Hugh Alexander, Jack Good, Rolf Nosk-

with, PatrickMahon, and others.85Turing was ‘rightly recognized by all of us as the

authority on any theoretical matter connected with the machine’, said Alexander

(himself later head of Hut 8).86 In Chapter 5 Mahon recounts how, under Turing’s

leadership, Hut 8 slowly gained control of Dolphin during 1940 and 1941.

Unlike Heimische Gewässe (Dolphin), Ausserheimische Gewässe—meaning

‘Distant Waters’—would never be broken by Hut 8, and several other Naval

Enigma networks also resisted attack.87Süd, on the other hand, used in the

Mediterranean from mid-1941, was a much easier proposition than Heimische

Gewässe. As Mahon mentions in the next chapter (p. 273), Süd employed a

version of the indicator system broken by the Poles. Süd’s procedure of encipher-

ing the message setting twice (on which the bomby had depended) meant that

Hut 8 was able to read Süd traYc without any need for cribs.88

Pinches

Turing’s discovery of how the indicator system worked could not be used to read

the German traYc until the bigram tables were known. Materials obtained by the

83 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 7.

84 Chapter 5, p. 285.

85 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 26, 28, 30; Murray, ‘Hut 8

and Naval Enigma, Part I’, 112.

86 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 33.

87 Erskine, ‘Breaking German Naval Enigma on Both Sides of the Atlantic’, and ‘Naval Enigma: The

Breaking of Heimisch and Triton’, Intelligence and National Security, 3 (1988), 162–83.

88 Süd is discussed in Erskine, ‘Naval Enigma: An Astonishing Blunder’, Intelligence and National Security,

11 (1996), 468–73, and ‘Breaking German Naval Enigma on Both Sides of the Atlantic’, 186–9.

258 | Jack Copeland

Royal Navy from enemy vessels enabled the codebreakers to reconstruct the all-

important tables. (Many of the captures are described in Hugh Sebag-Monte-

Wore’s fast-paced book Enigma: The Battle for the Code ; see the section of further

reading.)

The Wrst capture, or ‘pinch’, of Home Waters daily keys—which Alexander

described as ‘long awaited’—was on 26 April 1940.89 A party from the British

destroyer HMS GriYn boarded an armed German trawler disguised as a Dutch

civilian vessel (bearing the false name ‘Polares’).90 The trawler was bound for the

Norwegian port of Narvik to deliver munitions. The ‘Narvik Pinch’, as it became

known, yielded various documents, including notes containing letter-for-letter

cribs for 25 and 26 April (see Mahon’s account in the next chapter).91 Among the

documents was a loose scrap of paper (overlooked at Wrst) onwhichwere scribbled

the Stecker and the indicator setting for 23 and 24 April.92Also captured were exact

details of the indicator system, conWrming Turing’s deductions.93

The crib for 26 April was tried on the recently arrived Victory, and according

to Alexander ‘after a series of misadventures and a fortnight’s work the machine

triumphantly produced the answer’ (see also p. 286, below).94 Alexander reports

that 27 April could then also be broken, the 26th and 27th being ‘paired days’—

days with the same wheel order and Ringstellung.95 Thanks to the Narvik

Pinch, the days 22–5 April were also broken (not on the bombe but by hand

methods).96

Another pinch was needed if Dolphin was to be broken for any substantial

period. Various plans were discussed. One, code-named ‘Operation Ruthless’,

was masterminded by Lieutenant Commander Ian Fleming of Naval Intelligence,

who later created the character James Bond. Mahon describes the plan, which he

credits to Birch, in the next chapter. In the event, Operation Ruthless was not

carried out. Turing’s reaction is described in a letter by Birch dated 20 October

1940:

89 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 24.

90 The report of the engagement, ‘Second and Last War Cruise’, is in PRO (document reference ADM

186/805). See also R. Erskine, ‘The First Naval Enigma Decrypts of World War II’, Cryptologia, 21 (1997),

42–6.

91 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 24; Ralph Erskine (personal

communication).

92 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 24; Murray, ‘Hut 8 and

Naval Enigma, Part I’, 113.

93 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 24.

94 Ibid. 25.

95 Ibid. 5, 25.

96 Alexander’s statements on pp. 24–5 (or possibly Mahon’s on p. 286, below) have been interpreted,

probably incorrectly, by the authors of British Intelligence in the Second World War as implying that materials

obtained from the Narvik Pinch enabled Hut 8 to read Naval Enigma traYc for the six days 22–7 April

during May (Hinsley et al., British Intelligence in the Second World War, i. 163, 336). In 1993 Joan Clarke

stated that some of these days were not broken until June (Murray, ‘Hut 8 and Naval Enigma, Part I’, 113;

see also Erskine, ‘The First Naval Enigma Decrypts of World War II’, 43).

Enigma | 259

Turing and Twinn came to me like undertakers cheated of a nice corpse two days ago, all

in a stew about the cancellation of operation Ruthless. The burden of their song was the

importance of a pinch. Did the authorities realise that . . . there was very little hope, if any,

of their deciphering current, or even approximately current, enigma for months and

months and months—if ever? Contrariwise, if they got a pinch . . . they could be pretty

sure, after an initial delay, of keeping going from day to day from then on . . . because the

level of traYc now is so much higher and because the machinery has been so much

improved.97

Turing did not get what he wanted until the ‘Lofoten Pinch’ of March 1941,

which Mahon describes as ‘one of the landmarks in the history of the Section’

(p. 290). On 4 March, during a commando raid on the Norwegian coast—

planned with a pinch in mind—the Royal Navy destroyer HMS Somali opened

Wre on the German armed trawler Krebs near the Lofoten Islands.98 Krebs was

boarded and tables giving the daily keys for the complete month of February

1941 were captured.99 Short of obtaining the bigram tables as well, this was

exactly what was needed. A month’s daily keys were suYcient to enable Hut 8 to

reconstruct the tables.100 Suddenly Hut 8 was properly open for business and by

the beginning of April was looking forward to breaking the Naval traYc ‘as

nearly currently as possible’.101

Eager to follow up on the Krebs success, Harry Hinsley in Hut 4 put forward a

plan to capture a German weather ship, München, operating north-east of

Iceland.102 On 7 May 1941 München was duly boarded by a party from the

Somali.103 The booty included the daily keys for the month of June. The July keys

soon followed, captured from the weather ship Lauenburg in another raid

planned by Hinsley.104 The capture of the June and July keys helped Hut 8

reconstruct the new bigram tables issued on 15 June (see the next chapter).105

The new tables were current until November 1941.106

During June and July Hut 8 was producing decrypts of Enigma messages

within one hour of their being received. Mahon says on pp. 290–291, ‘There

can be no doubt that at this stage the battle was won and the problem was simply

97 Birch’s letter is included in a contemporary report entitled ‘Operation Ruthless’ by C. Morgan (PRO

document reference ADM 223/463).

98 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 27. An oYcial report of

the operation is in PRO (document reference DEFE 2/142). The operation is described in Erskine ‘Breaking

German Naval Enigma on Both Sides of the Atlantic’, 178.

99 Chapter 5, p. 290; Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 27.

100 Chapter 5, p. 290.

101 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 28.

102 Hinsley, British Intelligence in the Second World War, i. 337.

103 A report of the capture is in PRO (document reference ADM 199/447).

104 Hinsley, British Intelligence in the Second World War, i. 337.

105 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 31.

106 Ibid. 7.

260 | Jack Copeland

one of perfecting methods, of gaining experience, and of obtaining and above all

of training staV.’

Probably the most dramatic pinch of all occurred to the south of Iceland on 9

May 1941, during the pursuit of the submarine U-110 by several Royal Naval

vessels acting as convoy escorts.107 Sub-Lieutenant David Balme, of the destroyer

HMS Bulldog, led the party that boarded the stricken submarine. In an interview

Balme described the depth-charging of the U-110 :

Suddenly two ships were torpedoed one after the other. It was obvious where the attack

had come from and the corvette Aubretia made a very accurate attack on the U-boat.

Must have got the depth-charges just at the right depth. It was a classic attack: depth-

charges underneath the U-boat blew it to the surface. It was the dream of every escort

vessel to see a U-boat blown to the surface. Usually they just sink when you have a

successful attack.

The German crew abandoned ship shortly before Balme boarded the U-boat.

He continued:

I couldn’t imagine that the Germans would have abandoned this U-boat Xoating in the

Atlantic without someone down below trying to sink her. But at any rate I got on and got

my revolver out. Secondary lighting, dim blue lighting, was on and I couldn’t see anybody,

just a nasty hissing noise that I didn’t like the sound of.108

But the U-boat was deserted and, inexplicably, the Germans had made no

attempt to destroy the Enigma materials on board. Balme and his men carried oV

the Enigma machine and the bigram tables. However, the tables had already been

reconstructed laboriously by Turing and co. (see p. 290). Balme’s pinch was not

of major signiWcance to Hut 8 and does not even rate a mention by Mahon or

Alexander.

Banburismus

Another of Turing’s pivotal contributions to the breaking of Naval Enigma was

his invention of the hand method called Banburismus. The name arose because

the method involved the use of specially made sheets bearing the alphabet which,

being printed in the nearby town of Banbury, came to be called ‘Banburies’.

Mahon records that Turing invented the method the same night in 1939 that he

worked out the indicator system (see Chapter 5).

The aim of Banburismus was to identify the day’s right-hand and middle

wheels. This meant that fewer wheel orders had to be tried on the bombe, thereby

saving large amounts of bombe time. During the years when so few bombes were

available, it was Banburismus which made it possible to read Dolphin. As Mahon

107 The oYcial account of the pursuit is in PRO (document reference ADM 1/11133). See also R. Erskine,

‘Naval Enigma: AMissing Link’, International Journal of Intelligence andCounterintelligence, 3 (1989), 493–508.

108 Balme interviewed on British Channel 4 TV, 1998.

Enigma | 261

says, for two or three years Banburismus was ‘the fundamental process which

Hut 8 performed’ (p. 281). Banburismus was discontinued in September 1943,

bombes being plentiful enough by that stage.

The Battle of the Atlantic

Hut 8’s ability to decode the U-boat messages had an immediate effect on the

course of the war.

At the beginning of June 1941 Churchill had been informed by his planners

that, as a result of the attacks on convoys, Britain’s predicted imports amounted

to substantially less than the minimum quantity of food necessary to keep the

population fed during the remainder of 1941.109 Oil and other imports would

also arrive in insufficient quantities for war production to be maintained. The U-

boats were crippling Britain. However, during June 1941—when Dolphin was

read currently for the first time—reroutings based on Hut 8 decrypts were so

successful that for the first twenty-three days of the month, the North Atlantic U-

boats made not a single sighting of a convoy.110

The pattern continued in subsequent months. The Admiralty’s Operational

Intelligence Centre (OIC) became increasingly skilled at evasive routing based on

Bletchley’s Ultra intelligence, and the wolf-packs spent more and more time

searching fruitlessly.111 Although Hut 8’s battle with the U-boats was to see-

saw—for eleven long months of 1942, Hut 8 was blacked out of the North

Atlantic U-boat traffic by the new fourth wheel inside the Enigma—the intelli-

gence from Naval Enigma decrypts played a crucial role in the struggle for

supremacy in the North Atlantic.

7. Turing Leaves Enigma

Mahon records that towards the end of 1941 Turing was running out of theoret-

ical problems to solve concerning Naval Enigma (p. 312). Soon Turing was taking

little part in Hut 8’s activities. His talent for groundbreaking work was needed

elsewhere.

For a period during 1942 Turing rejoined the Research Section to work on the

new problem of ‘Tunny’.112 From June 1941 GC & CS had begun to receive

enciphered messages that were very different from the Enigma traffic. These were

carried by an experimental radio link between Berlin and Greece. Numerous

other links soon came into existence, connecting Berlin to German Army Group

commands throughout Europe. Unlike Enigma radio transmissions, which were

109 Hinsley, British Intelligence in the Second World War, ii. 168–71.

110 Ibid. 171.

111 Ibid. 169–70, 172–5.

112 W. Tutte, ‘Bletchley Park Days’, in B. J. Copeland (ed.), Colossus: The First Electronic Computer

(Oxford: Oxford University Press, 2005).

262 | Jack Copeland

in Morse code, the messages on these links were broadcast in binary teleprinter

code. The British code-named the machine encrypting the new traffic ‘Tunny’.

Tunny was one of three different types of non-Morse ‘Fish’ traffic known to

Bletchley (the others were codenamed ‘Sturgeon’ and ‘Thrasher’).

It was not until July 1942 that up-to-date Tunny traffic was read for the first

time, by means of a paper-and-pencil method invented by Turing and known

simply as ‘Turingery’.113 The Germans used Tunny for high-level Army commu-

nications and sometimes messages signed by Hitler himself would be de-

ciphered.114 With the arrival of the ‘Heath Robinson’ in June 1943, followed a

few months later by the first of the electronic Colossus computers, the Tunny

traffic, like Enigma before it, succumbed to the Bletchley machines (see further

the introductions to Chapters 4 and 9).

Alexander gradually took over the running of Hut 8. In November 1942,

Turing departed for the United States, where he liased with the US Navy’s

codebreakers and bombe-builders.115 He was never to do any more work in

Hut 8.116 Following his return to Bletchley, in March 1943, he held a wider brief,

acting as scientific policy adviser.117 Turing eventually left Bletchley Park at the

end of 1943, moving to Hanslope Park to work on the problem of automatically

enciphering speech. He remained at Hanslope until the end of the war.118

In his history of Bletchley’s attack on Naval Enigma, Alexander included the

following appreciation of Turing’s ‘great contribution’:

There shouldbenoquestion inanyone’smind thatTuring’sworkwas thebiggest factor inHut

8’s success. In the early days he was the only cryptographer who thought the problemworth

tackling and not only was he primarily responsible for the main theoretical work within the

Hut (particularly the developing of a satisfactory scoring technique for dealingwith Banbur-

ismus) but he also shared withWelchman and Keen the chief credit for the invention of the

Bombe. It is always difficult to say that anyone is absolutely indispensable but if anyone was

indispensable to Hut 8 it was Turing. The pioneer work always tends to be forgotten when

experience and routine later make everything seem easy andmany of us inHut 8 felt that the

magnitude of Turing’s contribution was never fully realized by the outside world.119

113 I. J. Good, D. Michie, and G. Timms, ‘General Report on Tunny’ (1945), 458. ‘General Report on

Tunny’ was released by the British government in 2000 to the Public Record Office (document reference HW

25/4, HW 25/5). A digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/tunny_report>.

114 Peter Hilton in interview with Copeland (July 2001).

115 S. Turing, Alan M. Turing (Cambridge: Heffer, 1959), 71. Turing’s report ‘Visit to National Cash

Register Corporation of Dayton, Ohio’ (n.d.; c. Dec. 1942) is now declassified (document reference: NARA,

RG 38, CNSG Library, 5750/441). A digital facsimile of the report is in The Turing Archive for the History of

Computing <www.AlanTuring.net/turing_ncr>.

116 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 42.

117 S. Turing, Alan M. Turing, 72; Don Horwood in interview with Copeland (Oct. 2001).

118 There is an account of Turing’s Hanslope period on pp. 269–90 of Hodges’s biography (see the section

of further reading in ‘Alan Turing 1912–1954’, above).

119 Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 42–3.

Enigma | 263

www.AlanTuring.net/tunny_report
www.AlanTuring.net/turing_ncr

In July 1941 Turing, Alexander, and Welchman were summoned to the Foreign

Office in London to be thanked for what they had done.120 Each was given £200

(a sizeable sum in those days—Turing’s Fellowship at King’s paid him less than

twice this amount per annum). At the end of the war, Turing received the Order

of the British Empire for the role he had played in defeating Hitler—a role that,

after more than half a century of secrecy, has only now come fully into the light

of day.121

Further reading

Bauer, F. L., Decrypted Secrets: Methods and Maxims of Cryptology (Berlin: Springer-Verlag,

2nd edn. 2000).

Budiansky, S., Battle of Wits: The Complete Story of Codebreaking in World War II (New

York: Free Press, 2000).

Erskine, R., and Smith, M. (eds.), Action This Day (London: Bantam, 2001).

Hinsley, F. H., and Stripp, A. (eds), Codebreakers: The Inside Story of Bletchley Park

(Oxford: Oxford University Press, 1993).

Kahn, D., Seizing the Enigma: The Race to Break the German U-Boat Codes, 1939–1943

(Boston: Houghton Mifflin, 1991).

Sebag-Montefiore, H., Enigma: The Battle for the Code (London: Weidenfeld and Nicol-

son, 2000).

Smith, M., Station X: The Codebreakers of Bletchley Park (London: Channel 4 Books,

1998).

Welchman, G., The Hut Six Story: Breaking the Enigma Codes (Cleobury Mortimer: M&M

Baldwin, 2nd edn. 2000).

120 Diary of Sir Alexander Cadogan, Permanent Under-Secretary at the Foreign Office, 15 July 1941:

Andrew, Codebreaking and Signals Intelligence, 3.

121 I am grateful to Friedrich Bauer, Frank Carter, Ralph Erskine, John Harper, Diane Proudfoot, and

Frode Weierud for their comments on a draft of this chapter.

264 | Jack Copeland

CHAPTER 5

History of Hut 8 to December 1941 (1945)

Patrick Mahon

Introduction
Jack Copeland

Patrick Mahon (A. P. Mahon) was born on 18 April 1921, the son of C. P. Mahon,

Chief Cashier of the Bank of England from 1925 to 1930 and Comptroller from

1929 to 1932. From 1934 to 1939 he attended Marlborough College before going

up to Clare College, Cambridge, in October 1939 to read Modern Languages. In

July 1941, having achieved a First in both German and French in the Modern

Languages Part II,1 he joined the Army, serving as a private (acting lance-

corporal) in the Essex Regiment for several months before being sent to Bletchley.

He joined Hut 8 in October 1941, and was its head from the autumn of 1944

until the end of the war. On his release from Bletchley in early 1946 he decided

not to return to Cambridge to obtain his degree but instead joined the John

Lewis Partnership group of department stores. John Spedan Lewis, founder of

the company, was a friend of Hut 8 veteran Hugh Alexander, who eVected the

introduction. At John Lewis, where he spent his entire subsequent career, Mahon

rapidly achieved promotion to director level, but his health deteriorated over a

long period. He died on 13 April 1972.2

This chapter consists of approximately the first half of Mahon’s ‘The History

of Hut Eight, 1939–1945’. Mahon’s typescript is dated June 1945 and was written

at Hut 8. It remained secret until 1996, when a copy was released by the US

government into the National Archives and Records Administration (NARA)

in Washington, DC.3 Subsequently another copy was released by the British

1 With thanks to Elizabeth Stratton (Edgar Bowring Archivist at Clare College) for information.

2 This paragraph by Elizabeth Mahon.

3 Document reference RG 457, Historic Cryptographic Collection, Box 1424, NR 4685.

government into the Public Record OYce at Kew.4 Mahon’s ‘History’ is pub-

lished here for the Wrst time.5

Mahon’s account is Wrst-hand from October 1941. Mahon says, ‘for the early

history I am indebted primarily to Turing, the Wrst Head of Hut 8, and most of

the early information is based on conversations I have had with him’.

4 Document reference HW 25/2.

5 I have made as few editorial changes as possible. Mahon’s chapter headings have been replaced by

section headings. Errors in typing have been corrected and some punctuation marks have been added.

Sometimes sentences which Mahon linked by ‘and’, or a punctuation mark, have been separated by a full

stop. Mahon preferred the lower-case ‘enigma’, which has been altered to ‘Enigma’ for the sake of

consistency with other chapters. In Mahon’s introductory remarks ‘account’ has been substituted for

‘book’ (and the second word of that section has been changed from ‘reading’ to ‘writing’). Occasionally a

word or sentence has been omitted (indicated ‘. . .’) and sometimes a word or phrase has been added

(indicated ‘[]’). In every case, the omitted material consists of a reference to later parts of the ‘History’ not

reproduced here.

266 | Jack Copeland

History of Hut 8 to December 1941

The king hath note of all that they intend,

By interception which they dream not of.

King Henry V

Introduction

Before writing this history I have not had the unpleasant task of reading

voluminous records and scanning innumerable documents.1 We have never

been enthusiastic keepers of diaries and log books and have habitually destroyed

records when their period of utility was over, and it is the merest chance that has

preserved a few documents of interest; hardly any of these are dated. Since March

1943, the Weekly Report to the Director provides a valuable record of our

activities, but it is naturally this more recent period which human memory

most easily recalls, and it is the lack of documentary evidence about early days

which is the most serious. A very large portion of this history is simply an eVort

of memory conWrmed by referring to other members of the Section. I joined the

Section myself in October 1941 and have fairly clear personal recollections from

that time; for the early history I am indebted primarily to Turing, the Wrst Head

of Hut 8, and most of the early information is based on conversations I have had

with him. I also owe a considerable debt of gratitude to Mr. Birch who lent me

the surviving 1939–1940 Naval Section documents which yielded several valuable

pieces of information and aVorded an interesting opportunity of seeing Hut 8 as

others saw us. Many past members of the Section and many people from

elsewhere in B. P.2 have been kind enough to answer questions. . . .

With the exception of Turing, whose position as founder of the Section is a

very special one, I have adopted the policy of not mentioning individuals by

name. Attributing this or that accomplishment to an individual would be an

All footnotes are editorial; Mahon’s typescript contains none. Some footnotes are indebted to a document

entitled ‘A Cryptographic Dictionary’, produced by GC & CS in 1944 (declassified in 1996; NARA document

reference: RG 457, Historic Cryptographic Collection, Box 1413, NR 4559). A digital facsimile of ‘A

Cryptographic Dictionary’ is available in The Turing Archive for the History of Computing

<www.AlanTuring.net/crypt_dic_1944>.

I am grateful to Rolf Noskwith (who worked with Mahon in Hut 8) for providing translations of signals,

cribs, and German technical terms.

1 Mahon’s ‘The History of Hut Eight, 1939–1945’ is Crown copyright. This extract is published with the

permission of the Public Record OYce and Elizabeth Mahon. The extract from Turing’s ‘Treatise on the

Enigma’ is Crown copyright and is published with the permission of the Public Record OYce and the Estate

of Alan Turing. A digital facsimile of the complete original typescript of Mahon’s ‘The History of Hut Eight,

1939–1945’ is available in The Turing Archive for the History of Computing <www.AlanTuring.net/

mahon_hut_8>.

2 Editor’s note. Bletchley Park. Also B/P.

www.AlanTuring.net/crypt_dic_1944
www.AlanTuring.net/mahon_hut_8
www.AlanTuring.net/mahon_hut_8

invidious process contrary to the traditional attitude of the Section towards its

work and it would inevitably give a misleading impression of the relative

contributions of the diVerent members of the Section.

It is impossible to write a truly objective history of a Section which has been

one’s principal interest in life for the last 3 1
2
years and so this account is written on

a comparatively personal note—mostly in the Wrst person plural with occasionally

a purely personal recollection or opinion included: to the best of my ability I have

only introduced by ‘we’ opinions with which the Section as a whole would have

agreed. We have always prided ourselves on not trying to conceal our failures, and

on admitting where we might have done better, and I have attempted to avoid any

tendency to ‘whitewash’ our eVorts for the beneWt of posterity.

This history is intended for the layman. Our work has been traditionally

incomprehensible—the last distinguished visitor I remember had barely sat

down before he announced that he was not a mathematician and did not expect

to understand anything. (Anyone wishing to probe the more abstruse mathemat-

ical aspect of it should turn to the technical volume which is being compiled

in collaboration with Hut 6.) In fact, there is nothing very diYcult to understand

in the work we did, although it was confusing at Wrst sight. I have attempted

to explain only the basic principles involved in the methods we used. As a

result of this I hope that anyone interested in Hut 8 and willing to read the

semi-technical passages with some care will get a fairly clear idea of our work

and I make no excuse for having deliberately avoided mentioning many of

the complications which arose—thus when describing the machine I say that

after pressing the keys 26� 26� 26 times the machine has returned to its

starting place, but the mathematician will realize that the introduction of wheels

6, 7, and 8 with 2 turnovers each is liable to split this cycle into several

smaller cycles.

The account starts with a description of the machine and the methods of

sending messages. [This] is followed by some information as to where the

machine was used and the volume of traYc carried. After these tedious but

rather necessary pages of background [the account] follows the course of events

more or less chronologically, starting some time before the war. Certain sub-

jects—like Banburismus . . .—required whole sections to themselves outside the

historical narrative and these are the subjects of a series of digressions. . . .

The Machine and the Traffic

If the history of Hut 8 is to be understood, it is essential to understand roughly

how the [Enigma] machine works and thus obtain some idea of the problem

which had to be tackled. Developments which have taken place during the

war have complicated the problem but have left the machine fundamentally

the same.

268 | Patrick Mahon

The process of cyphering is simple and quick. The message is ‘typed’ on a

normal keyboard and as each letter is pressed, another letter is illuminated on a

lampboard containing the 26 letters of the alphabet. The series of letters illumin-

ated on the lampboard form the cypher text and the recipient of the cypher

message, in possession of an identical machine, types out the cypher text and the

decoded message appears on the lampboard.

Wheels

The main scrambler unit consists of 3 (later 4) wheels and an Umkehrwalze

which I shall refer to henceforth as the ReXector—an admirable American

translation. These wheels have on each side 26 contacts which we will for

convenience label A to Z. The contacts on the one side are wired in an arbitrary

and haphazard fashion to the contacts on the other. Each wheel is, of course,

wired diVerently. The reXector has 26 contacts which are wired together arbi-

trarily in pairs. What happens when one of the letters of the keyboard is pressed

may be seen from the following diagram.

Reflector

Wheel Wheel Wheel
A

M

A
H

S
Q

P
N

The current in this example enters the right hand wheel at A and leaves it at M,

A being wired to M in this wheel: it enters the middle wheel at M and leaves it

at Q, and so on until it reaches the reXector, where it turns around and

returns through the wheels in a similar fashion, eventually leaving the right

hand wheel at position N and lighting the appropriate lamp in the lampboard.

Pressing a key may light up any bulb except that which is the same as the

key pressed—for a letter to light up itself it would be necessary for the current

to return through the wheels by the same route as it entered and, from the

nature of the reXector, this is clearly impossible. This inability of the machine

to encypher a letter as itself is a vital factor in the breaking of Enigma. It

should also be noted at this point that the machine is reciprocal, that is to

say that, if at a given position of the machine N lights up A, then A will light

up N.

Each time a key is pressed the right-hand wheel moves on one so that if, in the

position immediately following our example above, the same key is pressed, the

current will enter the right-hand wheel at B and not A, and will pursue an

entirely diVerent course. Once in every 26 positions, the right hand wheel moves

the middle wheel over one so that when the right hand wheel returns to position

A, the middle wheel is in a new position. Similarly, the middle wheel turns over

History of Hut 8 to December 1941 | 269

the left hand wheel once for every complete revolution it makes. Thus it will be

seen that 26� 26� 26 (about 17,000) letters have to be encyphered before the

machine returns to the position at which it started.

For most of the period with which we are concerned, there have been 8 wheels.

Wheels 1 to 5 turn over the wheel next to them once per revolution, wheels 6, 7,

8, twice per revolution, this somewhat complicating the cycle of the machine as

described in the previous paragraph. The turnovers (by which I mean the

position of the wheel at which it turns over its next door neighbour) on wheels

1 to 5 are all in diVerent places; in 6, 7, and 8 they are always at M and Z. As we

shall see later, this was an important development.

Ringstellung

On each wheel is a tyre, marked with the letters of the alphabet. One of these

letters can be seen through a window on top of the machine and the position of

the wheel is referred to by the letter shown in the window. The tyre is completely

independent of the core of the wheel, which contains the wiring, the relative

position being Wxed by the Ringstellung or clip which connects the tyre with the

core. Thus even if the starting position of the message is known, it still cannot be

decoded unless the clips, which Wx the relative position of tyre and core, are

known also.

Stecker

The Enigma machine would be a comparatively simple aVair if it were not for the

Stecker. This is a substitution process aVecting 20 of the 26 letters before and after

the current travels through the wheels. Let us return to our original example and

assume for the moment that A is steckered to F and N to T. In our example we

pressed key A and entered the right-hand wheel at a position we called A, but if

we now press A the current will be sidetracked before entering the wheel, and will

in fact enter at F and pursue a quite diVerent course. If, on the other hand, we

press F, the current will enter at A and proceed as before, coming out at N. N will

not, however, light up on the lampboard, but rather T, because N has been

steckered to T. This steckering process aVects 20 letters; the remaining 6 are

referred to as self-steckered and, when they are involved, the current proceeds

directly to or from the wheels.

Set-Up

In order to decode a message one has, then, to know wheel order, clips, starting

position of message, and Stecker. Any 3 of the 8 wheels may be chosen—336

possibilities. There are 17,000 possible clip combinations and 17,000 possible

starting positions—in the 4-wheeled machine half a million. The number

of possible Stecker combinations is in the region of half a billion. In fact, the

number of ways the machine may be set up is astronomical, and it is out

270 | Patrick Mahon

of the question to attempt to get messages out by a process of trial and error.

I mention this as it is a hypothetical solution to the problem often put forward

by the uninitiated, when in fact all the coolies in China could experiment

for months without reading a single message. On most keys the wheel order

and clips were changed every two days—this is the so-called ‘innere Einstellung’3

which was supposed to be changed only by oYcers and which was printed

on a separate sheet of paper. The Stecker and Grundstellung (of which more

later) normally changed every 24 hours. In a 31-day month, the odd day was

coped with by having 3 days on 1 wheel order—a triplet. This sometimes came at

the end of the month and sometimes in the middle. Triplets happened also in

30-day months, with the result that the last day was a ‘singleton’ with a wheel

order of its own. These rules were not obeyed by all keys, but we shall meet the

exceptions as we proceed with the historical survey. The later 4-wheeled keys had

a choice of 2 reXectors and 2 reXector wheels; these were only changed once a

month.

Indicating System

The next essential is to understand the indicating system. Various indicating

systems were used simultaneously, but if we examine the most complicated fairly

carefully the others will be simple to explain.

[The keys] Dolphin, Plaice, Shark, Narwhal, and Sucker all built up their

indicators with the help of bigram tables and K book.4

K Book

One half of the K book consists of a Spaltenliste5 containing all 17,576 existing

trigrams,6 divided into 733 numbered columns of 24 trigrams chosen at random.

The second half consists of a Gruppenliste7 where the trigrams are sorted into

alphabetical order; after each trigram are 2 numbers, the Wrst giving the number

of the column in the Spaltenliste in which the trigram occurs, the second giving

the position of the trigram in the column.

By means of a Zuteilungsliste8 the columns of the K book are divided amongst

the various keys, the large keys being given several blocks of columns, small keys

as few as 10. The K book is a large document which has probably changed only

once—the current edition having come into force in 1941—but the Zuteilung-

sliste was changed fairly frequently.

3 Editor’s note. Innere Einstellung ¼ inner settings.

4 Editor’s note. K book ¼ Kenngruppenbuch or Kennbuch ¼ Identification Group Book. ‘Group’ refers to

groups of letters.

5 Editor’s note. Spaltenliste ¼ column list.

6 Editor’s note. A trigram is any trio of letters, e.g. ABC, XYZ.

7 Editor’s note. Gruppenliste ¼ group list.

8 Editor’s note. Zuteilungsliste ¼ assignation list.

History of Hut 8 to December 1941 | 271

Bigram Tables

A set of bigram tables consisted of 9 tables, each giving a series of equivalents for

the 676 existing bigrams. These tables were reciprocal, i.e. if AN¼OD then

OD¼AN, a useful property as we shall see later. Which bigram table was in

force on any given day was determined by means of a calendar which was issued

with the tables. New sets of bigram tables were introduced in June 1941,

November 1941, March 1943, July 1944.

Now that we are familiar with all the necessary documents—key sheets, K

book, bigram tables, etc.—it will be proWtable to follow in detail the steps taken

by a German operator wishing to send a message.

He is on board aU-boat and has Shark keys and, after consulting his Zuteilungs-

liste, goes to columns 272–81, which have been allotted to Shark. Here he

selects the trigram HNH to serve as his Schluesselkenngruppe.9 He then selects

from anywhere in the book another trigram (PGB) and writes them down

like this:

. H N H

P G B .

He then Wlls in the 2 blanks with dummy letters of his own choice:

Q H N H

P G B L

Taking the bigram table which is in force at the time, [he] substitutes for each

vertical pair of letters QP, HG, etc.:

I D Y B

N S O I

The indicator groups of his message will then be IDYB NSOI.

The trigram which he chose at random (Verfahrenkenngruppe10) now pro-

vides him with the starting position of his message. To obtain this he sets up the

Grundstellung in the window of his machine and taps out PGB. The three

encyphered letters which result are the set-up for his message.

The Wrst step in decyphering the message is, of course, to decypher the

indicator groups by means of the bigram tables. At this stage the Schluessel-

kenngruppe can be looked up in the K book, and it can then be established by

each station whether the message is on a key which it possesses. The Grund-

stellung is then set up, the trigram tapped out, and the message decoded.

Some form of Grundstellung procedure was common to all keys, but there

were a number of keys not using bigram tables and K book. In the Mediterranean

9 Editor’s note. Schluesselkenngruppe ¼ key identification group.

10 Editor’s note. Verfahrenkenngruppe ¼ procedure identification group.

272 | Patrick Mahon

area Kenngruppenverfahren Sued11 was used and discrimination between keys

was dependent on the Wrst letters of the Wrst and second groups—the resulting

bigram indicating the key. In this case, the operator chose any trigram he wished

and encyphered it twice at the Grundstellung and the resulting 6 letters formed

the last three letters of the Wrst 2 groups. . . . Of the other keys, Bonito and

Bounce relied for recognition on the fact that in external appearance their traYc

was unlike any other and so used no discriminating procedure, simply sending as

indicators a trigram encyphered at the Grundstellung and Wlling the groups up

with dummy letters as required.

This machine was in general use by the German Navy in all parts of the world;

it was used alike for communication between ship and shore and shore and shore

and by all vessels from mine sweepers and MTBs up to U-boats and major units.

Traffic

The history of Hut 8 is conditioned very largely by the rapid growth of the

German Naval communications system and the resulting increases of traYc and

increasing number of keys. . . . It is not necessary to go into details here, but a

few Wgures will illustrate very clearly that the gradual contraction of German

occupied territory in no way signiWed a decrease of traYc and a simpliWcation of

the problem. Our traYc Wgures do not go back to 1940 but the following are the

daily averages of messages for March 1941–5:

1941 465

1942 458

1943 981

1944 1,560

1945 1,790

The largest number of messages ever registered in Hut 8 on one day was on

March 13, 1945, when 2,133 were registered.

As a general rule German Naval traYc was sent out in 4 letter groups with the

indicator groups at the beginning and repeated at the end. Both from the

German and our own point of view this made Naval traYc easily recognizable,

and gave a check on the correct interception of the indicator groups. Messages

were normally broadcast on Wxed frequencies which changed comparatively

rarely, so that it was possible for the cryptographer without W/T12 knowledge

to keep the diVerent frequencies and the areas to which they belonged in his

head. The principal exception to this was the U-boats, which used a complicated

W/T programme, but from our point of view identiWcation of services was made

easy by the use of an independent set of serial numbers for each service. We

11 Editor’s note. Kenngruppenverfahren Sued ¼ identification group procedure South.

12 Editor’s note. W/T ¼ wireless telegraphy. R/T or radio-telephony involves the transmission of

speech, W/T the transmission of e.g. Morse code or Baudot-Murray (teleprinter) code.

History of Hut 8 to December 1941 | 273

should have had some diYculty also with the Mediterranean area if the intercept

stations had not given a group letter to each W/T service and appended it to the

frequency when teleprinting the traYc.

Except for a short period in the early days of Bonito, Wxed call signs were always

used, though it was unfortunately by nomeans always possible to tell fromwhom a

messageoriginated. ‘Addressee’ call signs—avery greathelp to the cryptographer—

were little used except in theMediterraneanwhere, if wewere fortunate, itmight be

possible to tell both the originator and the destination of a message. Like the

Mediterranean keys, Bonito gave a lot away by its call signs, but other keys stuck

to the old procedure. The only exception of any note to this rule was the emergency

W/T links which replaced teleprinter communications if the latter broke down.

From early days Scarborough was our chief intercept station and was respon-

sible for picking up most of the traYc. Other stations were brought in if intercep-

tion at Scarboroughwas unsatisfactory, as was often the case in theMediterranean

and North Norwegian areas. For a considerable time North Norwegian traYc was

being sent back from Murmansk, while the W/T station at Alexandria played an

important part in coveringmanyMediterranean frequencies. The principal disad-

vantage of traYc from distant intercept stations was the length of time it took to

reach us. TraYc came from Alexandria by cable and an average delay of 6 hours

between time of interception and time of receipt at B/P was considered good.

Unlike Hut 6 we never controlled the disposition of the various receiving sets

at our disposal but made our requests, which were considerable, through Naval

Section. As I do not ever recollect an urgent request having been refused, this

system worked very satisfactorily from our point of view.

The reason for our numerous demands for double, treble, and even quadruple

banking13 of certain frequencies was that, for cryptographic reasons which I will

explain later, it was absolutely essential to have a 100% accurate text of any

message that might be used for crib purposes. In our experience it was most

unwise to believe in the accuracy of single text, even if it was transmitted with

Q.S.A. 5,14 and so we asked automatically for double banking on frequencies

likely to be used for cribbing. Especially on the Mediterranean keys and Bonito,

interception was extremely unreliable and quadruple banking on crib frequencies

was often necessary. On Bonito the assistance of R.S.S.,15 who did not normally

work on Naval traYc, was enlisted, and for some Bounce traYc originating from

weak transmitters in Northern Italy, we relied on R.A.F. stations in Italy.

13 Editor’s note. Where two independent operators are assigned to monitor the same radio frequency, the

frequency is described as ‘double-banked’.

14 Editor’s note. In International Q-Code (radio operators’ code) the strength of the received signal is

represented on a scale of 1 to 5. ‘Q.S.A. 5’ means ‘signal strength excellent’. (I am grateful to Stephen Blunt

for this information.)

15 Editor’s note. Radio Security Service: a branch of the SIS (Secret Intelligence Service) which inter-

cepted Enigma and other enciphered traYc.

274 | Patrick Mahon

Requests for double banking for cryptographic reasons became extremely

numerous by the end of the war. In 1941, with only one key, special cover on a

small group of frequencies was suYcient, but by late 1944 we were normally

breaking some 9 or 10 keys, for each of which special cover on some frequencies

was required. On the whole the policy was to ask for double banking if it was at

all likely that it might be useful and accept the fact that a certain amount of

unnecessary work was being done by intercept stations. There were at any rate

suYcient hazards involved in breaking keys and it was felt that it would be

foolhardy policy to take risks in the matter of interception when these could be

obviated by double banking.

Most traYc arrived from the intercept stations by teleprinter, being duplicated

by carbon. Retransmissions, dupes as we called them, were also teleprinted in full

after 1942; before this, German preamble and diVering groups only of dupes had

been teleprinted, but we found that we were unable to rely on the intercept

stations to notice all diVerences.

Shortage of teleprinters was a perennial problem, as the traYc constantly

increased while those responsible for teleprinters persisted in believing that it

would decrease. The eVect of this shortage was that traYc got delayed at

Scarborough for considerable lengths of time before teleprinting and was not

in fact cleared until there was a lull in the traYc. It was usually true that there

were suYcient teleprinters to cope over a period of 24 hours with the traYc sent

in that period, but they were quite insuYcient for the rush hours on the evening

and early night shift. In the spring of 1944 the teleprinter situation was reviewed

and considerably improved, in anticipation of the Second Front and possible

heavy increases of traYc. Experiments were carried out with a priority teleprint-

ing system for certain frequencies but the list tended to be so large (having to

cover cryptographic and intelligence needs) and so Xuid that it aVorded no more

than a theoretical solution to the problem. It was our experience that it was

possible to ‘rush’ very small groups of traYc at very high speed—some very

remarkable results were achieved with the frequency which carried Flying Bomb

information—but that rushing a large quantity was comparatively ineVective.

As a result of the increased number of teleprinters, the average time elapsing

between interception and teleprinting was reduced to about 30 minutes, which

was thought to be satisfactory. For the opening of the Second Front a small W/T

station was opened at B/P, most appropriately in the old Hut 8. This covered

certain frequencies of special operational urgency or crib importance and pro-

duced very satisfactory results. A new record was established when a signal

reached Admiralty in translation 12 minutes after being intercepted here. As

the excitement over the success of the Second Front died down and the sense of

urgency disappeared, the time lag became somewhat worse, but the situation

remained under control, with one or two brief exceptions, even during the Wnal

peak period in March 1945.

History of Hut 8 to December 1941 | 275

As was to be expected, stations other than Scarborough which had less interest

in Naval traYc and less facilities for teleprinting were appreciably slower in

passing us the traYc; a time check late in 1944 revealed an average delay of

103 minutes at Flowerdown. It should perhaps also be gratefully recorded that

Scarborough’s standard of teleprinting, accuracy, and neatness remained right

through the war a model which other stations were far from rivalling.

In early days traYc was teleprinted to the Main Building whence it was carried

every half hour, later every ¼ hour, to the old Hut 8 Registration Room. This was

inevitably a slow process, but it mattered comparatively little as in those days

keys were not often being read currently. The move into Block D (February 1943)

and the introduction of conveyor belts greatly improved the situation and traYc

now came to the teleprinter room a few yards away whence it was conveyed to

the Registration Room by belt.

Once a message had arrived in Hut 8, a considerable number of things had to

be done before it could arrive decoded in Naval Section. The Registration Room

had to sort the traYc—partly by frequency and partly with the help of

the K book—into the various keys and, if the key in question was current, the

message was then handed to the Decoding Room. For a long time decoded traYc

was carried to Naval Section, a considerable walk either from the old or the

new Hut 8; this wasteful method of conveyance was only superseded when the

pneumatic tube system was introduced some time after we arrived in Block D.

These tubes were violently opposed on various grounds at Wrst but, when the

permanent two-way tube system had been introduced, they carried a terriWc load

and much toing and froing between Naval Section and ourselves was cut out.

There were undoubted disadvantages in having to screw the messages up to put

them into the containers but there can be no doubt that they saved us both time

and trouble and that messages reached Naval Section much more quickly than

before. A conveyor belt would certainly have been more satisfactory but, given

the distance separating us from Naval Section (A15), was presumably out of the

question.

The time taken for decodeable traYc to pass through the Section varied

appreciably with the degree of excitement caused by the war news. In early

Second Front days some messages were arriving in Naval Section 20 minutes

after being intercepted, but speeds of this sort could not be kept up indeWnitely.

The introduction of time stamping with the help of Stromberg time-clocks

enabled us to make a regular check of the time it took for traYc to pass through

the Hut and we were normally able to keep the average in the region of half an

hour. This reXects, I think, great credit on all concerned as the work was tiring

and, especially in the Decoding Room, noisy, and at peak periods everyone had

to work very fast indeed. In the week ending March 16th 1945, the record total of

19,902 messages were decoded, a remarkable feat for an average of perhaps 10

typists per shift.

276 | Patrick Mahon

This introduction has, I hope, supplied the necessary background on how the

machine works and on how the traYc was received and dealt with. We can now

turn to a more interesting subject and examine the history of the breaking of

Enigma from the earliest days.

Early work on Enigma

Nearly all the early work on German Naval Enigma was done by Polish cryptog-

raphers, who handed over the details of their very considerable achievements just

before the outbreak of war. Most of the information I have collected about pre-

war days comes from them through Turing, who joined G.C.C.S. in 1939 and

began to interest himself in Naval cyphers, which so far had received scant

attention.

The Heimsoeth & Rinke16 machine which was in use throughout the war and

which I described [earlier] was not the Wrst machine to be used by the German

Navy. In the 1920s, the so-called O Bar machine had been in use. This had 3

wheels and no Stecker, and the curious characteristic of 29 keys—the modiWed

vowels O, U, and A being included. Of these 29 symbols, X always encyphered as

X without the current entering the machine, and the remaining 28 letters were

encyphered in the normal way. The tyres of the wheels necessarily had 28 letters

printed on them and it was decided that the letter which had been omitted was

the modiWed O: hence the name of the machine, which was broken by the Poles

and the traYc read.

The O Bar machine went out of force for Xeet units in 1931, when the present

machine was introduced, and gradually disappeared altogether. The new ma-

chine had originally been sold commercially by the Swedes: as sold by them it

had no Stecker and it was they who recommended the boxing indicator system17

which enabled so many Navy cyphers to be read.

When the German Navy Wrst started to use the machine there were only 3

wheels in existence instead of the later 8 and only 6 Stecker were used. The

16 Editor’s note. The Heimsoeth & Rinke company manufactured Enigma machines following Scherbius’

death. See F. L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology (2nd edn. Berlin: Springer-

Verlag, 2000), 107.

17 Editor’s note. The ‘boxing’ or ‘throw-on’ indicator system was an earlier and much less secure method.

K book and bigram tables were not used. Mahon explains the system later in his ‘History’ (on p. 56, which is

not printed here): ‘By this system a trigram of the operator’s own choosing was encyphered twice at the

Grundstellung and the resulting 6 letters became letters 2, 3, 4, 6, 7, 8, of the indicator groups.’ Letters 1 and

5 were either dummies or, in Mediterranean traYc, identified which particular key was being used in

accordance with Kenngruppenverfahren Sued. (See p. 273 and also H. Alexander, ‘Cryptographic History of

Work on the German Naval Enigma’ (n.d. (c.1945), Public Record OYce (document reference HW 25/1),

8–9; a digital facsimile of Alexander’s typescript is available in The Turing Archive for the History of

Computing <www.AlanTuring.net/alexander_naval_enigma>).

History of Hut 8 to December 1941 | 277

www.AlanTuring.net/alexander_naval_enigma

reXector in force was reXector A and boxing or throw-on indicators were

used. . . .

Having obtained photographs of the keys for 3 months, during which period

the wheel order obligingly remained unchanged, the Poles broke the wiring of

wheels 1, 2, and 3 by a ‘Saga’, a long and complicated hand process which I shall

not attempt to explain. Having obtained all the details of the machine, they were

able to read the traYc more or less currently with the help of the indicating

system and catalogues of ‘box shapes’.18 These catalogues listed positions of the

machine which would satisfy certain conditions which were implied

by the indicator groups, and from them the machine set-up for the day could

be worked out.

On May 1st 1937 a new indicating system was introduced. The Wrst 2 groups of

the message were repeated at the end, thus showing clearly that they formed the

indicator, but it was immediately apparent that throwing-on had been given up.

This was a sad blow, but the Poles succeeded in breaking May 8th and they

discovered the Grundstellung with the help of messages to and from a torpedo

boat with call-sign ‘AFÄ’, which had not got the instructions for the new

indicating system. On breaking May 8th, the Poles discovered that it had the

same wheel order as April 30th, and the intervening days were soon broken.

AFÄ’s lack of instructions and the continuation of the wheel order are typical

examples of good fortune such as we have often experienced, and also of the

German failure to appreciate that for a cypher innovation to be successful it must

be absolutely complete.

May 8th and the preceding days could not, of course, be broken with the

catalogue of box shapes, as the indicating system had changed, and for them the

Poles devised a new method which is of considerable interest. Their account of

this system, written in stilted German, still exists and makes amusing reading for

anyone who has dealt with machines. The process was fundamentally a form of

cribbing, the earliest known form. On the basis of external evidence, one message

was assumed to be a continuation (a fort) of another—apparently identiWca-

tion was easy and forts numerous in those days. The second message was then

assume to start fort followed by the time of origin of the Wrst message,

repeated twice between Ys. German security must have been non-existent in

those days, as these cribs appear to have been good and the Poles quote an

example which, by its pronounceability, gave its name to the method of attack

they had evolved—fortyweepyyweepy ¼ continuation of message 2330,

18 Editor’s note. Alexander (ibid. 17–18) gives the following explanation. With the boxing indicator

system, ‘the letters of the encyphered indicators can be associated together so as to produce various

patterns—known as ‘‘box shapes’’—independent of the stecker and determined only by the wheel order

and Grundstellung at which the indicators are encyphered. With only 6 possible wheel orders catalogues

could be made of all possible box shapes with the machine positions at which they occurred and thus the

daily key could be worked out.’

278 | Patrick Mahon

numerals at this time being read oV the top row of the keyboard and inserted

between Ys.19 I will not attempt to explain the details of the method: it involved a

series of assumptions to the eVect that certain pairs of letters were both self-

steckered. If the assumption was correct, the method worked. At this time, it will

be remembered, 14 of the 26 letters were still unsteckered so that the assumption

was not a very rash one and also the number of wheel orders was very small.

Even when they had found the Grundstellung with the help of the AFÄ

messages, the Poles still could not read the traYc as they did not know how

the indicating system worked. They set to work, therefore, to break individual

messages on cribs—largely of the forty weepy type—not a very diYcult

process when Stecker and wheels are known. By this method they broke out

about 15 messages a day and came to the conclusion that the indicating system

involved a bigram substitution, but they got little further than this.

All witnesses agree that Naval Enigma was generally considered in 1939 to be

unbreakable; indeed pessimism about cryptographic prospects in all Welds appears

to have been fairly prevalent. This attitude is constantly referred to in such letters

of the period as still survive;Mr. Birch records that he was told whenwar broke out

that ‘all German codes were unbreakable. I was told it wasn’t worth while putting

pundits onto them’ (letter to Commander Travis, August 1940) and, writing to

Commander Denniston in December of the same year, he expresses the view that

‘Defeatism at the beginning of the war, to my mind, played a large part in delaying

the breaking of codes.’20WhenTuring joined the organization in 1939 noworkwas

being done on Naval Enigma and he himself became interested in it ‘because no

one else was doing anything about it and I could have it to myself ’. Machine

cryptographers were on the whole working on the Army and Air Force cyphers

with which considerable success had been obtained.

Turing started work where the Poles had given up; he set out to discover from

the traYc of May 1937 how the new indicating system worked. ‘Prof ’s Book’, the

write-up he made in 1940 of the work he had done and of the theory of

Banburismus, describes the successful conclusion of this work.

Excerpt from Turing’s Treatise on the Enigma

[T]he Poles found the keys for the 8th of May 1937, and as they found that the

wheel order and the turnovers were the same as for the end of April they rightly

assumed that the wheel order and Ringstellung had remained the same during

the end of April and the beginning of May. This made it easier for them to Wnd

the keys for other days at the beginning of May and they actually found the

19 Editor’s note. The top line of the German keyboard is qwertzuio . Q was used for 1, W for 2, E for

three, and so on. The time of origin of the original message, 23.30, becomes weep , 0 being represented by P,

the first key of the bottom line of the keyboard. (See ibid. 18.)

20 Editor’s note. Edward Travis was Denniston’s deputy.

History of Hut 8 to December 1941 | 279

Stecker for the 2nd, 3rd, 4th, 5th, and 8th, and read about 100 messages. The

indicators and window positions of four (selected) messages for the 5th were

Indicator Window start

K F J X E W T W P C V

S Y L G E W U F B Z V

J M H O U V Q G M E M

J M F E F E V C M Y K

The repetition of the EW combined with the repetition of V suggests that the

Wfth and sixth letters describe the third letter of the window position, and

similarly one is led to believe that the Wrst two letters of the indicator represent

the Wrst letter of the window position, and that the third and fourth represent the

second. Presumably this eVect is somehow produced by means of a table of

bigramme equivalents of letters, but it cannot be done simply by replacing the

letters of the window position with one of their bigramme equivalents, and then

putting in a dummy bigramme, for in this case the window position corres-

ponding to JMFE FEVC would have to be say MYY instead of MYK. Probably

some encipherment is involved somewhere. The two most natural alternatives

are i) The letters of the window position are replaced by some bigramme

equivalents and then the whole enciphered at some ‘Grundstellung’, or

ii) The window position is enciphered at the Grundstellung, and the resulting

letters replaced by bigramme equivalents. The second of these alternatives

was made far more probable by the following indicators occurring on the 2nd

May

E X D P I V J O V C P

X X E X J X J Y V U E

R C X X J L W A N U M

With this second alternative we can deduce from the Wrst two indicators that the

bigrammes EX and XX have the same value, and this is conWrmed from the second

and third, where XX and EX occur in the second position instead of the Wrst.

It so happened that the change of indicating system had not been very well

made, and a certain torpedo boat, with the call sign AFÄ, had not been provided

with the bigramme tables. This boat sent a message in another cipher explaining

this on the 1st May, and it was arranged that traYc with AFÄ was to take [place]

according to the old system until May 4, when the bigramme tables would be

supplied. SuYcient traYc passed on May 2, 3 to and from AFÄ for the Grund-

stellung used to be found, the Stecker having already been found from the

fortyweepy messages. It was natural to assume that the Grundstellung used

by AFÄ was the Grundstellung to be used with the correct method of indication,

and as soon as we noticed the two indicators mentioned above we tried this out

and found it to be the case.

280 | Patrick Mahon

There actually turned out to be some more complications. There were two

Grundstellungen at least instead of one. One of them was called the Allgemeine

and the other the OYziere Grundstellung. This made it extremely diYcult to

Wnd either Grundstellung. The Poles pointed out another possibility, viz that the

trigrammes were still probably not chosen at random. They suggested that

probably the window positions enciphered at the Grundstellung, rather than

the window positions themselves, were taken oV the restricted list.

In Nov. 1939 a prisoner told us that the German Navy had now given up

writing numbers with Y. . . YY. . . Y and that the digits of the numbers were spelt

out in full. When we heard this we examined the messages toward the end of

1937 which were expected to be continuations and wrote the expected begin-

nings under them. The proportion of ‘crashes’ i.e. of letters apparently left

unaltered by encipherment, then shews how nearly correct our guesses were.

Assuming that the change mentioned by the prisoner had already taken place we

found that about 70% of these cribs must have been right.

[End of Excerpt]

[Turing’s] theory was further conWrmed when the Grundstellung which AFÄ

had been using was discovered to encypher these trigrams in such a way that the

Vs and Us all came out as the same letter. Turing had in fact solved the essential

part of the indicator problem and that same night he conceived the idea of

Banburismus ‘though I was not sure that it would work in practice, and was not

in fact sure until some days had actually broken’.

As Banburismus was the fundamental process which Hut 8 performed for the

next 2 or 3 years, it is essential to understand roughly the principle on which it

works.

Banburismus

Banburismus is not possible unless you have the bigram tables.

The idea behind Banburismus is based on the fact that if two rows of letters of

the alphabet, selected at random, are placed on top of each other, the repeat rate

between them will be 1 in 26, while if two stretches of German Naval

plain language are compared in the same way the repeat rate will be 1 in 17.

Cypher texts of Enigma signals are in eVect a selection of random letters and if

compared in this way the repeat rate will be 1 in 26 but if, by any chance, both

cypher texts were encyphered at the same position of the machine and [are] then

written level under each other, the repeat rate will be 1 in 17—because, wherever

there was a plain language repeat, there will be a cypher repeat also. Two

messages thus aligned are said to be set in depth: their correct relative position

has been found. If by any chance the two messages have identical content for 4 or

6 or 8 or more letters then the cypher texts will be the same for the number of

History of Hut 8 to December 1941 | 281

letters concerned—such a coincidence between cypher texts is known as a ‘Wt’.

Banburismus aims Wrst of all at setting messages in depth with the help of Wts and

of a repeat rate much higher than the random expectation.

Long before the day is broken, a certain amount can be done to the indicators

of the messages. The bigram substitution can be performed and the trigrams

obtained: these trigrams, when encyphered or ‘transposed’ at the Grundstellung,

will give us the starting positions of the messages. Once the day has been broken,

the Grundstellung alphabets, i.e. the eVect of encyphering each of the 26 letters of

the alphabet at positions one, two, and three of the trigrams, can be produced.

The alphabets will look something like this:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1. T V X M U I W N F L P J D H Y K Z S R A E B G C O Q

2. E Y K W A Q X R T U C N S L V Z F H M I J O D G B P

3. J G D C F E B P Z A V Q W O N H L T U R S K M Y X I

The aim of Banburismus is to obtain, with the help of the trigrams and Wts

between messages, alphabets 2 and 3, the middle and right hand wheel alphabets.

The chance a priori of 2 messages with completely diVerent trigrams ZLE and

OUX being correctly set in depth is 1 in 17,000, but if the trigrams are NPE and

NLO, the factor against them being in depth is only 1 in 676 as, although we do

not know the transposed value of the trigrams, N will in each case transpose to

the same letter, and therefore both messages were encyphered with the left hand

wheel in the same position. These messages are said to be ‘at 676’. Messages with

such trigrams as PDP and PDB are said to be ‘at 26’: they are known to have had

starting positions close together on the machine. On our alphabets:

PDP ¼ KWH

PDB ¼ KWG

therefore PDB started one place earlier than PDP. This is expressed as B þ 1 ¼ P:

in the right hand wheel alphabet, P will be seen one place ahead of B.

The Wrst stage in attacking a day by Banburismus is to discover the Wts. This was

done largely by Freeborn who sorted all messages against all other messages and

listed Wts of 4 letters or more.21 At the same time messages were punched by hand

onto Banburies, long strips of paper with alphabets printed vertically, so that any 2

messages could be compared together and the number of repeats be recorded by

counting the number of holes showing through both Banburies.22 A scoring

21 Editor’s note. Freeborn’s department, known as the ‘Freebornery’, used Hollerith equipment to sort and

analyse cipher material. ‘Freeborn’ was commonly used as an adjective, e.g. attached to ‘catalogue’. ‘Freeborn,

a[dj]: Performed, produced, or obtained by means of the (Hollerith) electrical calculating, sorting, collating,

reproducing, and tabulating machines in Mr. Freeborn’s department’ (Cryptographic Dictionary, 39).

22 Editor’s note. The name arose because the printed strips of paper were produced in the nearby town of

Banbury.

282 | Patrick Mahon

system by ‘decibans’ recorded the value of Wts.23 All messages at 26 were compared

with 25 positions to the right and left of the level position and the scores recorded.

The completion of a Banburismus can best be explained by a simple example, the

type of Banburismus that would take the expert 10 minutes rather than many

hours or even days of work. This is our list of Wts. Note 3.7¼ 3 alphabetsþ 7 letters.

ODDS

B B C þ .2 ¼ B B E hexagram certain

E N F þ 3.7 ¼ E P Q pentagram 17:1 on

RWC þ .13 ¼ RW L tetragram 4:1 on

P N X þ .5 ¼ P I C enneagram certain

QQ G þ 2.7 ¼ QD U pentagram evens

I U S þ 3.3 ¼ I U Y hexagram 20:1 on

Z D R þ 5.5 ¼ Z I X hexagram 15:1 on

S W I þ 4.3 ¼ S U D tetragram 4:1 on

P P D þ .16 ¼ P P U tetragram 2:1 against

The Wts of better than even chance concern the letters of the right hand wheel.

C—E

F—Q

C—L

X—C

S—Y

R—X

One chain X R C L E can be expressed in this form:

R X C . E L

We know that those letters must appear in those relative positions in the right

hand wheel alphabet. We now ‘scritch’ the 26 possible positions (R under A, then

under B etc.) and cross out those which imply contradictions: the Wrst position,

with the reciprocals (R ¼ A, etc) written in and ringed, looks like this.24

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
RK M X C X E A L

F

Here there is the contradiction that L appears under X, but X which is on our

chain also is under F, giving two values for one letter. Similar reasons reject most

other positions. Those left in are:

23 Editor’s note. ‘Ban: Fundamental scoring unit for the odds on, or probability factor of, one of a series

of hypotheses which, in order that multiplication may be replaced by addition, are expressed in logarithms.

One ban thus represents an odds of 10 to 1 in favour, and as this is too large a unit for most practical

purposes decibans and centibans are normally employed instead’ (Cryptographic Dictionary, 4).

24 Editor’s note. ‘Scritch: To test (a hypothesis or possible solution) by examining its implications in

conjunction with each of a set of (usually 26) further assumptions in turn, eliminating those cases which

yield contradictions and scoring the others’ (Cryptographic Dictionary, 72).

History of Hut 8 to December 1941 | 283

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1. L N R P X A C E D I

2. S U L R F X I C E N

3. T V L R G X J C E O

4. U W L R H X K C E P

5. E Z B M L R P X U C

6. D C F E Q L T R Y X

7. X F H C E S V L R A

8. X G I C E T W L R B

9. I X K C E V Y L D R

Of these, 2 contradicts the S þ 3 ¼ Y Wt, 1 and 9 contradict the good tetra

I þ 3 ¼ D: they are, therefore, unlikely to be right. 6, however, is extremely

interesting.

We scritched L R X C E and got the position:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D C F E Q L T R Y X

In this alphabet F þ 7 ¼ Q and we have a good Wt at this distance which was not

used in our scritching. We have in fact ‘picked up’ this extra Wt and thereby

obtained a considerable factor in favour of this alphabet. We now Wt in S in such

a position that S þ 3 ¼ Y in accordance with our hexagram:

8
8 7
7 6

2 4 6 1 3 5

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D C F E Q L T U R S Y X

This makes S equal U and we notice at once that we pick up the tetragram

D þ 16 ¼ U, not a very good tetra but valuable as a further contribution.

We now have to see for which wheels this alphabet is valid. The turnovers on

the wheels are in the positions marked on the alphabet above. From the Wt

RWCþ 13¼ RWLwe know there is no turnover between C and L; if there were a

turnover, the position of the middle wheel would have changed, but both

trigrams have W in the middle. This Wt knocks out wheels 4, 6, 7, and 8.

BBC þ 2 ¼ BBE knocks out wheel 2. Further, we have the Wt PNX þ 5 ¼ PIC:

as the two trigrams have diVerent letters in the middle, there must be a turnover

between X and C. The wheel must therefore be 5, 6, 7, or 8; 6, 7, and 8 are already

denied by C þ 13 ¼ L, so the wheel is 5.

The next stage is to count up the score for the alphabet, assuming it to be

correct. For instance, if there are two messages BDL and BDS, the score for BDL

þ 4 ¼ BDS will be recorded and should be better than random if the alphabet is

284 | Patrick Mahon

right. The Wnal score should be a handsome plus total. An attempt, usually not

diYcult, is then made to complete the alphabet with the help of any further Wts

or good scores which may exist. It will be noticed that the Wt QQG þ 2.7 ¼ QDU

is contradicted: it had, however, only an even chance of being right and we do

not let this worry us unduly.

A similar process Wnds the alphabet for the middle wheel and suYcient

material is then available to break the day on the bombe. The number of wheel

orders which have to be run will probably have been reduced from 276 to

something between 3 and 90.

This example shows clearly the fallacy of the system of having all the wheels

turning over in diVerent places. It was this characteristic alone which made it

possible to distinguish the wheels by Banburismus and reduce the number of

wheel orders to be tried. Wheels 6, 7, and 8 were indistinguishable from one

another and a great nuisance to the Banburist.

Like depth cribbing, which was closely allied to it and which will be described

in due course, Banburismus was a delightful intellectual game. It was eventually

killed in 1943 by the rapidly increasing number of bombes, which made it

unnecessary to spend much time and labour in reducing the number of wheel

orders to be run: it was simpler and quicker to run all wheel orders.

January 1940 to July 1941

Turing’s solution of the indicating system came at the end of 1939 but it was well

over a year before Banburismus was established as a practical proposition and

used as a successful method of attack. The reason for this was primarily a lack of

bigram tables.

The next interesting development was the interrogation of Funkmaat25 Meyer,

who revealed valuable information about Short Signals and also the fact that the

German Navy now spelt out numerals in full instead of using the top row of the

keyboard. This encouraged Turing to look again at the forty weepy cribs which

in 1937 had begun inexplicably to crash, and he came to the conclusion that the

cribs remained fundamentally correct provided that the numerals were spelt out.

In early 1940, now joined by Twinn and 2 girls, he started an attack on

November 1938 by the forty weepy method and the new-style crib. The

reasons for choosing a period so long ago were various but were primarily based

on the knowledge that modern keys were more complicated and would require

more work. Two new wheels (4 and 5) had been introduced in December 1938,

and from the beginning of the war they were unable to trace the forty weepy

messages owing to call-signs being no longer used.

25 Editor’s note. Funkmaat ¼ radio operator.

History of Hut 8 to December 1941 | 285

After about a fortnight’s work they broke November 28th, and 4 further days

were broken on the same wheel order. Only the Spanish Waters came out; the

rest of the traYc was on a diVerent key. There were still only 6 Stecker and there

was a powerful and extremely helpful rule by which a letter was never steckered 2

days running: if continuity was preserved, 12 self-stecker were known in advance.

No Grundstellungs and no bigrams were broken, messages being broken indi-

vidually or on the EINS catalogue which was invented at this time and was to

play an important part in the exploitation of Enigma.

eins was the commonest tetragram in German Naval traYc: something

in the region of 90% of the genuine messages contained at least one eins .

An eins catalogue consisted of the results of encyphering eins at all the

17,000 positions of the machine on the keys of the day in question. These 17,000

tetragrams were then compared with the messages of the day for repeats. When a

repeat was found, it meant that [at] a certain position of the machine themessages

could be made to say eins, and further letters were then decoded to see if the

answer was a genuine one. If it was, the starting position of themessage was known

and it could be decoded. In fact about one answer in 4 was right, so that messages

were broken fairly rapidly. In later days, the whole process of preparation and

comparison was done rapidly and eYciently by Hollerith machinery, but at Wrst

slow and laborious hand methods were used.

The plan was to read as many messages as possible, to gain some knowledge of

cribs, and then to make rapid progress with the help of the Stecker rule. ‘There

seemed’, says Turing in his book, ‘to be some doubt as to the feasibility of this

plan’, and in fact it proved over-optimistic. Work was Wzzling out when Norway

was invaded and the cryptographic forces of Hut 8 were transferred en bloc to

assist with Army and Air Force cyphers.

By the time work on Naval could be started again, the ‘Narvik Pinch’ of April

19th had taken place. This pinch revealed the precise form of the indicating system,

supplied the Stecker and Grundstellung for April 23rd and 24th (though the scrap

of paper onwhich they were writtenwas for some time ignored) and the operators’

log, which gave long letter for letter cribs for the 25th and 26th.Wheels 6 and 7 had

been introduced by this time and were already in our possession.

In all 6 days were broken, April 22nd to 27th. The 23rd and 24th presented no

diYculty and the days paired with them, the 22nd and 25th, were also broken (by

this time the wheel order was only lasting 2 days and there were ten Stecker).

The 26th gave much more trouble, being on a new wheel order with unknown

Stecker. At Wrst a hand method, the Stecker Knock Out, was unsuccessfully tried

and then the Bombe, which had arrived in April and which will be discussed

later, was put onto the problem. After about a fortnight of failure, due largely to

running unsuitable menus, the day was broken on a freak menu, to be known

later as a Wylie menu and tried unsuccessfully on Shark of February 28th 1943.

The paired day, the 27th, was also broken.

286 | Patrick Mahon

All hands now turned to eins ing out messages and building up the bigram

tables. Provided that the Grundstellung was known, the starting position of the

message when broken by eins ing could be transposed and the trigram dis-

covered. This then gave a value for 3 bigrams. A message with 2 of the 3 operative

bigrams known could be ‘twiddled’ out: the 2 known bigrams Wxed the positions

of 2 of the wheels, and only 26 positions for the remaining wheel had to be

tried.26 This was quickly done and a further bigram was added to the store. April

27th was on the same bigram table as the 24th and this table came near enough

to completion to make Banburismus feasible on another day using the same

table. May 8th was identiWed as using this table and a Banburismus was started,

but no results were obtained for many months. Turing wrongly deduced that

June was using diVerent bigram tables.

The next 6months produced depressingly few results. Such Banburismus as was

triedwasunsuccessful, and therewas little bombe time for running cribs. Such cribs

as there were were supplied by Naval Section and failed to come out; ‘Hinsley’s

certain cribs’ became a standing joke. After consultingmany people I have come to

the conclusion that it is impossible to get an impartial and moderately accurate

picture of cribbing attempts at this period: Hut 8 and Naval Section each remain

convinced that cribbing failures were due to the other section’s shortcomings.

1940 was clearly a very trying period for those outside Hut 8 whose hopes had

been raised by the April Pinch and the results obtained from it. On August 21st

Mr. Birch wrote to Commander Travis:

I’m worried about Naval Enigma. I’ve been worried for a long time, but haven’t liked to

say as much . . . Turing and Twinn are like people waiting for a miracle, without believing

in miracles . . .

I’m not concerned with the cryptographic problem of Enigma. Pinches are beyond my

control, but the cribs are ours. We supply them, we know the degree of reliability, the

alternative letterings, etc. and I am conWdent if they were tried out systematically, they

would work.

Turing and Twinn are brilliant, but like many brilliant people, they are not practical.

They are untidy, they lose things, they can’t copy out right, and they dither between theory

and cribbing. Nor have they the determination of practical men . . .

Of the cribs we supply, some are tried out partially, some not at all, and one, at least,

was copied out wrong before being put on the machine . . .

Sometimes we produce a crib of 90% certainty. Turing and Twinn insist on adding

another word of less than 50% probability, because that reduces the number of answers

and makes the result quicker. Quicker, my foot! It hasn’t produced any result at all so far.

The ‘slower’ method might have won the war by now.

Presumably the number of answers possible on a given crib is mathematically ascer-

tainable. Suppose the one we back 90% has 100,000 possible answers: is that a super-

human labour? . . .

26 Editor’s note. ‘Twiddle: To turn round the wheels of an Enigma machine in hand-testing’ (Crypto-

graphic Dictionary, 90).

History of Hut 8 to December 1941 | 287

When a crib, with or without unauthorised and very doubtful additions, has been tried

once unsuccessfully we are not usually consulted as to what should be tried next, but,

generally speaking, instead of exhausting the possibilities of the best crib, a new one is

pottered with under similar handicaps. No crib has been tried systematically and failed;

and a few have been tried partially and the partial trial has been unsuccessful . . .

Turing has stated categorically that with 10 machines [bombes] he could be sure of

breaking Enigma and keeping it broken. Well can’t we have 10 machines? . . .

At one end, we’re responsible for cribs; at the other end we’re responsible to Admiralty.

We know the cribs and the odds on them and we believe in them and it’s horrible to have no

hold, no say, no nothing, on the use that is made of them or the way they are worked . . .

This letter has great value as a reXection of the relationship of Hut 8 with the

outside world and of the cryptographic organization for breaking Enigma; the

fact that the letter misinterprets the true position tends to show Mr. Birch at a

disadvantage, but it would be most unfair to look at it in this light, as anyone

must know who has read the early Naval Section documents and has seen the

eVorts which Mr. Birch extended to further any work which might in any way

assist Hut 8.

First of all the letter demonstrates clearly Turing’s almost total inability

to make himself understood. Nearly all Mr. Birch’s suggestions, as is immediately

obvious to anyone with actual experience of Hut 8 work, are impossible and

are simply the result of not understanding the problem—his 100,000 answers

(had the bombe been able to run the job, which it couldn’t have done) would

have taken 5 men about 8 months to test. Such problems as this and the

disadvantages of the other suggestions should clearly have been explained but

Turing was a lamentable explainer and, as Mr. Birch rightly says, not a good

practical man: it was for these reasons that he left Hut 8 when the research work

was done and the back of the problem broken. The lack of satisfactory liaison was

a great disadvantage in early days, but was fortunately most completely overcome

later; in a letter to myself of May 16th, 1945, Mr. Birch speaks truly of ‘two

independent entities so closely, continuously, and cordially united as our

two Sections’.

The second point of interest in the letter is the assumption that cribbing and all

to do with it was the business of Naval Section and something quite separate from

the mathematical work, classed as cryptography and belonging to Hut 8. This

concept prevailed until 1941 when Hut 8 set up a Crib Room of its own. No one

now would maintain that it would be feasible to separate cribbing from cryptog-

raphy in this way: to be a good cribster it was essential to understand fully the

working of the machine and the problems of Banburismus, bombe management,

etc. On the other hand, it remained highly valuable to us that Naval Section were

always crib conscious and would send over suggestions for us to explore.

The view frequently expressed by Hut 8 was that a successful pinch of a

month’s keys with all appurtenances (such as bigram tables) oVered the best

288 | Patrick Mahon

chance of our being able to get into a position where regular breaking would be

possible, as in the course of that month crib records and modern statistics could

be built up. Naval Section papers of the barren days of the autumn of 1940

discuss various plans for obtaining keys in this way.

On September 7th Mr. Birch distributed the following document to his

subsections, requesting their comments:

When talking to Lt. Cd. Fleming the other day, Mr. Knox put forward the following

suggestion: The Enigma Key for one day might be obtained by asking for it in a bogus

signal. Lt. Cdr. Fleming suggested that the possibilities should be examined and some-

thing got ready and kept ready for use in emergency. Four groups of questions need

answering:

1. In the light of our knowledge of German codes and cyphers, W/T routine, and coding

[and] cyphering instructions, what signals could be made for the purpose,

(1) in what code,

(2) on what frequency,

(3) at what hour(s),

(4) from what geographical position accessible to us?

2. Of the various alternative possibilities, in what circumstances would which be most

likely to fox the enemy?

This scheme found little favour and was soon rejected as impracticable but a

week later Mr. Birch produced his own plan in a letter to D.N.I.:27

Operation Ruthless:

I suggest we obtain the loot by the following means

1. Obtain from Air Ministry an air-worthy German bomber (they have some).

2. Pick a tough crew of Wve, including a pilot, W/T operator and word-perfect German

speaker. Dress them in German Air Force uniform, add blood and bandages to suit.

3. Crash plane in Channel after making S.O.S. to rescue service in P/L.28

4. Once aboard rescue boat, shoot German crew, dump overboard, bring rescue boat to

English port.

In order to increase the chances of capturing an R. or M. with its richer booty, the crash

might be staged in mid-Channel. The Germans would presumably employ one of this type

for the longer and more hazardous journey.

This somewhat ungentlemanly scheme was never put into practice although

detailed plans for it were made and it is discussed several times in Naval

Section papers. In fact, the only valuable acquisition during this period was the

Wnding of wheel 8 in August 1940, the last new wheel to be introduced during

the war.

27 Editor’s note. Director of Naval Intelligence.

28 Editor’s note. Plain language.

History of Hut 8 to December 1941 | 289

The next event in the cryptographic world was the breaking in November of

May 8th, known to history as Foss’s day. Foss had joined temporarily to assist in

exploiting the Banburismus idea, and after a labour of many months broke the

Wrst day on Banburismus. The moral eVect of this triumph was considerable and

about a fortnight later another Banburismus, April 14th, was broken at what was

considered lightning speed. June 26th was also broken (June having by now been

established to be on the same bigram tables) and contained the information that

new bigram tables would come into force on July 1st, so Banburismus after that

date was out of the question.

A second sensational event was the breaking of April 28th on a crib, the Wrst all

wheel order crib success.29 Hut 8 at this time contained no linguists and no

cribster by profession and the crib was produced as a result of the labour of two

mathematicians, who take great delight in recalling that the correct form of the

crib had been rejected by the rival Naval Section cribster.

This last break was obtained in February 1941 and was followed shortly

afterwards by the Wrst Lofoten pinch which is one of the landmarks in the history

of the Section. This pinch gave us the complete keys for February—but no

bigram tables or K book.

The immediate problem was to build up the bigram tables by eins ing and

twiddling, the methods for which had now been much improved. With a whole

month’s traYc to deal with, there was a vast amount of work to be done and the

staV position was acute. Rapid expansion and training of new people had to take

place and greatly slowed up the work, but by late in March the bigram tables were

more or less complete.

Much of the theory of the Banburismus scoring system had been worked out

at the end of 1940 and now statistics were brought up to date and satisfactory

charts produced. Much work was done on the identiWcation and utilization of

dummy messages which at this time formed about half the traYc. It was most

important to know and allow for the chance of a message being dummy. The end

of a dummy message consisted of a string of consonants and yielded a totally

diVerent repeat rate. If dummy was not allowed for, Banburismus could become

diYcult and even insoluble.

In March also shift work was started and Hut 8 was manned 24 hours a day for

the rest of the war. In April, teleprinting of traYc from Scarborough was begun

and the Registration Room was started, all traYc being registered currently.

Banburismus was started on some March days and there was a rather depressing

period of inexplicable failure before the Wrst break and then the system began to

get under way. Sooner or later a large part of April and May were broken. There

can be no doubt that at this stage the battle was won and the problem was simply

one of perfecting methods, of gaining experience, and of obtaining and above all

29 Editor’s note. See p. 253 for an explanation of ‘all wheel order crib’.

290 | Patrick Mahon

of training staV. These last stages were made much simpler by the pinch of June

and July keys.

These last two pinches were a great stroke of good fortune, for the bigram tables

changed on June 15th and had once again to be reconstructed. The methods of

reconstruction were, however, by now eYcient and between June 15th and the end

of July this task was easily accomplished. Had we not had the keys, all days

subsequent to June would have had to be broken on all wheel order cribs and

the messages subsequently broken by eins ing. With the lack of bombes and

comparatively crude knowledge of cribs which existed at that stage, this would

have been a slow process, and the beginning of what I have called the operational

period of Hut 8 would have been delayed by perhaps 2 or 3 months.

Bombes

Throughout these early [sections] I have avoided as far as possible all mention of

bombes. Bombes are a complicated subject and their workings are to a large extent

incomprehensible to the layman, but without them Hut 8 and Hut 630 could not

have existed and it is essential to attempt to describe brieXy the part they played.

The bombe was so called because of the ticking noise it made, supposedly

similar to that made by an infernal machine regulated by a clock.31 From one

side, a bombe appears to consist of 9 rows of revolving drums; from the other, of

coils of coloured wire, reminiscent of a Fairisle sweater.

Put brieXy, the function of a bombe was to take one wheel order at a time and

discover which of the 17,000 possible positions of the machine combined with

which of the half billion possible Stecker combinations would satisfy the condi-

tions of the problem presented to it. This problem was called a menu and was in

fact a crib in diagram form. If the crib and cypher text were

E T R B H U S E D F S H J U Q A P L

V V V J V O N D E R G R O E B E N J32

the bombe would be asked to Wnd a position on the machine where V would

encypher as E, followed at the next position by V encyphering as T, etc. To

perform this function for one wheel order the bombe would take about 20

minutes. The wheel order would then be changed and the process repeated.

The bombe was a highly complicated electrical apparatus, involving some 10

miles of wire and about 1 million soldered connections. Its intricate and delicate

apparatus had to be kept in perfect condition or the right answer was likely to be

30 Editor’s note. Hut 6 dealt with German Army and Air Force Enigma.

31 Editor’s note. This belief seems to have been widespread at Bletchley Park. See pp. 235–7, for remarks

concerning the possible origin of the Polish term ‘bomba’, from which the British term ‘bombe’ was derived.

32 Editor’s note. from von der groeben (probably a U-boat commander). ‘VVV’ was standard

radio spelling for ‘from’ (von).

History of Hut 8 to December 1941 | 291

missed. An embryonic bombe was evolved by the Poles and could be used on the

comparatively simple pre-war Enigma problems. The invention of the bombe as

we have known it was largely the work of Turing, Welchman, and, on the

technical side, Keen.

Unfortunately, the bombe was an expensive apparatus and it was far from

certain that it would work or, even if the bombe itself worked, that it would enable

us to break Enigma. Its original production, and above all the acceptance of a

scheme for large scale production, was the subject of long and bitter battles. Hut 8,

and, of course, Hut 6, owe very much to Commander Travis, and to a lesser extent

toMr. Birch, for the energy and couragewithwhich they sponsored its production.

The Wrst bombe arrived in April 1940. In August, the Wrst bombe to incorpor-

ate the vital development of the diagonal board arrived.

On the 21st of December, 1940, Mr. Birch wrote:

The chances of reading current Enigma depend ultimately on the number of bombes

available. The pundits promise that given 35 bombes they guarantee to break Enigma

continuously at an average delay of 48 hours.

At present they get the part time use of one machine. The reason that they don’t get

more is that there are only two bombes available and that, owing to increased compli-

cations of Air Enigma, Hut 6 requires the use of both machines. It is true that more

bombes are on their way, up to a limit of 12, but the situation may well be as bad when

they have all arrived, owing to the introduction to Air Enigma of further complications

and owing to the further success with other Enigma colours, Air or Army.33

The long and the short of it is Navy is not getting fair does. Nor is it likely to.

It has been argued that a large number of bombes would cost a lot of money, a lot of

skilled labour to make and a lot of labour to run, as well as more electric power than is at

present available here. Well, the issue is a simple one. Tot up the diYculties and balance

them against the value to the Nation of being able to read current Enigma.

By August 1941, when Hut 8 really started work on an operational basis, 6

bombes were available. By this time it appears that they were considered to have

proved their worth and production went ahead steadily. Some idea of the

increasing bombe capacity may be obtained from the following Wgures of

the number of jobs run in each year:

1940 273

1941 1,344

1942 4,655

1943 9,193

1944 15,303

The running and maintenance of the machinery was in no respect the respon-

sibility of Huts 6 and 8 but was under the control of Squadron Leader Jones, who

33 Editor’s note. See p. 227 for an explanation of ‘Enigma colours’.

292 | Patrick Mahon

had working for him a team of technical experts from the R.A.F. and large

numbers of Wrens (about 2,000 in all) to operate the machines. The bombe

organisation started in one Hut at B.P. and Wnished at four Out Stations

organized and fed with menus from a central Station at B.P. The Wnal organisa-

tion was complex and highly eYcient, and we owe much to Squadron Leader

Jones and his Section. At all times they gave every possible assistance with our

problem and no labour was too much to ask of them: certainly no one in Hut 8

worked for lengths of time comparable to those worked frequently by the Bombe

Hut mechanics.

The fact that the German Army, Navy, and Air Force used the same cypher

machine had the fortunate result that the bombes could be used by both Hut 6

and ourselves and it was a universally accepted principle that they were to be

used in the most proWtable way possible, irrespective of the Service or Section

concerned. As Hut 6 had more keys to run than ourselves, the bombes were

normally left in their hands and we applied for them as required. The relative

priority of Hut 6 and Hut 8 keys in their claim for bombe time was decided at a

weekly meeting between Hut 6, Hut 8, Naval Section, and Hut 3; in very early

days Commander Travis decided what use should be made of the few bombes

then available.

To have suYcient material to break a day on the bombe a crib of 30 letters or

more was normally needed; when cribs are referred to, the phrase should be

taken to mean a guess at the plain text for not less than 30 letters.

The bombe was rather like the traditional German soldier, highly eYcient but

totally unintelligent; it could spot the perfectly correct answer but would ignore

an immensely promising position involving one contradiction. The eVect of this

was that if one letter of the cypher text had been incorrectly intercepted, the

menu would fail although both the crib and the text were elsewhere absolutely

correct. This was the [reason for] the extensive double-banking programme,

which has already been described.

Cribs were sent to the Bombe Hut in the form of menus with directions as to

the wheel orders on which they were to be run. No more was heard of them until

the possible positions, known as ‘stops’, started to come from the bombes as they

worked through wheel orders. The strength of menus was calculated with a view

to the bombe giving one stop on each wheel order, thus supplying a check that

the machine was working correctly. The identiWcation of the right stop, the stop

giving the correct Stecker, and the rejection of the wrong ones was done in Hut 8.

In order to get the maximum use from the bombes they had, of course, to be

kept fed with menus for 24 hours a day, and the art of bombe management

required a certain amount of skill and experience. The plugging up of a new

menu was a comparatively complicated and lengthy process, so that it was

desirable to give a bombe as long a run on a menu as possible: on the other

hand an urgent job would justify plugging up a large number of bombes for only a

History of Hut 8 to December 1941 | 293

few runs, because of the importance of saving time. EYcient bombe management

was largely a matter of striking the happy medium between speed and economy,

of making sure that, with a limited amount of bombe time, everything of

importance got run and that, as far as possible, the urgent jobs were run Wrst.

Bombe management was interesting because the situation a few hours ahead was

to a large extent incalculable: allowance had to be made on the one hand for jobs

which one expected to have to run in 12 hours time (and which when the time

came did not always materialise) and for the fact that sometimes 2 or 3 jobs

would come out in quick succession on one of the Wrst wheel orders to be run,

thus releasing large numbers of bombes: because of this possibility it was

necessary to keep a reserve of fairly unimportant jobs to Wll the gaps.

Pressure on the bombes varied greatly with the immediate cryptographic

situation and the period of the month, it being generally true to say that towards

the end of the month the number of wheel orders was restricted by wheel order

rules.34 It was, however, extremely rare for us to be unable to keep all the

machinery busy even in latter days when there were very large numbers of

bombes both here and in America.

Cribbing

The Beginning of the Crib Room

Autumn of 1941 found us at last approaching a position where there was some

hope of breaking Naval Enigma with regularity. For the Wrst time we had read, in

June and July, a fairly long series of days and the traYc was heavy enough—in the

region of 400 [messages] a day—to make Banburismus practicable.

Hut 8 immediately began to increase in numbers so as to be able to staV 3

shifts for an attack on current traYc. Before the end of the year our senior staV

numbered 16. Rather curiously, this was the highest total it ever reached. As

methods improved, and as we ourselves became quicker and more skilled, we

found ever increasing diYculty in keeping busy and by the end of 1942 our

numbers were already on the decline. Although the number of keys to be broken

and the volume of traYc rose steadily, we reduced ourselves by March 1944 to a

staV of 4, with which we were able to keep the situation under control for the rest

of the war.

Autumn of 1941 saw the birth of the Crib Room as an independent body from

the Banburists, an important date as the Cribsters were to outlive the Banburists

34 Editor’s note. Alexander, ‘Cryptographic History of Work on the German Naval Enigma’, 6: ‘There

were a number of ways in which the German key maker quite unnecessarily restricted his choice of

wheel orders e.g. the W.O. always contained a [wheel] 6, 7 or 8 in it. Restrictions of this kind were

known as Wheel Order Rules and could on occasions narrow the choice from 336 to as little as 10 or 20

which was of enormous value to us.’

294 | Patrick Mahon

by 18 months and cribbing was to become the only means of breaking after the

introduction of the 4-wheeled machine.35

It is interesting to note here that by this time cribbing was accepted as a

natural part of Hut 8 work—we have seen that earlier it was considered separate

from ‘cryptography’ and the function of Naval Section. No one now would

dispute that the only possible arrangement was to have the cribbing done by

people who understood the whole problem of breaking Enigma, though the

more ‘crib conscious’ people there were in Naval Section and the more sugges-

tions they sent over the better. . . .

Earlier in the year, as we have seen, days had been broken on cribs obtained

from the operator’s log of the Lofoten pinch, but little had been done in the way

of analysing the traYc for routine messages. Cribbing is essentially merely a

matter of guessing what a message says and then presenting the result to the

bombe in the form of a menu on which the bombe has to Wnd the correct answer.

Any fool, as has recently been shown, can Wnd an occasional right crib, though

some skill and judgment is required to avoid wasting time on wrong ones, or

rather to waste as little time as possible.

Cribs may be divided into 3 basic groups:

1. Depth cribs

2. Straight cribs

3. Re-encodements

As the history of the Hut is from this point to a large extent the history of

cribbing, we must digress considerably at this point and study the 3 basic groups

with some care. This process will take us far beyond August 1941. . . .

Depth Cribbing

The concept of depth is very simple to understand.36 If two operators choose the

same trigram they will, after transposing it at the Grundstellung, get the same

starting position for their messages. Now suppose that one encyphers

35 Editor’s note. Concerning the four-wheeled machine, Mahon says later in his ‘History’ (on p. 55,

which is not printed here): ‘January 1942 passed peacefully enough but on February 1st Shark [the U-boat

key] changed over to the 4-wheeled machine and was not broken again, with one exception, until December.

This was a depressing period for us as clearly we had lost the most valuable part of the traYc and no form of

cryptographic attack was available to us.’ Further information concerning the four-wheeled machine is given

in the introduction to Chapter 8, pp. 343–5.

36 Editor’s note. ‘Depth-cribbing ¼ Fun and Games: The interesting process of simultaneously fitting two

cribs (especially for the beginnings) to two messages on the same setting’ (Cryptographic Dictionary, 27,

40). Alexander expands (‘Cryptographic History of Work on the German Naval Enigma’, 11): ‘when the

relative positions of a number of messages have been discovered it is frequently possible by examining them

in conjunction with each other to work out the contents of some or all of the messages. This process is

known as depth cribbing and cribs produced in this way give cross checks from one message to the

other of such a kind that one can be virtually certain of their correctness.’

History of Hut 8 to December 1941 | 295

W E T T E R F U E R D I E N A C H T37

and the other

M I T M M M D R E I S I E B E N E I N S38

It is clear that their cypher texts must have the 3rd, 9th, 12th, and 13th letters in

common, as both hit the same letter at the same position of the machine. Let us

write them under each other with the encyphered text:

B H N W S S A W M N T C K N N P Z
W E T T E

M
R F U E R D I E N A C H T

C N N J T R Q N W S T T C X R D S
M I T M M M D R E I S I E B E

C
N E I

L
N

D
S

Here we get the repeats—‘clicks’39 we called them—as expected and also

‘reciprocals’ where the cypher text in one message equals the clear text in the

other. Now let us assume that we are cribsters possessing only the cypher text but

suspecting that the top message is a weather message which says ‘Wetter fuer die

Nacht und Morgen’40—quite a likely state of aVairs as, from time of origin,

frequency, call signs, and length, we consider that this message is a plausible

candidate for a weather message which occurs every day.

B H N W S S A W M N T C K N N P Z
W E T T E

M
R F U E R D I E N A C H T

C N N J T R Q N W S T T C X R D S
T M E I E

C
N

Here we see the state of our knowledge about the lower message after assuming

we know the clear text of the upper message. It may well be that, from our

knowledge of the traYc on this frequency and of the minesweepers known to be

operating, we can guess the text of the lower message. We have now done a depth

crib, and one that is certainly right. For each ‘click’ successfully cribbed we receive a

factor of 17 (the language repeat rate) and for each reciprocal one of 26, so we have

in our favour a factor of 174 � 262—an astronomical number in 8 Wgures, which

completely lulls any lingering doubts we may have had about the a priori improb-

ability of a given message starting Mit MMM 371 . . . In fact, no experienced

cribster would have troubled to do the calculation, but I include it as an example

of a method which may very usefully be applied when assessing a crib.

37 Editor’s note. weather for the night .

38 Editor’s note. with m 371. ‘M’ refers to a class of vessel, minesweeper.

39 Editor’s note. ‘Click: A repeat or repetition of one or more cipher units usually in two or more

messages, especially a repeat which, by its position in the messages or from the fact that it is one of a

significant series, suggests that the messages are in depth’ (Cryptographic Dictionary, 16).

40 Editor’s note. weather for the night and morning .

296 | Patrick Mahon

Such a depth crib as that illustrated was rare in the early days of cribbing, largely

because we had not on the whole accumulated enough general knowledge or

enough experience to have guessed correctly the beginning of the secondmessage.

Muchof the earlydepthwas ‘dummy’depth.Wehave alreadynoticed that the traYc

contained very large quantities of dummies ending in a series of consonants. These

began with a few dummy words and then said such things as

HATKEINENSINNVONVONMNOOOBOULOGNE41

FUELLFUNKVVVHANSJOTAAERGER42

(HJÄ, the call sign of Brest.)

The large number of messages saying VONVON naturally led to hexagram

repeats being discovered by Freeborn when he analysed the traYc. One would be

presented with something of this sort: two messages, trigrams HBN and HDS,

have a hexa repeat if HDS is written out 17 places in front of HBN. The

overlapping part of the texts look like this:

H HWV E L CNU TNU F K J M J WR J HQO F EWZ E ZNHD L S K E K I CMT B P
D I E NT Z UR T

F
A E U S CHUNGVONVONHAN S J OT A A E R G E R

D S NA CMOUWMR L AH WHVUXHQZ F EWZ E Z XQD Z Z R E CNX S B
E

A
F U E L L F UNK VONVON F UNK

J
S T

T
E L L E O S L O

DS

HBN

This was the simplest form of dummydepth and, as will be realized, the solution

of it was extremely easy, and could in fact be found by consultation of a chart listing

all known dummy expressions one under the other: all that was necessary was to

Wnd two phrases having 2 letters in common the appropriate distance in front of

the ‘vonvon’. To use this chart was thought by some cribsters to be unsporting and

unaesthetic, but it was none the less a very useful document. The value of having

cribbed the above messages was not, of course, only that we now possessed a crib

which would break the day but also that the hexagram had been proved beyond

doubt to be a correct Wt—a valuable contribution to the Banburismus.

By the early months of 1942, depth cribbing had become a fairly highly

developed art. The amount of dummy traYc was steadily decreasing and much

of the cribbing had to be between genuine messages; this, of course, was much

more varied, much wider in its scope, and required a far greater knowledge of

what messages were likely to say. This knowledge was obtained by extensive

reading of traYc and by the keeping of such useful records as lists of ships likely

to be addressed on the various frequencies.

The various applications of depth cribbing were also developed and the

amount of assistance cribsters were able to give to Banburists steadily increased.

41 Editor’s note. has no meaning from mno boulogne . ‘MNO’ stands for Marine Nachrichten

OYzier ¼ Naval Communications OYcer. ‘OOO’ was standard radio spelling for ‘O’.

42 Editor’s note. filler radio from hj Ä.

History of Hut 8 to December 1941 | 297

I will give one example of the growth of a ‘monster depth’ such as warmed the

cockles of a cribster’s heart.

We start by noting that there are 2 messages about which we think we know

something and which have trigrams HEX and HEN, that is to say that they

started within 26 places of each other on the machine and it is therefore possible

that we may be able to set them in depth.

HEX we think says one of 2 things:

VORHERSAGEBEREICHDREITEILEINS43

or

WETTERBEREICHDREITEILEINS44

HEN we think says

ZUSTANDOSTWAERTIGERKANALXX45

We now proceed to examine all the possible relative positions for conWrma-

tions or contradictions.

Position HEX ¼ HEN þ 1 looks like this:

WE T T E R B E R E I CHD Stagger HEN 1 to left.
VO RH E R S A G E B E R E

HEX B HNWS UHDWMT NCN . . .

H F DQ R L
Z U S T A

T U L EWGDQ P
NDO S TWA E R

B
T

EN

Now in this position there are clicks between the 7th letter of HEX and the 8th

of HEN and the 10th of HEX and 11th of HEN, but in neither case have the cribs

for HEX letters in common with the crib for HEN, so the position is impossible.

Continuing we get to the position HEX ¼ HEN þ 4, which is obviously correct,

having 4 conWrmations and no contradictions.

H B HNWS
VO RH E

UHDWMT NC KH P Z F H Y F R U E K L I G
R S A G E B E R E

N
I CHD R E I T E I L E I N

N

S
EX

H F DQ R L
Z U S T A

T U L EWGDQ P OXN Z R N S I O Z HXHR R N I NK
NDO S TWA E R

B
T I G E R K AN A L X X

EN

We now take message HEK about which we know nothing except that it

probably comes from Boulogne and may be a dummy. Here again we examine

position by position to see what consequences are implied.

Position HEK þ 1 ¼ HEN looks like this:

43 Editor’s note. forecast area 3 part 1 .

44 Editor’s note. weather area 3 part 1 .

45 Editor’s note. situation eastern channel . (The weather situation.)

298 | Patrick Mahon

BHNW S HDWMT NCN H P Z F H Y F R U E K L I GK
VO R H E

U
R S A G E B E R E CHD R E I T E I L E I N SI

F DQ R L T U L WGDQ P O X N Z R NC I O Z HXH R R N I N KB
Z U S T A NNDO

E
S TWA E R I G E R K A N A L X XT

A V A J VQ S K TW G P S Q T R E B HU S E C D. . .IR
UW CN

HEX

HEN

HEK
(Two places
 to right)

Both UW and CN are more or less impossible bigrams, so we reject the pos-

ition. Position HEK þ 3 ¼ HEN, however, looks like this:

BHNW S HDWMT NCN H P Z F H Y F R U E K L I GK
VO R H E

U
R S A G E B E R E CHD R E I T E I L E I N SI

F DQ R L T U L WGDQ P O X N Z R NC I O Z HXH R R N I N KB
Z U S T A NNDO

E
S TWA E

E

R I G E R K A N A L X XT

A V A J VQ S K T
N

W G P S
H

Q T R E
N

B HU S E C
N O

D L S S J I E
LU

Q A I PIR

HEX

HEN

HEK

Whichwe guess correctly as OHNESINNVVVMNOOOBOULOGNE46, the Wrst N

being just a stray letter in the dummy words. We are nowwell under way, and have

supplied the Banburists with 2 certain distances: with the distances obtained from

the Freeborn catalogue in addition they will probably soon produce the correct

alphabets.

The next move is to examine a tetragram Wt between HIP and HEX—not a very

good tetragram, estimated to have about 1 chance in 3 of being right. With HEX,

HEN, and HEK cribbed we can easily prove or disprove this tetra, and great is our

delight onWnding that it is the cypher text of theworddrei47; this almost certainly

a correct Wt and the matter is proved beyond doubt when we crib the whole

beginning of the message. With the amount of crib we now possess, attaching HIJ

is not very diYcult and we have a solid piece of depth on Wve messages.

BHNW S HDWMT NCN H P Z F H Y F RK
VO R H E

U
R S A G E B E R E CHD R E I T EI

HEX

F DQ R L T U L WGDQ P O X N Z R NC I O Z HXB
Z U S T A UNDO

E
S TWA E R I G E R K A N A L X XT

HEN

A V
O

A J VQ
S

S K T
N

W G P
O

S
H

Q T R E
N

B HU S E C D L S S JI
E S I NV V VMNOOO B ON

RHEK

WLMY Z T A B I B I X K L B NK P C Z F H Y HU
VONV

K I VU
S OOO

WOQC J
N EB I B O

U
X48NMM

D
ME I N S N UN E I N S D R E I XE

H I P

46 Editor’s note. without meaning from mno boulogne .

47 Editor’s note. Drei ¼ three.

48 Editor’s note. bee bso from m 1913. I am grateful to Frode Weierud and Ralph Erskine for the

following information: ‘BSO’ stands for Befehlshaber der Seestreitkraefte Ostsee ¼ Commanding OYcer

Naval Forces Baltic Sea (see M. van der Meulen, ‘Werftschluessel: A German Navy Hand Cipher System –

History of Hut 8 to December 1941 | 299

HWHVR L AOWWM M N J X V P NQ P J M MF D Y I Y A ZY

I N S DZ

O

UMECHN A T R E I X V I E R X B S E T Z E N X X49E

H I J

At this stage it is certain that the Banburists will get the alphabet, but we can

still assist by conWrming and by Wnding new distances on the middle wheel. If we

have two messages HOD and HIJ and know that on the right hand wheel

D þ 1 ¼ J, we can say that HOD starts in one of 50 positions in a known

relationship to HIJ—1 alphabet plus 1 letter, or 2 plus 1 letter, etc. Inasmuch as

HOD is long enough, we can try these possibilities also. Although the whole

message cannot be cribbed, the position illustrated where I ¼ O þ 3 on the

middle wheel is clearly right, all the consequences are good letters, and at one

place much of EINSNULYYEINSNUL50 is thrown up. HOS can then be attached.

A V
O

A J VQ
S

S K T
N

W G P
O

S
H

Q T R E
N

B HU S E C D L S S JI
E S I NV V VMNOOO B ON

RHEK

HWHVR L AOWWM M N J X V P NQ P J M MF D Y I Y A ZY

I N S DZ

O

UMECHN A T R E I X V I E R X B S E T Z E N X XE

H I J

CMK GJ H BK CZ W F KO J X S H I NUN Y U P V A K J CM J WTZ

R EN EN I N S NU L Y E I N S NU LY

HOD

B E V LW E CG IL P C TMZ E BMC I L Z BN

R O Y AL

N

UH RL NNU U N A U S G E L A U F N51E

HOS

H B HNWS
VO RH E

UHDWMT NC KH P Z F H Y F R
R S A G E B E R E

N
I CHD R E I T E

EX

H F DQ R L
Z U S T A

T U L EWGDQ P OXN Z R NC I O Z HX
UNDO S TWA E R

B
T I G E R K A N A L X X

EN

WLMY Z T A B I B I X K L B NK P C Z F H Y HU
VONV

K I VU
S OOO

WOQC J
N EB I B O

U
XNMM

D
ME I N S N UN E I N S D R E I XE

H I P

It would be pointless to pursue this depth further. More might well be added

and, once started, the messages might be read for some distance. The delight of

depth lay in its great variety—no two depths were ever quite the same—and it

were a blasé cryptographer indeed who experienced no thrill at discovering a

right position and correctly guessing large chunks of message about the contents

of which he at Wrst knew nothing. Needless to say things rarely went as smoothly

as in our example, and it was possible to work for a very long time without even

getting a piece of depth started.

Part I’, Cryptologia, 19 (1995), 349–64). ‘Bee’ translates ‘Bine’, a code word for the urgency indicator ‘SSD’:

‘Sehr, Sehr Dringend’ (Very, Very Urgent). The German Navy used three alternative code words for SSD:

‘Bine’, short for ‘Biene’ (bee), ‘Wespe’ (wasp), and ‘Mucke’ or ‘Muke’, short for ‘Muecke’ (midge).

49 Editor’s note. night to 13.4. occupy .

50 Editor’s note. ten ten .

51 Editor’s note. 00 hours left royan .

300 | Patrick Mahon

There were other applications of depth cribbing of which only one need be

mentioned here—the slide. The slide is similar to the process by which we started

our last example, but in this case we only have a crib for one message—a fairly

long and probably a right crib. If SWI is our cribbed message, we examine the

consequences of trying SWL for 25 places to either side of it and, although we

cannot attempt to crib [the] result, we look to see whether the letters thrown up

are good or bad. For this a simple scoring system was used, E being worth

something in the region of 57 and Q about �100. On a really long crib the right

position usually showed up clearly and a large number of distances were estab-

lished by this method.

Depth cribbing died with Banburismus in autumn 1943.

Straight Cribs

I should perhaps have dealt with straight cribs before depth. The theory of

straight cribs is simple: it is merely a matter of guessing the contents of a message

without the assistance of depth and without the contents having already been

passed in another cypher which has been broken.

Finding straight cribs was largely a matter of analysing the traYc. At Wrst, with

the traYc fairly small, this was comparatively easy and an organisation was

created for writing down any message which looked as if it might occur regularly.

Having found a message of a routine type, details about it were recorded.

SigniWcant facts were normally frequency and frequencies on which it was

retransmitted, call-signs, German time of origin, and length. When a few

examples had been written down, it became possible to assess:

(a) whether, given an unbroken day’s traYc, it would be possible to identify

this particular message;

(b) whether, once identiWed, it had few enough forms to be used as a crib.

These two factors—identiWcation and forms—were the essential factors in all

cribbing. In our experience identiWcation, though often tricky, could usually be

cleared up by careful examination of the evidence and there have been compara-

tively few cribs that have been unusable because they had been unWndable. In

very diYcult cases we tried to enlist the assistance of R. F. P.52 but, though help

was most readily given, the experiments were never very successful. The German

Security Service appears to have considered that retransmitting of messages of

one area in another area was dangerous and did something towards stopping

curious linkages by recyphering messages and adding dummy at the end before

retransmission. This sort of thing was a nuisance to us, but never became

suYciently widespread to cause serious diYculty.

52 Editor’s note. ‘Radio Finger Print: Enlarged or elongated film-record of morse transmission by means

of which the type of transmitter used and the peculiarities of the individual sets of any type can be

distinguished, serving to identify stations’ (Cryptographic Dictionary, 63).

History of Hut 8 to December 1941 | 301

The ideal crib is not shorter than 35 letters and uses the identical wording

every day. Such cribs never existed, though occasionally we possessed for a time

what seemed to be the crib to end all cribbing. For some 3 months in the summer

of 1942, Boulogne sent a weather message which began zustandostwaer-

tigerkanal 53 and, if I remember rightly, it only failed twice during that

period. On the whole, a crib that had more than 2 or 3 basic forms was little

use except for getting out paired days on known wheel orders or for depth

cribbing: most cribs produced ‘horrors’ from time to time which we classed as

‘other forms’ and made no attempt to allow for them as a possible form of a crib,

but when assessing a crib it was of course necessary to take into consideration the

frequency with which ‘other forms’ were tending to appear.

The crashing54 property of the machine was an essential element of all cribbing

and most especially of straight cribbing. When writing a wrong crib under a

portion of cypher text, each letter of crib had 1 chance in 25 of being the same as

the letter of cypher text above it and of thus proving by a ‘crash’ that the crib was

wrong. If therefore a crib had 2 good forms, each about 30 letters long, there was

an odds on chance that the wrong form would crash out; in this case the

remaining form is, of course, left with a heavily odds on—instead of an approxi-

mately evens—chance of coming out. If the good forms crashed out and only

some rather poor form went in, it proved to be bad policy to believe the poor

form to be correct, although on the basis of mathematical calculation it might

appear to have a reasonably good chance. It was the ability to assess this type of

problem which distinguished the good cribster. It was impossible to become a

good cribster until one had got beyond the stage of believing all one’s own cribs

were right—a very common form of optimism which died hard.

The pleasure of straight cribbing lay in the fact that no crib ever lasted for very

long; it was always necessary to be looking for new cribs and to preserve an open

mind as to which cribs oVered the best chance of breaking a day. A crib which

lasted for 2 months was a rarity; most cribs gradually deteriorated and never

recovered until eventually we only recorded them every 2 or 3 days. To give up

recording cribs because they were bad was a fool’s policy; it unquestionably paid

to keep a record of anything that might one day assist in breaking. Time and

again, when a good crib died, we were thrown back onto a reserve at which we

would have turned up our noses a week before, only to Wnd that the reserve was

quite good enough to enable us to break regularly.

The perennial mortality of cribs was undoubtedly to a considerable extent the

result of the work of the German Security Service to whose work as crib hunters we

must in all fairness pay tribute. The information recently received that they kept an

53 Editor’s note. situation eastern channel . (Weather situation.)

54 Editor’s note. ‘Crash: The occurrence of a plain letter opposite the same letter in the cipher text in one

of the positions or versions in which a crib is tried, normally involving rejection of that position or version’

(Cryptographic Dictionary, 22).

302 | Patrick Mahon

expert permanently at work analysing the weaknesses of the machine does on the

other hand little credit to their technical ability. The crib chasers gave us a fairly bad

time, especially in the areas nearer home where the cyphers were better organised.

By March 1945 Dolphin—a large key of some 400 messages a day—had been

rendered almost cribless and we might have failed to read some of the last days

had we not captured theHackle keys which kept us supplied with re-encodements.

Cribs in the early days were largely weather messages. A very large amount of

weather was sent in Enigma and it was obvious that it was regarded as of Wrst

importance. In 1941 weather cribs from the Channel ports were our principal

stand-by and wewa55 boulogne and wewa cherbourg were trusty

friends. One day during the late autumn, the security oYcers pounced on this

habit of announcing internally from whom the weather originated, but Wrst class

cribs of a rather shorter variety continued to come regularly at the beginnings and

ends of messages. Rather curiously, this habit of signing weather messages at the

end never caught on elsewhere and after the death of the Channel weather cribs in

spring 1942 we never again had cribs at the ends of messages. This was, on the

whole, convenient as a message always Wnished with a complete 4 letter group

(irrespective of the number of letters in the plain text, dummy letters being added

at the end), so that an end crib could bewritten in 4 diVerent places, and one had to

be fortunate with the crashing out for a single really good shot to be available.

The reprimand to the Channel weather stations for insecurity in April 1942 is

something of a landmark as the Channel cribs never recovered, except for the

remarkable run of zustandostwaertigerkanal during the summer of

the same year. Henceforth they omitted such lengthy statements as wetter-

zustandeinsachtnulnuluhr 56 and satisWed themselves with a terse

nantesbisbiarritz 57 buried somewhere in the middle of the message.

This habit of burying sign-oVs was an almost completely eVective anti-crib

measure and became more and more widespread as time went on.

Weather cribs in Norway and the Baltic were useful for a long time, and in the

Mediterranean for even longer, but there can be little doubt that the security

services were weather conscious and one after another cribs of this type disap-

peared. They were replaced by other cribs of a type which generally required more

Wnding—some were situation reports of a fairly obviously routine nature, others

were much more elusive. For instance, when looking through a day’s traYc one

was not likely to be struck immediately by a message from Alderney to Seekom-

mandant58 Kanalinseln which said feuer brannten wie befohlen 59 but it

was in fact a daily conWrmation that various lights had been shown as ordered and

was a very excellent crib.

55 Editor’s note. ‘wewa ’ abbreviates ‘Wetter Warte’: weather station.

56 Editor’s note. weather situation 1800 hours .

57 Editor’s note. nantes to biarritz .

58 Editor’s note. Naval Commander.

59 Editor’s note. beacons lit as ordered .

History of Hut 8 to December 1941 | 303

To spot cribs of this type it was necessary to read through large quantities of

traYc, covering perhaps a week or two, and to have a good short-term memory

which would react to seeing two similar messages. Work of this type was

naturally more diYcult and, as the years went by, the Wnding of possible cribs

(as distinct from their exploitation) began to require more and more high-grade

labour. For a long time, junior members of the Crib Room were relied upon for

discovering new cribs by reading traYc in Naval Section but, as cribs became

scarcer, it became obvious that this system was inadequate, and we started having

traYc redecoded on the carbon copies of messages so that they were available for

scrutiny by senior cribsters. The desirability of this system was further stressed by

the increasing numbers of re-encodements which had to be recognized and

preserved, so that by 1945 nearly all the traYc was being decoded twice. In

some respects this was an extravagant system, as it required a large decoding

staV, but it meant that Naval Section received their decodes more quickly, as all

available typists set to work Wrst of all on their copies and subsequently typed

those for the Crib Room. The alternative scheme would have been to have an

increased number of high-grade cribsters so that someone was always available to

examine decodes before they went to Naval Section.

The crib chosen as an example in the paragraph before last is interesting also for

being a crib for a complete message. Cribs on the whole were only ‘beginners’, but

we had much success with very short messages for in these we got additional

conWrmation that our crib was right, in that it Wnished up exactly in the last group

of themessage. An interesting example of this type was a little harbour report from

the Mediterranean. It said: hansmaxvvvlechxxaaayydddfehlan-

zeige .60 This was a 13 group message. If the message was 14 groups, vvv had

been changed to vonvon , one of the normal alternatives for which the cribster

had to allow—others were funf or fuenf, siben or sieben, vir or vier,

etc.61 Most of these little messages that could be cribbed in toto were situation

reports which said, in some form or other, ‘Nothing to report’; some of themwere

security conscious and Wlled up the message with dummy words, which had the

eVect of degrading them to the level of a normal crib.

. . . One further crib must be mentioned here for fear it be forgotten altogether

as, though often useful, it was never one of the cribs which formed our daily bread

and butter. This was the popti crib, so christened by the decoders who were

amused by the curious selection of letters it contained. We have seen that the

German Navy had ceased in general using QWERTZUIOP numerals, but these

numerals continued to be used for certain types of Wgure—weather and notably

for certain observations aVecting gunnery. As a result we received messages of this

sort:

60 Editor’s note. hm from lech a-d error message .

61 Editor’s note. Alternative spellings of the German words for five, seven, and four.

304 | Patrick Mahon

NUEMBERG VVV WEWA SWINEMUENDE LUFTBALTA 05 UHR62:

P P Q I P P W Y Q U E P T O Y

P T W Q T P R Y Q E Z O T I Y

Q P W P Q P E Y Q E T W T Z Y

Q T Q O Q P E Y Q E R E T T Y

W P Q U O P W Y Q E E R T E Y

W T Q U Z P W Y Q E W O T W Y

E P Q U Z P W Y Q E W R – Q Y

E T Q I Z P W Y Q E Q O T P Y

R P Q U Z P W Y Q E Q I T P Y

R T Q U E P W Y Q E Q U T P Y

T P Q Z O P W Y Q E Q Z T P Y

Z P Q Z Q P Q Y Q E Q E T P Y

U P P I U P Q Y Q E Q – T P Y

I P M T W P W Y Q E Q P T P Y

ERDBALTA 05 UHR63:

P P Q I P P W Y Q E U P T O Y

Q P Q I P P W Y Q E Z I T I Y

Q T Q O I P E Y Q E Z E T I Y

W P W Q T P R Y Q E T O T U Y

W T O I E P E Y Q E R O T T Y

E P Q Z U P E Y Q E R Q T R Y

R P Q U P P W Y Q E Q O T W Y

T P Q U E P W Y Q E Q I T Q Y

Z P Q E W P Q Y Q E Q T T P Y

U P P W T P R Y Q E Q W T P Y

I P P E I Q E Y Q E P I T E

The letters enclosed in the boxes are constant. The bigrams in columns 1 and 2

are the station indices and the 13 letters which follow are the observations from

each station: the Ys are commas and the second half of the observation always

has a one as its Wrst digit—hence the Q. The stations were always listed in

the same order and so we had right through a long message a series of known

letters in Wxed relative positions. The crib would look something like this:

PP?????YQ?????YPT?????YQ etc. These cribs were good and were successfully

used, but unfortunately usually lived for a short time only. The example given,

for instance, was dependent on the Nuemberg being out exercising. Occasionally,

similar messages occurred with the numerals written out in full, but were less

useful in most cases owing to the varying lengths of numerals.

62 Editor’s note. nuremberg from weather station swinemuenda air [balta] 05

hours . ‘Balta’ is clearly a meteorological term but the meaning is obscure.

63 Editor’s note. ground [balta] 05 hours .

History of Hut 8 to December 1941 | 305

In the spring of 1942 the Wrst shift system for a crib was discovered. This was a

very important discovery which aVected straight cribbing for the rest of the war.

The reason for failing to make this discovery earlier was doubtless the same [as

the] reason for our failing to notice in early days cribs of a type which were in

regular use later; the obvious cribs were very good and we simply did not look

very hard for the less obvious, a reprehensible but very understandable state of

mind into which we seem frequently to have lapsed. The fact was that, when a

key was breaking regularly and satisfactorily, there was very little incentive to do

energetic research work.

The incentive which led to the discovery of the shift system was a deterioration

of the Channel weather cribs, soon to be Wnally killed. The position was that they

were developing too many diVerent forms and it was at this stage that it was

noticed that certain forms occurred at regular intervals. The discovery was made

onCherbourgweather andwas rapidly exploited elsewhere. This system involved 4

operators and I very much regret that all records of this original shift system have

long since been destroyed. The interesting thing is that all later shift systems, some

of which have been proved beyond a shadow of doubt, have worked on a 3-day

cycle and have involved 3 operators. It would be interesting to re-examine the

original shifts in the light of this evidence to see if our conclusions were only in part

correct. The most common form of 3 day cycle, and the only one to be proved in

detail, divides the day into 3 shifts (approx. 0–9, 9–16, 16–24) and works as

follows: /BAC/ACB/CBA/BAC/ACB/ etc. As an example of the uses of these shifts

we may take the twice daily weather report sent out to Arctic U-boats. This

message stated the day and the month for which it was a forecast and the month

appeared as a jumble of names and numbers—in fact, 2 forms of the crib had to be

run each time, one with April and one with vier . On being divided into shifts on

the above principle, however, it was discovered that one man said April consist-

ently and the other two vier so that on any day we knew whichwould occur. Also

onemanwas security conscious andwas responsible for nearly all the ‘horrors’ and

it was best to leave the crib severely alone when he was on duty.

The practical use of crib records, that is to say, the identiWcation of cribs and

the decisions as to what was and was not worth running, always remained a job

for high-grade labour, rather surprisingly, as in theory it is simple enough. An

attempt to ‘mechanize’ cribbing with the help of mathematical formulae was a

lamentable failure and disappeared amidst howls of derision, though in justice to

the inventor of the system it must be said that this was not really due to the

essential faultiness of the system as he proposed to use it, but rather the fact that

it was misapplied by the inexpert and ignored by the expert, who felt rightly that

it was no real assistance. Mathematical computation of the probability of cribs

was a system which could not be ignored, but results needed to be modiWed and

analysed by the judgement of experience. Nothing really could replace the

knowledge which was gained by experience. A cribster had to come to realize

306 | Patrick Mahon

that a crib was not right because he had thought of it himself, that he should not

be discouraged because a series of apparently good cribs had failed and start

making wild assumptions about new wheels and new keys. He had constantly to

decide between two or more cribs as to which was the best and in doing so had to

rely as much on a very wide experience as on written records. He had to know

which risks could be wisely, which unwisely, taken and had constantly to make

decisions on the policy to adopt in breaking a key: would it be better to run 1 crib

with a 60% chance of coming out and, if this failed, change to another message,

or start on a programme of a 3 form crib on one message which would Wnish by

giving a 95% chance of success? Problems like this would, of course, have been

easy had it not been necessary to consider such other factors as the bombe time

available, the intelligence and cryptographic advantages of a quick break, the

probable pressure on bombes in 12 hours time, and so on. On the face of it,

straight cribbing appears to be impossibly tedious when compared with depth

but, though depth had its great moments which straight cribbing could not

touch, the problem did not become less interesting when Banburismus had died.

With perhaps 6 to 10 keys to break regularly, the cribster was a busy man faced

with an interesting problem in tackling which he had to consider not only the

total number of keys eventually broken but also economy of bombe time and the

demands of Intelligence.

Re-encodements

Re-encodements are repetitions in a cypher of messages which have already been

transmitted on other cyphers, or indeed in plain language. The great advantage

of re-encodements over straight cribs is the factor they receive in favour of their

being right, owing to the length of crib which has been written in without its

crashing against the cypher text. We have already seen that for each letter of a

wrong crib there is a 1 in 25 chance of a crash, so that a 50 letter crib which does

not crash gets a factor of 7 in its favour, a 100 letter crib a factor of 50, a 200 letter

crib a factor of 2,500, a 300 letter crib a factor of 40,000—in fact there is really no

chance of a long re-encodement being wrong. We have met re-encodements in a

variety of fairly distinct forms which I will deal with separately.

Re-encodements from hand cyphers

The two main sources of re-encodements from hand cyphers were Werftschlues-

sel64 and R.H.V.65 Werftschluessel was used by small ships in the German Home

Waters area, mostly in the Baltic: it was read continuously from early 1941 to

February 1945, when it was abandoned as being of little further value. R.H.V., the

64 Editor’s note. Dockyard Key.

65 Editor’s note. RHV ¼ Reservehandverfahren: Reserve Hand Cipher, used should an Enigma machine

break down (see F. H. Hinsley and A. Stripp (eds.), Codebreakers: The Inside Story of Bletchley Park (Oxford:

Oxford University Press, 1993), 238–9).

History of Hut 8 to December 1941 | 307

reserve hand cypher of the German Navy, was being used, apart from its function

as an emergency cypher, by a number of small ships in the Norwegian area when

it was Wrst captured in December 1941. Presumably owing to the completion of

the distribution of the [Enigma] machine, its use gradually declined and there

has been little traYc since the end of 1943.

Re-encodements from these cyphers were of the type one would expect—

messages of signiWcance to great and small alike: weather messages, gale

warnings, aircraft reports, mine warnings, wreck warnings, etc. Given the

R.H.V. or Werft version of the signal, it was not normally diYcult to Wnd its

Enigma pair. Habits about relative time of origin varied somewhat from area to

area but were fairly consistent in any one area, while length, and the frequencies

the Enigma version was likely to be passed on, were normally fairly accurately

predictable.

The most famous of all these re-encodements was Bereich 766, which broke

Dolphin consistently from late 1942 to late 1943. This was a twice daily re-

encodement of weather from Trondhjem, and it was normally possible to

produce a right crib from it. The contents were rarely hatted67 and the only

hazard was an addition at the end of the Dolphin message giving the information

that a certain R.H.V. message need not be decoded as it had identical content.

Another famous weather crib was Bereich 5, which broke most of the Wrst 6

months of Plaice but which subsequently became security conscious and hatted,

the Werft version to such an extent that we could do nothing with it. By early

1945 it was so bad that we did not feel justiWed in asking that Werft should

continue to be broken to assist us with Plaice. It was generally true of all

re-encodements that, if much hatting took place, we could make little use

of them.

The other most proliWc source of re-encodements of this type was the mine

laying, especially in the Baltic. Mine warnings and ‘all clears’ were sent out in

Werft and then repeated for the Baltic U-boats. So good were these cribs that, if

we were under pressure to obtain an early break, mines were laid deliberately

with a view to producing cribs and most proWtable results were obtained. We

even put up suggestions as to the best places to lay mines: obviously weg funf

(or fuenf) ziffer (or ziffx or ziff) sieben (or siben) was a rotten place

but kriegsansteuerungstonne swinemuende68 was likely to go un-

altered into the Enigma version. The golden age of these cribs was the Wrst half of

66 Editor’s note. Area 7.

67 Editor’s note. ‘Hat book: A code-book characterized by the fact that when the plain-language terms are

arranged in alphabetical order the code groups are not in numerical (or alphabetical) order . . . Hatted:

Arranged in other than numerical (or alphabetical) order.’ (Cryptographic Dictionary, 43.)

68 Editor’s note. wartime marker buoy swinemuende . (I am grateful to Ralph Erskine and

Frode Weierud for assistance with the translation of this crib.)

308 | Patrick Mahon

1942. By 1943 they were already falling oV and eventually, by using dummy

words and inversions, they ceased to be of any interest to us.

Re-encodements from Army and Air cyphers

There was surprisingly little re-encodement between our traYc and that of

Hut 6. The only re-encodements to have occurred consistently over a long period

were Mediterranean reconnaissance reports. These were usually easy to tie up

and fairly diYcult and amusing to attack; they had their heyday in early 1944

when Porpoise ceased to be breakable on its indicating system. These diVered

from all other re-encodements in that they presented a problem of ‘translation’:

the German Air Force used very diVerent cypher conventions from the Navy, so

each message had to be turned into Naval language before it could be used. With

a little practice this game could be played very successfully.

Re-encodements between Naval machine cyphers

Apart from those already mentioned, all re-encodements have been between

keys we ourselves have broken. Hence they only began fairly late in our

history as the number of our keys increased. The most famous series of these

re-encodements were those originating in Shark and being repeated in

Dolphin (later Narwhal) for the Arctic U-boats, Plaice for the Baltic U-boats,

[and] Turtle for the Mediterranean U-boats. These re-encodements were mes-

sages of general interest to all U-boats—corrections to existing documents,

descriptions of new Allied weapons, signiWcant experiences of other boats,

etc.—and they would start their career by being sent on all existing

Shark services, with often a note at the end ordering repetitions on other

keys. Re-encodements of this type were usually dead easy and, as they were

usually long, one knew deWnitely when one had a right crib. A considerable time-

lag before re-encoding—on Narwhal sometimes 3 or 4 days—often made iden-

tiWcation diYcult, but had compensating advantages. Shark of the 2nd of a

month might break Narwhal of the 4th and Narwhal of the 4th might also

contain a re-encodement of a Shark message of the 3rd. The 3rd Shark would

break and its paired day69 the 4th would follow, providing perhaps a store of

messages likely to appear in Narwhal of the 5th or 6th. Re-encodements were

fairly frequent, an overall average of perhaps 1 or 2 a day, and, with several keys

involved, it was often possible to break all keys concerned for considerable

periods on re-encodements without having to use a single straight crib—a very

economical process.

Another remarkable series of re-encodements linked Dolphin and Sucker from

November 1944 until the end of the war. In this case it was a weather message

from the Hook of Holland which was repeated in almost identical form in the 2

69 Editor’s note. See p. 259 for an explanation of ‘paired day’.

History of Hut 8 to December 1941 | 309

cyphers. This crib was responsible for our consistently good results in Dolphin

during the last months of the war.

Another weather re-encodement of considerable interest was that of

bereichdora 70—an area in the Skagerrak and West Baltic of interest to

Plaice and Dolphin. This message originated from Swinemunde on Plaice

and was repeated on Dolphin by one of a variety of stations, in accordance

with a complicated programme. The repeating station was responsible for

hatting the original and for sending it out on the Dolphin frequencies; normally

the repeating station encyphered it twice with the text in a diVerent order

and sent it out as 2 independent messages. Security precautions were in fact

extremely strictly enforced. However, the original Plaice message always set

out its observations in the same order—wind—cloud—visibility—sea—and

it was possible to take the Dolphin message and reshuZe it into its original

order. bereichdora remained far too tricky to be a high-grade crib,

but it was used regularly and quite successfully when nothing better

was available: there were several periods when it was in fact our only crib

into Plaice. The Wnal reWnement of discovering the principle on which the

Plaice was hatted and using it for breaking Dolphin remained beyond our

powers.

The remaining and most curious type of re-encodement was between

one day’s traYc and another on the same cypher. These re-encodements were

found largely in the Baltic where a series of belehrungsfunksprueche71

were sent to the training U-boats and were repeated frequently for some weeks.

There was no law as to when these might be retransmitted but, presumably

because their content was [of] didactic value and the decyphering of them

good practice, they occurred at one period fairly frequently, and could often be

identiWed by their exceptional length. Dolphin also produced one crib of this

type, perhaps the longest lived of all our cribs and one which would have broken

Dolphin daily, had it been possible to intercept the message satisfactorily. It was a

statement of areas oV North Norway in which anti-submarine activities were to

be allowed during the next 24 hours and, while the areas did indeed sometimes

change, much more often they remained the same and the message of the day

before supplied the crib for the message of the new day.

Commander Denniston wrote: ‘The German Signal Service will do its best to

prevent compromise of Enigma by inferior low-grade72 cyphers . . . the Germans

do not intend their cyphers to be read.’ The German Signals Service failed,

however, lamentably in its functions (though Werft and R.H.V. are not, of

70 Editor’s note. Area D.

71 Editor’s note. Training radio messages.

72 Editor’s note. ‘Low-grade (of a code or cipher system): Not expected to resist attempts to break it for

long, esp. if used to any great extent’ (Cryptographic Dictionary, 52).

310 | Patrick Mahon

course, low-grade cyphers), and its cyphers were most extensively read. In later

years, we should never have been able to continue regular breaking on a large

number of keys if it had not been for the steady Xow of re-encodements, and

their complete failure to master the re-encodement problem was without doubt

one of the biggest blunders the German Security Service made.

The Beginning of the Operational Period

During the Autumn of 1941, the outlook became steadily brighter. In August

there were 6 bombes in action and we had the bigram tables without which

Banburismus was impossible.

The results speak for themselves. All August was broken except 1–4, 24–25, all

September, and all October except 3–4 and 12–13. From October 14th, 1941,

Dolphin was broken consistently until March 7th, 1945.

During these months, methods of Banburismus and cribbing improved con-

siderably. The situation gradually developed that stability which can only arise

from a long period of regular breaking.

Early in October, on the 3rd, 4th, or 5th, we were mystiWed by the failure of the

U-boat traYc to decode when Dolphin for the day had been broken. The

situation was saved by a Werft crib, one of Werft’s earliest triumphs, and it

transpired that the key was the same as for the rest of the traYc except for the

Grundstellung, which was entirely diVerent. This was a further development of

the innovation of April when the U-boats started to use a Grundstellung which

was the reverse of that used by surface craft. This new development made very

little diVerence except that it delayed slightly the reading of the U-boat traYc.

November 29th brought the Wrst real crisis in the form of a change of bigram

tables and K book. 6 months earlier this would have beaten us, but we now knew

enough about cribs to be able to break the traYc without Banburismus if

suYcient bombes were available, and there were now 12 bombes in action.

Rather curiously, we thought it worth while to indulge in the luxury of a

Freeborn catalogue of Wts in the hope of being able to do a piece of depth—

dummy depth—a remarkable reXection on our comparative ignorance of

straight cribs and of their value. The policy was, however, to some extent

justiWed, as on November 30th we got a right dummy depth crib and Com-

mander Travis, then the arbiter of bombe policy, decreed that we might have all

12 bombes to run it.

This crib and many others duly came out in the course of December, and the

process of eins ing, twiddling, and bigram table building, described in an earlier

[section], proceeded merrily enough and considerably more smoothly than

before. By the end of December, the tables were near enough to completion

to begin to think of restarting Banburismus and Turing was just starting to

History of Hut 8 to December 1941 | 311

reconstruct the K book—almost the last theoretical problem he tackled in the

Section, although he remained with us for some time to come. On December

30th a pinch of keys, bigram tables, and K book made further work unnecessary

and we were able to restart Banburismus at once.

312 | Patrick Mahon

CHAPTER 6

Bombe and Spider (1940)

Alan Turing

Introduction
Jack Copeland

This material forms chapter 6 of Turing’s Treatise on the Enigma (known at

Bletchley Park as ‘Prof ’s Book’).1 The text has been prepared by Ralph Erskine,

Philip Marks and Frode Weierud from the two known surviving copies of

Turing’s original typescript.2 The pagination of Turing’s typescript indicates

that the chapter may possibly have continued for a further four pages; however,

these pages are not to be found in either of the archived copies.3

1 This material is Crown copyright and is published with the permission of the Public Record Office and

the Estate of Alan Turing.

2 One copy is held in the Public Record Office in Kew, Richmond, Surrey (document reference HW 25/3),

and the other in the National Archives and Records Administration, College Park, Maryland (document

reference RG 457, Historic Cryptographic Collection, Box 201, NR 964). A digital facsimile of the typescript

HW 25/3 is available in The Turing Archive for the History of Computing <www.AlanTuring.net/

profs_book>. A retyped version of the Treatise on the Enigma prepared by Erskine, Marks, and Weierud

is available at <http://home.cern.ch/frode/crypto>. See also p. 250, n. 62.

3 A small number of typographical errors in the original typescript have been corrected. Occasionally

punctuation has been added and sometimes a superfluous punctuation mark has been removed. Material in

the text appearing within square brackets has been added by the editors (e.g. mech[anism]). Footnotes

beginning ‘Editors’ note’ have been added by Copeland, Erskine, Marks, and Weierud; other footnotes are

Turing’s own.

www.AlanTuring.net/profs_book
www.AlanTuring.net/profs_book
http://home.cern.ch/frode/crypto

The steckered Enigma. Bombe and Spider.1

WhenonehasasteckeredEnigmatodealwithone’sproblemsnaturallydividethem-

selves into what is to be done to Wnd the Stecker, and what is to be done afterwards.

Unless the indicating system is very well designed there will be no problem at all

when the Stecker have been found, and evenwith a good indicating systemwe shall

be able to apply the methods of the last two chapters [of Turing’s Treatise] to the

individual messages. The obvious example of a good indicating system is the

German Naval Enigma cipher, which is dealt with in Chapter VII [of the Treatise].

This chapter is devoted to methods of Wnding the Stecker. Naturally enough we

never Wnd the Stecker without at the same time Wnding much other information.

Cribs

The most obvious kind of data for Wnding the keys is a ‘crib’, i.e. a message of

which a part of the decode is known. We shall mostly assume that our data is a

crib, although actually it may be a number of constatations2 arising from another

source, e.g. a number of CILLIs3 or a Naval Banburismus.

FORTYWEEPYYWEEPY methods

It is sometimes possible to Wnd the keys by pencil and paper methods when the

number of Stecker is not very great, e.g. 5 to 7. One would have to hope that

several of the constatations of the crib were ‘unsteckered’. The best chance would

be if the same pair of letters occurred twice in the crib (a ‘half-bombe’).4 In this

case, assuming 6 or 7 Stecker there would be a 25% chance of both constatations

being unsteckered. The positions at which these constatations occurred could

be found by means of the Turing sheets5 (if there were three wheels) or the

1 Editors’ note. This is the original title of chapter 6 of Turing’s Treatise.

2 Editors’ note. ‘Constatation: The association of a cipher letter and its assumed plain equivalent for a

particular position’ (Cryptographic Dictionary, 20; see p. 269 of Chapter 5 for details of the Dictionary: a

digital facsimile of the Dictionary is available in The Turing Archive for the History of Computing

<www.AlanTuring.net/crypt_dic_1944>).

3 Editors’ note. ‘CILLI: The employment or occurrence of the finishing position of one Enigma message

as the setting for enciphering the message setting of a second, . . . thus enabling the possible settings of the

first message to be calculated for the various permissible wheel-orders and . . . the setting and probable

wheel-order to be determined’ (Cryptographic Dictionary, 14). A psychological CILLI, PSILLI for short, is

‘any setting which can be guessed from a knowledge of the idiosyncrasies of the operator concerned’

(Cryptographic Dictionary, 63).

4 Editors’ note. In an earlier chapter of the Treatise Turing says, ‘. . . repetitions of constatations (half-

bombes as they are rather absurdly called)’ (p. 32 of the original typescript).

5 Editors’ note. A catalogue of wheel positions of a type described elsewhere in the Treatise (pp. 87 ff. of

Turing’s original typescript).

www.AlanTuring.net/crypt_dic_1944

JeVreys sheets.6 The positions at which this occurred could be separately tested.

Another possibility is to set up the inverse rods7 for the crib and to look for

clicks.8 There is quite a good chance of any apparent click being a real click

arising because all four letters involved are unsteckered. The position on the right

hand wheel is given by the column9 of the inverse rod set-up, and we can Wnd all

possible positions where the click coupling occurs from the Turing sheets or the

JeVreys sheets. In some cases there will be other constatations which are made up

from letters supposed to be unsteckered because they occur in the click, and these

will further reduce the number of places to be tested.

These methods have both of them given successful results, but they are not

practicable for cases where there are many Stecker, or even where there are few

Stecker and many wheel orders.

A mechanical method. The Bombe

Now let us turn to the case where there is a large number of Stecker, so many that

any attempt to make use of the unsteckered letters is not likely to succeed. To Wx

our ideas let us take a particular crib.10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D A E D A Q O Z S I Q M M K B I L G M P W H A I V

K E I N E Z U S A E T Z E Z U M V O R B E R I Q T

Presumably the method of solution will depend on taking hypotheses about

parts of the keys and drawing what conclusions one can, hoping to get either a

conWrmation or a contradiction. The parts of the keys involved are the wheel

order, the rod start11 of the crib, whether there are any turnovers12 in the crib and

if so where, and the Stecker. As regards the wheel order one is almost bound to

consider all of these separately. If the crib were of very great length one might

6 Editors’ note. A type of perforated sheet; see also pp. 233–4.

7 Editors’ note. ‘Rod: Strip of wood or other suitable material ruled off in equal compartments’ (Crypto-

graphicDictionary, 70). ‘Direct rod:A rod showing the letters on the right side of awheel of anEnigmamachine

[i.e. the side of the wheel farther from the reflector] that are consecutively connected to a fixed point in space

at the left side, for the twenty-six different positions of that wheel which occur in one revolution. Twenty-

six such rods can be constructed for each wheel, one for each of twenty-six fixed points on its left side

(corresponding to the contacts on a non-turning second wheel)’ (ibid. 30). ‘Inverse rod: A rod showing

the letters on the left side of a wheel of an Enigma machine that are consecutively connected to a fixed point

in space at the right side for the twenty-six different positions which occur in one revolution of that wheel’

(ibid. 46).

8 Editors’ note. See p. 296 and n. 39.

9 Editors’ note. The twenty-six rods formed what was a called a ‘rod-square’ with columns and rows.

‘Rod-square: Square of 26 letters by 26 (or rectangle of 26 by 52) formed by the direct or inverse rods of a

particular Enigma wheel arranged in order’ (Cryptographic Dictionary, 70).

10 Editors’ note. The crib means: no additions to preliminary report .

11 Editors’ note. The rod-position (see p. 238) of the wheels at the start of the cribbed ciphertext.

12 Editors’ note. See p. 226 for the explanation of turnovers.

Bombe and Spider | 315

make no assumption about what wheels were in the L.H.W.13 position and M.W.

position, and apply a method we have called ‘Stecker knock-out’ (an attempt of

this kind was made with the ‘Feindseligkeiten’ crib14 in Nov. ’39), or one might

sometimes make assumptions about the L.H.W. and M.W. but none, until a late

stage, about the R.H.W. In this case we have to work entirely with constatations

where the R.H.W. has the same position. This method was used for the crib from

the Schluesselzettel15 of the Vorpostenboot, with success; however I shall assume

that all wheel orders are being treated separately. As regards the turnover one will

normally take several diVerent hypotheses, e.g.:

1) turnover between positions 1 and 5

2) turnover between positions 5 and 10

3) turnover between positions 10 and 15

4) turnover between positions 15 and 20

5) turnover between positions 20 and 25

With the Wrst of these hypotheses one would have to leave out the constatations

in positions 2 to 4, and similarly in all the other hypotheses four constatations

would have to be omitted. One could of course manage without leaving out any

constatations at all if one took 25 diVerent hypotheses, and there will always be a

problem as to what constatations can best be dispensed with. In what follows I

shall assume we are working the T.O.16 hypothesis numbered 5)17 above. We have

not yet made suYciently many hypotheses to be able to draw any immediate

conclusions, and must therefore either assume something about the Stecker or

about the rod start. If we were to assume something about the Stecker our best

chance would be to assume the Stecker values of A and E, or of E and I, as we

should then have two constatations corrected for Stecker, with only two Stecker

assumptions. With Turing sheets one could Wnd all possible places where these

constatations occurred, of which we should, on the average, Wnd about 28.1. As

there would be 626 hypotheses of this kind to be worked we should gain very

little in comparison with separate examination of all rod starts. If there had not

been any half-bombes in the crib we should have fared even worse. We therefore

work all possible hypotheses as to the rod start, and to simplify this we try to Wnd

characteristics of the crib which are independent of the Stecker. Such character-

istics can be seen most easily if the crib is put in to the form of a picture

13 Editors’ note. L.H.W. ¼ left-hand wheel; similarly for M.W. and R.H.W.

14 Editors’ note. Feindseligkeiten ¼ hostilities.

15 Editors’ note. Schluesselzettel ¼ key sheet; Vorpostenboot ¼ patrol boat. German records show that the

boat was the Schiff 26 (erroneously identified as the VP 2623 in some accounts). See R. Erskine, ‘The First

Naval Enigma Decrypts of World War II’, Cryptologia, 21 (1997), 42–6.

16 Editors’ note. Turnover.

17 Editors’ note. Turing says hypothesis number 5 but the menu in Fig. 59 shows that the turnover

hypothesis is number 4. (Turing’s original numbering of the figures has been retained.)

316 | Alan Turing

P B U

R H

O
20

22

21

3

2
1023

24

11

25

598

6

1312

1414

15 7

WE

M

AS

Q

T

V

ZKDN

I

Figure 59. Picture from KEINE ZUSAETZE crib. Constatations 16 to 19 omitted to allow for

turnover.

like Fig. 59. From this picture we see that one characteristic which is independent

of the Stecker is that there must be a letter which enciphered at either position 2

or position 5 of the crib gives the same result. This may also be expressed by

saying that there must be a letter such that, if it is enciphered at position 2, and

the result re-enciphered at position 5, the Wnal result will be the original letter.

Another such condition is that the same letter enciphered successively at the

positions 3, 10 must lead back to the original letter. Three other conditions of

this kind are that the successive encipherments at positions 2, 23, 3 or at 2, 9, 8, 6,

24, 3 or at 13, 12, 8, 9, 5 starting from the same letter as before must lead back to

it. There are other such series, e.g. 13, 12, 6, 24, 3, but these do not give

conditions independent of the others. The letter to which all these multiple

encipherments are applied is, of course, the Stecker value of E. We shall call E

the ‘central letter’. Any letter can of course be chosen as [the] ‘central letter’, but

the choice aVects the series of positions or ‘chains’ for the multiple encipher-

ments. There are other conditions, as well as these that involve the multiple

encipherments. For instance the Stecker values of the letters in Fig. [59] must all

be diVerent. The Stecker values for E, I, M, Z, Q, S, A are the letters that arise

at the various stages in the multiple encipherments and the values for W, T, V,

N, D, K can be found similarly. There is also the condition that the Stecker must

be self-reciprocal, and the other parts or ‘webs’ of Fig. 59, P-B-U-O and R-H, will

also restrict the possibilities somewhat. Of these conditions the multiple en-

cipherment one is obviously the easiest to apply, and with a crib as long as the

one above this condition will be quite suYcient to reduce the possible positions

to a number which can be tested by hand methods. It is actually possible to make

use of some of the other conditions mechanically also; this will be explained later.

In order to apply the multiple encipherment condition one naturally wants to

be able to perform the multiple encipherments without Stecker in one operation.

Bombe and Spider | 317

To do this we make a new kind of machine which we call a ‘Letchworth Enigma’.

There are two rows of contacts in a Letchworth Enigma each labelled A to Z and

called the input and output rows: there are also moveable wheels. For each

position of an ordinary Enigma there is a corresponding position of the Letch-

worth Enigma, and if the result of enciphering F at this position is R, then F on

the input row of the Letchworth Enigma is connected to R on the output row,

and of course R on the input row to F on the output row. Such a ‘Letchworth

Enigma’ can be made like an ordinary Enigma, but with all the wiring of the

moveable wheels in duplicate, one set of wires being used for the journey towards

the Umkehrwalze,18 and the others for the return journey. The Umkehrwalze has

two sets of contacts, one in contact with the inward-journey wiring of the L.H.W.

and one in contact with the outward-journey wiring. The Umkehrwalze wiring is

from the one set of contacts across to the other. In the actual design used there

were some other diVerences; the wheels did not actually come into contact with

one another, but each came into contact with a ‘commutator’ bearing 104 Wxed

contacts. These contacts would be connected by Wxed wiring to contacts of other

commutators. These contacts of the commutators can be regarded as physical

counterparts of the ‘rod points’ and ‘output points’ for the wheels.

If one has two of these ‘Letchworth Enigmas’ one can connect the output

points of the one to the input points of the other and then the connections

through the two Enigmas between the two sets of contacts left over will give the

eVect of successive encipherments at the positions occupied by the two Enigmas.

Naturally this can be extended to the case of longer series of Enigmas, the output

of each being connected to the input of the next.

Now let us return to our crib and see how we could use these Letchworth

Enigmas. For each of our ‘chains’ we could set up a series of Enigmas. We should

in fact use 18 Enigmas which we will name as follows.

A1, A2 with the respective positions 2, 5

B1, B2 3, 10

C1, C2, C3 2, 23, 3

D1, D2, D3, D4, D5, D6 2, 9, 8, 6, 24, 3

E1, E2, E3, E4, E5 13, 12, 8, 9, 5

By ‘position 8’ we here mean ‘the position at which the constatation numbered 8

in the crib, is, under the hypothesis we are testing, supposed to be enciphered’.

The Enigmas are connected up in this way: output of A1 to input of A2: output

of B1 to input of B2: output of C1 to input of C2, output of C2 to input of C3:

etc. This gives us Wve ‘chains of Enigmas’ which we may call A, B, C, D, E, and

there must be some letter, which enciphered with each chain gives itself. We

could easily arrange to have all Wve chains controlled by one keyboard, and to

18 Editors’ note. See p. 269.

318 | Alan Turing

have Wve lampboards shewing the results of the Wve multiple encipherments of

the letter on the depressed key. After one hypothesis as to the rod start had been

tested one would go on to the next, and this would usually involve simply

moving the R.H.W. of each Enigma forward one place. When 26 positions of

the R.H.W. have been tested the M.W. must be made to move forward too. This

movement of the wheels in step can be very easily done mechanically, the right

hand wheels all being driven continuously from one shaft, and the motion of the

other wheels being controlled by a carry mechanism.

It now only remains to Wnd a mechanical method of registering whether the

multiple encipherment condition is fulWlled. This can be done most simply if we

are willing to test each Stecker value of the central letter throughout all rod starts

before trying the next Stecker value. Suppose we are investigating the case where

the Stecker value of the central letter E is K. We let a current enter all of the chains

of Enigmas at their K input points, and at the K output points of the chains we

put relays. The ‘on’ points of the Wve relays are put in series with a battery (say),

and another relay. A current Xows through this last relay if and only if a current

Xows through all the other Wve relays, i.e. if the Wve multiple encipherments

applied to K all give K. When this happens the eVect is, essentially, to stop the

machine, and such an occurrence is known at Letchworth as a ‘straight’. An

alternative possibility is to have a quickly rotating ‘scanner’ which, during a

revolution, would Wrst connect the input points A of the chains to the current

supply, and the output points A to the relays, and then would connect the input

and output points B to the supply and relays. In a revolution of the scanner the

output and input points A to Z would all have their turn, and the right hand

wheels would then move on. This last possible solution was called ‘serial scan-

ning’ and led to all the possible forms of registration being known as diVerent

kinds of ‘scanning’. The simple possibility that we Wrst mentioned was called

‘single line scanning’. Naturally there was much research into possible alterna-

tives to these two kinds of scanning, which would enable all 26 possible

Stecker values of the central letter to be tested simultaneously without any

parts of the machine moving. Any device to do this was described as ‘simultan-

eous scanning’.

The solution which was eventually found for this problem was more along

mathematical than along electrical engineering lines, and would really not have

been a solution of the problem as it was put to the electricians, to whom we gave,

as we thought, just the essentials of the problem. It turned out in the end that

we had given them rather less than the essentials, and they therefore cannot be

blamed for not having found the best solution. They did Wnd a solution of the

problem as it was put to them, which would probably have worked if they had

had a few more months experimenting. As it was the mathematical solution was

found before they had Wnished.

Bombe and Spider | 319

Pye19 simultaneous scanning

The problem as given to the electricians was this. There are 52 contacts labelled

A . . . Z, A0, . . . , Z0. At any moment each one of A, . . . , Z is connected to

one and only one of A0, . . . , Z0: the connections are changing all the time

very quickly. For each letter of the alphabet there is a relay, and we want to

arrange that the relay for the letter R will only close if contact R is connected

to contact R0.
The latest solution proposed for this problem depended on having current at

26 equidistant phases corresponding to the 26 diVerent letters. There is also

a thyratron valve20 for each letter. The Wlaments of the thyratrons are given

potentials corresponding to their letters, and the grids are connected to the

corresponding points A0, . . . , Z0. The points A, . . . , Z are also given potentials

with the phase of the letter concerned. The result is that the diVerence of

potential of the Wlament and the grid of thyratron A oscillates with an ampli-

tude of at least 2p E
27
, [2E sin p

26
], E being the amplitude of the original 26 phase

supply, unless A and A0 are connected through the chain, in which case the

potentials remain the same or diVer only by whatever grid bias has been put into

the grid circuit.21 The thyratrons are so adjusted that an oscillation of amplitude

2p E
27

will bring the potential of the grid to the critical value and the valve will

‘Wre’. The valve is coupled with a relay which only trips if the thyratron fails to

Wre. This relay is actually a ‘diVerential relay’, with two sets of windings, one

carrying a constant current and the other carrying the current from the anode

circuit of the thyratron. Fig. 60 shews a possible form of circuit. It is probably not

the exact form of circuit used in the Pye experiments, but is given to illustrate the

theoretical possibility.

The Spider

We can look at the Bombe in a slightly diVerent way as a machine for making

deductions about Stecker when the rod start is assumed. Suppose we were to put

lamp-boards in between the Enigmas of the chains, and label the lamp-boards with

the appropriate letters oV Wgure [number missing but presumably 59]. For example

19 Editors’ note. Pye Limited was an electronics company located in Cambridge. Prior to the war Pye

marketed radio and TV receivers. From the end of 1939 the company devoted itself to war work, chiefly the

development and production of R.D.F. (radar) equipment and radio-based proximity fuses for munitions.

(Thanks to David Clayden and M. Cosgrove for this information.)

20 A thyratron valve has the property that no current flows in the anode circuit until the grid potential

becomes more [positive] than a certain critical amount, after which the current continues to flow, regardless

of the grid potential, until the anode potential is switched off. [See note to Fig. 60.]

21 Editors’ note. Turing is using an approximation to describe the amplitude. We have inserted the real

expression in square brackets. This expression has been independently derived by Donald Davies and Martin

Slack and we are grateful for their assistance.

320 | Alan Turing

26 Phase
Supply

A

A A B

A'

B B'

Figure 60. Circuit for Pye simultaneous scanning.

Editors’ note: The Wgure shows a thyratron valve (the smaller of the two circles) in a circuit connected to a 26-

phase supply. A thyratron is a gas or mercury vapour Wlled valve with three connections, called the anode, the

cathode, and, between them, the grid. Current begins to Xow through the valve once the grid voltage reaches a

certain level. Once current has started Xowing through the valve, it can be turned oV only by dropping the

anode voltage to zero. The component depicted at the upper left of the diagram (a breakable contact with two

parallel coils shown beneath it) is a relay controlled by the thyratron. The two vertical lines of dots indicate

identical repetitions of the same circuit. In total there are 26 thyratrons and 26 relays. The cathode of each

thyratron is connected to one of the twenty-six input points of the Wrst Letchworth Enigma in a chain, and

the grid of each thyratron is connected to the corresponding output point of the last Letchworth Enigma in

the chain. Each input point is supplied with one phase of the 26-phase supply.

The relay is of the diVerential type described by Turing on pp. 325, 327 and used extensively in the bombe.

A diVerential relay has two coils; in Fig. 60 one of the relay’s coils is permanently powered from the cathode

supply via a resistor, and the second coil is powered via the thyratron. The idea is that if, for instance, point

R is connected to point R0 (as in Turing’s description on p. 320) then there will be no grid supply signal to

this thyratron and so it will not ‘Wre’ (i.e. current will not start to Xow through the valve), while all the other

thyratrons will ‘Wre’, thereby energizing the second coil of their respective diVerential relays. This will result

in the relay attached to R—but none of the other relays—being switched on by the constant current in its

Wrst coil. At the start of each round of scanning, the anode supply would be momentarily interrupted,

switching all the thyratrons oV and resetting all the diVerential relays. This interruption can itself be

performed electronically.

The 26-phase supply is not a rotary arrangement but a Wxed supply generating sinusoidal signals with 26

equidistant phases. Such supplies can be made in various ways, usually using a number of transformers with

diVerent taps; the taps sum together to produce the desired phase relationships. Turing does not provide

details of the construction of the 26 phase supply. In correspondence concerning Fig. 60, Donald Davies has

suggested that the supply might consist of an ‘arrangement using two transformers in quadrature with

signals 3, 2, 1, 0,�1,�2,�3 times some unit value (E/3) from each transformer. This gives 49 signals and 26

of these can be chosen so that the maximum individual amplitude E corresponds to a minimum diVerence

signal of E/3, better than their value 0.24E. This would be easier to produce than 26 equidistant phases.

There are better distributions still, but a bit more diYcult to produce.’ Turing’s sketch shows the cathode,

anode, and grid of the thyratron as being powered by batteries. In an engineered form of the circuit, the

power would be more likely to come from a mains supply via suitable transformers. The grid bias supply

might be regulated electronically.

(Thanks to Martin Slack for information.)

Bombe and Spider | 321

in chain C the lamp-board between C1 and C2 would be labelled A. The key-

board, if we were using one, could be labelled with the ‘central letter’. Now when

we depress a letter of the key-board we can read oV from the lamp-boards some

of the Stecker consequences of the hypothesis that the depressed letter is steck-

ered to the central letter: for one such consequence could be read oV each lamp-

board, namely that the letter lighting is steckered to the name of the lamp-board.

When we look at the Bombe in this way we see that it would be natural to

modify it so as to make this idea Wt even better. We have not so far allowed for

lengthy chains of deductions; the possible deductions stop as soon as one comes

back to the central letter. There is however no reason why, when from one

hypothesis about the Stecker value of the central letter we have deduced that

the central letter must have another Stecker value, we should not go on and draw

further conclusions from this second Stecker value. At Wrst sight this seems quite

useless, but, as all the deductions are reversible, it is actually very useful, for all

the conclusions that can be drawn will then be false, and those that remain will

stand out clearly as possible correct hypotheses. In order that all these deductions

may be made mechanically we shall have to connect the 26 contacts at the end of

each chain to the common beginning of all the chains. With this arrangement we

can think of each output or input point of an Enigma as representing a possible

Stecker, and if two of these points are connected together through the Enigmas

then the corresponding Stecker imply one another. At this point we might see

how it all works out in the case of the crib given above. This crib was actually

enciphered with alphabets which, when corrected for their Stecker, are those

given below, the numbers over the crib constatations giving the column head-

ings.22 The alphabets most used below are 2, 3, 5, 10, 23, and these are repro-

duced here for reference.

2 3 5 10 23

XN XH MD TB LV

AP BU JZ IH WC

QK EN CV RU DI

CV PK SA XE OM

TF QI YE CV XU

UO AW GR JY FT

MS OV PQ DF JP

BD JY NW SL GE

IW DM LH ON AY

JZ RZ BX QW NB

GR SL FU AZ HS

YE GT OI PK ZQ

HL FC KT GM RK

22 Editors’ note. The alphabets have been generated by a one-wheel Enigma machine consisting of the

Umkehrwalze (UKW) and wheel III (Green) from the Railway Enigma.

322 | Alan Turing

In Fig. 61 at the top are the chains, with the positions and the letters of the

chain. In each column are written some of the letters which can be inferred to

be Stecker values of the letters at the heads of their columns from the

hypothesis that X is a Stecker value of the central letter E. By no means all

possible inferences of this kind are made in the Wgure, but among those that are

made are all possible Stecker values for E except the right one, L. If we had

taken a rod start that was wrong we should almost certainly have found that

all of the Stecker values of E could be deduced from any one of them, and this

will hold for any cribs with two or more chains. Remembering now that with our

Bombe one Stecker is deducible from another if the corresponding points on the

lamp-boards are connected through the Enigmas, a correct rod start can only be

one for which not all the input points of the chains are connected together; the

positions at which this happens are almost exactly those at which a Bombe with

simultaneous scanning would have stopped.

This is roughly the idea of the ‘spider’. It has been described in this section as a

way of getting simultaneous scanning on the Bombe, and has been made to look

as much like the Bombe as possible. In the next section another description of

the spider is given.

The Spider. A Second Description. Actual Form

In our original description of the Bombe we thought of it as a method of looking

for characteristics of a crib which are independent of Stecker, but in the last

section we thought of it more as a machine for making Stecker deductions. This

last way of looking at it has obviously great possibilities, and so we will start

afresh with this idea.

In the last section various points of the circuit were regarded as having certain

Stecker corresponding to them. We are now going to carry this idea further and

have a metal point for each possible Stecker. These we can imagine arranged in a

rectangle. Each point has a name such as Pv: here the capital letters refer to

‘outside’ points and the small letters to ‘inside letters’; an outside letter is the

name of a key or bulb, and so can be a letter of a crib, while an inside letter is the

name of a contact of the Eintrittwalze,23 so that all constatations obtained from

the Enigma without Stecker give information about inside letters rather than

outside. Our statements will usually be put in rather illogical form: statements

like ‘J is an outside letter’ will usually mean ‘J is occurring in so and so as the

name of a key rather than of a contact of the Eintrittwalze’. The rectangle is called

the ‘diagonal board’ and the rows are named after the outside letters, the

columns after the inside letters. Now let us take any constatation of our crib

e.g. Q
I
at 24. For the position we are supposed to be testing we will have an

23 Editors’ note. See p. 225.

Bombe and Spider | 323

E
2
A

5
E E

3
I
10

E E
2
A

23
I
3
E E

2
A

9
S

8
Z

6
Q

24
I
3
E E

13
M

12
Z

8
S

9
A

5
E

XHI
IQW
WAZ A /
ZRU B /
UBT C /
TGM D /
MDF E /
FCV F /
VON G/
NEX H /

XNW I /
WIO J /
OUF K /
FTK L
KQP M/
PAS N /
SMD O/
DBX1 P /

OVC Q/
CFD R /
DMG S /
GTB T /
BUR U /
RZA V /
AWQ W/
QIH X /
HXE Y /
ENO Z /
KPK
PKP
SLS

IWN APJY
NXB YJY
BDM PAYJ
MSA JYJ

Figure 61. Stecker deductions with crib on p. [315], with correct rod start and correct

alphabets, but starting from an incorrect Stecker hypothesis E/X. All other incorrect

Stecker values of E are deduced.

1 Editors’ note. Turing has written DBN but it must be DBX.

324 | Alan Turing

E
2
A

5
E E

3
I
10

E E
2
A

23
I
3
E E

2
A

9
S

8
Z

2
Q

24
I
3
E E

13
M

12
Z

8
S

9
A

5
E

L H L L S L L H S L L H I R W S L L M R I H L

Figure 62. Stecker deductions with same alphabets as Fig. 61, but from correct Stecker

hypothesis E/L.

Enigma set up at the right position for encoding this constatation, but of course

without any Stecker. Let us suppose it set up for the correct position, then one of

the pairs in the alphabet in position 24 is OC: consequently if Qo then Ic (i.e. if

outside letter Q is associated with inside o then outside I is associated with inside

c). Now if we connect the input of the (Letchworth) Enigma to the correspond-

ing points of the diagonal board on line Q and the output to line I then since

the ‘o’ input point is connected to the ‘c’ output point we shall have Qo on the

diagonal board connected to Ic through the Letchworth Enigma. We can of

course put in a Letchworth Enigma for every constatation of the crib, and then

we shall have all the possible deductions that can be made about the association

of inside and outside letters paralleled in the connections between the points of

the diagonal board. We can also bring in the reciprocal property of the Stecker by

connecting together diagonally opposite points of the diagonal board, e.g.

connecting Pv to Vp. One can also bring in other conditions about the Stecker,

e.g. if one knows that the letters which were unsteckered on one day are

invariably steckered on the next then, having found the keys for one day’s

traYc, one could when looking for the keys for the next day connect together

all points of the diagonal board which correspond to non-steckers which had

occurred on the previous day. This would of course not entirely eliminate the

inadmissible solutions, but would enormously reduce their number, the only

solutions which would not be eliminated being those which were inadmissible on

every count.

One diVerence between this arrangement and the Bombe, or the spider as we

described it in the last section, is that we need only one Enigma for each

constatation.

Our machine is still not complete, as we have not put in any mechanism for

distinguishing correct from incorrect positions. In the case of a crib giving a

picture like Fig. 59 where most of the letters are connected together in one ‘web’

it is suYcient to let current into the diagonal board at some point on some line

named after a letter on the main web, e.g. at the Ea point in the case of the crib

we have been considering. In this case the only possible positions will be ones in

which the current fails to reach all the other points of the E line of the diagonal

board. We can detect whether this happens by connecting the points of the E line

through diVerential relays to the other pole of our current supply, and putting

the ‘on’ points of the relays in parallel with one another and in series with the

stop mech[anism]. Normally current will Xow through all the diVerential relays,

Bombe and Spider | 325

5
2 2 233 3

I E A E A I A
W A

Q

U
T

I
N
B
M

W→
I →

X →

N →

P
K
F
O
W
X
D
S

Q

H L

YE

O
F
K
P
S
D
X
W

Z J

V

R

CC V

RU

GM

HLS

V C

UR

A

I
N
B
M
A
Q
T
U

→

→

→
→
→
→
→
→
→
→

 → →
→

→

 →

 →

 →

→ →

 →

 →

 → →

 →

 → →
 →
→
→
→
→
→

3

3

3

10

10

10 2 23 3
S

B

P

A

A

Y

Y

J

J

M O V

LL HH SS L

Z /
Y

X /

W/

V /

U /

T /

S /

R /

Q/
P /
O/
N /
M/
L
K /
J /

I /

H /

G/
F /
E /
D /
C /
B /
A /

←

←

←

←

←

←←

←←

← ←

Figure 62a.

Editors’ note: This figure, which has no caption or other explanation, follows Fig. 62. The label ‘Figure 62a’

is our own: in Turing’s typescript, neither the figure nor the page containing it is numbered. The appearance

is that of a worksheet rather than of a figure that belongs to the text.

326 | Alan Turing

and they will not move. When one reaches a position that might be correct the

current fails to reach one of these relays, and the current permanently Xowing in

the other coil of the relay causes it to close, and bring the stoppingmechanism into

play. Mostly what will happen is that there will be just one relay which closes, and

this will be one connected to a point of the diagonal board which corresponds to a

Stecker which is possibly correct: more accurately, if this Stecker is not correct the

position is not correct. Another possibility is that all relays close except the

one connected to the point at which current enters the diagonal board, and this

point then corresponds to the only possible Stecker. In cases where the data is

rather scanty, and the stops therefore very frequent, other things may happen, e.g.

we might Wnd four relays closing simultaneously, all of them connected together

through the Enigmas and the cross connections of the diagonal board, and

therefore none of them corresponding to possible Stecker.

In order for it to be possible to make the necessary connections between the

Enigmas, the diagonal board and the relays there has to be a good deal of

additional gear. The input and output rows of the Enigmas are brought to

rows of 26 contacts called ‘female jacks’. The rows of the diagonal board are

also brought to female jacks. The 26 relays and the current supply are also

brought to a jack. Any two female jacks can be connected with ‘plaited jacks’

consisting of 26 wires plaited together and ending in male jacks which can be

plugged into the female jacks. In order to make it possible to connect three or

more rows of contacts together one is also provided with ‘commons’ consisting

of four female jacks with corresponding points connected together. There is also

a device for connecting together the output jack of one Enigma and the input of

the next, both being connected to another female jack, which can be used for

connecting them to anywhere else one wishes.

On the Wrst spider made there were 30 Enigmas, and three diagonal boards

and ‘inputs’ i.e. sets of relays and stopping devices. There were also 15 sets of

commons.

Figs 63, 64 shew the connections of Enigmas and diagonal board in a particu-

lar case. The case of a six-letter alphabet has been taken to reduce the size of the

Wgure.

The actual origin of the spider was not an attempt to Wnd simultaneous

scanning for the Bombe, but to make use of the reciprocal character of the

Stecker. This occurred at a time when it was clear that very much shorter cribs

would have to be worked than could be managed on the Bombe. Welchman then

discovered that by using a diagonal board one could get the complete set of

consequences of a hypothesis. The ideal machine that Welchman was aiming at

was to reject any position in which a certain Wxed-for-the-time Stecker hypoth-

esis led to any direct contradiction: by a direct contradiction I do not mean

to include any contradictions which can only be obtained by considering all

Stecker values of some letter independently and shewing each one inconsistent

Bombe and Spider | 327

Input jack

5 out, D 5 out, E 5 out, F 5 out, A 5 out, B 5 out, C

Fa Fb Fc Fd Fe Ff

5 in, A 5 in, B 5 in, C 5 in, D 5 in, E 5 in, F

Enigma 5 (arriving from F
C)

5 out, A 5 out, B 5 out, C 5 out, D 5 out, E 5 out, F

Output jack Ca Cb Cc Cd Ce Cf

5 in, D 5 in, E 5 in, F 5 in, A 5 in, B 5 in, C

1 out, F 1 out, D 1 out, E 1 out, B 1 out, C 1 out, A

Input jack Fa Fb Fc Fd Fe Ff

1 in, A 1 in, B 1 in, C 1 in, D 1 in, E 1 in, F

Enigma 1
arriving from
constatation F

A

	

1 out, A 1 out, B 1 out, C 1 out, D 1 out, E 1 out, F

Output jack Aa Ab Ac Ad Ae Af

1 in, F 1 in, D 1 in, E 1 in, B 1 in, C 1 in, A

2 out, B 2 out, A 2 out, D 2 out, C 2 out, F 2 out, E

Input jack Aa Ab Ac Ad Ae Af

2 in, A 2 in, B 2 in, C 2 in, D 2 in, E 2 in, F

Enigma 2 (arriving from A
C)

2 out, A 2 out, B 2 out, C 2 out, D 2 out, E 2 out, F

Output jack Ca Cb Cc Cd Ce Cf

2 in, B 2 in, A 2 in, D 2 in, C 2 in, F 2 in, E

3 out, F 3 out, D 3 out, E 3 out, B 3 out, C 3 out, A

Input jack Ca Cb Cc Cd Ce Cf

3 in, A 3 in, B 3 in, C 3 in, D 3 in, E 3 in, F

Enigma 3 (arriving from C
E)

3 out, A 3 out, B 3 out, C 3 out, D 3 out, E 3 out, F

Output jack Ea Eb Ec Ed Ee Ef

3 in, F 3 in, D 3 in, E 3 in, B 3 in, C 3 in, A

4 out, C 4 out, E 4 out, A 4 out, F 4 out, B 4 out, D

Input jack Ea Eb Ec Ed Ee Ef

4 in, A 4 in, B 4 in, C 4 in, D 4 in, E 4 in, F

Enigma 4 (arriving from E
F)

4 out, A 4 out, B 4 out, C 4 out, D 4 out, E 4 out, F

Output jack Fa Fb Fc Fd Fe Ff

4 in, C 4 in, E 4 in, A 4 in, F 4 in, B 4 in, D

Figure 63. Spider connections with Enigma for 6 letter alphabet and crib

1 2 3 4 5
A C E F F
F A C E C

alphabets

1 2 3 4 5
AF AB AF AC FC
BD CD BD BE BE
EC EF DE DF DA

.

Names of contact are given in purple ink, contacts to which they are connected in green

[in the original]. Connections of diagonal board to Enigmas Fig. 64.

328 | Alan Turing

Aa
1 out, A
2 in, A

Ab Ba
1 out, B
2 in, B

Ac Ca
1 out, C
2 in, C

Ad Da
1 out, D
2 in, D

Ae Ea
1 out, E
2 in, E

Af Fa
1 out, F
2 in, F

Ba Ab Bb Bc Cb Bd Db Be Eb Bf Fb

Da Ad Db Bd Dc Cd Dd De Ed Df Fd

Ca Ac
2 out, A
3 in, A
5 out, A

Fa Af
4 out, A
1 in, A
5 in, A

Fb Bf
4 out, B
1 in, B
5 in, B

Fc Cf
4 out, C
1 in, C
5 in, C

Fd Df
4 out, D
1 in, D
5 in, D

Fe Ef
4 out, E
1 in, E
5 in, E

Ff
4 out, F
1 in, F
5 in, F

Eb Be
3 out, B
4 in, B
Input B,

(relay)

Ec Ce
3 out, C
4 in, C
Input C

Ed De
3 out, D
4 in, D
Input D

Ee
3 out, E
4 in, E
Input E

Ef Fe
3 out, F
4 in, F
Input F

Cb Bc
2 out, B
3 in, B
5 out, B

Cc
2 out, C
3 in, C
5 out, C

Cd Dc
2 out, D
3 in, D
5 out, D

Ce Ec
2 out, E
3 in, E
5 out, E

Cf Fc
2 out, F
3 in, F
5 out, F

current enters

Ea Ae
3 out, A
4 in, A
Input A,

Figure 64. Connections of diagonal board. See Fig. 63. ‘Input’ is at E. Correct

hypothesis E/A. The squares in this figure represent contacts. As in Fig. [63] the purple

letters are names and the green letters shew the contacts to which they are connected

[in the original].

with the original hypothesis. Actually the spider does more than this in

one way and less in another. It is not restricted to dealing with one Stecker

hypothesis at a time, and it does not Wnd all direct contradictions.

Naturally enough Welchman and Keen set to work to Wnd some way of

adapting the spider so as to detect all direct contradictions. The result of this

research is described in the next section. Before we can leave the spider however

we should see what sort of contradictions it will detect, and about how many

stops one will get with given data.

First of all let us simplify the problem and consider only ‘normal’ stops, i.e.

positions at which by altering the point at which the current enters the diagonal

board to another pt [point] on the same line one can make 25 relays close

[illegible; may be ‘and there is only one such pt’]. The current will then be

entering at a correct Stecker if the position is correct. Let us further simplify

the problem by supposing that there is only one ‘web’, i.e. that the ‘picture’

formed from the part of the crib that is being used forms one connected piece,

Bombe and Spider | 329

e.g. with the crib on p [missing, presumably a reference to Fig. 59] we should have

one web if we omit the constatations

P B U R

B U O H.

Some of the constatations of the web could still be omitted without any of the

letters becoming disconnected from the rest. Let us choose some set of such

constatations, in such a way that we cannot omit any more constatations without

the web breaking up.When the constatations are omitted there will of course be no

‘chains’ or ‘closures’. This set of constatations may be called the ‘chain-closing

constatations’ and the others will be called the ‘web-forming constatations’. At any

positionwemay imagine that the web-forming constatations are brought into play

Wrst, and only if the position is possible for these are the chain-closing constata-

tions used. Now the Stecker value of the input letter and the web-forming

constatations will completely determine the Stecker values of the letters occurring

in the web. When the chain closing constatations are brought in it will already be

completely determined what are the corresponding ‘unsteckered’ constatations, so

that if there are c chain-closing constatations the Wnal number of stops will be a

proportion 26�c of the stops which occur if they are omitted. Our problem reduces

therefore to the case inwhich there are no closures. It is, I hope, also fairly clear that

the number of stops will not be appreciably aVected by the branch arrangement of

the web, but only by the number of letters occurring in it. These facts enable us to

make a table for the calculation of the number of stops in any case where there is

only one web. The method of construction of the table is very tedious and

uninteresting. The table is reproduced below.

No. of letters on web H-M factor24

No. of answers ¼ 264�c� H-M factor

c is number of closures

2 0.92

3 0.79

4 0.62

5 0.44

6 0.29

7 0.17

8 0.087

9 0.041

10 0.016

11 0.0060

12 0.0018

13 0.00045

14 0.000095

15 0.000016

16 0.0000023

24 Editors’ note. In the PRO copy there is a handwritten note by Joan Murray, formerly Joan Clarke of

Hut 8, explaining that H-M stands for Holland-Martin of the British Tabulating Machine Company.

330 | Alan Turing

A similar table has also been made to allow for two webs, with up to Wve letters

on the second. To the case of three webs it is not worth while and hardly possible

to go. One can often get a suYciently good estimate in such cases by using

common-sense inequalities, e.g. if we denote the H-M factor for the case of

webs with m, n, and p letters by H(m, n, p) we shall have the common-sense

inequalities

H(m, 3, 2)

H(m, 0, 0)
<

H(m, 3, 0)

H(m, 0, 0)
�H(m, 2, 0)

H(m, 0, 0)

H(m, 3, 2) > H(m, 4, 0)

To see what kind of contradictions are detected by the machine we can take

the picture, Fig. 59, and on it write against each letter any Stecker values of that

letter which can be deduced from the Stecker hypothesis which is read oV the

spider when it stops. This has been done in Fig. 65 for a case where the input was

on letter E of the diagonal board, and the relay R closed when the machine

stopped; if the position of the stop were correct at all the correct Stecker would

be given by the points of the diagonal board which were connected to

Er, and they will also be the direct consequences of the Stecker hypothesis E/R.

As we are assuming that R was the only relay to close this relay cannot have

been connected to any of the others, or it would have behaved similarly. We

cannot therefore deduce any other Stecker value for E than R, and this

explains why on the ‘main web’ in Fig. 65 there is only one pencil letter against

each ink letter. Wherever any pencil letter is the same as an ink letter we are

able to write down another pencil letter corresponding to the reciprocal Stecker

or to the diagonal connections of the board. In one or two cases we Wnd that the

letter we might write down is there already. In others the new letter is written

against a letter of one of the minor webs; in such a case we clearly have a

contradiction, but as it does not result in a second set of pencil letters on

the main web the machine is not prevented from stopping. There are other

contradictions; e.g. we have Z/L, W/L, but as L does not occur in the crib this has

no eVect.

The machine gun

When using the spider there is a great deal of work in taking down data about

stops from the machine and in testing these out afterwards, making it hardly

feasible to run cribs which give more than 5 stops per wheel order. As the

complete data about the direct consequences of any Stecker hypothesis at any

position are already contained in the connections of the points of the diagonal

board it seems that it should be possible to make the machine do the testing

Bombe and Spider | 331

25

6

11
24

21

12

14

15

22

20

1

7

1

10 11

20 21 22 23 24 25194

12 13 14 15 16 17 18

2 3 4 5 6 7 8 9

4

10
2

5

13

98

3

Q

Q

IV

N

P B U

R H

O

D K Z S A

M

E W

T

T V

U

D
F
M

C
R
O

K
N
U

B

AU AR RV

RV QT

DC RL BL AV QI

FR

MO

LP LU

AR

CK

RN

OU

KX

NY

UB

LH AHTL2AU1

PR3

VT

L

X
Y
B

A U L

H A

P

R L

Relevant parts of alphabets

I

Figure 65. Illustrating the kind of position at which the spider will stop. Here the input

letter may be supposed to be E and the relay which closed R. The Stecker values of the

letters, which are consequences of the hypothesis E/R are written against the letters. There

are contradictions such as Z/L, W/L: P/D, P/F, P/M which are not observed by the spider.

1 Editors’ note. Originally ND, but ND are the menu letters. Should be AU.

2 Editors’ note. Orginally QL, should be TL.

3 Editors’ note. Originally ME, but ME are the menu letters. Should be PR.

4 Editors’ note. The table in the Treatise has column 20 positioned under column 19 and all the

subsequent columns shifted one place to the left with a column 26 added at the end. This is clearly an

error. There is no column 19 in this menu as the four constatations 16 to 19 have been left out (as Turing has

already explained) due to the turnover hypothesis selected.

332 | Alan Turing

itself. It would not be necessary to improve on the stopping arrangement of

the spider itself, as one could use the spider as already described, and have an

arrangement by which, whenever it stopped, a further mechanism is brought into

play, which looks more closely into the Stecker. Such a mechanism will be

described as a machine gun, regardless of what its construction may be.

With almost any crib the proportion of spider stops that could be passed by a

machine gun as possible would be higher than the ratio of spider stops to total

possible hypotheses. Consequently the amount of time that can economically be

allowed to the machine gun for examining a position is vastly greater than can be

allowed to the spider. We might for instance run a crib which gives 100 spider

stops per wheel order, and the time for running, apart from time spent during

stops, might be 25 minutes. If the machine gun were allowed 5 seconds per

position, as compared with the spider’s 1/10 second, only 8 minutes would be

added to the time for the run.

When the spider stops, normally the points of the diagonal board which are

energised are those corresponding to supposedly false Stecker. Naturally it would

be easier for the machine gun if the points energised corresponded to supposedly

correct Stecker. It is therefore necessary to have some arrangement by which

immediately after the spider stops the point of entry of the current is altered to

the point to which the relay which closed was connected, or is left unaltered in the

case that 25 relays closed. Mr. Keen has invented some device for doing this,

depending entirely on relay wiring. I do not know the details at present, but

apparently the eVect is that the machine does not stop at all except in cases in

which either just one relay closes or 25 relays close. In the case that 25 relays close

the current is allowed to continue to enter at the same point, but if just one relay

closes the point of entry is changed over to this relay. This method has the possible

disadvantage that a certain number of possible solutions may be missed through

not being of normal type. This will only be serious in cases where the frequency of

spider stops is very high indeed, e.g. 20%, and some other method, such as

‘Ringstellung cut-out’ is being used for further reducing the stops. An alternative

method is to have some kind of a ‘scanner’ which will look for relays which are not

connected to any others. Which method is to be used is not yet decided.25

At the next stage in the process we have to see whether there are any contradic-

tions in the Stecker; in order to reduce the number of relays involved this is done in

stages. In the Wrst stage we see whether or not there are two diVerent Stecker values

for A, in the second whether there are two diVerent values for B, and so on. To do

this testing we have 26 relays which are wired up in such a way that we can

distinguishwhether or not two ormore of them are energised.Whenwe are testing

the Stecker values of Awe have the 26 contacts of the A line of the diagonal board

connected to the corresponding relays in this set. What is principally lacking is

25 Now has been decided to use scanner.

Bombe and Spider | 333

some device for connecting the rows of the diagonal board successively to the set of

relays. This fortunately was found in post-oYce standard equipment; the clicking

noise that this gadgetmakes when in operation gives the whole apparatus its name.

If we Wnd no contradictions in the Steckers of any letter the whole position is

passed as good. The machine is designed to print the position and the Stecker in

such a case. Here again I do not know the exact method used, but the following

simple arrangement seems to givemuch the same eVect, although perhaps it could

not bemade towork quite fast enough. The Stecker are given by typing one letter in

a column headed by the other. When any letter is being tested for Stecker contra-

dictions the relays corresponding to the Stecker values of the letter close. We can

arrange that these relays operate corresponding keys of the typewriter, but that in

the case that there is a contradiction this is prevented and some special symbol is

typed instead shewing that the whole is wrong. When no relay closes nothing is

typed. The carriage of the typewriter is not operated by the keys but only by the

space bar, and this is moved whenever there is a change of the letter whose Stecker

are being examined.

Additional gadgets

Besides the spider and machine gun a number of other improvements of the

Bombe are now being planned. We have already mentioned that it is possible to

use additional data about Stecker by connecting up points of the diagonal board.

It is planned to make this more straightforward by leading the points of the

diagonal board to 325 points of a plug board; the plug board also has a great

many points all connected together, and any Stecker which one believes to be

false one simply connects to this set.

Another gadget is designed to deal with cases such as that in which there

are two ‘webs’ with six letters and no chains on each. A little experiment will

show that in the great majority of cases with such data, when the solution is

found, the Stecker value of a letter on either web will imply the whole set of

Steckers for the letters of both webs: in the current terminology, ‘In the

right place we can nearly always get from one web onto the other.’ If however

we try to run such data on the spider, even with the machine gun attachment,

there will be an enormous number of stops, and the vast majority of these

will be cases in which ‘we have not got onto the second web’. If we are prepared

to reject these possibilities without testing them we shall not very greatly

decrease the probability of our Wnding the right solution, but very greatly

reduce the amount of testing to be done. If in addition the spider can be

persuaded not to stop in these positions, the spider time saved will be enormous.

Some arrangement of this kind is being made but I will not attempt to describe

how it works.

334 | Alan Turing

With some of the ciphers there is information about the Ringstellung (Her-

ivelismus26) which makes certain stopping places wrong in virtue of their

position, and not of the alphabets produced at those positions. There is an

arrangement, known as a ‘Ringstellung cut-out’, which will prevent the machine

from stopping in such positions.27 The design of such a cut-out clearly presents

no diYculties of principle.

There are also plans for ‘majority vote’ gadgets which will enable one to make

use of data which is not very reliable. A hypothesis will only be regarded as

rejected if it contradicts three (say) of the unreliable pieces of data. This method

may be applied to the case of unreliable data about Stecker.

26 Editors’ note. ‘Herivelismus’ is probably an alternative name for the procedure devised by John Herivel

known as the ‘Herivel tip’. The ‘Herivel tip’ helped the codebreakers find the day’s ring settings from the

indicators of the first messages of the day to be sent by the various German stations making up a given

network. Herivel describes the ‘Herivel tip’ in M. Smith, Station X: The Codebreakers of Bletchley Park

(London: Channel 4 Books, 1998), 43: ‘I thought of this imaginary German fellow with his wheels and his

book of keys. He would open the book and find what wheels and settings he was supposed to use that day.

He would set the rings on the wheels, put them into the machine and the next thing he would have to do

would be to choose a three-letter indicator for his first message of the day. So I began to think, how would

he choose that indicator. He might just take it out of a book, or he might pluck it out of the air like ABC or

whatever. Then I had the thought, suppose he was a lazy fellow, or in a tearing hurry, or had the wind up, or

something or other and he were to leave the wheels untouched in the machine and bang the top down and

look at the windows, see what letters were showing and just use them. Then another thought struck me.

What about the rings? Would he set them for each of the three given wheels before he put them into the

machine or would he set them afterwards? Then I had a flash of illumination. If he set them afterwards and,

at the same time, simply chose the letters in the windows as the indicator for his first message, then the

indicator would tend to be close to the ring setting of the day. He would, as it were, be sending it almost in

clear. If the intercept sites could send us the indicators of all the Red messages they judged to be the first

messages of the day for the individual German operators there was a sporting chance that they would cluster

around the ring settings for the day and we might be able to narrow down the 17,576 possible ring settings

to a manageable number, say twenty or thirty, and simply test these one after the other in the hope of hitting

on the right answer.’

27 Editors’ note. ‘Ringstellung cut out: A running of a bombe with a restriction on the range of possible

Ringstellungen’ (Cryptographic Dictionary, 69).

Bombe and Spider | 335

CHAPTER 7

Letter to Winston Churchill (1941)

Alan Turing, Gordon Welchman,

Hugh Alexander, Stuart Milner-Barry

Introduction
Jack Copeland

During 1941, codebreaking at Bletchley Park was hindered by shortages of typists

and unskilled staV. These shortages could have been easily rectiWed, but the

codebreakers’ urgent requests were ignored by oYcials in Whitehall. Going over

the heads of those in command at GC & CS, Turing and his co-signatories wrote

directly to the Prime Minister, Winston Churchill. On receiving the letter

Churchill minuted his Chief of StaV, General Ismay: ‘action this day

Make sure they have all they want on extreme priority and report to me that

this had been done.’1

It fell to Stuart Milner-Barry of Hut 6 to deliver the letter by hand to 10

Downing Street. In 1986, Milner-Barry recalled his trip to Whitehall:

Why I was deputed to carry the letter to No. 10 I do not remember—at a guess, because I

was the most readily expendable from the scene of action. What I do recall is arriving at

Euston Station, hailing a taxi, and with a sense of total incredulity (can this really be

happening?) inviting the driver to take me to 10 Downing Street. The taxi-driver never

blinked an eyelid: without comment he directed himself to Whitehall. Arrived at the

entrance to Downing Street, I was again surprised at the lack of formality: there was just a

wooden barrier across the road, and one uniformed policeman who waved my driver on.

At the door to No. 10 I paid oV the taxi, rang the bell, was courteously ushered in,

explained that I had an urgent letter which I was anxious to deliver to the Prime Minister

1 Both the letter and Churchill’s minute appear in F. H. Hinsley et al., British Intelligence in the Second

World War, vol. ii (London: Her Majesty’s Stationery OYce, 1981), appendix 3, pp. 655–7. A facsimile of

Churchill’s minute appears on p. xiii of R. Erskine and M. Smith (eds.), Action This Day (London: Bantam,

2001). The letter and minute are in the Public Record OYce in Kew, Richmond, Surrey (document reference

HW 1/155). They are Crown copyright and are reproduced with the permission of the Controller of Her

Majesty’s Stationery OYce.

personally, and was invited to wait. Of course I did not see the Prime Minister himself;

but very shortly there appeared a dapper dark-suited Wgure of shortish stature whom

I subsequently identiWed as Brigadier Harvie-Watt, Mr. Churchill’s PPS from 1941 to

1945. To him I again explained my errand; and while obviously and understandably

puzzled as to who I might be and what this was all about, he took me suYciently seriously

to promise that he would without fail deliver the letter to the Prime Minister and stress its

urgency. That accomplished, I took my leave and took myself back to Bletchley by the next

train. It was some forty years later before I found out what happened to that letter, when I

saw the Prime Minister’s minute dated the following day . . . All that we did notice was

that almost from that day the rough ways began miraculously to be made smooth. The

Xow of bombes was speeded up, the staV bottlenecks were relieved, and we were able to

devote ourselves uninterruptedly to the business in hand.2

Milner-Barry added, ‘I by chance met Commander Denniston in the corridors

some days later, and he made some rather wry remark about our unorthodox

behaviour; but he was much too nice a man to bear malice.’

2 P. S. Milner-Barry, ‘ ‘‘Action This Day’’: The Letter from Bletchley Park Cryptanalysts to the Prime

Minister, 21 October 1941’, Intelligence and National Security, 1 (1986), 272–3. Reproduced with the

permission of Frank Cass Publishers.

Letter to Winston Churchill | 337

Letter to Winston Churchill

Secret and ConWdential

Prime Minister only

Hut 6 and Hut 8

21st October 1941

Dear Prime Minister,

Some weeks ago you paid us the honour of a visit, and we believe that you

regard our work as important. You will have seen that, thanks largely to the

energy and foresight of Commander Travis, we have been well supplied with the

‘bombes’ for the breaking of the German Enigma codes. We think, however, that

you ought to know that this work is being held up, and in some cases is not being

done at all, principally because we cannot get suYcient staV to deal with it. Our

reason for writing to you direct is that for months we have done everything that

we possibly can through the normal channels, and that we despair of any early

improvement without your intervention. No doubt in the long run these par-

ticular requirements will be met, but meanwhile still more precious months will

have been wasted, and as our needs are continually expanding we see little hope

of ever being adequately staVed.

We realise that there is a tremendous demand for labour of all kinds and that

its allocation is a matter of priorities. The trouble to our mind is that as we are a

very small section with numerically trivial requirements it is very diYcult to

bring home to the authorities Wnally responsible either the importance of what is

done here or the urgent necessity of dealing promptly with our requests. At the

same time we Wnd it hard to believe that it is really impossible to produce quickly

the additional staV that we need, even if this meant interfering with the normal

machinery of allocations.

We do not wish to burden you with a detailed list of our diYculties, but the

following are the bottlenecks which are causing us the most acute anxiety.

1. Breaking of Naval Enigma (Hut 8)

Owing to shortage of staV and the overworking of his present team the Hollerith

section here under Mr Freeborn has had to stop working night shifts. The eVect

of this is that the Wnding of the naval keys is being delayed at least twelve hours

every day. In order to enable him to start night shifts again Freeborn needs

immediately about twenty more untrained Grade III women clerks. To put

himself in a really adequate position to deal with any likely demands he will

want a good many more.

A further serious danger now threatening us is that some of the skilled male

staV, both with the British Tabulating Company at Letchworth and in Freeborn’s

section here, who have so far been exempt from military service, are now liable to

be called up.

2. Military and Air Force Enigma (Hut 6)

We are intercepting quite a substantial proportion of wireless traYc in the

Middle East which cannot be picked up by our intercepting stations here. This

contains among other things a good deal of new ‘Light Blue’ intelligence. Owing

to shortage of trained typists, however, and the fatigue of our present decod-

ing staV, we cannot get all this traYc decoded. This has been the state of aVairs

since May. Yet all that we need to put matters right is about twenty trained

typists.

3. Bombe testing, Hut 6 and Hut 8

In July we were promised that the testing of the ‘stories’ produced by the bombes

would be taken over by the WRNS in the bombe hut and that suYcient WRNS

would be provided for this purpose. It is now late in October and nothing

has been done. We do not wish to stress this so strongly as the two preceding

points, because it has not actually delayed us in delivering the goods. It has,

however, meant that staV in Huts 6 and 8 who are needed for other jobs have

had to do the testing themselves. We cannot help feeling that with a Service

matter of this kind it should have been possible to detail a body of WRNS for

this purpose, if suYciently urgent instructions had been sent to the right

quarters.

4. Apart altogether from staV matters, there are a number of other directions

in which it seems to us that we have met with unnecessary impediments. It

would take too long to set these out in full, and we realise that some of the

matters involved are controversial. The cumulative eVect, however, has been to

drive us to the conviction that the importance of the work is not being impressed

with suYcient force upon those outside authorities with whom we have to

deal.

We have written this letter entirely on our own initiative. We do not know

who or what is responsible for our diYculties, and most emphatically we do

not want to be taken as criticising Commander Travis who has all along done

his utmost to help us in every possible way. But if we are to do our job as well

as it could and should be done it is absolutely vital that our wants, small as they

are, should be promptly attended to. We have felt that we should be failing in

Letter to Winston Churchill | 339

our duty if we did not draw your attention to the facts and to the eVects which

they are having and must continue to have on our work, unless immediate action

is taken.

We are, Sir, Your obedient servants,

A M Turing

W G Welchman

C H O’D Alexander

P S Milner-Barry

340 | Alan Turing et al.

CHAPTER 8

Memorandum to OP-20-G on

Naval Enigma (c.1941)

Alan Turing

Introduction: Turing Questions OP-20-G’s
Attempts to Break Naval Enigma in 1941
Ralph Erskine, Colin Burke, and Philip Marks

The document1 that forms this chapter was written by Alan Turing and sent to

the US Navy codebreaking unit, OP-20-G, in Washington, DC, probably to the

celebrated cryptanalyst Mrs Agnes Driscoll. It is undated, but was probably

dispatched in the autumn of 1941.

Background2

Turing solved the indicating system of the principal Naval Enigma cipher, Hei-

misch (codenamed ‘Dolphin’ by the Government Code and Cypher School (GC &

CS)), at Bletchley Park by the end of 1939. Typically, he thought Dolphin ‘could be

broken because it would be so interesting to break it’ (see ‘Enigma’, p. 257). Hut 8 at

Bletchley Park solved some wartime Naval Enigma signals in May and June 1940.3

Internal evidence shows that Turing wrote his outstanding Treatise on the Enigma

around autumn 1940. GC&CS readDolphin traYc currently, using captured keys,

in June and July 1941. The resulting data provided enough cribs and other infor-

mation to breakDolphin signals cryptanalytically fromAugust onwards, within 24

to 36 hours of their transmission.

1 RG 38, CNSG Library, Box 117, 5750/205 (National Archives and Records Administration (NARA),

College Park, Maryland).

2 For an extensive treatment of the full background, see J. Debrosse and C. Burke, The Secret in Building

26 (New York: Random House, 2004), ch. 3; also R. Erskine, ‘What Did the Sinkov Mission Receive from

Bletchley Park?’, Cryptologia, 24 (2000), 97–109.

3 R. Erskine, ‘The First Naval Enigma Decrypts of World War II’, Cryptologia, 21 (1997), 42–6.

Mrs Driscoll was assigned to attack Naval Enigma, with two assistants, around

October 1940.4 However, the US Navy was then intercepting only a small

proportion of the Naval Enigma signals being transmitted, and was unable to

make any progress against Dolphin, especially since it could not reconstruct the

wiring of Enigma’s wheels. It did not even fully understand the wheels’ non-

cyclometric motion, which considerably complicated any solution of Naval

Enigma, in particular, since each of the special Kriegsmarine wheels VI to VIII

had two notches. Notching made the wheel motion irregular, especially when a

doubly notched wheel was in the middle or right-hand position.5 Using two

doubly notched wheels could reduce Enigma’s period from its normal 16,900

(26� 25� 26) to 4,056 (24� 13� 13).

In February 1941, following lengthy negotiations between the US Army and

Navy, a four-man team led by Abraham Sinkov visited GC & CS.6 (Sinkov was

accompanied by Leo Rosen, also from the US Army’s Signal Intelligence Service,

and Lt. Robert Weeks and Lt. Prescott Currier, both from OP-20-G.) They

brought with them various items of codebreaking material, including one

example of ‘Purple’, the American clone of the Japanese Foreign Ministry’s

high-level cipher machine. GC & CS staff briefed them fully about Bletchley’s

work and, with the blessing of Winston Churchill, showed them the top secret

bombes used to break Enigma, although they had to undertake to tell only their

superior oYcers about what they had learned about Enigma.7 Neither Weeks nor

Currier was an Enigma cryptanalyst, so that they are unlikely to have followed all

the explanations they heard about breaking Enigma. They were given only a

‘paper’ copy of Enigma’s wiring to bring home, since GC & CS did not have an

Enigma machine to spare.

Alastair Denniston, the operational head of GC & CS, wanted further cooper-

ation with the US Army and Navy codebreaking units. During a visit he made to

Washington in August 1941, Mrs Driscoll told him about her attack on Naval

Enigma. She also gave him some questions on which she needed help from GC &

CS. Her questions reveal just how little OP-20-G then knew about some import-

ant details of Naval Enigma.8 GC & CS responded to most of her questions and

requests for data in early October 1941, although the packet unfortunately went

astray, and did not turn up until mid-December.

4 ‘Naval Security Group History to World War II’ 400: NARA, RG 457, SRH 355.

5 D. Hamer, ‘ENIGMA: Actions Involved in the ‘‘Double Stepping’’ of the Middle Rotor’, Cryptologia, 21

(1997), 47–50.

6 On the Sinkov mission, see B. Smith, The Ultra-Magic Deals and the Most Secret Relationship (Novato,

Calif.: Presidio, 1993), chapter 3, pp. 54, 56, 58.

7 R. Erskine, ‘Churchill and the Start of the Ultra-Magic Deals’, International Journal of Intelligence and

Counterintelligence, 10 (1997), 57–74.

8 Most of the questions and requests for data are set out in Erskine, ‘What Did the Sinkov Mission

Receive from Bletchley Park?’

342 | Erskine, Burke, Marks

Turing’s memorandum can only have been written at some time after

Denniston returned from the United States in late August 1941. It does not

refer to the four-wheel Enigma, M4, and was therefore almost certainly prepared

before 1 February 1942, when the Atlantic U-boats started to use M4 for their

Triton cipher (codenamed ‘Shark’ by GC & CS). It was probably sent between

mid-October and the end of November. There is no record of any reply by OP-

20-G: it is quite possible that none was made.

Turing writes concerning Mrs Driscoll’s hand attack on Naval Enigma, and

therefore does not mention the bombes. However, breaking Dolphin manually

was seldom anything other than an extremely slow process, because of its

enormous key-space (6:014� 1023 possible combinations, assuming that the

wheel wiring was known9). Turing begins by trying to solve only a single wheel

order. But he adopts a more rigorous approach in his penultimate paragraph, by

requiring all 336 wheel orders to be tested, as would sometimes have been

necessary in 1941 when using Mrs Driscoll’s method.

Aftermath

Turing’s memorandum should have been a turning point for OP-20-G’s manage-

ment, since it demonstrated that Mrs Driscoll’s methods had no chance whatso-

ever of producing operationally useful intelligence. It also implied that she did not

fully appreciate some of the subtleties of Naval Enigma. But it may not have

reached OP-20-G before the Japanese attack on Pearl Harbor, and there is no

evidence that it caused OP-20-G to change its approach to Naval Enigma, or to

Mrs Driscoll’s work, since she continued to receive support on Enigma until well

into 1942. Lt.-Col. John Tiltman, GC & CS’s most senior cryptanalyst, considered

that she ‘wasmaking no original contribution at all’,10 but she remained part of the

attack on Naval Enigma throughout 1942.11 However, it is not known whether

Tiltman passed his views on to OP-20-G’s management, who treated her with

‘exaggerated respect’ on account of her pre-war achievements.12

A new generation of young, mathematically trained cryptanalysts, many of

whom had been naval reservists, was recruited for OP-20-G after Pearl Harbor.

They developed an outline bombe design for OP-20-G in April 1942, although it

would have been twenty-six times less eYcient than GC & CS’s bombe, since it

did not employ ‘simultaneous scanning’ (i.e. the simultaneous testing of twenty-

9 Donald Davies, ‘The Bombe: A Remarkable Logic Machine’, Cryptologia, 23 (1999), 108–138.

10 ‘Report by Lieut-Colonel J. H. Tiltman on his visit to North America during March and April 1942’,

para. 14, 20 May 1942: PRO HW 14/46.

11 See e.g. Turing’s report, ‘Visit to National Cash Register Corporation of Dayton, Ohio’ (n.d., but c.

Dec. 1942): NARA RG 38, CNSG Library, Box 183, 5750/441. We are indebted to Stephen Budiansky for a

copy of this document.

12 ‘Report by Lieut-Colonel J. H. Tiltman’.

Memorandum to OP-20-G on Naval Enigma | 343

six possible Stecker values at each position of the bombe’s wheels; see ‘Enigma’,

pp. 254–5, and Chapter 6, pp. 319–20), about which OP-20-G seems to have

known nothing at that time.13 OP-20-G therefore appears not to have seen

Turing’s Treatise in early 1942. This is not wholly surprising. Until May 1942,

GC & CS did not want OP-20-G to attack Naval Enigma, and may deliberately

have withheld a copy of the Treatise. A copy was sent to the United States at some

point, but probably only to the US Army. OP-20-G only learned the full details of

the GC & CS bombe, and about simultaneous scanning, after Lt. Joseph Eachus

and Lt. Robert Ely arrived at Bletchley Park in July 1942, to learn how GC & CS

attacked Naval Enigma.

M4 Enigma proved devastating when it entered service on Shark in February

1942, since it took effect shortly after the introduction of a new edition of a

weather short signal book (the Wetterkurzschlüssel), which deprived Hut 8 of

cribs for Shark. Without cribs, and lacking four-wheel bombes, GC & CS became

blind against Shark. M4 was not a true four-wheel machine. The new wheel, beta

(which was stationary during encipherment), and its associated reXector, thin B,

gave M4 the equivalent of twenty-six reXectors, but beta was not interchangeable

with wheels I to VIII.14 Fortunately, GC & CS had solved beta and thin B in

December 1941, when M4 was used inadvertently.

The new Wetterkurzschlüssel was captured from U-559 on 30 October

1942, and reached GC & CS in late November. Hut 8 found that M4

emulated M3 when enciphering weather short signals, allowing Shark to

be solved using relatively few three-wheel bombes. On 13 December, Hut

8 solved Shark keys for 5 to 7 December.15 It continued to do so for most days

using three-wheel bombes, albeit with delays, until British four-wheel bombes

entered service in June 1943.

GC & CS’s failure to develop a four-wheel bombe quickly had led the US

Navy to decide, on 4 September 1942, to embark on a massive four-wheel

bombe-building programme of its own. In a considerable tour de force, Joseph

Desch, of the National Cash Register Co., in Dayton, Ohio, submitted a detailed

design proposal to OP-20-G on 15 September. In October 1942, OP-20-G

and GC & CS entered into the Holden Agreement, which provided for ‘full

collaboration upon the German submarine [Shark] and naval cryptanalysis

problems’.16

13 Memorandum (no title or author), 25 Apr 1942: NARA RG 38, Inactive Stations, Box 54, 3200/1; R. B.

Ely, ‘Easy Research to Date’, 24 July 1942: NARA RG 38, CNSG Library, Box 117, 5750/205; J. J. Eachus,

‘Cold Spot Method: Short Row Test: New Bombe’ (n.d., but c. July 1942): ibid., Box 113, 5750/177; cf.

‘American Hot-Point Method’, Aug. 1942: NARA RG 38, Radio Intelligence Publications, RIP 602, 1.

14 R. Erskine, and F. Weierud, ‘Naval Enigma: M4 and its Rotors’, Cryptologia, 11 (1987), 235–44.

15 R. Erskine, ‘Naval Enigma: The Breaking of Heimisch and Triton’, Intelligence and National Security,

3(1) (1988), 162–83.

16 See R. Erskine, ‘The Holden Agreement on Naval Sigint: The First BRUSA?’, Intelligence and National

Security, 14(2) (1999), 187–97.

344 | Erskine, Burke, Marks

After a diYcult testing period for two bombe prototypes from May to late

July 1943,17 OP-20-G four-wheel bombes came into service in August 1943.18

They performed so well that GC & CS came to rely on them extensively for

work against Shark and other Kriegsmarine four-wheel ciphers, not least because

as late as March 1944 the performance of the British four-wheel bombes was, in

the words of Hugh Alexander, Turing’s successor as head of Hut 8, ‘poor

and likely to remain so’.19 The OP-20-G bombes also carried out a vast amount

of work for Hut 6 on German Army and Air Force Enigma ciphers: for much

of 1944 OP-20-G devoted around 60 per cent of its bombe time to those

ciphers.20

Agnes Driscoll gradually faded out of the Naval Enigma scene in 1942, as

indeed, for different reasons, did Alan Turing. She is mentioned only once or

twice in the extant records for 1942, and did not write any of the extensive

series of papers on Naval Enigma which have been preserved in the American

archives. She was transferred to the attack on JNA-20 (codenamed ‘Coral’ by

OP-20-G), the cipher machine used by Japanese naval attachés, on 31 January

1943.21

Provenance

Turing’s typescript and Wgures were released only in late 1998. Ralph Erskine

found the Wgures at College Park in October 1999.22He recognized them as being

in Turing’s handwriting but, not being attached to Turing’s unsigned typescript

(which he had received earlier from Stephen Budiansky), they completely lacked

context, except that they clearly dealt with Naval Enigma.23 A typescript by Colin

Burke ‘Agnes Meyer Driscoll v the Enigma and the Bombe’ described the

17 See ‘Listing of Incoming/Outgoing Messages OP-20-G-4 from NCML’: NARA RG 38, CNSG Library,

Box 184, 5830/116.

18 On the development of the US Navy bombes, see S. Budiansky, Battle of Wits: The Complete Story of

Codebreaking in World War II (New York: The Free Press; London: Viking, 2000), 238–9, 241–2, 294–5;

C. Burke, Information and Secrecy: Vannevar Bush, Ultra and the Other Memex (Metuchen, NJ: Scarecrow

Press, 1994), passim.

19 Alexander to Church, signal, 24 Mar. 1944: NARA RG 38, Inactive Stations, Box 55, 3200/2.

20 See OP-20-GM-1’s monthly ‘Summary of Attack on Naval Enigma TraYc’ during 1944: NARA RG 38,

CNSG Library, Box 117, 5750/205.

21 OP-20-GM-6 war diary, 31 Jan. 1943: ibid. Box 113, 5750/176.

22 NARA, RG 38, CNSG Library, Box 117, 5750/205.

23 The typescript and Wgures were found independently in May 2002 by Lee Gladwin, who published

them, with a commentary, in ‘Alan M. Turing’s ‘‘Critique of Running Short Cribs on the U.S. Navy Bombe’’ ’,

Cryptologia, 27 (2003), 44–9 and 50–4. However, Gladwin’s commentary contains several errors:

e.g. Turing’s memorandum questioned the use of short cribs in solving Enigma manually, and not running

them on the US Navy bombe, which had not even been designed when Turing wrote the memorandum.

(The present chapter was completed and accepted for publication in this volume in January 2001.—Ed.)

Memorandum to OP-20-G on Naval Enigma | 345

typescript’s author as being ‘perhaps Alan Turing’. A careful study of the type-

script showed that it was indeed by Turing: two words are in Turing’s hand, and

the typewriter used is identical with that employed for Turing’s Treatise. When

Erskine remembered the Wgures and re-examined them, the connection with

Turing became patent. The Wgures tie in perfectly with references to them in the

typescript, and the crib (vvvbduu) is the same in both documents. Turing’s

authorship of the typescript is therefore beyond question.

346 | Erskine, Burke, Marks

Memorandum to OP-20-G on Naval Enigma1

We are rather surprised to hear that you are able to Wnd the keys, given that a

message when deciphered says vvvbduuu .2 Our experience shows that with a

‘crib’ as short as 8 letters there are always far too many sets of keys consistent with

the data, so that whatever method may be used for discovering the keys the time

required to test these solutions out further becomes prohibitive. To illustrate this I

have enciphered vvvbduuu with a random chosen key viz wheel order 457,

English Ringstellung3RWH, pre-start window position4 SZK and Stecker A/P, B/Y,

C/L, E/Q, F/X, K/R,M/W,N/T, O/V, S/Z, giving yfzonmty . I then imagined that

Y F Z O N M T Y

V V V B D U U U

was a crib that I had to solve, but that I knew the wheel order and Ringstellung: I

tried out the hypothesis that the pre-start window position was the right one

(SZK) and also the Wve which follow it (allowing correctly for turnovers) viz

TAL, TAM, TBN,5 TBO, TBP, and found that with pre-start TBP there is a

solution with V/J, F/G, Z/H, Y/E, U/X, M/L, T/K, D/P and either B/S and O/W

or B/W and O/S. The ‘unsteckered alphabets’ for the relevant positions of the

machine are shown in Fig [8.1], and the working in Fig [8.2]. I hope that this

working is self-explanatory. Each column of letters consists of steckers of the

letters VFZYUMT which imply one another on account of the crib.

A continuation of this process would probably give about 3000 essentially

different solutions per wheel order. Of course these solutions are not all equally

likely: e.g. the solution with pre-start TBP is unlikely as the complete set of 10

Stecker has to be assumed to account for the whole crib, whereas with the right

solution we can only deduce O/V, F/X, S/Z, Y/B, W/M, N/T, and D and U self-

steckered. But there will still be a great many that look as good as this. A

fairly simple calculation tells us the probability of this solution being

the right one, under the assumption that the wheel order and Ringstellung are

1 This title has been added by the editors, as have all footnotes.

2 Editors’ note. This crib was short for ‘Von Befehlshaber der U-Boote’ (From BdU—Admiral Com-

manding U-boats). ‘bduuu ’ was an abbreviation used in signals to and from the U-boats.

3 Editors’ note. Following recoveries of wheel wiring by the Poles before the war, the Ringstellung on the

wheels used by GC & CS was displaced by one for wheels I to III and VI to VIII, by two for wheel IV, and by

three for wheel V (all with the neutral position at Z). Thus the English Ringstellung RWH given in Turing’s

example corresponds to German Ringstellung TZI. The different ring settings were of no consequence when

solving Enigma or using the bombes.

4 Editors’ note. The pre-start window position was the message setting—the starting position of the

wheels for a speciWc message.

5 Editors’ note. An Enigma simulator conWrms that the middle wheel does indeed move after only three

keystrokes, when set as indicated by Turing. This turnover would have complicated a solution here.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

TAL P O U M W N L K T S H G D F B A R Q J I C Y E Z V X V

TAM U G L P T K B N W S F C R H X D V M J E A Q I O Z Y V

TBN H G M F K D B A X V E Q C R S Y L N O Z W J U I P T V

TBO E S Z W A N J M K G I R H F Q X O L B U T Y D P V C B

TBP B A O T N L H G K W I F Q E C U M S R D P Y J Z V X D

TBQ X S O Y J R N T L E M I K G C Z V F B H W Q U A D P U

TBR W R O Z S L J V M G Q F I U C Y K B E X N H A T P D U

TBS R U T P Y S K J N H G Z O I M D W A F C B X Q V E L U

T U M N J Q O V P K D I T B C F H E X W L A G S R Z Y

U C Z A W S X L R J I O G Q P K N M H E U T Y D F V B

V G D K B V T A U J I C X W R P O Z N Y F H E M L S Q

W N F I S Y B U L C V X H O A M Z R Q D W G J T K E P

X Z D F B X C S Y L N U I Q J V T M W G P K O R E H A

Y U J O E D G F M R B N Y H K C X S I Q Z A W V P L T

Z W Z Y T S O R J V H N X U K F Q P G E D M I A L C B

Figure 8.1. Alphabets for V V V B D U U U
Y F Z O N M T Y

X

ZS

O B U

VY

D T

W

F
M

N

V
L

Y S

B O

ND

O

P

U

Q

R

M

T
N

out
on BO O/V

conf
D/D

A
U
H
P
D
Y
Z

B
G
G
O
M
K
I

C
L
M
U
B
S
R

D
P
F
M
O
C
C

E
T
K
W
Q
V
K

F
K
D
N
I
L
M

G
B
B
L
Z
P
D

H
N
A
K
G
N
J

I
W
X
T
C
O
O

J
S
V
S
F
R
L

K
F
E
H
J
E
G

L
C
Q
G
K
M
Q

M
R
C
D
P
Z
Y

N
H
R
F
S
B
E

O
X
S
B
U
W
N

P
D
Y
A
R
F
B

Q
V
L
R
A
X
W

R
M
N
Q
W
U
A

S
J
O
J
H
T
V

T
E
Z
I
N
G
U

U
A
W
C
T
H
X

V
Q
J
Y
E
J
S

W
I
U
E
Y
D
P

X
O
I
Z
L
I
F

Y
Z
P
V
X
A
T

Z
Y
T
X
V
Q
H

V
F
Z
Y
U
M
T

? ? ? ?

MN

S
Q

L

R

Figure 8.2. Workings to solve
L M N O P Q R S
V V V B D U U U
Y F Z O N M T Y

Editors’ note: Turing continues with similar arrays to the one set out above, for one to five places after the

right one. In the interests of space, those arrays are not reproduced here, but may be downloaded from

www. AlanTuring.net/OP-20-G_figures.

348 | Alan Turing

www.AlanTuring.net/OP-20-G_figures

right. The total number of ways of setting up 10 Stecker is about 1:5� 1014, and

the number of essentially different window positions is 16,224,6 so that the total

number of sets of keys in question is about 2:4� 1018. From this we can obtain

the expected number of sets of keys consistent with the data by multiplying by

26�8. We get 1:15� 107. Now the solution in question can be made into a

complete set of keys, by completing the Stecker in 51,975 ways, i.e. it corresponds

to 51,975 of the 1:15� 107 solutions and therefore has a probability of

51,975=1:15� 107 or 0.0045. We may therefore expect to have anything from

say 50 to 1,000 solutions to test further on each wheel order, even if we assume

the Ringstellung, or, what comes to the same, the position of the turnover in the

message. The examination of these solutions is not very easy, especially in the

case of likely looking solutions, as in such cases we necessarily know compara-

tively few Stecker, and so can get very little of the plain text of the message.

The working shown in Fig [8.2] is not given as a suggested method for solving

these cribs. It is part of an a fortiori argument to the effect that even if all

solutions had been found by this method or some other the remaining work to

be done would still be too much.

Leaving aside this general aspect of the problem I should be interested to be

sure that I understand your method correctly: the argument given above depends

essentially on the length of the crib, and it may well be that you have a method

which will deal with rather longer cribs.

As I understand it your method is to assume Stecker for certain letters thereby

obtaining certain ‘unsteckered’ constatations.7 One then takes 26 separate hy-

potheses concerning the position of the R.H.W. [right-hand wheel] and deduces,

for each hypothesis, the ‘output’ of the two left hand wheels and U.K.W.8

Assuming the wheel order one then looks up in a catalogue and Wnds the possible

positions of the two wheels on the left. The whole effect of the process so far is to

Wnd the positions of the wheels consistent with the unsteckered constatations.

Each position must be examined more closely afterwards with a machine.

The process may be explained by means of an example.

S D D Q T Y M D

V V V B D U U U

This is a favourable one as the same constatation VD occurs twice over. Suppose

now that we wish to try out the hypothesis that V and D are both self-steckered

6 Editors’ note. Turing’s number is incorrect. 16, 224 ¼ 17, 576� 1352: the reduction (1, 352 ¼ 2 �
26� 26) attempts to allow for the stepping pattern of wheel order 457. However, Philip Marks and Frode

Weierud have independently calculated that 457 gives 16, 952 (¼ 17, 576� 24� 26) essentially different

starting positions.

7 Editors’ note. ‘Constatation: The association of a cipher letter and its assumed plain equivalent for a

particular position’ (‘Cryptographic Dictionary’, 20; see the notes to the introduction to Chapter 5 for

details of the Dictionary).

8 Editors’ note. U.K.W. ¼ Umkehrwalze (reXector).

Memorandum to OP-20-G on Naval Enigma | 349

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

E J O A P I T C Z X H R L Z K D G K W B L F M Y N Q V

H F P Z T H S L O S E J T N U G V Y M R W I X Q B K D

Figure 8.3. Inverse rods of wheel VII, for solving
V V V B D U U U
S D D Q T Y M D

Editors’ note: Figure 8.3 shows the Vand D inverse rods for wheel 7. These show that Vand D map to G and

V, respectively, when taken through wheel 7 in position 17. Since V and D are paired in the crib, this means

that the G and V contacts are connected together through the unsteckered ‘two-wheel Enigma’ formed by

the other two wheels (4 and 5) and the reflector. The catalogue (which is not reproduced here) shows the

results produced by such a two-wheel Engima for all possible wheel orders and wheel positions.

on wheel order 457. Assume that there is no turnover between the two occur-

rences of VD. We lay down the ‘Inverse rods’9 for V and D and wheel 7; the effect

of this is shewn in Fig [8.3]. The information we get from them is for instance

that if VD were enciphered with no Stecker and with the R.H.W. in absolute

position (window position less English Ringstellung) 17, then, if the R.H.W. were

replaced by a ‘straight through’ wheel,10 and the other wheels kept the same and

in the same positions, then the effect of enciphering G would be V. We wish

therefore to Wnd where, with wheel order ‘4 5 straight’, we can get the pairings

EH and JF, also where we can get JF and PO, and so on. We have catalogues in

which we can look these pairs up. We Wnd for instance that PO, AZ occurs in

position 8 of the L.H.W. and 22 of the M.W. [middle wheel] and therefore that

without Stecker we get VD in absolute positions 8, 22, 3 and 8, 22, 4. The

complete set of solutions is shewn in Fig [8.4]. These solutions have now to be

tested out on the remainder of the crib. Take the case of the solution 8, 22, 3 and

suppose we are assuming there is no turnover in the whole crib. Then the DU

will have been enciphered at 8, 22, 9 at which position D enciphers without

Stecker to Z. Since we are assuming that D is self-steckered, we must have Z/U.

Now the UY constatation was enciphered at 8, 22, 6 where Z without Stecker

enciphers to V. We therefore have V/Y contrary to the hypothesis that V was self-

steckered.

The full examination of the possibilities of turnover takes some considerable

time. Of course it is only worth while considering rather longer cribs than

vvvbduuu : with cribs of length 2011 it would be possible to deal with a wheel

order on one assumption of Stecker for the letters taking the place of V and D

in about Wve hours, of which about half an hour or less would be the

9 Editors’ note. An inverse rod was a cardboard strip giving the letters on the left-hand side of the wheel

that were consecutively connected to a Wxed point at the right-hand side for all 26 positions of a full wheel

revolution. See further Chapter 6, n. 7.

10 Editors’ note. A ‘straight through’ wheel was a notional wheel whose wiring was an identity (Awired to

A, B to B and so on). It could therefore be temporarily disregarded in any solution.

11 Editors’ note. Although Turing also suggested that a message could be solved with a 70-letter crib, or two

depths of 26 (‘Mathematical Theory of ENIGMA Machine by A M Turing’, 60; cf. p. 96: PRO HW 25/3), in

practice GC & CS seldom, if ever, tried to solve messages by hand with cribs that were shorter than 250 letters.

350 | Alan Turing

21 19 1

PO, AZ 8 22 3

AZ, PT 21 23 4

PT, IH
12 5 5

21 26 5

n
19 22 7

9 13 17

13 16 17

15 19 17

14 8 19

7 21 19

8 4 21

24 6 21

8 14 21

14 16 21

24 6 22

14 25 23

13 21 24

5 23 25

17 25 25

25 1 26

14 19 26

Figure 8.4. Position where we get
V V
D D

on wheel order 4 5 7.

Editors’ note: Since the two V/D pairings are adjacent in the crib, solutions can occur only at positions

where the two-wheel Enigma produces two adjacent pairings on the inverse rods. Figure 8.4 shows the

complete set of such positions. In Turing’s example (wheel positions 8, 22, 3), with V and D self-steckered,

the successive pairings on the rods are P/O and A/Z, and the catalogue tells us that the two-wheel Enigma

with wheel order 4 5 produces both of these pairings when wheel 4 is at position 8 and wheel 5 is at position

22. The inverse rods show pairing PO at position 3, thus the Wrst of the V/D pairings in the crib must occur

when wheel 7 is at position 3. The solution would be much more laborious if the very favourable V/D

constatation had not been repeated, since more Stecker assumptions would have to be made in order to

constrain the number of possible solutions.

lookingup in catalogues. Suppose thatwehave avery large supplyof cribs, 100 aday

say, each with probability [½]12 of being right. The chance of the two letters being

self-steckered is 3/65, and therefore working on 336 wheel orders13we should have

on average14 22˜�336� 5� 2 i.e. 72,800 hours work15 to obtain a solution.

12 Editors’ note. This fraction is illegible. Turing’s subsequent calculation, and the fact that it is typed

with a single keystroke, show that it must be ‰.

13 Editors’ note. (8� 7� 6): Dolphin used a three-wheel machine, M3, in 1941.

14 Editors’ note. 22˜ is a typo for 21¯ (65/3—see n. 15).

15 Editors’ note. 8.3 years! Dolphin keys had 10 Stecker pairs, leaving 6 letters unsteckered. The

probability of two letters randomly selected being unsteckered is 6=26� 5=25 ¼ 3=65. Taking the crib

probability correctness factor as 1/2, on average it would have been necessary to test 2� 65=3 cribs to obtain

a ‘hit’, giving Turing’s 21¯ [65=3]� 336 [wheel orders]� 2� 5 [hours per test].

Memorandum to OP-20-G on Naval Enigma | 351

Would you mind telling us your method

1) Does it give the keys starting from scratch, or does one need to start with

the Stecker?

2) Is the above account substantially correct?

3) Do you work with cribs as short as vvvbduuu? Have you any longer

ones?

4) About how many hours work do you estimate would be necessary to

obtain a solution on 336 wheel orders?

352 | Alan Turing

Artificial Intelligence
Jack Copeland

Turing was the Wrst to carry out substantial research in the Weld now known as

ArtiWcial Intelligence or AI. The term ‘ArtiWcial Intelligence’ itself did not come

into use until after Turing’s death, making a prominent appearance in 1956, in

the title of a conference held at Dartmouth College, New Hampshire: The

Dartmouth Summer Research Project on ArtiWcial Intelligence. Turing’s original

term, ‘machine intelligence’, remains in use, especially in Britain.

1. AI at Bletchley Park

Turing was thinking about machine intelligence at least as early as 1941. During

the war he circulated a typewritten paper on machine intelligence among some

of his colleagues at the Government Code and Cypher School (GC & CS).1 Now

lost, this was undoubtedly the earliest paper in the Weld of AI. It probably

concerned the mechanization of problem-solving and the idea of machines

learning from experience; both were topics that Turing discussed extensively

during the war years at GC & CS.

Turing enthusiastically discussed the mechanization of chess with Donald

Michie and others at Bletchley Park (see the introduction to Chapter 16).2

Michie (a leading codebreaker at GC & CS) recalls Turing’s speaking often during

the war about the possibility of computing machines solving problems by means

of searching through the space of possible solutions, guided by rules of thumb.3

(Convinced by Turing that AI was worth pursuing, Michie himself went on to

found the inXuential Department of Machine Intelligence and Perception at the

University of Edinburgh.)

Turing’s thinking on AI was probably inXuenced by his work on the bombe

(see ‘Enigma’ and Chapter 6). Central to the bombe was the idea of solving a

problem by means of a guided mechanical search through the space of possible

solutions. The space of possible solutions searched by the bombe consisted of

conWgurations of the Enigma machine, but the space searched by a different form

of machine might consist of conWgurations of a chess board, for example. The

1 Donald Michie in interview with Copeland (Oct. 1995, Feb. 1998).

2 Ibid.

3 Ibid.

bombe’s search could be guided in various ways; one involved the ‘multiple

encipherment condition’ associated with a crib (see Chapter 6, p. 317). The

search would ‘reduce the possible positions to a number which can be tested by

hand methods’ (ibid.).

Modern AI researchers speak of the method of ‘generate-and-test’. Potential

solutions to a given problem are generated by means of a guided search. These

potential solutions are then tested by an auxiliary method in order to Wnd out if

any actually is a solution. The bombe mechanized the Wrst process. The testing of

the stops, or potential solutions, was then carried out manually (by setting up a

replica Enigma accordingly, typing in the cipher text, and seeing whether or not

German came out). Nowadays in AI both processes, generate and test, are

typically carried out by the same programme.

In 1948 Turing boldly hypothesized that ‘intellectual activity consists mainly of

various kinds of search’ (Chapter 10, p. 431). His readers would no doubt have

been astonished to learn of his wartime experience with mechanized search (still

secret at that time). Some eight years later the same hypothesis was put forward

independently by Herbert Simon and Allen Newell in the USA; through their

inXuential work, it became one of the central tenets of AI.4

Turing’s work on the bombe involved him in the design of the Ringstellung ‘cut-

out’ (Chapter 6, p. 335). The Ringstellung cut-out is an early example of constrain-

ing search by means of what modern AI researchers call heuristics. A heuristic is a

rule that cuts down the amount of searching required in order to Wnd potential

solutions. Unlike a decision method (see ‘Computable Numbers: A Guide’), a

heuristic is not necessarily guaranteed to produce the correct solution, but works

oftenenough tobeuseful. Forexample, oneheuristic that everybodyuses fromtime

to time is: if you have lost something, search in the vicinity of the place where you

think youdropped it.Heuristic search is oneofmodernAI’s central techniques. The

Poles in effect used heuristic search in the bomba: the number of possibilities to be

examinedwas reducedby the assumption, true formoremessages thannot, that the

letters of the indicator were unsteckered (see ‘Enigma’).

The Ringstellung cut-out would be set so as to prevent the bombe from stopping

at certain positions at which it would otherwise have stopped—positions ruled out

by conjectured information about the ring settings. The device thereby reduced the

number of stops to be tested byhand. Early in 1940 JohnHerivel had discovered the

heuristic concerning ring settings thathelpedHut6break ‘Red’Enigmadaily.When

aGerman operator sent hisWrstmessage of the day, hewould be liable to use for the

indicator setting either the three letters visible in thewindowswhen he hadWnished

4 See, for example, A. Newell, J. C. Shaw, and H. A. Simon, ‘Empirical Explorations with the Logic

Theory Machine: A Case Study in Heuristics’, Proceedings of the Western Joint Computer Conference, 15

(1957), 218–39 (reprinted in E. A. Feigenbaum and J. Feldman (eds.), Computers and Thought (New York:

McGraw-Hill, 1963); A. Newell and H. A. Simon, ‘Computer Science as Empirical Inquiry: Symbols and

Search’, Communications of the Association for Computing Machinery, 19 (1976), 113–26.

354 | Jack Copeland

setting the rings, or the three letters visible at a closely neighbouring position of the

wheels, for example the positionproduced byhis having lazily turned a singlewheel

some small number of clicks (see Chapter 6, n. 26). By assuming that this was so in

the case of any given Wrst message, the codebreakers could (Herivel said) ‘narrow

down the 17,576 possible ring settings to a manageable number, say twenty or

thirty’.5Of course, the assumption might be wrong in any particular case, but was

correct often enough to be useful.

In Treatise on the Enigma Turing also described a ‘majority vote gadget’,

mechanizing the process of evaluating certain hypotheses on the basis of unreli-

able data, e.g. unreliable data about Stecker (see Chapter 6, p. 335). Although the

task mechanized by the gadget is a relatively undemanding one, it is nevertheless

of a type that might be described as requiring or evidencing intelligence when

carried out by human beings. The fact that such a task can be carried out by a

machine is suggestive. Leaving aside tasks that are provably uncomputable

(concerning which see Turing’s discussion, in Chapters 9, 10, 11, and 12, of

what he called the ‘Mathematical Objection’), might it be the case that all the

tasks we normally describe as demanding or showing intelligence can be reduced

to rules that a computing machine can follow? In 1940 nothing was known to

falsify the daring hypothesis that this is so, and the same remains true today.

2. AI in Post-war Britain

The birth of ArtiWcial Intelligence as a Weld of research is usually placed at 1956, the

year of the Dartmouth Summer Research Project on ArtiWcial Intelligence and also

the year inwhich a programme written byNewell, Simon, and Shaw—later named

‘the Logic Theorist’—proved theorems from Whitehead and Russell’s famous

work on mathematical logic Principia Mathematica.6 However, this received

view of the matter is hardly accurate. By 1956 computer intelligence had been

actively pursued for more than a decade in Britain; the earliest AI programmes to

run were written there in 1951–2. That the earliest work in the Weld was done in

Britain is a consequence of the fact that the Wrst electronic stored-programme

digital computers to function were built at Manchester and Cambridge univer-

sities (see the introduction to Chapter 9), and another important factor was the

inXuence of Turing on the Wrst generation of computer programmers.

In London in 1947 Turing gave what was, so far as is known, the earliest public

lecture to mention computer intelligence, providing a breathtaking glimpse of a

new Weld (Chapter 9). In 1948 he wrote his National Physical Laboratory

report ‘Intelligent Machinery’ (Chapter 10). This, the Wrst manifesto of ArtiWcial

5 M. Smith, Station X: The Codebreakers of Bletchley Park (London: Channel 4 Books, 1998), 43.

6 Newell, Shaw, and Simon, ‘Empirical Explorations with the Logic Theory Machine’; A. N. Whitehead

and B. Russell, Principia Mathematica, vols. i–iii (Cambridge: Cambridge University Press, 1910–13).

Artificial Intelligence | 355

Intelligence, adumbrated the methods of the new Weld and included Turing’s

proposals for connectionist-style neural simulation. In 1950 Turing published

‘Computing Machinery and Intelligence’ (Chapter 11), probably the best known

of all his papers. In it Turing addressed mainly philosophical and logical issues,

introducing his now famous imitation game or ‘Turing test’. There then followed

his three radio broadcasts on AI: the lectures ‘Intelligent Machinery, A Heretical

Theory’ (Chapter 12) and ‘Can Digital Computers Think?’ (Chapter 13), and the

panel discussion ‘Can Automatic Calculating Machines Be Said to Think?’

(Chapter 14). In 1953 Turing’s last work on AI was published, a groundbreaking

essay on computer chess (Chapter 16).

3. The First AI Programmes

Both during and after the war Turing experimented with machine routines for

playing chess (see Chapter 16). In the absence of an electronic computer, the

machine’s behaviour was simulated by hand, using paper and pencil. The Wrst

chess programme to run electronically was written for the Manchester University

computer by Dietrich Prinz in 1951 (see Chapter 16).

When Turing delivered his lecture ‘Can Digital Computers Think?’ on British

radio one of his listeners was Christopher Strachey. Strachey’s draughts (or

checkers) programme Wrst ran successfully in Turing’s Computing Machine La-

boratory at Manchester University. The programme used simple heuristics and

looked ahead three to four turns of play. The state of the board was represented on

the face of a cathode ray tube—one of the earliest uses of computer graphics.

(Strachey was at this time a schoolmaster at Harrow; he later became Director of

theProgrammingResearchGroupatOxfordUniversity,wherewith themathemat-

ical logician Dana Scott he did the work on the semantics of programming lan-

guages for which he is best known.7)

Strachey initially codedhisdraughtsprogramme inMay1951 for thePilotModel

of Turing’s Automatic Computing Engine at the National Physical Laboratory (see

Chapter 9).8 This version of the programme never ran successfully.9 An attempt to

run it in July 1951 foundereddue toprogramming errors.When Stracheywas ready

to try the programme again, he discovered that the computer’s hardware had been

modiWed; his programme could not be run without extensive changes. Strachey

switched his attention to theManchester University ComputingMachine Labora-

tory, where the Wrst Ferranti Mark I computer was installed in February 1952.

7 D. S. Scott and C. S. Strachey, ‘Towards a Mathematical Semantics for Computer Languages’, Proceed-

ings of a Symposium on Computers and Automata, Polytechnic Institute of Brooklyn, and Technical

Monograph 6, Programming Research Group, Oxford University (1971).

8 Letter from Strachey to Michael Woodger, 13 May 1951 (in the Woodger Papers, National Museum of

Science and Industry, Kensington, London).

9 Letters from Woodger to Copeland (15 July 1999, 15 Sept. 1999).

356 | Jack Copeland

Figure 1. Turing standing at the console of the Manchester Ferranti computer.

Source : Reprinted with permission of the Department of Computer Science, University of Manchester.

With Turing’s encouragement, and using Turing’s recently completed Program-

mers’ Handbook for the Ferranti machine, Strachey Wnally got his programme

working.10 By the summer of 1952 the programme could play a complete game

of draughts at a reasonable speed.11 (Built by the Manchester Wrm of Ferranti

in close collaboration with the Computing Machine Laboratory, the Mark I

was the world’s Wrst commercially available electronic stored-programme

computer.)

In 1952 Strachey described his draughts programme at a computing confer-

ence in North America. Arthur Samuel of IBM took over the essentials of

Strachey’s programme and wrote a checkers player for the IBM 701 (IBM’s

Wrst mass-produced electronic stored-programme computer). Samuel’s checkers

programme Wrst ran at the end of 195212 and appears to have been the earliest

AI programme in the USA. In 1955 Samuel added learning to the programme

and over a period of years made successive improvements to the learning

10 M. Campbell-Kelly, ‘Christopher Strachey, 1916–1975: A Biographical Note’, Annals of the History of

Computing, 7 (1985), 19–42(24); A. M. Turing, ‘Programmers’ Handbook for Manchester Electronic Com-

puter’, ComputingMachine Laboratory, University ofManchester (n.d., c. 1950); a digital facsimile is available

in The Turing Archive for the History of Computing <www.AlanTuring.net/programmers_handbook>.

11 C. S. Strachey, ‘Logical or Non-Mathematical Programmes’, Proceedings of the Association for Comput-

ing Machinery, Toronto (Sept. 1952), 46–9 (47).

12 Letter from Samuel to Copeland (6 Dec. 1988).

Artificial Intelligence | 357

www.AlanTuring.net/programmers_handbook

apparatus.13 In 1962 his programme won a game against a former Connecticut

checkers champion, R. W. Nealey. Nealey, who immediately turned the tables and

beat the programme in six consecutive games, is reported to have said: ‘In the

matter of the end game, I have not had such competition from any human being

since 1954, when I lost my last game.’14

Strachey was thinking about mechanized learning at the time of writing his

draughts player. He devised a simple rote-learning scheme which he envisaged

being implemented in a NIM-playing programme.15 Strachey wrote at length

concerning learning in a letter to Turing, composed on the evening of Turing’s

lecture ‘Can Digital Computers Think?’16 He said:

I have just been listening to your talk on the Third Programme. Most stimulating . . . [i]n

particular your remark . . . that the programme formaking amachine think would probably

have great similarities with the process of teaching; this seems to me absolutely fundamen-

tal. . . . I am convinced that the crux of the problem of learning is recognizing relationships

and being able to use them. . . . There are, I think, three main stages in learning from a

teacher. The Wrst is the exhibition of a few special cases of the rule to be learned. The second

is the process of generalisation—i.e. the underlining of the important features that these

cases have in common. The third is that of verifying the rule in further special cases and

asking questions about it. I have omitted any mention of ‘understanding’ the rule, because

this is not appropriate at the moment to the action of a machine. I think, as a matter of fact,

that the process of understanding a rule is connected with Wnding relationships between it

and other rules—i.e. second (or higher) order relations between relations and this might

well become important for a machine later. . . . I think it might well be possible to

programme the Manchester machine to do all of these stages, though how much it would

be able to learn in this way before the storage became inadequate remains to be seen.

Strachey missed the opportunity to be the Wrst to achieve a functioning

programme incorporating learning, however. The earliest programmes to do so

were written by Anthony Oettinger for the EDSAC computer at the University of

Cambridge Mathematical Laboratory. Oettinger was considerably inXuenced by

Turing’s ‘Computing Machinery and Intelligence’ (Chapter 11).17

Oettinger’s ‘response-learning programme’, dating from 1951,18 could be

taught to respond appropriately to given stimuli by means of expressions of

‘approval’ or ‘disapproval’ by the teacher.19 As training proceeded errors became

13 A. L. Samuel, ‘Some Studies in Machine Learning Using the Game of Checkers’, IBM Journal of

Research and Development, 3 (1959), 211–29; reprinted in E. A. Feigenbaum and J. Feldman (eds.),

Computers and Thought (New York: McGraw-Hill, 1963).

14 Ibid. (Feigenbaum and Feldman (eds.), Computers and Thought, 104).

15 Letter from Strachey to Turing, 15 May 1951 (in the Turing Papers, Modern Archive Centre, King’s

College, Cambridge (catalogue reference D 5)).

16 Ibid. (This extract is published by permission of Henry Strachey and the Strachey family.)

17 Oettinger in interview with Copeland (Jan. 2000).

18 Letter from Oettinger to Copeland (19 June 2000).

19 A.G.Oettinger, ‘Programming aDigitalComputer toLearn’,PhilosophicalMagazine, 43 (1952), 1243–63.

358 | Jack Copeland

less frequent, and the learned response would be initiated by a progressively

weaker stimulus. Oettinger described the response-learning programme as ‘op-

erating at a level roughly corresponding to that of conditioned reXexes’, and he

noted that the ‘behaviour pattern of the response-learning . . . machine is suY-

ciently complex to provide a diYcult task for an observer required to discover

the mechanism by which the behaviour of the . . . machine is determined.’20

Oettinger’s ‘shopping machine’, also dating from 1951, incorporated rote-

learning.21 Adopting Turing’s terminology, Oettinger described this programme

as a ‘child machine’ (see Chapter 11, p. 460). Shopper’s simulated world was amall

of eight shops.22When sent out to purchase an itemwhose location was unknown

Shopper would search for it, visiting shops at random until the item was found.

While searching, Shopper wouldmemorize a few of the items stocked in each shop

that it visited. Next time Shopper was sent out for the same item, or for some other

item that it had already located, it would go to the right shop straight away.

(Oettinger was the Wrst of many programmers to claim a programme capable of

passing a restricted form of the Turing test. The shopping machine could, he

remarked, successfully play a version of Turing’s imitation game in which the

‘questions are restricted to . . . the form ‘‘In what shop may article j be found?’’ ’23)

4. Subsequent Developments

Within a decade of this early work, ArtiWcial Intelligence had become an estab-

lished and burgeoning area of research. Some landmarks in the development of

the Weld were:

• During the latter part of the 1950s and the early 1960s, ArtiWcial Intelligence

laboratories were set up at a number of US and British universities, notably at

CarnegieMellonUniversity (underNewell and Simon), EdinburghUniversity

(under Michie), Massachusetts Institute of Technology (under Marvin

Minsky), and Stanford University (under John McCarthy, the organizer of

the Dartmouth Summer Research Project on ArtiWcial Intelligence).

• The 1950s saw the development of a number of programmes able to carry

out tasks of a sort usually said to require intelligence when carried out

by human beings. The most famous of these early programmes was the

General Problem Solver or GPS (written by Newell, Simon, and Shaw).24

20 Ibid. 1251, 1257.

21 Ibid. 1247–51.

22 ‘Shopper’ is my term; Oettinger uses ‘shopping programme’ and ‘shopping machine’.

23 Oettinger, ‘Programming a Digital Computer to Learn’, 1250.

24 A. Newell and H. Simon, ‘GPS, a Program that Simulates Human Thought’, in Feigenbaum and

Feldman (eds.), Computers and Thought; G. W. Ernst and A. Newell, GPS: A Case Study in Generality and

Problem Solving (New York: Academic Press, 1969).

Artificial Intelligence | 359

GPS could solve a variety of puzzles. One example is the ‘missionaries

and cannibals’ problem: how can a party of three missionaries and three

cannibals cross a river by means of a boat holding at most two people,

without the missionaries on either bank ever becoming outnumbered by

cannibals?

• Work on neuron-like computation got under way in Britain and the USA

during the 1950s. (Those involved included J. T. Allanson, R. L. Beurle,

W. A. Clark, B. G. Farley, F. Rosenblatt, W. Ross Ashby, W. K. Taylor, and

A. M. Uttley).25 Ross Ashby’s inXuential book Design for a Brain was

published in 1952 and Rosenblatt’s Principles of Neurodynamics in 1962.26

Rosenblatt was widely inXuential and numerous research groups in the USA

pursued his approach. He called this approach ‘connectionist’, emphasiz-

ing—as Turing had in 1948 (Chapter 10)—the role in learning of the

creation and modiWcation of connections between (real or simulated)

neurons.

• At the close of the 1950s John McCarthy developed the computer language

that he called LISP (from ‘list processor’).27 Designed speciWcally for AI

programming, LISP remains today one of the principal languages for AI

work. McCarthy took some of the ideas used in LISP from Church’s lambda

calculus (see the introduction to Chapter 4).

• In 1965 AI researcher Edward Feigenbaum and geneticist Joshua

Lederberg (both of Stanford University) began work on their programme

Heuristic Dendral (subsequently shortened to dendral).28 The pro-

gramme’s task was chemical analysis. The substance to be analysed

might be a complicated compound of carbon, hydrogen, and nitrogen,

for example. Starting from spectrographic data obtained from the substance,

dendral would hypothesize the substance’s molecular structure. den-

dral ’s performance rivalled that of human chemists expert at this task, and

the programme was used in industry and in universities. This high-perform-

ance programme was the model for much of the ensuing

work in the important area of expert systems (see the introduction to

Chapter 10).

25 For a synopsis see B. J. Copeland and D. Proudfoot, ‘On Alan Turing’s Anticipation of Connectionism’,

Synthese, 108 (1996), 361–77; reprinted in R. Chrisley (ed.), ArtiWcial Intelligence: Critical Concepts in

Cognitive Science, ii: Symbolic AI (London: Routledge, 2000).

26 W. R. Ashby, Design for a Brain (London: Chapman and Hall, 1952); F. Rosenblatt, Principles of

Neurodynamics (Washington, DC: Spartan, 1962).

27 J. McCarthy, ‘Recursive Functions of Symbolic Expressions and their Computation by Machine, Part I’,

Communications of the Association for Computing Machinery, 3 (1960), 184–95.

28 E. A. Feigenbaum, B. G. Buchanan, and J. Lederberg, ‘On Generality and Problem Solving: A Case

Study Using the dendral Program’, in B. Meltzer and D. Michie (eds.),Machine Intelligence 6 (Edinburgh:

Edinburgh University Press, 1971).

360 | Jack Copeland

Further reading

Boden, M. A.,Mind as Machine: A History of Cognitive Science (Oxford: Oxford University

Press, 2005).

Copeland, B. J., ArtiWcial Intelligence: A Philosophical Introduction (Oxford: Blackwell,

1993).

Copeland, B. J., ‘ArtiWcial Intelligence’, Encyclopaedia Britannica (15th ed. 2001).

Haugeland, J., ArtiWcial Intelligence: The Very Idea (Cambridge, Mass.: MIT Press, 1985).

McCorduck, P., Machines Who Think: A Personal Enquiry into the History and Prospects of

ArtiWcial Intelligence (New York: W. H. Freeman, 1979).

Michie, D., On Machine Intelligence (2nd ed. Chichester: Ellis Horwood, 1986).

Artificial Intelligence | 361

CHAPTER 9

Lecture on the Automatic

Computing Engine (1947)

Alan Turing

Introduction
Jack Copeland

Electronics at Bletchley Park

On 8 December 1943 the world’s first large-scale special-purpose electronic

digital computer—‘Colossus’, as it became known—went into operation at the

Government Code and Cypher School (see ‘Computable Numbers: A Guide’,

‘Enigma’, and the introduction to Chapter 4). Colossus was built by Thomas H.

Flowers and his team of engineers at the Post Office Research Station in Dollis

Hill, London. Until relatively recently, few had any idea that electronic digital

computation was used successfully during the Second World War, since those

who built and worked with Colossus were prohibited by the Official Secrets Act

from sharing their knowledge.

Colossus contained approximately the same number of electronic valves

(vacuum tubes) as von Neumann’s IAS computer, built at the Princeton Institute

of Advanced Study and dedicated in 1952. The IAS computer was forerunner of

the IBM 701, the company’s first mass-produced stored-programme electronic

computer (1953).1 The first Colossus had 1,600 electronic valves and Colossus II,

installed in mid-1944, 2,400, while the IAS computer had 2,600.2

Colossus lacked two important features of modern computers. First, it had no

internally stored programmes (see ‘Computable Numbers: A Guide’). To set up

Colossus for a new task, the operators had to alter the machine’s physical wiring,

using plugs and switches. Second, Colossus was not a general-purpose machine,

being designed for a specific cryptanalytic task (involving only logical operations

1 C. C. Hurd, ‘Computer Development at IBM’, in N. Metropolis, J. Howlett, and G. C. Rota (eds.), A

History of Computing in the Twentieth Century (New York: Academic Press, 1980).

2 J. Bigelow, ‘Computer Development at the Institute for Advanced Study’, ibid.

and counting). Nevertheless, Flowers had established decisively and for the first

time that large-scale electronic computing machinery was practicable.

The implication of Flowers’s racks of electronic equipment would have been

obvious to Turing. Once Turing had seen Colossus it was, Flowers said, just a

matter of Turing’s waiting to see what opportunity might arise to put the idea of

his universal computing machine into practice.3

Turing Joins the National Physical Laboratory

Precisely such an opportunity fell into Turing’s lap in 1945, when John Womers-

ley invited him to join the Mathematics Division of the National Physical

Laboratory (NPL) at Teddington in London, in order to design and develop an

electronic stored-programme digital computer—a concrete form of the universal

Turing machine of 1936. Womersley named the proposed computer the Auto-

matic Computing Engine, or ACE, in homage to Babbage and his planned

calculating machines, the Difference Engine and the Analytical Engine (see

‘Computable Numbers: A Guide’).

The formal date of Turing’s appointment was 1 October 1945.4 Womersley

reviewed the events leading up to the appointment in an NPL document entitled

‘A.C.E. Project – Origin and Early History’ (26 November 1946).5

1936–37 Publication of paper by A.M. Turing ‘On Computable Numbers, with an

Application to the Entscheidungsproblem’. . . .

1937–38 Paper seen by J.R.W. [J. R. Womersley] and read. J.R.W. met C. L. Norfolk, a

telephone engineer who had specialised in totalisator design and discussed with him the

planning of a ‘Turing machine’ using automatic telephone equipment. Rough schemat-

ics prepared, and possibility of submitting a proposal to N.P.L. discussed. It was decided

that machine would be too slow to be effective.

June 1938 J.R.W. purchased a uniselector and some relays on Petty Cash at R.D. Woolwich

for spare-time experiments. Experiments abandoned owing to pressure of work on

ballistics. . . .

Late 1943 J.R.W. first heard of [the] American machines. [Editor’s note: Aiken’s Se-

quence-Controlled Calculator at Harvard University and Stibitz’s Relay Computer at

Bell Telephone Laboratories—these machines were neither electronic nor stored-

programme.]

1944 Interdepartmental Committee on a Central Mathematical Station. D. R. Hartree

mentioned at one meeting the possible use of automatic telephone equipment in the

3 Flowers in interview with Copeland (July 1996).

4 Minutes of the Executive Committee of the National Physical Laboratory for 23 Oct. 1945 (National

Physical Laboratory library; a digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/npl_minutes_oct1945>).

5 J. R. Womersley, ‘A.C.E. Project – Origin and Early History’, National Physical Laboratory, 26 Nov. 1946

(Public Record Office, Kew, Richmond, Surrey (document reference DSIR 10/385); a digital facsimile is in

The Turing Archive for the History of Computing <www.AlanTuring.net/ace_early_history>).

Lecture on the Automatic Computing Engine | 363

www.AlanTuring.net/npl_minutes_oct1945
www.AlanTuring.net/ace_early_history

design of large calculating machines. J.R.W. submitted suggestions for a research

programme to be included in Committee’s Report.

1944 Sept. J.R.W. chosen for Maths. Division.

1944 Oct. J.R.W. prepares research programme for Maths. Division which includes an

item covering the A.C.E.

1944 Nov. J.R.W. addresses Executive Committee of N.P.L. Quotation from M/S (de-

livered verbatim) . . .

‘Are we to have a mixed team developing gadgets of many kinds . . . Or are we, following

Comrie . . . to rely on sheer virtuosity in the handling of the ordinary types of calculating

machines? I think either attitude would be disastrous . . .We can gain the advantages of both

methods by adopting electronic counting and by making the instructions to the machine

automatic . . .’

1945 Feb–May J.R.W. sent to the U.S.A. by Director. Sees Harvard machine and calls it

‘Turing in hardware’. (Can be confirmed by reference to letters to wife during visit).

J.R.W. sees ENIAC and is given information about EDVAC by Von Neumann and

Goldstine.

1945 June J.R.W. meets Professor M. H. A. Newman. Tells Newman he wishes to meet

Turing. Meets Turing same day and invites him home. J.R.W. shows Turing the first

report on the EDVAC and persuades him to join N.P.L. staff, arranges interview and

convinces Director and Secretary.

The Automatic Computing Engine

During the remainder of 1945 Turing drafted his technical report ‘Proposed

Electronic Calculator’.6 According to Michael Woodger—Turing’s assistant at the

NPL from 1946—an NPL file gave the date of Turing’s completed report as 1945

(unfortunately, this file was destroyed in 1952).7 Woodger believes that Turing

probably wrote the report between October and December 1945. The report was

submitted to the Executive Committee of the NPL in February 1946, under the

title ‘Proposals for the Development of an Automatic Computing Engine (ACE)’,

and on 19 March 1946 the ‘Committee resolved unanimously to support

with enthusiasm the proposal that Mathematics Division should undertake the

6 Turing’s technical reportwas reprinted by theNPL inApril 1972 asComputer ScienceDivisionReportNo.

57. The report is reprinted in full in B. J. Copeland (ed.), Alan Turing’s Automatic Computing Engine (Oxford:

OxfordUniversityPress, 2004)under the title ‘ProposedElectronicCalculator’; and inB.E.Carpenter andR.W.

Doran (eds.),A.M.Turing’sACEReport of 1946 and Other Papers (Cambridge, Mass.: MIT Press, 1986) under

the title ‘Proposal for Development in the Mathematics Division of an Automatic Computing Engine

(ACE)’. A copy of the original typewritten report is in the Woodger Papers (National Museum of Science

and Industry, Kensington, London (catalogue reference M15/83)); a digital facsimile is in The Turing

Archive for the History of Computing <www.AlanTuring.net/proposed_electronic_calculator>. Page refer-

ences in what follows are to the original typescript.

7 M. Woodger, handwritten note, undated (Woodger Papers (catalogue reference M15/78)); letter from

Woodger to Copeland (27 Nov. 1999).

364 | Jack Copeland

www.AlanTuring.net/proposed_electronic_calculator

Figure 1. The Pilot ACE in December 1950. On the left are the control table and the

modified Hollerith punched card unit (on the table with contoured legs). The tray slung

below the main frame contains the short delay lines used for temporary storage.

Source : Crown copyright. Reproduced by permission of the National Physical Laboratory.

development and construction of an automatic computing engine of the type

proposed by Dr. A. M. Turing’.8

Turing’s ‘Proposed Electronic Calculator’ gave the first relatively complete

specification of an electronic stored-programme digital computer. The earlier

‘First Draft of a Report on the EDVAC’, written by von Neumann in the USA in

about May 1945 (see ‘Computable Numbers: A Guide’), contained little engineer-

ing detail, in particular concerning electronic hardware. Harry Huskey, the elec-

tronic engineer who subsequently drew up the first detailed specifications of

possible hardware configurations for the EDVAC, has stated that the ‘information

in the ‘‘First Draft’’ was of no help in this’ and that ‘von Neumann’s ‘‘First Draft’’

provided no technical contribution to the development of computers’.9 Turing’s

proposal, on the other hand, supplied detailed specifications of hardware units,

including circuit designs, and specimen programmes in machine code. Turing

even gave an exact estimate of the cost of building the machine (£11,200).

8 Minutes of the Executive Committee of the National Physical Laboratory for 19 Mar. 1946 (National

Physical Laboratory library; a digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/npl_minutes_mar1946>).

9 Letter from Huskey to Copeland (4 Feb. 2002).

Lecture on the Automatic Computing Engine | 365

www.AlanTuring.net/npl_minutes_mar1946

Turing’s ACE and the EDVAC (which was not fully working until 195210)

differed fundamentally in design. The EDVAC had what is now called a central

processing unit or cpu, whereas in the ACE different memory locations had

specific logical or numerical functions associated with them. For example, if two

numbers were transferred to a certain destination in memory their sum would be

formed there, ready to be transferred elsewhere by a subsequent instruction.

Programmes for the ACE were made up entirely of instructions such as ‘Transfer

the contents of Temporary Store 27 to Temporary Store 6’. Instead of writing

mathematically significant instructions like

MULTIPLY x BY y AND STORE THE RESULT IN z

the programmer composed a series of transfer instructions producing that effect.

Turing saw that size of memory and speed were the keys to computing. (His

assistant at the NPL, James Wilkinson, observed that Turing ‘was obsessed with

the idea of speed on the machine’.11) Turing’s design specified a high-speed

memory of roughly the same capacity as an early Macintosh computer—enor-

mous by the standards of his day. In order to increase the speed of a programme’s

execution, he proposed that instructions be stored, not consecutively, but at

carefully chosen positions in memory, with each instruction containing a refer-

ence to the position of the next. Also with a view to speed, he included a small

fast-access memory for the temporary storage of whichever numbers were used

most frequently at a given stage of a computation. According to Wilkinson in

1955, Turing ‘was the first to realise that it was possible to overcome access time

difficulties with . . . mercury lines . . . or drum stores by providing a comparatively

small amount of fast access store. Many of the commercial machines in the USA

and . . . in this country make great use of this principle.’12

Turing’s philosophy—very different from that embraced in the EDVAC—was

to dispense with additional hardware in favour of software: in his design,

complex behaviour was to be achieved by complex programming rather than

by complex equipment (such as a hardware multiplier and divider, and special

hardware for floating-point arithmetic). The ACE therefore had much in

common with today’s RISC (Reduced Instruction Set Computing) architectures.

Turing spoke disparagingly of the contrary ‘American tradition of solving one’s

difficulties by means of much equipment rather than thought’.13

10 H. Huskey, ‘The Development of Automatic Computing’, in Proceedings of the First USA–JAPAN

Computer Conference, Tokyo (1972), 698–704 (702).

11 Wilkinson in interview with Christopher Evans in 1976 (‘The Pioneers of Computing: An Oral History

of Computing’ (London: Science Museum)).

12 Letter from Wilkinson to Newman, 10 June 1955 (Turing Papers, Modern Archive Centre, King’s

College, Cambridge (catalogue reference A 7)). Quoted by permission of Heather Wilkinson.

13 Memo from Turing to Womersley, n.d. but c. Dec. 1946 (Woodger Papers (catalogue reference M15/

77); a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

turing_womersley_cdec46>).

366 | Jack Copeland

www.AlanTuring.net/turing_womersley_cdec46
www.AlanTuring.net/turing_womersley_cdec46

Had Turing’s ACE been built as he planned, it would have been in a different

league from the other early computers. However, from early 1947—for reasons

that Turing might have regarded as amounting to ‘cowardly and irrational

doubts’14—his colleagues in the ACE Section were in favour of devoting their

efforts to building a much scaled-down and simplified form of Turing’s design,

which they called the ‘Test Assembly’, rather than pressing on ahead immediately

with the full-scale ACE. It was not in Turing’s nature to direct them otherwise.

He ‘tended to ignore the Test Assembly’, simply ‘standing to one side’ (Wilkinson

said).15 Finally, in 1948, a disenchanted Turing left the NPL for Newman’s

Computing Machine Laboratory at Manchester University. The introduction to

the next chapter tells the full story of the frustrating delays at the NPL and of

Turing’s move to Manchester (and see also the introduction to Chapter 4).

It was not until May 1950 that a small ‘pilot model’ of the Automatic

Computing Engine, built by Wilkinson, David Clayden, Donald Davies, Edward

Newman, Michael Woodger, and others, executed its first programme. With an

operating speed of 1MHz, the Pilot Model ACE was for some time the fastest

computer in the world. However, years of delays beyond Turing’s control had

cost the NPL the race to build the world’s first stored-programme electronic

digital computer—an honour that went to the University of Manchester, where,

in Newman’s Computing Machine Laboratory, the ‘Manchester Baby’ ran its first

programme on 21 June 1948.16 (As its name implies, the Baby was a very

small computer, and the news that it had run what was only a tiny pro-

gramme—just seventeen instructions long—for a mathematically trivial task

was ‘greeted with hilarity’ by the NPL team developing the much more sophisti-

cated Pilot Model ACE.17) Turing’s influence on the Manchester computer is

described below.

The EDSAC computer, built by Maurice Wilkes at Cambridge University,

became operational in 1949 and was the second stored-programme electronic

computer to run. The Pilot Model ACE was also preceded by the BINAC (1949),

built by Eckert and Mauchly at their Electronic Control Company, Philadelphia

(although opinions differ over whether the BINAC ever actually worked), the

CSIR Mark 1 (1949), built by Trevor Pearcey at the Commonwealth Scientific

and Industrial Research Organization, Division of Radiophysics, Sydney, Austra-

lia, the Whirlwind I (1949), built by Jay Forrester at the Digital Computer

Laboratory, Massachusetts Institute of Technology, and the SEAC (1950), built

14 Turing used this phrase in a different connection on p. 42 of his ‘Proposed Electronic Calculator’.

15 Wilkinson in interview with Evans (see n. 11).

16 Williams described the Computing Machine Laboratory on p. 328 of his ‘Early Computers at

Manchester University’ (Radio and Electronic Engineer, 45 (1975), 327–31): ‘It was one room in a Victorian

building whose architectural features are best described as ‘‘late lavatorial’’. The walls were of brown glazed

brick and the door was labelled ‘‘Magnetism Room’.’’

17 Woodger in interview with Copeland (June 1998).

Lecture on the Automatic Computing Engine | 367

by Samuel Alexander and Ralph Slutz at the US Bureau of Standards Eastern

Division, Washington, DC. Huskey’s SWAC, built at the US Bureau of Standards

Western Division, Los Angeles, ran a few months after the Pilot Model ACE (in

August 1950).

Derivatives of Turing’s ACE Design

The DEUCE, the production version of the Pilot Model ACE, was built by the

English Electric Company. The first was delivered in March 1955 (to the NPL)

and the last went out of service around 1970.18 Sales of this large and expensive

machine exceeded thirty, confounding the suggestion, made in 1946 by Sir

Charles Darwin, Director of the NPL, that ‘it is very possible that . . . one machine

would suffice to solve all the problems that are demanded of it from the whole

country’.19 (Douglas Hartee, a leading British expert on automatic computation,

thought that a total of three digital computers would probably be adequate for

the country’s computing needs.20) The NPL’s DEUCE replaced the Pilot Model

ACE, and in 1956 much of the Pilot Model was transferred to the London

Science Museum (where it is on permanent display).21

Work began on a large-scale ACE in the autumn of 1954.22 Built and housed at

the NPL, the ‘Big ACE’ was in operation by late 1958. Wilkinson, Clayden, Davies,

(Ted) Newman, and Woodger all contributed to the final design.23 The Big ACE

filled a room the size of an auditorium.24 It remained in service until 1967.

At the Press Day held in 1958 to announce the inauguration of the Big ACE,

A. M. Uttley—Superintendent of the NPL’s Control Mechanisms and Electronics

18 Letter from J. Illingworth to Fryer, 6 Nov. 1956 (Woodger Papers (catalogue reference M15/87); a

digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/illingworth_

fryer_6nov56>).

19 C. Darwin, ‘Automatic Computing Engine (ACE)’, National Physical Laboratory, 17 Apr. 1946 (Public

Record Office (document reference DSIR 10/385); a digital facsimile is in The Turing Archive for the History

of Computing <www.AlanTuring.net/darwin_ace>).

20 Hartree’s opinion is quoted in V. Bowden, ‘The 25th Anniversary of the Stored Program Computer’,

Radio and Electronic Engineer, 45 (1975), 326.

21 Memorandum from Hiscocks to the DSIR, 30 Jan. 1956 (Public Record Office (document reference

DSIR 10/275); a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTur-

ing.net/hiscocks_dsir_30jan1956>); letter from D. Brunt to Sir Charles Darwin (20 July 1956) (Public

Record Office (document reference DSIR 10/275); <www.AlanTuring.net/brunt_darwin_20july56>); ‘Dis-

posal of Pilot ACE’, memorandum from Hiscocks to the DSIR, 26 July 1956 (Public Record Office

(document reference DSIR 10/275); <www.AlanTuring.net/hiscocks_disposal_pilot_ace>).

22 Letter from Illingworth to Fryer (see n. 18).

23 Letter from A. M. Uttley to Sara Turing, 19 Dec. 1958 (in the Turing Papers, the Modern Archive

Centre, King’s College, Cambridge (catalogue reference A 11)).

24 F. M. Blake, D. O. Clayden, D. W. Davies, L. J. Page, and J. B. Stringer, ‘Some Features of the ACE

Computer’, National Physical Laboratory, 8 May 1957 (Woodger Papers (catalogue reference N12/102); a

digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/ace_

features>).

368 | Jack Copeland

www.AlanTuring.net/illingworth_fryer_6nov56
www.AlanTuring.net/illingworth_fryer_6nov56
www.AlanTuring.net/darwin_ace
www.AlanTuring.net/hiscocks_dsir_30jan1956
www.AlanTuring.net/hiscocks_dsir_30jan1956
www.AlanTuring.net/brunt_darwin_20july56
www.AlanTuring.net/hiscocks_disposal_pilot_ace
www.AlanTuring.net/ace_features
www.AlanTuring.net/ace_features

Division—announced: ‘Today, Turing’s dream has come true.’25 If so, it was a

dream whose time had passed. Technology had moved ahead in the thirteen years

since Turing wrote ‘Proposed Electronic Calculator’. The Big ACE was not the

revolutionary machine that it would have been if completed six or seven years

earlier. Not only did the Big ACE use valves in the era of the transistor; the

designers also retained the by then outmoded mercury delay line memory

proposed by Turing in 1945 (see below).26

Nevertheless, the Big ACE was a fast machine with a large memory, and the

decision to stick with the principles used in the Pilot ACE and the DEUCE was

reasonable in the circumstances. In 1953 Francis Colebrook (Head of the Elec-

tronics Section responsible for building Pilot ACE) urged that the proposed

large-scale ACE should ‘be based on well proved components and techniques,

even when revolutionary developments seem to be just around the corner.

Otherwise the [Mathematics] Division will get nothing but a succession of

pilot models.’27

The Big ACE ran at 1.5MHz, 50 per cent faster than the Pilot ACE and the

DEUCE, both 1MHz machines. A 1957 report stated that the Big ACE ‘appears

in fact to be about as fast as present-day parallel core-store computers’.28 ‘Core-

store’ or magnetic core memory was the most advanced high-speed storage

medium at that time.

The basic principles of Turing’s ACE design were used in the G15 computer,

built and marketed by the Detroit-based Bendix Corporation.29 The G15 was

designed by Huskey, who had spent the year 1947 at the NPLworking in the ACE

Section. The first G15 ran in 1954.30 It was arguably the first personal computer.

By following Turing’s philosophy of minimizing hardware in favour of software,

Huskey was able to make the G15 small enough (it was the size of a large

domestic refrigerator) and cheap enough to be marketed as a single-user com-

puter. Yet thanks to the design of the ACE-like memory (implemented in a

magnetic drum), the G15 was as fast as computers many times its size. Over

400 were sold worldwide and the G15 remained in use until about 1970.

Another computer deriving fromTuring’s ACEdesign, theMOSAICorMinistry

of Supply Automatic Integrator and Computer, played a role in Britain’s air

defences during the Cold War period. In 1946 Flowers established a small team at

the Post Office Research Station to build a computer to Turing’s logical design (see

the introduction to thenext chapter). The teamconsistedof twoengineers,William

25 Letter from Uttley to Sara Turing (see n. 23).

26 An experimental transistorized machine went into operation at Manchester University in 1953; see

S. H. Lavington, Early British Computers (Manchester: Manchester University Press, 1980).

27 F. M. Colebrook, 4 May 1953; quoted in D. M. Yates, Turing’s Legacy: A History of Computing at the

National Physical Laboratory 1945–1995 (London: Science Museum, 1997), 67.

28 Blake, Clayden, Davies, Page, and Stringer, ‘Some Features of the ACE Computer’, 3.

29 Huskey in interview with Copeland (Feb. 1998).

30 Letter from Huskey to Copeland (20 Dec. 2001).

Lecture on the Automatic Computing Engine | 369

Chandler and Allen Coombs, both of whom had assisted Flowers in the construc-

tion of Colossus. Working alone, Coombs and Chandler carried out the enginee-

ring design of the MOSAIC, a large computer based on Turing’s Version VII of the

ACE design (Version VII dated from 1946).31Of the various ACE-type computers

that were built, the MOSAIC was the closest to Turing’s original conception.

The MOSAIC consisted of some 70 mercury delay lines, 2,000 semi-conductors

(germanium diodes), and 7,000 thermionic valves.32 It first ran a programme in

1952 or early 1953.33 Once completed, the MOSAIC was installed at the Radar

Research and Development Establishment (RRDE) in Malvern. It was used to

calculate aircraft trajectories from radar data in connection with anti-aircraft

measures (the details appear still to be classified). The data was generated by

twomobile data-recorders working in conjunction with a radar tracking system.34

Coombs has emphasized: ‘it was just Chandler and I—we designed every scrap

of that machine.’35 Given, therefore, that two engineers working alone succeeded

in completing the large MOSAIC, there seems little doubt that, had the NPL

possessed the organizational capability and sufficient manpower, a computer not

too distant from Turing’s original conception could have been up and running by

the early 1950s. Thanks to their experience with Colossus, Chandler and Coombs

had a substantial start on everyone else in the field. Turing was unable to share

his knowledge of their wartime work with Darwin. Had he been able to do so, the

NPL might have acted to boost the resources available to Chandler and Coombs,

and so made Turing’s dream a reality much sooner.

Other derivatives of the ACE included the EMI Business Machine and the

Packard-Bell PB250.36 Designed for business applications involving the shallow

processing of large quantities of data, the EMI Business Machine was a relatively

31 Coombs in interview with Evans in 1976 (‘The Pioneers of Computing: An Oral History of Comput-

ing’ (London: Science Museum)); A. W. M. Coombs, ‘MOSAIC’, in Automatic Digital Computation:

Proceedings of a Symposium Held at the National Physical Laboratory (London: Her Majesty’s Stationery

Office, 1954); B. J. Copeland (ed.), ‘The Turing–Wilkinson Lectures on the Automatic Computing Engine’,

in K. Furukawa, D. Michie, and S. Muggleton (eds.), Machine Intelligence 15 (Oxford: Oxford University

Press, 1999). Digital facsimiles of a series of technical reports concerning the MOSAIC by Coombs,

Chandler, and others are available in The Turing Archive for the History of Computing <www.AlanTur-

ing.net/mosaic>.

32 ‘Engineer-in-Chief ’s Report on the Work of the Engineering Department for the Year 1 April 1954 to

31 March 1955’, Post Office Engineering Department (The Post Office Archive, London); Coombs,

‘MOSAIC’.

33 ‘Engineer-in-Chief ’s Report on the Work of the Engineering Department for the Year 1 April 1952 to

31 March 1953’, Post Office Engineering Department (The Post Office Archive, London).

34 ‘Engineer-in-Chief ’s Report on the Work of the Engineering Department for the Year 1 April 1951 to

31 March 1952’, Post Office Engineering Department (The Post Office Archive, London).

35 Coombs in interview with Evans (see n. 31).

36 C. G. Bell, and A. Newell, Computer Structures: Readings and Examples (New York: McGraw-Hill,

1971), 44, 74; R. J. Froggatt, ‘Logical Design of a Computer for Business Use’, Journal of the British Institution

of Radio Engineers, 17 (1957), 681–96; Yates, Turing’s Legacy: A History of Computing at the National Physical

Laboratory 1945–1995, 43–4.

370 | Jack Copeland

www.AlanTuring.net/mosaic
www.AlanTuring.net/mosaic

slow electronic computer with a large memory. The PB250 was a low-cost

transistorized computer.

Turing, Newman, and the Manchester Computer

At the time of the Manchester Baby and its successor, the Manchester Mark I, the

electronic engineers Frederic Williams and Thomas Kilburn, who had translated

the logico-mathematical idea of the stored-programme computer into hardware,

were given too little credit by the mathematicians at Manchester—Williams and

Kilburn were regarded as excellent engineers but not as ‘ideas men’.37 Nowadays

the tables have turned too far and the triumph at Manchester is usually credited

to Williams and Kilburn alone. Fortunately the words of the late Williams

survive to set the record straight:

Now let’s be clear before we go any further that neither Tom Kilburn nor I knew the first

thing about computers when we arrived in Manchester University . . . Newman explained

the whole business of how a computer works to us.38

Tom Kilburn and I knew nothing about computers . . . Professor Newman and Mr A. M.

Turing . . . knew a lot about computers . . . They took us by the hand and explained how

numbers could live in houses with addresses . . . 39

In an address to the Royal Society on 4 March 1948, Newman presented this

very explanation:

In modern times the idea of a universal calculating machine was independently [of

Babbage] introduced by Turing . . . There is provision for storing numbers, say in the

scale of 2, so that each number appears as a row of, say, forty 0’s and 1’s in certain places or

‘houses’ in the machine. . . . Certain of these numbers, or ‘words’ are read, one after

another, as orders. In one possible type of machine an order consists of four numbers, for

example 11, 13, 27, 4. The number 4 signifies ‘add’, and when control shifts to this word

the ‘houses’ H11 and H13 will be connected to the adder as inputs, and H27 as output.

The numbers stored in H11 and H13 pass through the adder, are added, and the sum is

passed on to H27. The control then shifts to the next order. In most real machines the

process just described would be done by three separate orders, the first bringing <H11>

(¼ content of H11) to a central accumulator, the second adding <H13> into the

accumulator, and the third sending the result to H27; thus only one address would be

required in each order. . . . A machine with storage, with this automatic-telephone-

exchange arrangement and with the necessary adders, subtractors and so on, is, in a

sense, already a universal machine.40

37 Peter Hilton in interview with Copeland (June 2001).

38 Williams in interview with Evans in 1976 (‘The Pioneers of Computing: An Oral History of Comput-

ing’ (London: Science Museum)).

39 Williams, ‘Early Computers at Manchester University’, 328.

40 M. H. A. Newman, ‘General Principles of the Design of All-Purpose Computing Machines’, Proceedings

of the Royal Society of London, Series A, 195 (1948), 271–74 (271–2).

Lecture on the Automatic Computing Engine | 371

Following this explanation of Turing’s three-address concept (source 1, source 2,

destination, function) Newman went on to describe programme storage (‘the

orders shall be in a series of houses X1, X2, . . .’) and conditional branching. He

then summed up:

From this highly simplified account it emerges that the essential internal parts of the

machine are, first, a storage for numbers (which may also be orders). . . . Secondly,

adders, multipliers, etc. Thirdly, an ‘automatic telephone exchange’ for selecting ‘houses’,

connecting them to the arithmetic organ, and writing the answers in other prescribed

houses. Finally, means of moving control at any stage to any chosen order, if a certain

condition is satisfied, otherwise passing to the next order in the normal sequence. Besides

these there must be ways of setting up the machine at the outset, and extracting the final

answer in useable form.41

In a letter written in 1972 Williams described in some detail what he and

Kilburn were told by Newman:

About the middle of the year [1946] the possibility of an appointment at Manchester

University arose and I had a talk with Professor Newman who was already interested in the

possibility of developing computers and had acquired a grant from the Royal Society of

£30,000 for this purpose. Since he understood computers and I understood electronics

the possibilities of fruitful collaboration were obvious. I remember Newman giving us a few

lectures in which he outlined the organisation of a computer in terms of numbers being

identified by the address of the house in which they were placed and in terms of numbers

being transferred from this address, one at a time, to an accumulator where each entering

number was added to what was already there. At any time the number in the accumulator

could be transferred back to an assigned address in the store and the accumulator cleared for

further use. The transfers were to be effected by a stored program in which a list of

instructions was obeyed sequentially. Ordered progress through the list could be inter-

rupted by a test instruction which examined the sign of the number in the accumulator.

Thereafter operation started from a new point in the list of instructions. This was the first

information I received about the organisation of computers. . . . Our first computer was the

simplest embodiment of these principles, with the sole difference that it used a subtracting

rather than an adding accumulator.42

Turing’s early input to the developments at Manchester, hinted at by Williams

in his above-quoted reference to Turing, may have been via the lectures on

computer design that Turing and Wilkinson gave in London during the period

December 1946 to February 1947.43 The lectures were attended by representa-

tives of various organizations planning to use or build an electronic computer.

41 M. H. A. Newman, ‘General Principles of the Design of All-Purpose Computing Machines’, Proceedings

of the Royal Society of London, Series A, 195 (1948), 271–74 (271–2).

42 Letter from Williams to Randell, 1972 (quoted in B. Randell, ‘On Alan Turing and the Origins of

Digital Computers’, in B. Meltzer and D. Michie (eds.), Machine Intelligence 7 (Edinburgh: Edinburgh

University Press, 1972), 9).

43 ‘The Turing–Wilkinson Lectures on the Automatic Computing Engine’.

372 | Jack Copeland

Kilburn was in the audience.44 (Kilburn usually said, when asked where he

obtained his basic knowledge of the computer from, that he could not remem-

ber;45 for example, in a 1992 interview he said: ‘Between early 1945 and early

1947, in that period, somehow or other I knew what a digital computer was . . .

Where I got this knowledge from I’ve no idea.’46)

Whatever role Turing’s lectures may have played in informing Kilburn, there is

little doubt that credit for the Manchester computer—called the ‘Newman–

Williams machine’ by Huskey in a report written shortly after a visit in 1947 to

the Manchester project47—belongs not only to Williams and Kilburn but also to

Newman, and that the influence on Newman of Turing’s ‘On Computable

Numbers’ was crucial, as was the influence of Flowers’s Colossus (see the

introduction to Chapter 4).

There is more information concerning Turing and the Manchester computer

in the chapter ‘Artificial Life’.

The Manchester computer and the EDVAC

The Baby and the Manchester Mark I are sometimes said to have descended

from the EDVAC. Newman was well aware of von Neumann’s ‘First Draft

of a Report on the EDVAC’. In the summer of 1946 he sent David Rees, a

lecturer in his department at Manchester and an ex-member of the Newmanry,

to a series of lectures at the Moore School, where Eckert, Mauchly, and other

members of the ENIAC-EDVAC group publicized their ideas on computer

design.48 In the autumn of 1946 Newman himself went to Princeton for three

months.49

Newman’s advocacy of ‘a central accumulator’—a characteristic feature of

the EDVAC but not of the ACE—was probably influenced by his knowledge

of the American proposals. However, von Neumann’s ideas seem to have had

little influence on other members of the Manchester project. Kilburn spoke

scathingly of the von Neumann ‘dictat’.50 Geoffrey Tootill said:

Williams, Kilburn and I (the three designers of the first Manchester machine) had all spent

the 1939–1945 war at the Telecommunications Research Establishment doing R & D on

radiolocation equipments. The main U.S. ideas that we accepted in return for our

44 G. Bowker and R. Giordano, ‘Interview with Tom Kilburn’, Annals of the History of Computing, 15

(1993), 17–32.

45 Letter from Brian Napper to Copeland (16 June 2002).

46 Bowker and Giordano, ‘Interview with Tom Kilburn’, 19.

47 H. D. Huskey, untitled typescript, National Physical Laboratory, n.d. but c. Mar. 1947 (Woodger

Papers (catalogue reference M12/105); a digital facsimile is in The Turing Archive for the History of

Computing <www.AlanTuring.net/huskey_1947>).

48 Letter from Rees to Copeland (2 Apr. 2001).

49 W. Newman, ‘Max Newman: Mathematician, Codebreaker and Computer Pioneer’, to appear in

B. J. Copeland (ed.) Colossus: The First Electronic Computer (Oxford: Oxford University Press).

50 Kilburn in interview with Copeland (July 1997).

Lecture on the Automatic Computing Engine | 373

www.AlanTuring.net/huskey_1947

initiatives on these and later on computers were the terms ‘radar’ and ‘memory’. . .We

disliked the latter term, incidentally, as encouraging the anthropomorphic concept of

‘machines that think’.51

To the best of my recollection FC [Williams], Tom [Kilburn] and I never discussed . . . von

Neumann’s . . . ideas during the development of the Small-Scale Experimental Machine

[the Baby], nor did I have any knowledge of them when I designed the Ferranti Mk I. I

don’t think FC was influenced at all by von Neumann, because I think he was in general

quite punctilious in acknowledging other people’s ideas.52

Tootill added:

As well as our own ideas, we incorporated functions suggested by Turing and Newman in

the improvement and extension of the first machine. When I did the logic design of the

Ferranti Mark 1, I got them to approve the list of functions.53

The ACE and Artificial Intelligence54

In designing the ACE, Artificial Intelligence was not far from Turing’s thoughts

—he described himself as building ‘a brain’.55 The otherwise austere ‘Proposed

Electronic Calculator’ contains a cameo discussion of computer intelligence and

chess (Turing’s earliest surviving remarks concerning AI):

‘Can the machine play chess?’ It could fairly easily be made to play a rather bad game. It

would be bad because chess requires intelligence. We stated at the beginning of this section

that the machine should be treated as entirely without intelligence. There are indications

however that it is possible to make the machine display intelligence at the risk of its

making occasional serious mistakes. By following up this aspect the machine could

probably be made to play very good chess.56

What is probably Turing’s earliest mention to survive of his interest in neural

simulation (see further Chapter 10) occurs in a letter to the cyberneticist W. Ross

Ashby:

In working on the ACE I am more interested in the possibility of producing models of

the action of the brain than in the practical applications to computing. . . . The ACE will

be used, as you suggest, in the first instance in an entirely disciplined manner, similar to

the action of the lower centres, although the reflexes will be extremely complicated. The

disciplined action carries with it the disagreeable feature, which you mentioned, that it

will be entirely uncritical when anything goes wrong. It will also be necessarily devoid of

51 Letter from Tootill to Copeland (18 Apr. 2001).

52 Letter from Tootill to Copeland (16 May 2001).

53 Letter from Tootill to Copeland (18 Apr. 2001).

54 As explained in the chapter ‘Artificial Intelligence’, the term ‘Artificial Intelligence’ did not come into

use until after Turing’s death.

55 Don Bayley in interview with Copeland (Dec. 1997).

56 ‘Proposed Electronic Calculator’, 16.

374 | Jack Copeland

anything that could be called originality. There is, however, no reason why the machine

should always be used in such a manner: there is nothing in its construction which obliges

us to do so. It would be quite possible for the machine to try out variations of behaviour

and accept or reject them in the manner you describe and I have been hoping to make the

machine do this. This is possible because, without altering the design of the machine itself,

it can, in theory at any rate, be used as a model of any other machine, by making it

remember a suitable set of instructions. The ACE is in fact analogous to the ‘universal

machine’ described in my paper on computable numbers. This theoretical possibility is

attainable in practice, in all reasonable cases, at worst at the expense of operating slightly

slower than a machine specially designed for the purpose in question. Thus, although the

brain may in fact operate by changing its neuron circuits by the growth of axons and

dendrites, we could nevertheless make a model, within the ACE, in which this possibility

was allowed for, but in which the actual construction of the ACE did not alter, but only the

remembered data, describing the mode of behaviour applicable at any time. I feel that you

would be well advised to take advantage of this principle, and do your experiments on the

ACE, instead of building a special machine. I should be very glad to help you over this.57

The Lecture

On 20 February 1947 Turing lectured on the ACE to the London Mathematical

Society.58 So far as is known, this was the earliest public lecture to mention

computer intelligence, providing a breathtaking glimpe of a new field. Turing

discussed the prospect of machines acting intelligently, learning, and beating

human opponents at chess, remarking that ‘[w]hat we want is a machine that can

learn from experience’ and that ‘[t]he possibility of letting the machine alter its

own instructions provides the mechanism for this’.

The lecture is also of note for its early discussion of computer programming.

By the time of the lecture, Turing had been developing programmes—then called

‘instruction tables’ (see ‘Computable Numbers: A Guide’)—for the not-

yet-existent ACE for well over a year. As Womersley was to remark in 1948,

‘The planning of the ACE is far ahead of the hardware.’59 During this period,

Turing and the other members of the ACE Section brought the nascent science of

computer programming to a state of considerable sophistication.

Among Turing’s many technical innovations was the use of what are now

called subroutines, or in Turing’s term, ‘subsidiary tables’ (see ‘Computable

Numbers: A Guide’).

57 Letter from Turing to W. Ross Ashby, no date (Woodger Papers (catalogue reference M11/99); a digital

facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/turing_ashby>).

The letter was probably written in 1946 and certainly prior to October 1947.

58 The lecture was held at 5 p.m. in the rooms of the Royal Astronomical Society at Burlington House in

London (entry in Woodger’s diary for 20 Feb. 1947 (Copeland is grateful to Woodger for this information)).

59 Minutes of the NPL Executive Committee, 20 Apr. 1948 (National Physical Laboratory library; a

digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

npl_minutes_apr1948>).

Lecture on the Automatic Computing Engine | 375

www.AlanTuring.net/turing_ashby
www.AlanTuring.net/npl_minutes_apr1948
www.AlanTuring.net/npl_minutes_apr1948

Turing devoted about a quarter of his lecture to a discussion of computer

memory, saying (p. 383):

I have spent a considerable time in this lecture on this question of memory, because I

believe that the provision of proper storage is the key to the problem of the digital

computer, and certainly if they are to be persuaded to show any sort of genuine intelli-

gence much larger capacities than are yet available must be provided.

It was precisely Turing’s desire to conduct experiments in AI that led him to

propose such a large memory in the ACE.60

Delay Line Memory and Optimum Programming

The fundamental feature of the ACE design, which influenced virtually all other

aspects of it, was Turing’s adoption of acoustic delay lines to form the high-speed

memory. He remarked in the lecture that the chief advantage of delay lines as a

memory medium—they were far from ideal—was that they were ‘already a going

concern’ (p. 380). The acoustic delay line was pioneered in 1942 byW. B. Shockley,

later one of the co-inventors of the transistor, and in 1943 Presper Eckert and

others at the Moore School (home of the ENIAC) independently investigated a

different type of acoustic delay line filled with mercury.61 Subsequently, acoustic

delay lines were widely employed in radar. It was Eckert who first proposed their

use in digital computers (see ‘Computable Numbers: A Guide’).

The following description of a mercury delay line is from Turing’s ‘Proposed

Electronic Calculator’:

It is proposed to build ‘delay line’ units consisting of mercury . . . tubes about 5’ long and
1’’ in diameter in contact with a quartz crystal at each end. The velocity of sound

in . . . mercury . . . is such that the delay will be 1.024ms. The information to be stored

may be considered to be a sequence of 1024 ‘digits’ (0 or 1) . . . These digits will be

represented by a corresponding sequence of pulses. The digit 0 . . . will be represented by

the absence of a pulse at the appropriate time, the digit 1 . . . by its presence. This series of

pulses is impressed on the end of the line by one piezo-crystal, it is transmitted down the

line in the form of supersonic waves, and is reconverted into a varying voltage by the

crystal at the far end. This voltage is amplified sufficiently to give an output of the order of

10 volts peak to peak and is used to gate a standard pulse generated by the clock. This

pulse may be again fed into the line by means of the transmitting crystal, or we may feed

in some altogether different signal. We also have the possibility of leading the gated pulse

to some other part of the calculator, if we have need of that information at the time.

Making use of the information does not of course preclude keeping it also.62

60 Woodger in interview with Copeland (June 1998).

61 A. G. Emslie, H. B. Huntington, H. Shapiro, and A. E. Benfield, ‘Ultrasonic Delay Lines II’, Journal of

the Franklin Institute, 245 (1948), 101–15 (101–2). In Shockley’s delay line, the transmitting medium was

not mercury but ethylene glycol.

62 ‘Proposed Electronic Calculator’, 5.

376 | Jack Copeland

As Turing noted in his 1947 lecture, the ACE’s memory was to consist of

approximately 200 such delay lines. In the event, the Big ACE contained only a

few dozen delay lines, supplemented by four magnetic drums.

Having decided to use delay lines, Turing was determined to maximize their

effectiveness. The time taken for an instruction, or number, to emerge from a

delay line will depend on where in the delay line it happens to be. In order to

minimize waiting time, Turing arranged for instructions to be stored not at

regular intervals in a delay line, but in irregular positions. These positions were

selected by the programmer in such a way that each instruction would emerge

from its delay line at precisely the time it was required. This system became

known at the NPL as ‘optimum coding’ (and later ‘optimum programming’).

Optimum coding made for difficult and untidy programming but the advan-

tage in terms of speed was considerable. Thanks to optimum coding, the Pilot

Model ACE was able to do a floating point multiplication in 3 milliseconds.63

The EDSAC computer at Cambridge University—a slower delay line machine

lacking optimum coding—required 4.5 milliseconds to perform a single fixed

point multiplication.64

Further reading

Campbell-Kelly, M., ‘Programming the Pilot ACE: Early Programming Activity at the

National Physical Laboratory’, Annals of the History of Computing, 3 (1981), 133–62.

Carpenter, B. E., and Doran, R. W. (eds.), A. M. Turing’s ACE Report of 1946 and Other

Papers (Cambridge, Mass.: MIT Press, 1986).

Copeland, B. J. (ed.), Alan Turing’s Automatic Computing Engine (Oxford: Oxford Univer-

sity Press, 2004).

Yates, D. M., Turing’s Legacy: A History of Computing at the National Physical Laboratory

1945–1995 (London: Science Museum, 1997).

Provenance

What follows is the text of the lecture taken from Turing’s own typescript

(which is headed ‘Lecture to L.M.S. Feb. 20 1947’).65

63 Wilkinson in interview with Evans (see n. 11).

64 M. Campbell-Kelly, ‘Programming the EDSAC: Early Programming Activity at the University of

Cambridge’, Annals of the History of Computing, 2 (1980), 7–36.

65 Turing’s typescript is among the Turing Papers in the Modern Archive Centre, King’s College,

Cambridge (catalogue reference B 1). It was first published in 1986 in Carpenter and Doran, A. M. Turing’s

ACE Report of 1946 and Other Papers. The present edition differs from the 1986 edition in various small

respects. A few missing words have been restored (on pp. 379 and 381) and some minor departures in the

earlier edition from Turing’s original text have been rectified. Many of Turing’s sketch diagrams (reproduced

in the 1986 edition) have been redrawn. Obvious typing and spelling errors in Turing’s typescript have been

corrected without comment. Words or letters enclosed in square brackets have been added by the editor.

Lecture on the Automatic Computing Engine | 377

Lecture on the Automatic Computing Engine

The automatic computing engine now being designed at N.P.L. is a typical large

scale electronic digital computing machine. In a single lecture it will not be

possible to give much technical detail of this machine, and most of what I shall

say will apply equally to any other machine of this type now being planned.

From the point of view of the mathematician the property of being digital

should be of greater interest than that of being electronic. That it is electronic is

certainly important because these machines owe their high speed to this, and

without the speed it is doubtful if financial support for their construction would

be forthcoming. But this is virtually all that there is to be said on that subject.

That the machine is digital however has more subtle significance. It means firstly

that numbers are represented by sequences of digits which can be as long as one

wishes. One can therefore work to any desired degree of accuracy. This accuracy

is not obtained by more careful machining of parts, control of temperature

variations, and such means, but by a slight increase in the amount of equipment

in the machine. To double the number of significant figures used would involve

increasing the equipment by a factor definitely less than two, and would also have

some effect in increasing the time taken over each job. This is in sharp contrast

with analogue machines, and continuous variable machines such as the differen-

tial analyser, where each additional decimal digit required necessitates a complete

redesign of the machine, and an increase in the cost by perhaps as much as a

factor of 10. A second advantage of digital computing machines is that they are

not restricted in their applications to any particular type of problem. The

differential analyser is by far the most general type of analogue machine yet

produced, but even it is comparatively limited in its scope. It can be made to deal

with almost any kind of ordinary differential equation, but it is hardly able to

deal with partial differential equations at all, and certainly cannot manage large

numbers of linear simultaneous equations, or the zeros of polynomials. With

digital machines however it is almost literally true that they are able to tackle any

computing problem. A good working rule is that the ACE can be made to do any

job that could be done by a human computer, and will do it in one ten-

thousandth of the time. This time estimate is fairly reliable, except in cases

where the job is too trivial to be worth while giving to the ACE.

Some years ago I was researching on what might now be described as an

investigation of the theoretical possibilities and limitations of digital computing

machines. I considered a type of machine which had a central mechanism, and an

infinite memory which was contained on an infinite tape. This type of machine

appeared to be sufficiently general. One of my conclusions was that the idea of a

‘rule of thumb’ process and a ‘machine process’ were synonymous. The expres-

Reproduced with permission of the Estate of Alan Turing.

sion ‘machine process’ of course means one which could be carried out by the

type of machine I was considering. It was essential in these theoretical arguments

that the memory should be infinite. It can easily be shown that otherwise the

machine can only execute periodic operations. Machines such as the ACE may be

regarded as practical versions of this same type of machine. There is at least a very

close analogy. Digital computing machines all have a central mechanism or

control and some very extensive form of memory. The memory does not have

to be infinite, but it certainly needs to be very large. In general the arrangement of

the memory on an infinite tape is unsatisfactory in a practical machine, because

of the large amount of time which is liable to be spent in shifting up and down the

tape to reach the point at which a particular piece of information required at the

moment is stored. Thus a problem might easily need a storage of three million

entries, and if each entry was equally likely to be the next required the average

journey up the tape would be through a million entries, and this would be

intolerable. One needs some form of memory with which any required entry

can be reached at short notice. This difficulty presumably used to worry the

Egyptians when their books were written on papyrus scrolls. It must have been

slow work looking up references in them, and the present arrangement of written

matter in books which can be opened at any point is greatly to be preferred. We

may say that storage on tape and papyrus scrolls is somewhat inaccessible. It takes

a considerable time to find a given entry. Memory in book form is a good deal

better, and is certainly highly suitable when it is to be read by the human eye. We

could even imagine a computing machine that was made to work with a memory

based on books. It would not be very easy but would be immensely preferable to

the single long tape. Let us for the sake of argument suppose that the difficulties

involved in using books as memory were overcome, that is to say that mechanical

devices for finding the right book and opening it at the right page, etc. etc. had

been developed, imitating the use of human hands and eyes. The information

contained in the books would still be rather inaccessible because of the time

occupied in the mechanical motions. One cannot turn a page over very quickly

without tearing it, and if one were to do much book transportation, and do it fast

the energy involved would be very great. Thus if we moved one book every

millisecond and each was moved ten metres and weighed 200 grams, and if the

kinetic energy were wasted each time we should consume 1010 watts, about half

the country’s power consumption. If we are to have a really fast machine then, we

must have our information, or at any rate a part of it, in a more accessible form

than can be obtained with books. It seems that this can only be done at the

expense of compactness and economy, e.g. by cutting the pages out of the books,

and putting each one into a separate reading mechanism. Some of the methods of

storage which are being developed at the present time are not unlike this.

If one wishes to go to the extreme of accessibility in storage mechanisms one is

liable to find that it is gained at the price of an intolerable loss of compactness

Lecture on the Automatic Computing Engine | 379

and economy. For instance the most accessible known form of storage is that

provided by the valve flip-flop or Jordan Eccles trigger circuit. This enables us to

store one digit, capable of two values, and uses two thermionic valves. To store

the content of an ordinary novel by such means would cost many millions of

pounds. We clearly need some compromise method of storage which is more

accessible than paper, film etc, but more economical in space and money than

the straightforward use of valves. Another desirable feature is that it should be

possible to record into the memory from within the computing machine, and

this should be possible whether or not the storage already contains something,

i.e. the storage should be erasible.

There are three main types of storage which have been developed recently and

have these properties in greater or less degree. Magnetic wire is very compact, is

erasible, can be recorded on from within the machine, and is moderately

accessible. There is storage in the form of charge patterns on the screen of a

cathode ray tube. This is probably the ultimate solution. It could eventually be

nearly as accessible as the Jordan Eccles circuit. A third possibility is provided by

acoustic delay lines. They give greater accessibility than the magnetic wire,

though less than the C.R.T type. The accessibility is adequate for most purposes.

Their chief advantage is that they are already a going concern. It is intended that

the main memory of the ACE shall be provided by acoustic delay lines, consisting

of mercury tanks.

The idea of using acoustic delay lines as memory units is due I believe to

Eckert of Philadelphia University,1 who was the engineer chiefly responsible for

the Eniac. The idea is to store the information in the form of compression waves

travelling along a column of mercury. Liquids and solids will transmit sound of

surprisingly high frequency, and it is quite feasible to put as many as 1,000 pulses

into a single 50 tube. The signals may be conveyed into the mercury by a piezo-

electric crystal; and also detected at the far end by another quartz crystal. A train

of pulses or the information which they represent may be regarded as stored in

the mercury whilst it is travelling through it. If the information is not required

when the train emerges it can be fed back into the column again and again until

such time as it is required. This requires a ‘recirculating circuit’ to read the signal

Recirculating
circuit

Figure 9.1.

1 Editor’s note. Turing means the University of Pennsylvania in Philadelphia.

380 | Alan Turing

as it emerges from the tank and amplify it and feed it in again. If this were done

with a simple amplifier it is clear that the characteristics of both the tank and the

amplifier would have to be extremely good to permit the signal to pass through

even as many as ten times. Actually the recirculating circuit does something

slightly different. What it does may perhaps be best expressed in terms of point

set topology. Let the plane of the diagram represent the space of all possible

signals. I do not of course wish to imply that this is two dimensional. Let the

function f be defined for arguments in this signal space and have values in it.

In fact let f (s) represent the effect on the signal swhen it is passed through the tank

and the recirculating mechanism. We assume however that owing to thermal

agitation the effect of recirculation may be to give any pt [point] within a circle of

radius d of f (s). Then a necessary and sufficient condition that the tank can be used

as a storage whichwill distinguish betweenN different signals is that there must be

N sets E1 . . . EN such that if Fr is the set of pts [points] within distance e of Er

s 2 Fr � f (s) 2 Er

and the sets Fr are disjoint. It is clearly sufficient for we have only then to ensure

that the signals initially fed in belong to one or other of the sets Fr , and it will

remain in the set after any number of recirculations, without any danger of

confusion. It is necessary for suppose s1 . . . sN are signals which have different

meanings and which can be fed into the machine at any time and read out later

without fear of confusion.

Let Er be the set of signals which could be obtained for sr by successive

applications of f and shifts of distance not more than e. Then the sets Er are

disjoint, [five or six illegible words], and by applying a shift of distance e or less to
pts [points] of Er we obtain [line missing from bottom of page]. In the case of a

mercury delay line used for N ¼ 16 the set would consist of all continuous

signals within the shaded area.

Figure 9.2.

One of the sets would consist of all continuous signals lying in the region below.

It would represent the signal 1001.

Figure 9.3.

Lecture on the Automatic Computing Engine | 381

In order to put such a recirculation system into effect it is essential that a clock

signal be supplied to the memory system so that it will be able to distinguish the

times when a pulse if any should be present. It would for instance be natural to

supply a timing sine wave as shown above to the recirculator.

The idea of a process f with the properties we have described is a very common

one in connection with storage devices. It is known as ‘regeneration’ of storage. It

is always present in some form, but sometimes the regeneration is as it were

naturally occurring and no precautions have to be taken. In other cases special

precautions have to be taken to improve such an f process or else the impression

will fade.

The importance of a clock to the regeneration process in delay lines may be

illustrated by an interesting little theorem. Suppose that instead of the condition

s 2 Fr � f (s) 2 Er we impose a stronger one, viz f n(s)! cr if s 2 Er , i.e. there are

ideal forms of the distinguishable signals, and each admissible signal converges

towards the ideal form after recirculating. Then we can show that unless there is a

clock the ideal signals are all constants. For let Ua represent a shift of origin,

i.e. Uas(t) ¼ s(t þ a). Then since there is no clock the properties of the recir-

culator are the same at all times and f therefore commutes with Ua.

Then f Ua(cr) ¼ Uaf (cr) ¼ Uacr , for f (cr) ¼ cr since cr is an ideal signal. But

this means that Ua(cr) is an ideal signal, and therefore for sufficiently

smallamust be cr , since the ideal signals arediscrete.Then for anyb and sufficiently

large n, b=n will be sufficiently small and Ub=n(c) ¼ c. But then by iteration

c ¼ Un
b=n(c) ¼ Ub(c) i.e. c(t þ b) ¼ c(t). This means that the ideal signal c is a

constant.

We might say that the clock enables us to introduce a discreteness into time, so

that time can for some purposes be regarded as a succession of instants instead

of as a continuous flow. A digital machine must essentially deal with

discrete objects, and in the case of the ACE this is made possible by the use

of a clock. All other digital computing machines that I know of except for

human and other brains do the same. One can think up ways of avoiding

it, but they are very awkward. I should mention that the use of the clock in

the ACE is not confined to the recirculation process, but is used in almost

every part.

It may be as well to mention some figures connected with the mercury delay

line as we shall use it. We shall use five foot tubes, with a[n] inside diameter of

half an inch. Each of these will enable us to store 1024 binary digits. The unit I

have used here to describe storage capacity is self explanatory. A storage mech-

anism has a capacity of m binary digits if it can remember any sequence of m

digits each being a 0 or a 1. The storage capacity is also the logarithm to the base

2 of the number of different signals which can be remembered, i.e. log2 N . The

digits will be placed at a time interval of one microsecond, so that the time taken

382 | Alan Turing

for the waves to travel down the tube is just over a millisecond. The velocity is

about one and a half kilometres per second. The delay in accessibility time or

average waiting for a given piece of information is about half a millisecond. In

practice this is reduced to an effective 150 ms.2 The full storage capacity of the

ACE available on Hg3 delay lines will be about 200,000 binary digits. This is

probably comparable with the memory capacity of a minnow.

I have spent a considerable time in this lecture on this question of memory,

because I believe that the provision of proper storage is the key to the problem of

the digital computer, and certainly if they are to be persuaded to show any sort of

genuine intelligence much larger capacities than are yet available must be

provided. In my opinion this problem of making a large memory available at

reasonably short notice is much more important than that of doing operations

such as multiplication at high speed. Speed is necessary if the machine is to work

fast enough for the machine to be commercially valuable, but a large storage

capacity is necessary if it is to be capable of anything more than rather trivial

operations. The storage capacity is therefore the more fundamental requirement.

Let us now return to the analogy of the theoretical computing machines with

an infinite tape. It can be shown that a single special machine of that type can be

made to do the work of all. It could in fact be made to work as a model of any

other machine. The special machine may be called the universal machine; it

works in the following quite simple manner. When we have decided what

machine we wish to imitate we punch a description of it on the tape of the

universal machine. This description explains what the machine would do in

every configuration in which it might find itself. The universal machine has only

to keep looking at this description in order to find out what it should do at each

stage. Thus the complexity of the machine to be imitated is concentrated in the

tape and does not appear in the universal machine proper in any way.

If we take the properties of the universal machine in combination with the fact

that machine processes and rule of thumb processes are synonymous we may say

that the universal machine is one which, when supplied with the appropriate

instructions, can bemade to do any rule of thumbprocess. This feature is paralleled

indigital computingmachines suchas theACE.They are in fact practical versionsof

theuniversalmachine.There is a certain central pool of electronic equipment, and a

large memory. When any particular problem has to be handled the appropriate

instructions for the computing process involved are stored in the memory of the

ACE and it is then ‘set up’ for carrying out that process.

I have indicated the main strategic ideas behind digital computing machinery,

and will now follow this account up with the very briefest description of the

ACE. It may be divided for the sake of argument into the following parts

2 Editor’s note. mS ¼ microseconds.

3 Editor’s note. Hg ¼ mercury.

Lecture on the Automatic Computing Engine | 383

Memory

Control

Arithmetic part

Input and Output

I have already said enough about the memory and will only repeat that in the

ACE the memory will consist mainly of 200 mercury delay lines each holding

1024 binary digits. The purpose of the control is to take the right instructions

from the memory, see what they mean, and arrange for them to be carried out. It

is understood that a certain ‘code of instructions’ has been laid down, whereby

each ‘word’ or combination of say 32 binary digits describes some particular

operation. The circuit of the control is made in accordance with the code, so that

the right effect is produced. To a large extent we have also allowed the circuit to

determine the code, i.e. we have not just thought up an imaginary ‘best code’ and

then found a circuit to put it into effect, but have often simplified the circuit at

the expense of the code. It is also quite difficult to think about the code entirely

in abstracto without any kind of circuit.

The arithmetic part of the machine is the part concerned with addition,

multiplication and any other operations which it seems worth while to do by

means of special circuits rather than through the simple facilities provided by the

control. The distinction between control and arithmetic part is a rather hazy one,

but at any rate it is clear that the machine should at least have an adder and a

multiplier, even if they turn out in the end to be part of the control. This is the

point at which I should mention that the machine is operated in the binary scale,

with two qualifications. Inputs from externally provided data are in decimal, and

so are outputs intended for human eyes rather than for later reconsumption by

the ACE. This is the first qualification. The second is that, in spite of the

intention of binary working there can be no bar on decimal working of a kind,

because of the relation of the ACE to the universal machine. Binary working is

the most natural thing to do with any large scale computer. It is much easier to

work in the scale of two than any other, because it is so easy to produce

mechanisms which have two positions of stability: the two positions may then

0 1

Lever

Figure 9.4.

384 | Alan Turing

200v

−20v

0v 0v

Figure 9.5.

Editor’s note. I am grateful to John Andreae and David Clayden for assistance with redrawing Turing’s

original figure. The figure shows an Eccles–Jordan trigger circuit, also known as a bistable circuit or flip-

flop. The circuit has two stable states. In one, current flows through the left-hand triode valve but not

through the right; in the other, current flows through the right-hand triode but not the left. The circuit can

be switched from one state to the other by applying a pulse to one of the valves.

be regarded as representing 0 and 1. Examples are lever as diagram, Jordan Eccles

circuit, thyratron. If one is concerned with a small scale calculating machine then

there is at least one serious objection to binary working. For practical use it will

be necessary to build a converter to transform numbers from the binary form to

the decimal and back. This may well be a larger undertaking than the binary

calculator. With the large scale machines this argument carries no weight. In the

first place a converter would become a relatively small piece of apparatus, and in

the second it would not really be necessary. This last statement sounds quite

paradoxical, but it is a simple consequence of the fact that these machines can be

made to do any rule of thumb process by remembering suitable instructions. In

particular it can be made to do binary decimal conversion. For example in the

case of the ACE the provision of the converter involves no more than adding two

extra delay lines to the memory. This situation is very typical of what happens

with the ACE. There are many fussy little details which have to be taken care of,

and which, according to normal engineering practice, would require special

circuits. We are able to deal with these points without modification of the

machine itself, by pure paper work, eventually resulting in feeding in appropriate

instructions.

To return to the various parts of the machine. I was saying that it will work in

the scale of two. It is not unnatural to use the convention that an electrical pulse

shall represent the digit 1 and that absence of a pulse shall represent a digit 0.

Thus a sequence of digits 0010110 would be represented by a signal like

Lecture on the Automatic Computing Engine | 385

Figure 9.6.

where the time interval might be one microsecond. Let us now look at what the

process of binary addition is like. In ordinary decimal addition we always begin

from the right, and the same naturally applies to binary.We have to do this because

we cannot tell whether to carry unless we have already dealt with the less signifi-

cant columns. The same applies with electronic addition, and therefore it is

convenient to use the convention that if a sequence of pulses is coming down a

line, then the least significant pulse always comes first. This has the unfortunate

result that we must either write the least significant digit on the left in our binary

numbers or else make time flow from right to left in our diagrams. As the latter

alternative would involve writing from right to left as well as adding in that way, we

have decided to put the least significant digit on the left. Now let us do a typical

addition. Let us write the carry digits above the addends.

Carry 0 1 1 1 1 1 0 0 1 1

A 0 1 1 0 1 1 0 0 1 0 1 . . .

B 0 1 1 1 0 1 0 0 1 1 . . .

0 1 0 0 1 1 0 0 0

Note that I can do the addition only looking at a small part of the data. To do the

addition electronically we need to produce a circuit with three inputs and two

outputs.

Inputs Outputs

Addend A a Sum d

Addend B b Carry e
Carry from last column g

This circuit must be such that

If no. of 1s on inputs a, b, g is

0 Then sum 0 and 0

1 d 1 carry 0

2 is 0 e 1

3 1 is 1

8>><
>>:

It is very easy to produce a voltage proportional to the number of pulses on the

inputs, andone thenmerelyhas toprovideacircuitwhichwill discriminatebetween

four different levels and put out the appropriate sum and carry digits. I will not

attempt to describe such a circuit; it can be quite simple. When we are given the

circuit we merely have to connect it up with feedback and it is an adder. Thus:

386 | Alan Turing

A

B

A+Ba

e

b

g

Delay
1ms

d

Figure 9.7.

It will be seen that we have made use of the fact that the same process is used in

addition with each digit, and also the fact that the properties of the electrical

circuit are invariant under time shifts, at any rate if these are multiples of the

clock period. It might be said that we have made use of the isomorphism

between the group of these time shifts and the multiplicative group of real

numbers to simplify our apparatus, though I doubt if many other applications

of this principle could be found.

It will be seen that with such an adder the addition is broken down into themost

elementary steps possible, such as adding one and one. Each of these occupies a

microsecond. Our numbers will normally consist of 32 binary digits, so that two of

them can be added in 32microseconds. Likewise we shall domultiplications in the

form of a number of consecutive additions of one and one or one and zero etc.

There are 1024 such additions or thereabouts to be done in amultiplication of one

32 digit number by another, so that one might expect a multiplication to take

about amillisecond. Actually themultiplier to be used onACEwill take rather over

two milliseconds. This may sound rather long, when the unit operation is only a

microsecond, but it actually seems that the machine is fairly well balanced in this

respect, i.e. the multiplication time is not a serious bottleneck. Computers always

spend just as long in writing numbers down and deciding what to do next as they

do in actual multiplications, and it is just the same with the ACE. A great deal of

time is spent in getting numbers in and out of storage and deciding what to do

next. To complete the four elementary processes, subtraction is done by comple-

mentation and addition, and division is done by the use of the iteration formula

un ¼ un� 1 þ un� 1(1� aun� 1):

un converges to a�1 provided j1 � au0j < 1. The error is squared at each step, so

that the convergence is very rapid. This process is of course programmed, i.e. the

only extra apparatus required is the delay lines required for storing the relevant

instructions.

Lecture on the Automatic Computing Engine | 387

Passing on from the arithmetic part there remains the input and output. For this

purpose we have chosen Hollerith card equipment. We are able to obtain this

without having to do any special development work. The speeds obtainable are

not very impressive compared with the speeds at which the electronic equipment

works, but they are quite sufficient in all cases where the calculation is long and the

result concise: the interesting cases in fact. It might appear that there would be a

difficulty in converting the information provided at the slow speeds appropriate to

the Hollerith equipment to the high speeds required with the ACE, but it is really

quite easy. The Hollerith speeds are so slow as to be counted zero or stop for many

purposes, and the problem reduces to the simple one of converting a number of

statically givendigits into a streamof pulses. This can be done bymeans of a formof

electronic commutator.

Before leaving the outline of the description of the machine I should mention

some of the tactical situations that are met with in programming. I can illustrate

two of them in connection with the calculation of the reciprocal described above.

One of these is the idea of the iterative cycle. Each time that we go from ur to

urþ1 we apply the same sequence of operations, and it will therefore be econom-

ical in storage space if we use the same instructions. Thus we go round and

round a cycle of instructions:

ur

aur

1 − aur

ur (1 − aur)

Figure 9.8.

Editor’s note. I am grateful to Mike Woodger for assistance with redrawing Turing’s original diagram.

It looks however as if we were in danger of getting stuck in this cycle, and

unable to get out. The solution of this difficulty involves another tactical idea,

388 | Alan Turing

‘discrimination’ i.e. of deciding what to do next partly according to the results of

the machine itself, instead of according to data available to the programmer. In

that of this case we include a discrimination in each cycle, which takes us out of

the cycle when the value of j1� auj is sufficiently small. It is like an aeroplane

circling over an aerodrome, and asking permission to land after each circle. This

is a very simple idea, but is of the utmost importance. The idea of the iterative

cycle of instructions will also be seen to be rather fundamental when it is realised

that the majority of the instructions in the memory must be obeyed a great

number of times. If the whole memory were occupied by instructions, none of it

being used for numbers or other data, and if each instruction were obeyed once

only, but took the longest possible time, the machine could only remain working

for sixteen seconds.

Another important idea is that of constructing an instruction and then

obeying it. This can be used amongst other things for discrimination. In the

example I have just taken for instance we could calculate a quantity which was 1 if

j1� auj was less than 2�31 and 0 otherwise. By adding this quantity to the

instruction that is obeyed at the forking point that instruction can be completely

altered in its effect when finally 1� au is reduced to sufficiently small dimen-

sions.

Probably the most important idea involved in instruction tables is that of

standard subsidiary tables. Certain processes are used repeatedly in all sorts of

different connections, and we wish to use the same instructions, from the same

part of the memory every time. Thus we may use interpolation for the calcula-

tion of a great number of different functions, but we shall always use the same

instruction table for interpolation. We have only to think out how this is to be

done once, and forget then how it is done. Each time we want to do an inter-

polation we have only to remember the memory position where this table is kept,

and make the appropriate reference in the instruction table which is using the

interpolation. We might for instance be making up an instruction table for

finding values of J0(x) and use the interpolation table in this way. We

should then say that the interpolation table was a subsidiary to the table for

calculating J0(x). There is thus a sort of hierarchy of tables. The interpolation

table might be regarded as taking its orders from the J0 table, and reporting its

answers back to it. The master servant analogy is however not a very good one, as

there are many more masters than servants, and many masters have to share the

same servants.

Now let me give a picture of the operation of the machine. Let us begin with

some problem which has been brought in by a customer. It will first go to the

problems preparation section where it is examined to see whether it is in a

suitable form and self-consistent, and a very rough computing procedure made

Lecture on the Automatic Computing Engine | 389

out. It then goes to the tables preparation section. Let us suppose for example

that the problem was to tabulate solutions of the equation

y 00 þ xy 0 ¼ J0(x)

with initial conditions x ¼ y ¼ 0, y 0 ¼ a. This would be regarded as a particular

case of solving the equation

y 00 ¼ F(x, y, y 0)

for which one would have instruction tables already prepared. One would need

also a table to produce the function F(x, y, z) (in this case F(x, y, z) ¼ J0(x) � xz

which would mainly involve a table to produce J0(x), and this we might expect to

get off the shelf). A few additional details about the boundary conditions and the

length of the arc would have to be dealt with, but much of this detail would also

be found on the shelf, just like the table for obtaining J0(x). The instructions for

the job would therefore consist of a considerable number taken off the shelf

together with a few made up specially for the job in question. The instruction

cards for the standard processes would have already been punched, but the new

ones would have to be done separately. When these had all been assembled and

checked they would be taken to the input mechanism, which is simply a

Hollerith card feed. They would be put into the card hopper and a button

pressed to start the cards moving through. It must be remembered that initially

there are no instructions in the machine, and one’s normal facilities are therefore

not available. The first few cards that pass in have therefore to be carefully

thought out to deal with this situation. They are the initial input cards and are

always the same. When they have passed in a few rather fundamental instruction

tables will have been set up in the machine, including sufficient to enable the

machine to read the special pack of cards that has been prepared for the job we

are doing. When this has been done there are various possibilities as to what

happens next, depending on the way the job has been programmed. The machine

might have been made to go straight on through, and carry out the job,

punching or printing all the answers required, and stopping when all of this

has been done. But more probably it will have been arranged that the machine

stops as soon as the instruction tables have been put in. This allows for the

possibility of checking that the content of the memories is correct, and for a

number of variations of procedure. It is clearly a suitable moment for a break. We

might also make a number of other breaks. For instance we might be interested

in certain particular values of the parameter a, which were experimentally

obtained figures, and it would then be convenient to pause after each parameter

value, and feed the next parameter value in from another card. Or one might

prefer to have the cards all ready in the hopper and let the ACE take them in as it

wanted them. One can do as one wishes, but one must make up one’s mind. Each

time the machine pauses in this way a ‘word’ or sequence of 32 binary digits is

390 | Alan Turing

displayed on neon bulbs. This word indicates the reason for stopping. I have

already mentioned two possible reasons. A large class of further possible reasons

is provided by the checks. The programming should be done in such a way that

the ACE is frequently investigating identities which should be satisfied if all is as

it should be. Whenever one of these checks fails the machine stops and displays a

word which describes what check has failed.

It will be seen that the possibilities as to what one may do are immense. One of

our difficulties will be the maintenance of an appropriate discipline, so that we

do not lose track of what we are doing. We shall need a number of efficient

librarian types to keep us in order.

Finally I should like to make a few conjectures as to the repercussions that

electronic digital computing machinery will have on mathematics. I have already

mentioned that the ACE will do the work of about 10,000 computers. It is to be

expected therefore that large scale hand-computing will die out. Computers will

still be employed on small calculations, such as the substitution of values in

formulae, but whenever a single calculation may be expected to take a human

computer days of work, it will presumably be done by an electronic computer

instead. This will not necessitate everyone interested in such work having an

electronic computer. It would be quite possible to arrange to control a distant

computer by means of a telephone line. Special input and output machinery

would be developed for use at these out stations, and would cost a few hundred

pounds at most. The main bulk of the work done by these computers will

however consist of problems which could not have been tackled by hand

computing because of the scale of the undertaking. In order to supply the

machine with these problems we shall need a great number of mathematicians

of ability. These mathematicians will be needed in order to do the preliminary

research on the problems, putting them into a form for computation. There will

be considerable scope for analysts. When a human computer is working on a

problem he can usually apply some common sense to give him an idea of how

accurate his answers are. With a digital computer we can no longer rely on

common sense, and the bounds of error must be based on some proved inequal-

ities. We need analysts to find the appropriate inequalities for us. The inequalities

need not always be explicit, i.e. one need not have them in such a form that we

can tell, before the calculation starts, and using only pencil and paper, how big

the error will be. The error calculation may be a serious part of the ACE’s duties.

To an extent it may be possible to replace the estimates of error by statistical

estimates obtained by repeating the job several times, and doing the rounding off

differently each time, controlling it by some random element, some electronic

roulette wheel. Such statistical estimates however leave much in doubt, are

wasteful in machine time, and give no indication of what can be done if it

turns out that the errors are intolerably large. The statistical method can only

help the analyst, not replace him.

Lecture on the Automatic Computing Engine | 391

Analysis is just one of the purposes for which we shall need good mathemat-

icians. Roughly speaking those who work in connection with the ACE will be

divided into its masters and its servants. Its masters will plan out instruction

tables for it, thinking up deeper and deeper ways of using it. Its servants will feed

it with cards as it calls for them. They will put right any parts that go wrong.

They will assemble data that it requires. In fact the servants will take the place of

limbs. As time goes on the calculator itself will take over the functions both of

masters and of servants. The servants will be replaced by mechanical and

electrical limbs and sense organs. One might for instance provide curve followers

to enable data to be taken direct from curves instead of having girls read off

values and punch them on cards. The masters are liable to get replaced because as

soon as any technique becomes at all stereotyped it becomes possible to devise a

system of instruction tables which will enable the electronic computer to do it for

itself. It may happen however that the masters will refuse to do this. They may be

unwilling to let their jobs be stolen from them in this way. In that case they

would surround the whole of their work with mystery and make excuses,

couched in well chosen gibberish, whenever any dangerous suggestions were

made. I think that a reaction of this kind is a very real danger. This topic

naturally leads to the question as to how far it is possible in principle for a

computing machine to simulate human activities. I will return to this later, when

I have discussed the effects of these machines on mathematics a little further.

I expect that digital computing machines will eventually stimulate a consider-

able interest in symbolic logic and mathematical philosophy. The language in

which one communicates with these machines, i.e. the language of instruction

tables, forms a sort of symbolic logic. The machine interprets whatever it is told

in a quite definite manner without any sense of humour or sense of proportion.

Unless in communicating with it one says exactly what one means, trouble is

bound to result. Actually one could communicate with these machines in any

language provided it was an exact language, i.e. in principle one should be able to

communicate in any symbolic logic, provided that the machine were given

instruction tables which would enable it to interpret that logical system. This

should mean that there will be much more practical scope for logical systems

than there has been in the past. Some attempts will probably be made to get the

machines to do actual manipulations of mathematical formulae. To do so will

require the development of a special logical system for the purpose. This system

should resemble normal mathematical procedure closely, but at the same time

should be as unambiguous as possible. As regards mathematical philosophy,

since the machines will be doing more and more mathematics themselves, the

centre of gravity of the human interest will be driven further and further into

philosophical questions of what can in principle be done etc.

It has been said that computing machines can only carry out the processes that

they are instructed to do. This is certainly true in the sense that if they do

392 | Alan Turing

something other than what they were instructed then they have just made some

mistake. It is also true that the intention in constructing these machines in the

first instance is to treat them as slaves, giving them only jobs which have been

thought out in detail, jobs such that the user of the machine fully understands

what in principle is going on all the time. Up till the present machines have only

been used in this way. But is it necessary that they should always be used in such

a manner? Let us suppose we have set up a machine with certain initial instruc-

tion tables, so constructed that these tables might on occasion, if good reason

arose, modify those tables. One can imagine that after the machine had been

operating for some time, the instructions would have altered out of all recogni-

tion, but nevertheless still be such that one would have to admit that the machine

was still doing very worthwhile calculations. Possibly it might still be getting

results of the type desired when the machine was first set up, but in a much more

efficient manner. In such a case one would have to admit that the progress of the

machine had not been foreseen when its original instructions were put in. It

would be like a pupil who had learnt much from his master, but had added much

more by his own work. When this happens I feel that one is obliged to regard

the machine as showing intelligence. As soon as one can provide a reasonably

large memory capacity it should be possible to begin to experiment on these

lines. The memory capacity of the human brain is probably of the order of ten

thousand million binary digits. But most of this is probably used in remembering

visual impressions, and other comparatively wasteful ways. One might reason-

ably hope to be able to make some real progress with a few million digits,

especially if one confined one’s investigations to some rather limited field such

as the game of chess. It would probably be quite easy to find instruction tables

which would enable the ACE to win against an average player. Indeed Shannon of

Bell Telephone laboratories tells me that he has won games playing by rule of

thumb: the skill of his opponents is not stated. But I would not consider such a

victory very significant. What we want is a machine that can learn from experi-

ence. The possibility of letting the machine alter its own instructions provides the

mechanism for this, but this of course does not get us very far.

It might be argued that there is a fundamental contradiction in the idea of a

machine with intelligence. It is certainly true that ‘acting like a machine’ has

become synonymous with lack of adaptability. But the reason for this is obvious.

Machines in the past have had very little storage, and there has been no question

of the machine having any discretion. The argument might however be put into a

more aggressive form. It has for instance been shown that with certain logical

systems there can be no machine which will distinguish provable formulae of the

system from unprovable, i.e. that there is no test that the machine can apply

which will divide propositions with certainty into these two classes. Thus if a

machine is made for this purpose it must in some cases fail to give an answer. On

the other hand if a mathematician is confronted with such a problem he would

Lecture on the Automatic Computing Engine | 393

search around a[nd] find new methods of proof, so that he ought eventually to

be able to reach a decision about any given formula. This would be the argument.

Against it I would say that fair play must be given to the machine. Instead of it

sometimes giving no answer we could arrange that it gives occasional wrong

answers. But the human mathematician would likewise make blunders when

trying out new techniques. It is easy for us to regard these blunders as not

counting and give him another chance, but the machine would probably be

allowed no mercy. In other words then, if a machine is expected to be infallible, it

cannot also be intelligent. There are several mathematical theorems which say

almost exactly that. But these theorems say nothing about how much intelligence

may be displayed if a machine makes no pretence at infallibility. To continue my

plea for ‘fair play for the machines’ when testing their I.Q. A human mathemat-

ician has always undergone an extensive training. This training may be regarded

as not unlike putting instruction tables into a machine. One must therefore not

expect a machine to do a very great deal of building up of instruction tables on

its own. No man adds very much to the body of knowledge, why should we

expect more of a machine? Putting the same point differently, the machine must

be allowed to have contact with human beings in order that it may adapt itself to

their standards. The game of chess may perhaps be rather suitable for this

purpose, as the moves of the machine’s opponent will automatically provide

this contact.

394 | Alan Turing

CHAPTER 10

Intelligent Machinery (1948)

Alan Turing

Introduction
Jack Copeland

Slow Progress on the ACE

By the beginning of 1947 much eVort had gone into writing programmes or

‘instruction tables’ for the ACE. In ‘Proposed Electronic Calculator’, Turing had

said that work on instruction tables should start immediately, since the ‘earlier

stages of the making of instruction tables will have serious repercussions on the

design [of the machine]’; moreover, the programming work should ‘go on whilst

the machine is being built, in order to avoid some of the delay between the

delivery of the machine and the production of results’.1

However, little progress had been made on the physical construction of the

ACE. The actual engineering work was being carried out not at the National

Physical Laboratory but at the Post OYce Research Station, under the supervi-

sion of Turing’s wartime associate Flowers (see the introductions to Chapters 4

and 9). Flowers was asked by the NPL early in 1946 to assist with the engineering

design of, and to build, the ACE.2 Ominously, the letter of agreement from

Flowers’s superior to Turing’s superior spoke of ‘very considerable arrears of

work’ and warned that ‘the manpower position is diYcult’.3

Initial progress was nevertheless promising, with some early successes in the

experimental work on the delay line memory units. According to an NPL

1 ‘Proposed Electronic Calculator’, 18 (see n. 6 of the introduction to Chapter 9). A digital facsimile

of the original typescript of ‘Proposed Electronic Calculator’ is in The Turing Archive for the

History of Computing <www.AlanTuring.net/proposed_electronic_calculator>. Page references are to this

typescript.

2 Flowers in interview with Copeland (July 1996).

3 Letter from W. G. Radley to Womersley, 25 Feb. 1946 (Public Record OYce, Kew, Richmond, Surrey

(document reference DSIR 10/385); a digital facsimile is in The Turing Archive for the History of

Computing <www.AlanTuring.net/radley_womersley_25feb46>).

www.AlanTuring.net/proposed_electronic_calculator
www.AlanTuring.net/radley_womersley_25feb46

document dated March 1946, ‘Mr. Flowers states that they can have ready for

N.P.L. a minimal ACE by August or September.’4 Unfortunately it proved impos-

sible to keep to Flowers’s timetable. Dollis Hill was occupied with a backlog of

urgent work on the national telephone system (at that time managed by the Post

OYce). Flowers’s Section was ‘too busy to do other people’s work’ (he said in

1998).5 Only two men could be spared to work on the ACE, Chandler and

Coombs (both of whom had played leading roles in the wartime Colossus

project).

Sir Charles Darwin, the Director of the NPL, noted in August 1946 that the

Post OYce was ‘not in a position to plunge very deep’, and by November

was expressing concern to Post OYce staV about the slow rate of progress on

the ACE.6 The fault was not all with the Post OYce, however. In November

1946, the NPL proposed a radical change in the hardware design, with cathode

ray tube memory units taking the place of mercury delay lines.7 Such a

change would have meant that most of the work done by Chandler and Coombs

up to that point was wasted. (In the end CRT memory was used at Manchester

but not in the ACE.) The logical design kept changing, too—by the end of 1946

Turing had reached Version VII of the ACE design.8 Coombs said:

One of the problems was, I remember, that NPL kept on changing its ideas, and every time

we went down there and said ‘Right now! What do you want us to make?’, we’d Wnd that

the last idea, that they gave us last week, was old hat and they’d got a quite diVerent one,

and we couldn’t get a consolidated idea at all until eventually we dug our toes in and said

‘Stop! Tell us what to make.’9

Some eight years later, Chandler and Coombs Wnally completed a computer

based on Version VII of Turing’s ACE design, the MOSAIC (see the introduction

to Chapter 9).

4 ‘Status of the Delay Line Computing Machine at the P.O. Research Station’, National Physical Labora-

tory, 7 Mar. 1946, anon. (Woodger Papers, National Museum of Science and Industry, Kensington, London

(catalogue reference M12/105); a digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/delay_line_status>).

5 Flowers in interview with Copeland (July 1998).

6 Letter from Darwin to Sir Edward Appleton, 13 Aug. 1946 (Public Record OYce (document

reference DSIR 10/275); a digital facsimile is in The Turing Archive for the History of Compu-

ting <www.AlanTuring.net/darwin_appleton_13aug46>); letter from Radley to Darwin, 1 Nov. 1946

(Public Record OYce (document reference DSIR 10/385); <www.AlanTuring.net/radley_darwin_1nov

46>).

7 Letter from Darwin to Radley, 26 Nov. 1946 (Public Record OYce (document reference DSIR 10/385);

a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

darwin_radley_26nov46>).

8 See B. J. Copeland (ed.), ‘The Turing–Wilkinson Lectures on the Automatic Computing Engine’,

in K. Furukawa, D. Michie, and S. Muggleton (eds.), Machine Intelligence 15 (Oxford University Press,

1999).

9 Coombs in interview with Christopher Evans in 1976 (‘The Pioneers of Computing: an Oral History of

Computing’ (London: Science Museum)).

396 | Jack Copeland

www.AlanTuring.net/delay_line_status
www.AlanTuring.net/darwin_appleton_13aug46
www.AlanTuring.net/radley_darwin_1nov46
www.AlanTuring.net/radley_darwin_1nov46
www.AlanTuring.net/darwin_radley_26nov46
www.AlanTuring.net/darwin_radley_26nov46

Turing Proposes an ACE Electronics Section

In January 1947 Turing had gone to the United States, visiting several of the

groups there that were attempting to build an electronic stored-programme

computer. In his report on his visit he wrote:

One point concerning the form of organisation struck me very strongly. The engineering

development work was in every case being done in the same building with the more

mathematical work. I am convinced that this is the right approach. It is not possible for

the two parts of the organisation to keep in suYciently close touch otherwise. They are too

deeply interdependent. We are frequently Wnding that we are held up due to ignorance of

some point which could be cleared up by a conversation with the engineers, and the Post

OYce Wnd similar diYculty; a telephone conversation is seldom eVective because we

cannot use diagrams. Probably more important are the points which are misunderstood,

but which would be cleared up if closer contact were maintained, because they would

come to light in casual discussion. It is clear that we must have an engineering section at

the ACE site eventually, the sooner the better, I would say.10

Darwin suggested to Dr Horace Thomas, a member of the NPL’s Radio

Division, that he ‘be put in charge of the work of making by a suitable Wrm a

prototype model’ of the ACE.11 A ‘pre-prototype model’ would be started in-

house at the NPL ‘in Radio and Metrology workshops before approaching an

outside Wrm’, Darwin said, and ‘Metrology and Radio workshops could get on

with the hardware part of the job straight away’.12 (The outside Wrm eventually

approached was English Electric, who subsequently built and marketed the

DEUCE (see the introduction to Chapter 9). In 1949 wiremen and engineers

from English Electric would join the NPL team to assist with the completion of

Pilot Model ACE.13)

Darwin’s directive that an in-house electronics section begin work on the

hardware took several months to implement, however—the wheels of adminis-

tration turned slowly. At the end of April an NPL minute spoke of the need for

10 A. M. Turing, ‘Report on visit to U.S.A., January 1st–20th, 1947’, National Physical Laboratory, 3 Feb.

1947 (Public Record OYce (document reference DSIR 10/385); a digital facsimile is in The Turing Archive

for the History of Computing <www.AlanTuring.net/turing_usa_visit>).

11 Report by Darwin to the NPL Executive Committee in the Minutes of the Executive Committee for 18

Mar. 1947 (NPL library; a digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/npl_minutes_mar1947>).

12 Ibid.

13 The placing of a contract with English Electric ‘[i]n order to expedite the construction of [the] pilot

assembly and to make possible the construction of the Wnal machine’ was proposed by Mathematics

Division in February 1949 and approved by Treasury in May of that year (J. R. Womersley, ‘A.C.E. Project:

Present Position, and request for Wnancial provision for a Study Contract to be placed with the English

Electric Co. Ltd.’, 1 Feb. 1949 (Woodger Papers; a digital facsimile is in The Turing Archive for the History of

Computing <www.AlanTuring.net/ace_project_position>); letter from Evans to Darwin, 28 May 1949

(Public Record OYce (document reference DSIR 10/275); a digital facsimile is in The Turing Archive for

the History of Computing <www.AlanTuring.net/evans_darwin_28may49>)).

Intelligent Machinery | 397

www.AlanTuring.net/turing_usa_visit
www.AlanTuring.net/npl_minutes_mar1947
www.AlanTuring.net/ace_project_position
www.AlanTuring.net/evans_darwin_28may49

an electronics group working ‘together in one place as a whole in close contact

with the planning staV in the Mathematics Division’.14 The minute emphasized

that the ‘various parts’ of the ACE project were ‘so interwoven’ that it was ‘not

practicable at present to farm out portions of the work to isolated groups’,

adding ‘Our experience with the Post OYce conWrms this.’ Yet it was not until

August that suitable staV were seconded from elsewhere in the NPL and Tho-

mas’s electronics group Wnally came into existence.15

Womersley proposed that the new group should complete the ‘Test Assembly’,

a pilot version of the ACE begun by Huskey in Mathematics Division in the

spring of 1947 (see the introduction to Chapter 9).16 Womersley’s proposal was

disregarded, however. Thomas was an empire-builder. The week before the

oYcial launch of Thomas’s electronics group on 18 August 1947, E. S. Hiscocks,

Secretary to the NPL, had written:

Thomas has apparently shown some signs of behaving as if he is starting up a new

Division, and so as to allay certain qualms which both Smith-Rose and Womersley

have, I think it would be better for it to be explained to the whole team that Mathematics

Division is the parent Division, and the one which is to justify the Wnancial outlay on this

work; that the work is being put out on contract, as it were, to Radio Division, and that

Thomas’s team is a part of Radio Division. I think, even if only for our own peace of mind,

this is desirable, because Thomas has already shown some signs of wanting to set up a

separate oYce, etc.17

Unfortunately Thomas ‘didn’t like . . . the idea of this group in Mathematics

Division . . . working independently’, Wilkinson recalled.18 Rivalry quickly sprang

up between Thomas’s group in Radio Division and the ACE Section in Math-

ematics Division, and soon after Thomas’s appointment the work on the Test

Assembly was summarily stopped by Darwin. This was a dire turn of events—in

Huskey’s words, ‘morale in the Mathematics Division collapsed’.19

14 J. R. Womersley and R. L. Smith-Rose, ‘A.C.E. Pilot Test Assembly and later Development’, National

Physical Laboratory, 30 Apr. 1947 (Public Record OYce (document reference DSIR 10/385); a digital

facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/pilot_test_

assembly>).

15 Memorandum from Hiscocks to Womersley, National Physical Laboratory, 6 Aug. 1947 (Public Record

OYce (document reference DSIR 10/385); a digital facsimile is in The Turing Archive for the History of

Computing <www.AlanTuring.net/hiscocks_womersley_6aug47>).

16 ‘A.C.E. Project’, National Physical Laboratory, 21 Aug. 1947, initialled ‘JWC/JG’ (Public Record OYce

(document reference DSIR 10/385); a digital facsimile is in The Turing Archive for the History of

Computing <www.AlanTuring.net/ace_project_meeting>).

17 Letter from Hiscocks to Darwin, 12 Aug. 1947 (Public Record OYce (document reference DSIR 10/

385); a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

hiscocks_darwin_12aug47>).

18 Wilkinson in interview with Evans in 1976 (‘The Pioneers of Computing: An Oral History of

Computing’ (London: Science Museum)).

19 H. D. Huskey, ‘From ACE to the G-15’, Annals of the History of Computing, 6 (1984), 350–71 (361).

398 | Jack Copeland

www.AlanTuring.net/pilot_test_assembly
www.AlanTuring.net/pilot_test_assembly
www.AlanTuring.net/hiscocks_womersley_6aug47
www.AlanTuring.net/ace_project_meeting
www.AlanTuring.net/hiscocks_darwin_12aug47
www.AlanTuring.net/hiscocks_darwin_12aug47

The Test Assembly—based on Version Vof Turing’s design for the ACE20—was

in fact a highly promising project and considerable progress had been made

during the course of 1947. By August 1947 the NPL workshops were fabricating a

mercury delay line to Huskey’s speciWcations, valve types had been chosen and

circuit block diagrams made, source and destination decisions had been taken,

and programmes were being written to check these decisions.21 In October,

Womersley and E. C. Fieller (who became Superintendent of Mathematics

Division when Womersley left in 1950) expected, optimistically, that the Test

Assembly would ‘be ready by the end of November’.22

Work on building the ACE drew nearly to a standstill after Thomas persuaded

Darwin to shut down the Test Assembly. Only two members of Thomas’s group

were skilled in digital electronics and they knew little about computers. Thomas’s

own background was not in digital electronics at all but in radio and industrial

electronics. The group ‘began to develop their knowledge of pulse techniques’,

said Wilkinson, and ‘for a while they just did basic things and became more

familiar with the electronics they needed to learn to build a computer’. Then, in

February 1948, Thomas resigned from the NPL to join Unilever Ltd. (the

manufacturers of ‘Sunlight’ soap). As Womersley summed up the situation in

April 1948, hardware development was ‘probably as far advanced 18 months

ago’.23

Given only slightly better management on the NPL’s part, a minimal computer

based on Turing’s Version Vof the ACE design could probably have been working

at the NPL during 1948. By September 1947 the NPL had an electronics group

which, by joining forces with Huskey and the ACE Section, would have been

capable of carrying Huskey’s Test Assembly to completion. (Huskey said: ‘I never

hoped to have the Test Assembly working before I left [the NPL for the USA] in

December. I certainly hoped the group would have it working in 1948.’) Womers-

ley had advocated this course of action but Thomas threw a spanner in the

works.24 The Test Assembly could easily have been the world’s Wrst electronic

20 M. Woodger, ‘ACE Test Assembly, Sept./Oct. 1947’, National Physical Laboratory, n.d. (Woodger

Papers (catalogue reference M15/84); a digital facsimile is in The Turing Archive for the History of

Computing <www.AlanTuring.net/test_assembly>).

21 Letter from Huskey to Copeland (3 June 2003).

22 E. C. Fieller, ‘Hollerith Equipment for A.C.E. Work - Immediate Requirements’, National Physical

Laboratory, 16 Oct. 1947 (Public Record OYce (document reference DSIR 10/385); a digital facsimile is in

The Turing Archive for the History of Computing <www.AlanTuring.net/hollerith_equipment>).

23 Minutes of the Executive Committee of the National Physical Laboratory for 20 Apr. 1948 (NPL

library; a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

npl_minutes_apr1948>).

24 J. R. Womersley, ‘A.C.E. Project’, National Physical Laboratory, n.d., attached to a letter from Womers-

ley to the Secretary of the NPL dated 21 Aug. 1947 (Public Record OYce (document reference DSIR 10/

385); a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

womersley_ace_project>).

Intelligent Machinery | 399

www.AlanTuring.net/test_assembly
www.AlanTuring.net/hollerith_equipment
www.AlanTuring.net/npl_minutes_apr1948
www.AlanTuring.net/npl_minutes_apr1948
www.AlanTuring.net/womersley_ace_project
www.AlanTuring.net/womersley_ace_project

stored-programme digital computer to run a trial calculation (a title that in the

event went to the Manchester ‘Baby’ in June 1948).

Following Thomas’s replacement by Francis Colebrook in March 1948 the

fortunes of the ACE did at last begin to improve. Colebrook drew the ACE

Section and the Electronics Section together to work harmoniously on what

became the Pilot Model ACE (see the introduction to Chapter 9).25 But Turing

did not wait.

Turing Leaves the National Physical Laboratory

In the middle of 1947 a thoroughly disheartened Turing applied for a twelve-

month period of sabbatical leave to be spent in Cambridge. The purpose of the

leave, as described by Darwin in July 1947, was to enable Turing

to extend his work on the machine [the ACE] still further towards the biological side. I can

best describe it by saying that hitherto the machine has been planned for work equivalent

to that of the lower parts of the brain, and he [Turing] wants to see how much a machine

can do for the higher ones; for example, could a machine be made that could learn by

experience? This will be theoretical work, and better done away from here.26

Turing left the NPL for Cambridge in the autumn of 1947.27 Then in May 1948

he gave up his position at the NPL altogether, breaking what Darwin referred to

as ‘a gentleman’s agreement to return here for at least two years after the year’s

absence’.28 Newman’s oVer of a job lured a ‘very fed up’ Turing—Robin Gandy’s

description29—to Manchester University, where in May 1948 he was appointed

Deputy Director of the Computing Machine Laboratory (there being no dir-

ector).30

25 The Thomas era and the ACE’s change in fortunes under Colebrook are described in B. J. Copeland,

‘The Origins and Development of the ACE Project’, in B. J. Copeland (ed.), Alan Turing’s Automatic

Computing Engine (Oxford: Oxford University Press, 2004).

26 Letter from Darwin to Appleton, 23 July 1947 (Public Record OYce (document reference DSIR 10/

385); a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

darwin_appleton_23jul47>).

27 Probably at the end of September. Turing was still at the NPL when GeoV Hayes arrived in Maths

Division on 23 Sept. 1947 (communication from Hayes to Woodger, Nov. 1979). Turing was on half-pay

during his sabbatical (Minutes of the Executive Committee of the National Physical Laboratory for 28 Sept.

1948 (NPL library; a digital facsimile is in The Turing Archive for the History of Computing <www.Alan

Turing.net/npl_minutes_sept1948>)). Darwin was in favour of paying Turing his full salary, but Turing

preferred not, ‘because if he were earning full pay, he would feel that ‘‘I ought not to play tennis in the

morning, when I want to’’ ’ (Darwin to Appleton, 23 July 1947 (see n. 26)).

28 Darwin to Appleton, 23 July 1947 (see n. 26).

29 Gandy in interview with Copeland (Oct. 1995).

30 Turing’s salary was paid wholly from a Royal Society grant to Newman for the purpose of developing a

stored-programme electronic computer (letter from Newman to D. Brunt at the Royal Society, 22 Dec. 1948;

a digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/newman_

brunt_22dec48>).

400 | Jack Copeland

www.AlanTuring.net/darwin_appleton_23jul47
www.AlanTuring.net/darwin_appleton_23jul47
www.AlanTuring.net/npl_minutes_sept1948
www.AlanTuring.net/npl_minutes_sept1948
www.AlanTuring.net/newman_brunt_22dec48
www.AlanTuring.net/newman_brunt_22dec48

At Manchester, Turing designed the input mechanism and program-

ming system for an expanded version of Kilburn and William’s ‘Baby’ (see

the introduction to Chapter 9) and wrote a programming manual for

the new machine.31 At last Turing had his hands on a functioning stored-

programme computer. He was soon using it to model biological growth—

pioneering work in the Weld now known as ArtiWcial Life (see Chapter 15 and

‘ArtiWcal Life’).

The First Manifesto of Artificial Intelligence

In the summer of 1948 Turing completed a report for Darwin describing

the outcomes of his research into ‘how much a machine can do for the higher’

parts of the brain.32 It was entitled ‘Intelligent Machinery’. Donald Michie

recalls that Turing ‘was in a state of some agitation about its reception by his

superiors at NPL: ‘‘A bit thin for a year’s time oV !’’ ’33 The headmasterly

Darwin—who once complained about the ‘smudgy’ appearance of Turing’s

work34—was, as Turing predicted, displeased with the report, describing it as a

‘schoolboy’s essay’ and ‘not suitable for publication’.35 In reality this far-sighted

paper was the Wrst manifesto of AI; sadly Turing never published it.

‘Intelligent Machinery’ is a wide-ranging and strikingly original survey of the

prospects for ArtiWcial Intelligence. In it Turing brilliantly introduced many of

the concepts that were later to become central in the Weld, in some cases after

reinvention by others. These included the logic-based approach to problem-

solving, and the idea, subsequently made popular by Newell and Simon, that

(as Turing put it) ‘intellectual activity consists mainly of various kinds of search’

(p. 431). Turing anticipated the concept of a genetic algorithm (GA), in a brief

passage concerning what he calls ‘genetical or evolutionary search’ (see further

Chapter 11, p. 463, and ‘ArtiWcial Life’). ‘Intelligent Machinery’ also contains the

earliest description of (a restricted form of) what Turing was later to call the

‘imitation game’ and is now known simply as the Turing test (see further Chapter

31 Letter from Williams to Brain Randell (1972); printed on p. 9 of B. Randell, ‘On Alan Turing and the

Origins of Digital Computers’, in B. Meltzer and D. Michie (eds.), Machine Intelligence 5 (Edinburgh:

Edinburgh University Press, 1972); Turing, Programmers’ Handbook for Manchester Electronic Computer

(University of Manchester Computing Machine Laboratory, 1950; a digital facsimile is in The Turing

Archive for the History of Computing <www.AlanTuring.net/programmers_handbook>).

32 During his sabbatical year Turing also proved that the word problem for semi-groups with cancellation

is unsolvable (A. M. Turing, ‘The Word Problem in Semi-Groups with Cancellation’, Annals of Mathematics,

52 (1950), 491–505).

33 Michie, unpublished note (in the Woodger papers).

34 Letter from Darwin to Turing, 11 Nov. 1947 (in the Modern Archive Centre, King’s College, Cam-

bridge (catalogue reference D 5); a digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/darwin_turing_11nov47>).

35 Gandy in interview with Copeland (Oct. 1995); Minutes of the Executive Committee of the National

Physical Laboratory for 28 Sept. 1948.

Intelligent Machinery | 401

www.AlanTuring.net/programmers_handbook
www.AlanTuring.net/darwin_turing_11nov47

11). The major part of ‘Intelligent Machinery’, however, consists of an exquisite

discussion of machine learning, in which Turing anticipated the modern ap-

proach to AI known as connectionism.

Expert Systems

Search and the logic-based approach are both used in modern ‘expert systems’.

An expert system is an AI programme for solving problems and giving advice

within a specialized Weld of knowledge, such as medical diagnosis or corporate

planning. The area of expert systems is one of the most successful in modern AI.

The basic components of an expert system are a knowledge base (KB), an

inference engine, and a search engine for searching the KB. The KB is built up by

interviewing (human) experts in the area in question. A ‘knowledge engineer’

organizes the information elicited from the experts into a system of propositions,

typically of ‘if-then’ form.

The inference engine enables the expert system to draw deductions from

propositions in the KB. For example, from two propositions ‘if x then y’ and

‘if y then z’, the inference engine is able to deduce ‘if x then z’. The expert system

might then query its user ‘Is x true in the situation that we are considering?’ (e.g.

‘Does the patient have a rash?’), and if the answer is aYrmative, the system will

proceed to infer z.

Modern systems using search and inference can produce impressive results.

For example, Douglas Lenat’s common-sense reasoning system CYC is able to

conclude ‘Garcia is wet’ from the statement ‘Garcia is Wnishing a marathon run’,

by means of searching for and using such items of common-sense knowledge as

that running a marathon entails high exertion, that people sweat at high levels of

exertion, and that when something sweats it is wet.

Connectionism

Connectionism—still in its infancy—is the science of computing with networks

of artiWcial neurons. This approach came to widespread attention in the mid-

1980s when a group based at the University of California at San Diego reported

some striking experiments. In one, an artiWcial neural network learned to form

the past tenses of English verbs, responding correctly to irregular verbs not

previously encountered (such as ‘weep’ and ‘cling’).36

36 D. E. Rumelhart and J. L. McClelland, ‘On Learning the Past Tenses of English Verbs’, in J. L.

McClelland, D. E. Rumelhart, and the PDP Research Group, Parallel Distributed Processing: Explorations

in the Microstructure of Cognition, ii: Psychological and Biological Models (Cambridge, Mass.: MIT Press,

1986).

402 | Jack Copeland

Modern connectionists regard Donald Hebb37 and Frank Rosenblatt38 as the

founding Wgures of their approach and it is not widely realized that Turing wrote a

blueprint for much of the connectionist project as early as 1948.39 In ‘Intelligent

Machinery’ he introduced what he called ‘unorganised machines’, giving as

examples networks of neuron-like elements connected together in a largely random

manner. He described a certain type of network as ‘the simplest model of a nervous

system’ (p. 418). From a historical point of view, his idea that an initially unorgan-

ized neural network can be organized by means of ‘interfering training’ is of

considerable signiWcance, since it did not appear in the earlier work of McCulloch

and Pitts (see below).40 In Turing’s model, the training process renders certain

neural pathways eVective and others ineVective. So far as is known, he was the Wrst

person to consider building computing machines out of trainable networks of

randomly arranged neuron-like elements.

B-Type Unorganized Machines

In ‘Intelligent Machinery’ Turing introduced the type of neural network that he

called a ‘B-type unorganised machine’. A B-type consists of interconnected

artiWcial neurons, depicted in Figure 10.1 as circles, and connection-modiWers,

depicted as squares. A B-type may contain any number of neurons connected

together in any pattern, but subject always to the restriction that each neuron-to-

neuron connection passes through a connection-modiWer (Figure 10.2). The

connection-modiWers are used in training the network.

Turing’s model neurons work as follows. Each neuron has two input Wbres,

and the output of a neuron is a simple logical function of its two inputs. Every

neuron in the network performs the same logical operation, ‘nand’ (Table 1).

Figure 10.1. Two neurons from a B-type network. The two fibres on the connection-

modifier between the neurons enable training by an external agent.

37 D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory (New York: John Wiley, 1949).

38 F. Rosenblatt, Principles of Neurodynamics (Washington, DC: Spartan, 1962).

39 See further B. J. Copeland and D. Proudfoot, ‘On Alan Turing’s Anticipation of Connectionism’

(Synthese, 108 (1996), 361–77) and ‘Alan Turing’s Forgotten Ideas in Computer Science’ (ScientiWc Ameri-

can, 280 (1999), 99–103).

40 W. S. McCulloch and W. Pitts, ‘A Logical Calculus of the Ideas Immanent in Nervous Activity’, Bulletin

of Mathematical Biophysics, 5 (1943), 115–33.

Intelligent Machinery | 403

Figure 10.2. A fragment of a large, intially random B-type neural network

Table 1 Behaviour of a nand-neuron

Input-1 Input-2 Output

1 1 0

1 0 1

0 1 1

0 0 1

Turing chose nand as the basic operation of his model neurons because every

other boolean operation can be carried out by groups of nand-neurons. Turing

showed that even the connection-modiWer itself can be built out of nand-

neurons. So each B-type network consists of nothing more than nand-neurons

and their connecting Wbres. This is about the simplest possible model of the

cortex.

Training a B-Type

Each connection-modiWer has two training Wbres (Figure 10.1). Applying a pulse

to one Wbre sets the modiWer to interchange mode. When the modiWer is in

interchange mode and the input into the modiWer is 1, the modiWer’s output is 0;

and when the input is 0, the output is 1.

404 | Jack Copeland

The eVect of a pulse on the other training Wbre is to place the modiWer in

interrupt mode. In this mode, the output of the modiWer is always 1, no matter

what its input. When in interrupt mode, the modiWer destroys all information

attempting to pass along the connection to which the modiWer is attached. Once

set, a modiWer will maintain its function unless it receives a pulse on the other

training Wbre.

The presence of these connection-modiWers enables a B-type unorganized

machine to be trained, by means of what Turing called ‘appropriate interference,

mimicking education’ (p. 422). Turing theorized that ‘the cortex of an infant is

an unorganised machine, which can be organised by suitable interfering training’

(p. 424).

Initially a network that is to be trained contains random inter-neural connec-

tions, and the modiWers on these connections are also set randomly (Figure

10.2). Unwanted connections are destroyed by switching their attached modiWers

to interrupt mode. The output of the neuron immediately upstream of the

modiWer no longer Wnds its way along the connection to the neuron on the

downstream end (see Table 1). Conversely, switching the setting of the modiWer

on an initially interrupted connection to the other mode is in eVect to create a

new connection. This selective culling and enlivening of connections hones the

initially random network into one organized for a given task.

Neural Simulation

Turing wished to investigate other types of ‘unorganised machine’, and he

envisaged the procedure—nowadays used extensively by connectionists—of

simulating a neural network and its training regimen using an ordinary digital

computer (just as an engineer may use a computer to simulate an aircraft wing

or a weather analyst to simulate a storm system). He would, he said, ‘allow the

whole system to run for an appreciable period, and then break in as a kind of

‘‘inspector of schools’’ and see what progress had been made’ (p. 428).

However, Turing’s research on neural networks was carried out shortly before

the Wrst general-purpose electronic computers were up and running, and he used

only paper and pencil. Once he did have access to a computer in the Manchester

Computing Machine Laboratory, Turing turned his attention to research in

ArtiWcial Life, and he seems never to have used computer simulation to explore

the behaviour of neural networks.

In the year of Turing’s death (1954), two researchers at MIT, Wesley Clark

and Belmont Farley, succeeded in running the Wrst computer simulations of

neural networks. Clark and Farley were unaware of Turing’s earlier work and

their neural architecture was quite diVerent from his, using inter-neural connec-

tions of variable ‘weight’ (or ‘strength’). Clark and Farley were able to train their

Intelligent Machinery | 405

networks—which contained a maximum of 128 neurons—to recognize simple

patterns.41 (In addition, they discovered that the random destruction of up to 10

per cent of the neurons in a trained network does not aVect the network’s

performance at its task.) The work begun by Clark and Farley was considerably

developed by Rosenblatt, in whose theory of ‘perceptrons’ modern connection-

ism took shape.42 Meanwhile, Turing’s pioneering work on a distinctively diVer-

ent type of connectionist architecture was forgotten.

B-Types Redefined

There appears to be an inconsistency in Turing’s presentation of B-types. He

claimed that B-types are able, with appropriate modiWer settings, to ‘do any

required job, given suYcient time and provided the number of units [i.e.

neurons] is suYcient’ (p. 422). This claim is false.43 The problem lies with the

connection-modiWers. If each modiWer must either interrupt or interchange,

then there are simple logical operations that no B-type can perform. For

example, no B-type can produce the exclusive disjunction of a pair of inputs

(Table 2). Nor can a B-type compute the identity function (i.e. produce outputs

identical to its inputs). In eVect the diYculty is one that Turing mentions in a

diVerent connection. In Chapter 17 he points out that ‘an odd number of . . .

interchanges . . . can never bring one back to where one started’ (p. 589).

A simple remedy is to use connection-modiWers that, when not in interrupt

mode, are in pass mode rather than interchange mode.44 In pass mode the

modiWer’s output is identical to its input. Turing’s claim that B-types can ‘do

any required job . . .’ is true if the two available modes of each modiWer are

interrupt and pass.

The required interrupt/pass modiWers can in fact be built out of pairs of

interrupt/interchange modiWers. A pair of modiWers both in interchange mode

amounts to a single modiWer in pass mode. Similarly, a pair of modiWers whose

downstream member is in interrupt mode functions indistinguishably from a

single modiWer in interrupt mode.

41 B. G. Farley and W. A. Clark, ‘Simulation of Self-Organising Systems by Digital Computer’, Institute of

Radio Engineers Transactions on Information Theory, 4 (1954), 76–84; W. A. Clark and B. G. Farley,

‘Generalisation of Pattern Recognition in a Self-Organising System’, in Proceedings of the Western Joint

Computer Conference (1955).

42 F. Rosenblatt, ‘The Perceptron, a Perceiving and Recognizing Automaton’, Cornell Aeronautical

Laboratory Report No. 85-460-1 (1957); ‘The Perceptron: a Theory of Statistical Separability in Cognitive Sys-

tems’, Cornell Aeronautical Laboratory Report No. VG-1196-G-1 (1958); ‘The Perception: a Probabilistic

Model for Information Storage and Organisation in the Brain’, Psychological Review, 65 (1958), 386–408.

43 Copeland and Proudfoot, ‘On Alan Turing’s Anticipation of Connectionism’, 367.

44 Ibid. 367–8.

406 | Jack Copeland

Table 2 Exclusive disjunction (XOR)

Input-1 Input-2 Output

1 1 0

1 0 1

0 1 1

0 0 0

B-Types and the Universal Turing Machine

Turing claimed a proof (not given in ‘Intelligent Machinery’ and now lost) of the

proposition that an initially unorganized B-type network with suYcient neurons

can be organized (via its connection-modiWers) to become ‘a universal Turing

machine with a given storage capacity’ (p. 422)—i.e. to become equivalent to a

universal Turing machine with a truncated tape.

This feature of neural networks may shed light on one of the most fundamental

problems concerning human cognition. Examining cognition from a top-down

perspective, we Wnd complex sequential processes, often involving language or

other forms of symbolic representation—for example, logical reasoning, the

planning out of activities, and mathematical calculation. Yet from a bottom-up

perspective, cognition is nothing but the simple Wrings of neurons. How is the

view from the top to be reconciled with the prima facie very diVerent view from

the bottom?

Turing’s proof Wrst opened up the possibility, noted in ‘Intelligent Machinery’

(p. 424), that the brain is in part a universal computingmachine (of a given storage

capacity) implemented in a neural network. This, then, is a possible solution to the

fundamental problem: it is by virtue of being a neural network acting as a universal

computingmachine (of a given storage capacity) that the cortex is able to carry out

the sequential, symbol-rich processing discerned in the view from the top. In 1948

this hypothesis was well ahead of its time, and today it remains one of our best

guesses concerning the fundamental problem of cognitive science.

McCulloch–Pitts Neural Nets

It is interesting that Turing makes no reference in ‘Intelligent Machinery’ to the

now famous work of McCulloch and Pitts, itself inXuenced by his own ‘On

Computable Numbers’. Their 1943 article represents the Wrst attempt to apply

what they call ‘the Turing deWnition of computability’ to the study of neuronal

function.45 Like Turing, McCulloch and Pitts considered networks of simple

45 McCulloch and Pitts, ‘A Logical Calculus of the Ideas Immanent in Nervous Activity’, 129.

Intelligent Machinery | 407

two-state boolean ‘neurons’, although there were important diVerences between

McCulloch–Pitts nets and Turing nets. For example, inhibitory synapses are a

fundamental feature of McCulloch–Pitts nets but not of Turing nets. (An input

of 1 at an inhibitory synapse at moment m unconditionally sets the output of the

unit to 0 at m þ 1.)

McCulloch stressed the extent to which his and Pitts’s work is indebted to

Turing in the course of some autobiographical remarks made during the public

discussion of a lecture given by von Neumann in 1948:

I started at entirely the wrong angle . . . and it was not until I saw Turing’s paper [‘On

Computable Numbers’] that I began to get going the right way around, and with Pitts’

help formulated the required logical calculus. What we thought we were doing (and I

think we succeeded fairly well) was treating the brain as a Turing machine.46

Turing had undoubtedly heard something of the work of McCulloch and Pitts.

Wiener—with McCulloch a founding member of the cybernetics movement—

would almost certainly have mentioned McCulloch in the course of his ‘talk over

the fundamental ideas of cybernetics with Mr Turing’ at the NPL in the spring of

1947.47 Moreover, von Neumann mentioned the McCulloch–Pitts article of

1943—albeit very brieXy—in the ‘First Draft of a Report on the EDVAC’, which

Turing read in 1945. In order to depict the EDVAC’s logic gates, von Neumann

employed a modiWed version of the diagrammatic notation for neural nets

used by McCulloch and Pitts. (In his ‘Proposed Electronic Calculator’ (see

Chapter 9) Turing considerably extended the notation that he found in the

‘First Draft’.48) Turing and McCulloch seem not to have met until 1949. After

their meeting Turing spoke dismissively of McCulloch, referring to him as a

‘charlatan’.49

It is an open question whether the work of McCulloch and Pitts had any

inXuence at all on the development of the ideas presented in ‘Intelligent Ma-

chinery’. Probably not. As Newman once remarked of Turing: ‘It was, perhaps, a

defect of his qualities that he found it hard to use the work of others, preferring

to work things out for himself.’50

Whatever the inXuences were on Turing at that time, there is no doubt that his

work on neural nets goes importantly beyond the earlier work of McCulloch and

Pitts. The latter give only a perfunctory discussion of learning, saying no more

than that the mechanisms supposedly underlying learning in the brain—they

speciWcally mention the formation of new connections and neuronal threshold

46 J. von Neumann, Collected Works, vol. v, ed. A. H. Taub (Oxford: Pergamon Press, 1963), 319.

47 N. Wiener, Cybernetics (New York: John Wiley, 1948), 32.

48 ‘Proposed Electronic Calculator’; see also D. R. Hartree, Calculating Instruments and Machines

(Illinois: University of Illinois Press, 1949), 97, 102, and B. E. Carpenter and R. W. Doran (eds.), A. M.

Turing’s ACE Report of 1946 and Other Papers (Cambridge, Mass.: MIT Press, 1986), 277.

49 Gandy in interview with Copeland (Oct. 1995).

50 Manchester Guardian, 11 June 1954.

408 | Jack Copeland

change—can be mimicked by means of nets whose connections and thresholds

are Wxed.51 Turing’s idea of using supervised interference to train an initially

random arrangement of neurons to compute a speciWed function is nowhere

preWgured.

Further reading

Copeland, B. J., and Proudfoot, D., ‘On Alan Turing’s Anticipation of Connectionism’,

Synthese, 108 (1996), 361–77. Reprinted in R. Chrisley (ed.), ArtiWcial Intelligence:

Critical Concepts in Cognitive Science, ii: Symbolic AI (London: Routledge, 2000).

Jackson, P., Introduction to Expert Systems (Wokingham: Addison-Wesley, 1986).

Rumelhart, D. E., McClelland, J. L., and the PDP Research Group, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, i: Foundations, (Cambridge,

Mass.: MIT Press, 1986).

Provenance

What follows is the text of the National Physical Laboratory document ‘Intelli-

gent Machinery: A Report by A. M. Turing’ (dated 1948).52 Symbols missing

from the Report itself but present in Turing’s draft typescript have been

restored.53

51 McCulloch and Pitts, ‘A Logical Calculus of the Ideas Immanent in Nervous Activity’, 117, 124.

52 ‘Intelligent Machinery: A Report by A. M. Turing’ is in the Woodger Papers; a digital facsimile is in The

Turing Archive for the History of Computing <www.AlanTuring.net/intelligent_machinery>. Turing’s draft

typescript of the Report is among the Turing Papers in the Modern Archive Centre, King’s College,

Cambridge (catalogue reference C 11); there is a digital facsimile at <www.turingarchive.org>.

53 ‘Intelligent Machinery’ appeared in 1968 in a collection of essays entitled Key Papers: Cybernetics

(London: Butterworths), ed. C. R. Evans and A. D. J. Robertson, two members of the Autonomics Division

of the National Physical Laboratory. The following year another edition of ‘IntelligentMachinery’ appeared in

the volumeMachine Intelligence 5 (ed. B.Meltzer andD.Michie, EdinburghUniversity Press). Unlike the 1968

and 1969 editions, the present edition follows Turing’s layout and his numbering of headings. Unfortunately

the 1969 edition (which is reproduced inCollectedWorks of A.M. Turing:Mechanical Intelligence, ed. D. C. Ince

(Amsterdam: Elsevier, 1992)) contained numerous departures from Turing’s own wording, as well as typo-

graphical errors, and outright mistakes. To mention only the most signiWcant of these: (1) Turing’s words

‘determined by that symbol’ on p. 413, below, were replaced by ‘described by that symbol’; (2) Turing’s words

‘we can design a digital computer to do it, but that we stick to one, say the ACE, and that’ on p. 415 were

omitted, making nonsense of Turing’s statement; (3) the words ‘or either form of iii)’ on p. 423 were omitted;

(4) ‘T1’ was omitted from Turing’s list ‘U, T0, T1, D0 or D1’ on p. 426; (5) the phrase ‘replacing the Us of the

character by D0’ on p. 428 was incorrectly rendered ‘replacing the 0s of the character by D0’. In their

introduction to the 1969 edition, the editors state that ‘Intelligent Machinery’ was ‘written in September

1947’. This statement has caused some confusion in the literature. In fact ‘IntelligentMachinery’ waswritten in

the summer of 1948. The phrase ‘Manchester machine (as actually working 8/7/48)’ (p. 413 below) appears in

both the Wnished NPL Report and Turing’s draft typescript. In the 1969 edition Turing’s date ‘8/7/48’ (8 July

1948) has been rewritten ‘8 August 1947’. The Manchester machine Wrst operated on 21 June 1948.

Intelligent Machinery | 409

www.AlanTuring.net/intelligent_machinery
www.turingarchive.org

Intelligent Machinery

I propose to investigate the question as to whether it is possible for machinery to

show intelligent behaviour. It is usually assumed without argument that it is not

possible. Common catch phrases such as ‘acting like a machine’, ‘purely mech-

anical behaviour’ reveal this common attitude. It is not diYcult to see why such

an attitude should have arisen. Some of the reasons are:

(a) An unwillingness to admit the possibility that mankind can have any rivals

in intellectual power. This occurs as much amongst intellectual people as

amongst others: they have more to lose. Those who admit the possibility

all agree that its realization would be very disagreeable. The same situation

arises in connection with the possibility of our being superseded by some

other animal species. This is almost as disagreeable and its theoretical

possibility is indisputable.

(b) A religious belief that any attempt to construct such machines is a sort of

Promethean irreverence.

(c) The very limited character of the machinery which has been used until

recent times (e.g. up to 1940). This encouraged the belief that machinery

was necessarily limited to extremely straightforward, possibly even to re-

petitive, jobs. This attitude is very well expressed by Dorothy Sayers (The

Mind of the Maker, p. 46) ‘. . . which imagines that God, having created his

Universe, has now screwed the cap on His pen, put His feet on the mantel-

piece and left thework to get onwith itself.’ This, however, rather comes into

St. Augustine’s category of Wgures of speech or enigmatic sayings framed

from things which do not exist at all.We simply do not knowof any creation

which goes on creating itself in variety when the creator has withdrawn

from it. The idea is that God simply created a vast machine and has left it

working until it runs down from lack of fuel. This is another of those

obscure analogies, since we have no experience of machines that produce

variety of their own accord; the nature of a machine is to do the same thing

over and over again so long as it keeps going.

(d) Recently the theorem of Gödel and related results (Gödel,1 Church,2

Turing3) have shown that if one tries to use machines for such purposes

as determining the truth or falsity of mathematical theorems and one is

not willing to tolerate an occasional wrong result, then any given machine

Crown copyright. Reproduced with permission of the Controller of HMSO, the National Physical Labora-

tory, and the Estate of Alan Turing.

1 K. Gödel, ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’,

Monatshefte für Mathematik und Physik, 38 (1931), 173–98.

2 A. Church, ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics,

58 (1936), 345–63.

3 ‘On Computable Numbers, with an Application to the Entscheidungsproblem’ (Chapter 1).

will in some cases be unable to give an answer at all. On the other hand the

human intelligence seems to be able to Wnd methods of ever increasing

power for dealing with such problems ‘transcending’ the methods available

to machines.

(e) In so far as a machine can show intelligence this is to be regarded as

nothing but a reXection of the intelligence of its creator.

2. Refutation of some objections

In this section I propose to outline reasons why we do not need to be inXuenced

by the above described objections. The objections (a) and (b), being purely

emotional, do not really need to be refuted. If one feels it necessary to refute

them there is little to be said that could hope to prevail, though the actual

production of the machines would probably have some eVect. In so far then as

we are inXuenced by such arguments we are bound to be left feeling rather

uneasy about the whole project, at any rate for the present. These arguments

cannot be wholly ignored, because the idea of ‘intelligence’ is itself emotional

rather than mathematical.

The objection (c) in its crudest form is refuted at once by the actual existence

of machinery (ENIAC etc.) which can go on through immense numbers (e.g.

1060, 000 about for ACE) of operations without repetition, assuming no break-

down. The more subtle forms of this objection will be considered at length in

§ 11 and 12.

The argument from Gödel’s and other theorems (objection (d)) rests essen-

tially on the condition that the machine must not make mistakes. But this is not

a requirement for intelligence. It is related that the infant Gauss was asked at

school to do the addition 15þ 18þ 21þ . . .þ 54 (or something of the kind)

and that he immediately wrote down 483, presumably having calculated it as

(15þ 54)(54� 12)=2:3. One can imagine circumstances where a foolish master

told the child that he ought instead to have added 18 to 15 obtaining 33, then

added 21 etc. From some points of view this would be a ‘mistake’, in spite of the

obvious intelligence involved. One can also imagine a situation where the

children were given a number of additions to do, of which the Wrst 5 were all

arithmetic progressions, but the 6th was say 23þ 34þ 45þ . . .þ 100

þ 112þ 122þ . . .þ 199. Gauss might have given the answer to this as if it

were an arithmetic progression, not having noticed that the 9th term was 112

instead of 111. This would be a deWnite mistake, which the less intelligent

children would not have been likely to make.

The view (e) that intelligence in machinery is merely a reXection of that of its

creator is rather similar to the view that the credit for the discoveries of a pupil

should be given to his teacher. In such a case the teacher would be pleased with

Intelligent Machinery | 411

the success of his methods of education, but would not claim the results

themselves unless he had actually communicated them to his pupil. He would

certainly have envisaged in very broad outline the sort of thing his pupil might be

expected to do, but would not expect to foresee any sort of detail. It is already

possible to produce machines where this sort of situation arises in a small degree.

One can produce ‘paper machines’ for playing chess. Playing against such a

machine gives a deWnite feeling that one is pitting one’s wits against something

alive.

These views will all be developed more completely below.

3. Varieties of machinery

It will not be possible to discuss possible means of producing intelligent ma-

chinery without introducing a number of technical terms to describe diVerent

kinds of existent machinery.

‘Discrete’ and ‘Continuous’machinery. We may call a machine ‘discrete’ when it

is natural to describe its possible states as a discrete set, the motion of the

machine occurring by jumping from one state to another. The states of ‘continu-

ous’ machinery on the other hand form a continuous manifold, and the behav-

iour of the machine is described by a curve on this manifold. All machinery can

be regarded as continuous, but when it is possible to regard it as discrete it is

usually best to do so. The states of discrete machinery will be described as

‘conWgurations’.

‘Controlling ’ and ‘Active’ machinery. Machinery may be described as ‘control-

ling’ if it only deals with information. In practice this condition is much the same

as saying that the magnitude of the machine’s eVects may be as small as we

please, so long as we do not introduce confusion through Brownian movement

etc. ‘Active’ machinery is intended to produce some deWnite physical eVect.

Examples A Bulldozer is Continuous Active

A Telephone is Continuous Controlling

A Brunsviga4 is Discrete Controlling

A Brain is probably Continuous Controlling, but is very

similar to much discrete machinery

The ENIAC, ACE etc. Discrete Controlling

A DiVerential Analyser Continuous Controlling

We shall mainly be concerned with discrete controlling machinery. As we have

mentioned, brains very nearly fall into this class, and there seems every reason to

believe that they could have been made to fall genuinely into it without any

change in their essential properties. However, the property of being ‘discrete’ is

4 Editor’s note. The Brunsviga was a popular desk calculating machine.

412 | Alan Turing

only an advantage for the theoretical investigator, and serves no evolutionary

purpose, so we could not expect Nature to assist us by producing truly ‘discrete’

brains.

Given any discrete machine the Wrst thing we wish to Wnd out about it is the

number of states (conWgurations) it can have. This number may be inWnite (but

enumerable) in which case we say that the machine has inWnite memory (or

storage) capacity. If the machine has a Wnite number N of possible states then we

say that it has a memory capacity of (or equivalent to) log2 N binary digits.

According to this deWnition we have the following table of capacities, very roughly

Brunsviga 90

ENIAC without cards and with Wxed programme 600

ENIAC with cards 15

ACE as proposed 60,000

Manchester machine (as actually working 8/7/48) 1,100

The memory capacity of a machine more than anything else determines the

complexity of its possible behaviour.

The behaviour of a discrete machine is completely described when we are

given the state (conWguration) of the machine as a function of the immediately

preceding state and the relevant external data.

Logical Computing Machines (L.C.M.s)

In [Chapter 1] a certain type of discrete machine was described. It had an inWnite

memory capacity obtained in the form of an inWnite tape marked out into

squares on each of which a symbol could be printed. At any moment there is

one symbol in the machine; it is called the scanned symbol. The machine can

alter the scanned symbol and its behaviour is in part determined by that symbol,

but the symbols on the tape elsewhere do not aVect the behaviour of the

machine. However the tape can be moved back and forth through the machine,

this being one of the elementary operations of the machine. Any symbol on the

tape may therefore eventually have an innings.

These machines will here be called ‘Logical Computing Machines’. They are

chieXy of interest when we wish to consider what a machine could in principle be

designed to do, when we are willing to allow it both unlimited time and

unlimited storage capacity.

Universal Logical Computing Machines. It is possible to describe L.C.M.s in a

very standard way, and to put the description into a form which can be

‘understood’ (i.e. applied by) a special machine. In particular it is possible to

design a ‘universal machine’ which is an L.C.M. such that if the standard

5 Editor’s note. The symbol ‘1’ is omitted from the original 1948 NPL Report and from the 1968 and

1969 editions. It is present in Turing’s draft typescript.

Intelligent Machinery | 413

description of some other L.C.M. is imposed on the otherwise blank tape from

outside, and the (universal) machine then set going it will carry out the oper-

ations of the particular machine whose description it was given. For details the

reader must refer to [Chapter 1].

The importance of the universal machine is clear. We do not need to have an

inWnity of diVerent machines doing diVerent jobs. A single one will suYce. The

engineering problem of producing various machines for various jobs is replaced

by the oYce work of ‘programming’ the universal machine to do these jobs.

It is found in practice that L.C.M.s can do anything that could be described as

‘rule of thumb’ or ‘purely mechanical’. This is suYciently well established that it

is now agreed amongst logicians that ‘calculable by means of an L.C.M.’ is the

correct accurate rendering of such phrases. There are several mathematically

equivalent but superWcially very diVerent renderings.

Practical Computing Machines (P.C.M.s)

Although the operations which can be performed by L.C.M.s include every rule

of thumb process, the number of steps involved tends to be enormous. This is

mainly due to the arrangement of the memory along the tape. Two facts which

need to be used together may be stored very far apart on the tape. There is also

rather little encouragement, when dealing with these machines, to condense the

stored expressions at all. For instance the number of symbols required in order to

express a number in Arabic form (e.g. 149056) cannot be given any deWnite

bound, any more than if the numbers are expressed in the ‘simpliWed Roman’

form (IIIII . . . I, with 149056 occurrences of I). As the simpliWed Roman system

obeys very much simpler laws one uses it instead of the Arabic system.

In practice however one can assign Wnite bounds to the numbers that one will

deal with. For instance we can assign a bound to the number of steps that we will

admit in a calculation performed with a real machine in the following sort of

way. Suppose that the storage system depends on charging condensers of cap-

acity C ¼ 1mf,6 and that we use two states of charging, E ¼ 100 volts and

�E ¼ �100 volts. When we wish to use the information carried by the con-

denser we have to observe its voltage. Owing to thermal agitation the voltage

observed will always be slightly wrong, and the probability of an error between V

and V � dV volts isffiffiffiffiffiffiffiffi
2kT

pC

r
e�

1
2
V 2C=kTVdV 7

where k is Boltzmann’s constant. Taking the values suggested we Wnd that the

probability of reading the sign of the voltage wrong is about 10�1�2�10
16

: If then a

6 Editor’s note. mf ¼ micro-farad.

7 Editor’s note. This formula is taken from Turing’s draft typescript.

414 | Alan Turing

job took more than 1010
17

steps we should be virtually certain of getting the

wrong answer, and we may therefore restrict ourselves to jobs with fewer steps.

Even a bound of this order might have useful simplifying eVects. More practical

bounds are obtained by assuming that a light wave must travel at least 1 cm

between steps (this would only be false with a very small machine) and that we

could not wait more than 100 years for an answer. This would give a limit of 1020

steps. The storage capacity will probably have a rather similar bound, so that we

could use sequences of 20 decimal digits for describing the position in which

a given piece of data was to be found, and this would be a really valuable

possibility.

Machines of the type generally known as ‘Automatic Digital Computing

Machines’ often make great use of this possibility. They also usually put a great

deal of their stored information in a form very diVerent from the tape form. By

means of a system rather reminiscent of a telephone exchange it is made possible

to obtain a piece of information almost immediately by ‘dialling’ the position

of this information in the store. The delay may be only a few microseconds

with some systems. Such machines will be described as ‘Practical Computing

Machines’.

Universal Practical Computing Machines

Nearly all of the P.C.M.s now under construction have the essential properties of

the ‘Universal Logical Computing’ machines mentioned earlier. In practice, given

any job which could have been done on an L.C.M. one can also do it on one of

these digital computers. I do not mean that we can design a digital computer to

do it, but that we stick to one, say the ACE, and that we can do any required job

of the type mentioned on it, by suitable programming. The programming is pure

paper work. It naturally occurs to one to ask whether e.g. the ACE would be truly

universal if its memory capacity were inWnitely extended. I have investigated this

question, and the answer appears to be as follows, though I have not proved any

formal mathematical theorem about it. As has been explained, the ACE at

present uses Wnite sequences of digits to describe positions in its memory: they

are (Sept 1947) actually sequences of 9 binary digits. The ACE also works largely

for other purposes with sequences of 32 binary digits. If the memory were

extended e.g. to 1000 times its present capacity it would be natural to arrange

the memory in blocks of nearly the maximum capacity which can be handled

with the 9 digits, and from time to time to switch from block to block. A

relatively small part would never be switched. This would contain some of the

more fundamental instruction tables and those concerned with switching. This

part might be called the ‘central part’. One would then need to have a number

which described which block was in action at any moment. This number might

however be as large as one pleased. Eventually the point would be reached where

it could not be stored in a word (32 digits), or even in the central part. One

Intelligent Machinery | 415

would then have to set aside a block for storing the number, or even a sequence

of blocks, say blocks 1, 2, . . . n. We should then have to store n, and in theory it

would be of indeWnite size. This sort of process can be extended in all sorts of

ways, but we shall always be left with a positive integer which is of indeWnite size

and which needs to be stored somewhere, and there seems to be no way out of

the diYculty but to introduce a ‘tape’. But once this has been done, and since we

are only trying to prove a theoretical result, one might as well, whilst proving the

theorem, ignore all the other forms of storage. One will in fact have a U.L.C.M.

with some complications. This in eVect means that one will not be able to prove

any result of the required kind which gives any intellectual satisfaction.

Paper machines

It is possible to produce the eVect of a computing machine by writing down a

set of rules of procedure and asking a man to carry them out. Such a combin-

ation of a man with written instructions will be called a ‘Paper Machine’. A man

provided with paper, pencil, and rubber, and subject to strict discipline, is in

eVect a universal machine. The expression ‘paper machine’ will often be used

below.

Partially random and apparently partially random machines

It is possible to modify the above described types of discrete machines by

allowing several alternative operations to be applied at some points, the alterna-

tives to be chosen by a random process. Such a machine will be described as

‘partially random’. If we wish to say deWnitely that a machine is not of this kind

we will describe it as ‘determined’. Sometimes a machine may be strictly speaking

determined but appear superWcially as if it were partially random. This would

occur if for instance the digits of the number p were used to determine the

choices of a partially random machine, where previously a dice thrower or

electronic equivalent had been used. These machines are known as apparently

partially random.

4. Unorganised machines

So far we have been considering machines which are designed for a deWnite

purpose (though the universal machines are in a sense an exception). We might

instead consider what happens when we make up a machine in a comparatively

unsystematic way from some kind of standard components. We could consider

some particular machine of this nature and Wnd out what sort of things it is likely

to do. Machines which are largely random in their construction in this way will

be called ‘unorganised machines’. This does not pretend to be an accurate term.

It is conceivable that the same machine might be regarded by one man as

organised and by another as unorganised.

416 | Alan Turing

A typical example of an unorganisedmachine would be as follows. Themachine

is made up from a rather large numberN of similar units. Each unit has two input

terminals, and has an output terminal which can be connected to the input

terminals of (0 or more) other units. We may imagine that for each integer

r , 1 < r < N , two numbers i(r) and j(r) are chosen at random from 1 . . .N and

that we connect the inputs of unit r to the outputs of units i(r) and j(r). All of the

units are connected to a central synchronising unit from which synchronising

pulses are emitted at more or less equal intervals of time. The times when these

pulses arrive will be called ‘moments’. Each unit is capable of having two states at

each moment. These states may be called 0 and 1. The state is determined by the

rule that the states of the units from which the input leads come are to be taken at

the previous moment, multiplied together and the result subtracted from 1. An

unorganised machine of this character is shown in the diagram below.

r i(r) j(r) (1) (2)

(3)

(4) (5)

1 3 2

2 3 5

3 4 5

4 3 4

5 2 5

Figure 10.1.

A sequence of six possible consecutive conditions for the whole machine is:

1 1 1 0 0 1 0

2 1 1 1 0 1 0

3 0 1 1 1 1 1

4 0 1 0 1 0 1

5 1 0 1 0 1 0

The behaviour of a machine with so few units is naturally very trivial. However,

machines of this character can behave in a very complicated manner when the

number of units is large. We may call these A-type unorganised machines. Thus

the machine in the diagram is an A-type unorganised machine of 5 units. The

motion of an A-type machine with N units is of course eventually periodic, as is

any determined machine with Wnite memory capacity. The period cannot exceed

2N moments, nor can the length of time before the periodic motion begins. In

Intelligent Machinery | 417

the example above the period is 2 moments and there are 3 moments before the

periodic motion begins. 2N is 32.

The A-type unorganised machines are of interest as being about the simplest

model of a nervous system with a random arrangement of neurons. It would

therefore be of very great interest to Wnd out something about their behaviour.

A second type of unorganised machine will now be described, not because it is of

any great intrinsic importance, but because it will be useful later for illustrative

purposes. Let us denote the circuit

by

Figure 10.2.

as an abbreviation. Then for each A-type unorganised machine we can construct

another machine by replacing each connection in it by . The

resulting machines will be called B-type unorganised machines. It may be said

that the B-type machines are all A-type. To this I would reply that the above

deWnitions if correctly (but drily!) set out would take the form of describing the

probability of an A- (or B-) type machine belonging to a given set; it is not

merely a deWnition of which are the A-type machines and which are the B-type

machines. If one chooses an A-type machine, with a given number of units, at

random, it will be extremely unlikely that one will get a B-type machine.

It is easily seen that the connection can have three conditions.

It may i) pass all signals through with interchange of 0 and 1, or ii) it may

convert all signals into 1, or again iii) it may act as in i) and ii) in alternate

moments. (Alternative iii) has two sub-cases.) Which of these cases applies

depends on the initial conditions. There is a delay of two moments in going

through .

5. Interference with machinery. Modifiable and

self-modifying machinery

The types of machine that we have considered so far are mainly ones that are

allowed to continue in their own way for indeWnite periods without interference

from outside. The universal machines were an exception to this, in that from

418 | Alan Turing

time to time one might change the description of the machine which is being

imitated. We shall now consider machines in which such interference is the rule

rather than the exception.

We may distinguish two kinds of interference. There is the extreme form

in which parts of the machine are removed and replaced by others. This

may be described as ‘screwdriver interference’. At the other end of the scale

is ‘paper interference’, which consists in the mere communication of information

to the machine, which alters its behaviour. In view of the properties of

the universal machine we do not need to consider the diVerence between

these two kinds of machine as being so very radical after all. Paper interference

when applied to the universal machine can be as useful as screwdriver inter-

ference.

We shall mainly be interested in paper interference. Since screwdriver interfer-

ence can produce a completely new machine without diYculty there is rather

little to be said about it. In future ‘interference’ will normally mean ‘paper

interference’.

When it is possible to alter the behaviour of a machine very radically we may

speak of the machine as being ‘modiWable’. This is a relative term. One machine

may be spoken of as being more modiWable than another.

One may also sometimes speak of a machine modifying itself, or of a machine

changing its own instructions. This is really a nonsensical form of phraseology,

but is convenient. Of course, according to our conventions the ‘machine’ is

completely described by the relation between its possible conWgurations at con-

secutive moments. It is an abstraction which by the form of its deWnition cannot

change in time. If we consider the machine as starting in a particular conWgura-

tion, however, we may be tempted to ignore those conWgurations which cannot

be reached without interference from it. If we do this we should get a ‘successor

relation’ for the conWgurations with diVerent properties from the original one

and so a diVerent ‘machine’.

If we now consider interference, we should say that each time interference

occurs the machine is probably changed. It is in this sense that interference

‘modiWes’ a machine. The sense in which a machine can modify itself is even

more remote. We may if we wish divide the operations of the machine into two

classes, normal and self-modifying operations. So long as only normal oper-

ations are performed we regard the machine as unaltered. Clearly the idea of

‘self-modiWcation’ will not be of much interest except where the division of

operations into the two classes is very carefully made. The sort of case I have in

mind is a computing machine like the ACE where large parts of the storage are

normally occupied in holding instruction tables. (Instruction tables are the

equivalent in U.P.C.M.s of descriptions of machines in U.L.C.M.s). Whenever

the content of this storage was altered by the internal operations of the machine,

one would naturally speak of the machine ‘modifying itself ’.

Intelligent Machinery | 419

6. Man as a machine

A great positive reason for believing in the possibility of making thinking machin-

ery is the fact that it is possible to make machinery to imitate any small part of a

man. That the microphone does this for the ear, and the television camera for the

eye, are commonplaces. One can also produce remote controlled Robots whose

limbs balance the body with the aid of servo-mechanisms. Here we are chieXy

interested in the nervous system. We could produce fairly accurate electrical

models to copy the behaviour of nerves, but there seems very little point in

doing so. It would be rather like putting a lot of work into cars which walked on

legs instead of continuing to use wheels. The electrical circuits which are used in

electronic computing machinery seem to have the essential properties of nerves.

They are able to transmit information from place to place, and also to store it.

Certainly the nerve has many advantages. It is extremely compact, does not wear

out (probably for hundreds of years if kept in a suitable medium!) and has a very

low energy consumption. Against these advantages the electronic circuits have

only one counter attraction, that of speed. This advantage is however on such a

scale that it may possibly outweigh the advantages of the nerve.

One way of setting about our task of building a ‘thinking machine’ would be

to take a man as a whole and to try to replace all the parts of him by machinery.

He would include television cameras, microphones, loudspeakers, wheels and

‘handling servo-mechanisms’ as well as some sort of ‘electronic brain’. This

would of course be a tremendous undertaking. The object if produced by present

techniques would be of immense size, even if the ‘brain’ part were stationary and

controlled the body from a distance. In order that the machine should have a

chance of Wnding things out for itself it should be allowed to roam the country-

side, and the danger to the ordinary citizen would be serious. Moreover even

when the facilities mentioned above were provided, the creature would still have

no contact with food, sex, sport and many other things of interest to the human

being. Thus although this method is probably the ‘sure’ way of producing a

thinking machine it seems to be altogether too slow and impracticable.

Instead we propose to try and see what can be done with a ‘brain’ which is

more or less without a body, providing at most organs of sight, speech and

hearing. We are then faced with the problem of Wnding suitable branches of

thought for the machine to exercise its powers in. The following Welds appear to

me to have advantages:

(i) Various games e.g. chess, noughts and crosses, bridge, poker

(ii) The learning of languages

(iii) Translation of languages

(iv) Cryptography

(v) Mathematics.

420 | Alan Turing

Of these (i), (iv), and to a lesser extent (iii) and (v) are good in that they require

little contact with the outside world. For instance in order that the machine

should be able to play chess its only organs need be ‘eyes’ capable of distinguish-

ing the various positions on a specially made board, and means for announcing

its own moves. Mathematics should preferably be restricted to branches where

diagrams are not much used. Of the above possible Welds the learning of

languages would be the most impressive, since it is the most human of these

activities. This Weld seems however to depend rather too much on sense organs

and locomotion to be feasible.

The Weld of cryptography will perhaps be the most rewarding. There is a

remarkably close parallel between the problems of the physicist and those of the

cryptographer. The system on which a message is enciphered corresponds to the

laws of the universe, the intercepted messages to the evidence available, the keys

for a day or a message to important constants which have to be determined. The

correspondence is very close, but the subject matter of cryptography is very easily

dealt with by discrete machinery, physics not so easily.

7. Education of machinery

Although we have abandoned the plan to make a ‘whole man’, we should be wise

to sometimes compare the circumstances of our machine with those of a man. It

would be quite unfair to expect a machine straight from the factory to compete

on equal terms with a university graduate. The graduate has had contact with

human beings for twenty years or more. This contact has throughout that period

been modifying his behaviour pattern. His teachers have been intentionally

trying to modify it. At the end of the period a large number of standard routines

will have been superimposed on the original pattern of his brain. These routines

will be known to the community as a whole. He is then in a position to try out

new combinations of these routines, to make slight variations on them, and to

apply them in new ways.

Wemaysay then that in so far as aman is amachine he is one that is subject tovery

much interference. In fact interferencewill be the rule rather than the exception.He

is in frequent communication with other men, and is continually receiving visual

and other stimuli which themselves constitute a formof interference. It will only be

when the man is ‘concentrating’ with a view to eliminating these stimuli or

‘distractions’ that he approximates a machine without interference.

We are chieXy interested in machines with comparatively little interference, for

reasons given in the last section, but it is important to remember that although a

man when concentrating may behave like a machine without interference, his

behaviour when concentrating is largely determined by the way he has been

conditioned by previous interference.

Intelligent Machinery | 421

If we are trying to produce an intelligent machine, and are following the human

model as closely as we can, we should beginwith amachine with very little capacity

to carry out elaborate operations or to react in a disciplined manner to orders

(taking the form of interference). Then by applying appropriate interference,

mimicking education, we should hope to modify the machine until it could be

relied on to produce deWnite reactions to certain commands. This would be the

beginning of the process. I will not attempt to follow it further now.

8. Organising unorganised machinery

Many unorganised machines have conWgurations such that if once that con-

Wguration is reached, and if the interference thereafter is appropriately restricted,

the machine behaves as one organised for some deWnite purpose. For instance

the B-type machine shown below was chosen at random.

OUT

6

4

75

3

2

1IN

Figure 10.3.

If the connections numbered 1, 3, 6, 4 are in condition ii) initially and connec-

tions 2, 5, 7 are in condition i), then the machine may be considered to be one

for the purpose of passing on signals with a delay of 4 moments. This is a

particular case of a very general property of B-type machines (and many other

types), viz. that with suitable initial conditions they will do any required job,

given suYcient time and provided the number of units is suYcient. In particular

with a B-type unorganised machine with suYcient units one can Wnd initial

conditions which will make it into a universal machine with a given storage

capacity. (A formal proof to this eVect might be of some interest, or even a

demonstration of it starting with a particular unorganised B-type machine, but I

am not giving it as it lies rather too far outside the main argument.)

With these B-type machines the possibility of interference which could set in

appropriate initial conditions has not been arranged for. It is however not

diYcult to think of appropriate methods by which this could be done. For

instance instead of the connection

422 | Alan Turing

Figure 10.4.

one might use

B

A

Figure 10.5.

Here A, B are interfering inputs, normally giving the signal ‘1’. By supplying

appropriate other signals at A, B we can get the connection into condition i) or

ii) or either form of iii), as desired. However, this requires two special interfering

inputs for each connection.

We shall be mainly interested in cases where there are only quite few inde-

pendent inputs altogether, so that all the interference which sets up the ‘initial

conditions’ of the machine has to be provided through one or two inputs. The

process of setting up these initial conditions so that the machine will carry out

some particular useful task may be called ‘organising the machine’. ‘Organising’

is thus a form of ‘modiWcation’.

9. The cortex as an unorganised machine

Many parts of a man’s brain are deWnite nerve circuits required for quite deWnite

purposes. Examples of these are the ‘centres’ which control respiration, sneezing,

following moving objects with the eyes, etc.: all the reXexes proper (not ‘condi-

tioned’) are due to the activities of these deWnite structures in the brain. Likewise

the apparatus for the more elementary analysis of shapes and sounds probably

comes into this category. But the more intellectual activities of the brain are too

Intelligent Machinery | 423

varied to be managed on this basis. The diVerence between the languages spoken

on the two sides of the Channel is not due to diVerences in development of the

French-speaking and English-speaking parts of the brain. It is due to the linguis-

tic parts having been subjected to diVerent training. We believe then that there

are large parts of the brain, chieXy in the cortex, whose function is largely

indeterminate. In the infant these parts do not have much eVect: the eVect

they have is uncoordinated. In the adult they have great and purposive eVect:

the form of this eVect depends on the training in childhood. A large remnant of

the random behaviour of infancy remains in the adult.

All of this suggests that the cortexof the infant is an unorganisedmachine, which

can be organised by suitable interfering training. The organisingmight result in the

modiWcation of the machine into a universal machine or something like it. This

would mean that the adult will obey orders given in appropriate language, even if

they were very complicated; he would have no common sense, and would obey the

most ridiculous orders unXinchingly. When all his orders had been fulWlled he

would sink into a comatose state or perhaps obey some standing order, such as

eating. Creatures not unlike this can really be found, but most people behave quite

diVerently under many circumstances. However the resemblance to a universal

machine is still very great, and suggests to us that the step from the unorganised

infant to a universal machine is one which should be understood. When this has

been mastered we shall be in a far better position to consider how the organising

process might have been modiWed to produce a more normal type of mind.

This picture of the cortex as an unorganised machine is very satisfactory from

the point of view of evolution and genetics. It clearly would not require any very

complex system of genes to produce something like the A- or B-type unorganised

machine. In fact this should be much easier than the production of such things as

the respiratory centre. This might suggest that intelligent races could be pro-

duced comparatively easily. I think this is wrong because the possession of a

human cortex (say) would be virtually useless if no attempt was made to organise

it. Thus if a wolf by a mutation acquired a human cortex there is little reason to

believe that he would have any selective advantage. If however the mutation

occurred in a milieu where speech had developed (parrot-like wolves), and if the

mutation by chance had well permeated a small community, then some selective

advantage might be felt. It would then be possible to pass information on from

generation to generation. However this is all rather speculative.

10. Experiments in organising. Pleasure–pain systems

It is interesting to experiment with unorganised machines admitting deWnite

types of interference and trying to organize them, e.g. to modify them into

universal machines.

424 | Alan Turing

The organisation of a machine into a universal machine would be most

impressive if the arrangements of interference involve very few inputs. The

training of the human child depends largely on a system of rewards and punish-

ments, and this suggests that it ought to be possible to carry through the

organising with only two interfering inputs, one for ‘pleasure’ or ‘reward’ (R)

and the other for ‘pain’ or ‘punishment’ (P). One can devise a large number of

such ‘pleasure–pain’ systems. I will use this term to mean an unorganised

machine of the following general character:

The conWgurations of the machine are described by two expressions, which we

may call the character-expression and the situation-expression. The character

and situation at any moment, together with the input signals, determine the

character and situation at the next moment. The character may be subject to

some random variation. Pleasure interference has a tendency to Wx the character

i.e. towards preventing it changing, whereas pain stimuli tend to disrupt the

character, causing features which had become Wxed to change, or to become

again subject to random variation.

This deWnition is probably too vague and general to be very helpful. The idea

is that when the ‘character’ changes we like to think of it as a change in the

machine, but the ‘situation’ is merely the conWguration of the machine described

by the character. It is intended that pain stimuli occur when the machine’s

behaviour is wrong, pleasure stimuli when it is particularly right. With appro-

priate stimuli on these lines, judiciously operated by the ‘teacher’, one may hope

that the ‘character’ will converge towards the one desired, i.e. that wrong behav-

iour will tend to become rare.

I have investigated a particular type of pleasure–pain system, which I will now

describe.

11. The P-type unorganised machine

The P-type machine may be regarded as an L.C.M. without a tape, and whose

description is largely incomplete. When a conWguration is reached for which the

action is undetermined, a random choice for the missing data is made and the

appropriate entry is made in the description, tentatively, and is applied. When a

pain stimulus occurs all tentative entries are cancelled, and when a pleasure

stimulus occurs they are all made permanent.

SpeciWcally. The situation is a number s ¼ 1, 2, . . . , N and corresponds to

the conWguration of the incomplete machine. The character is a table of N entries

showing the behaviour of the machine in each situation. Each entry has to say

something both about the next situation and about what action the machine has

to take. The action part may be either

(i) To do some externally visible act A1 or A2 . . .AK

Intelligent Machinery | 425

(ii) To set one of the memory units M1 . . .MR either into the ‘1’ condition or

into the ‘0’ condition.

The next situation is always the remainder either of 2s or of 2s þ 1 on division

by N. These may be called alternatives 0 and 1. Which alternative applies may be

determined by either

(a) One of the memory units

(b) A sense stimulus

(c) The pleasure–pain arrangements.

In each situation it is determined which of these applies when the machine is

made, i.e. interference cannot alter which of the three cases applies. Also in cases

(a) and (b) interference can have no eVect. In case (c) the entry in the character

table may be either U (‘uncertain’), or T0 (tentative 0), T1, D0 (deWnite 0) or D1.

When the entry in the character for the current situation is U then the alternative

is chosen at random, and the entry in the character is changed to T0 or T1

according as 0 or 1 was chosen. If the character entry was T0 or D0 then the

alternative is 0 and if it is T1 or D1 then the alternative is 1. The changes in

character include the above mentioned change from U to T0 or T1, and a change

of every T to D when a pleasure stimulus occurs, changes of T0 and T1 to U

when a pain stimulus occurs.

We may imagine the memory units essentially as ‘trigger circuits’ or switches.

The sense stimuli are means by which the teacher communicates ‘unemotionally’

to the machine, i.e. otherwise than by pleasure and pain stimuli. There are a

Wnite number S of sense stimulus lines, and each always carries either the signal 0

or 1.

A small P-type machine is described in the table below

1 P A

2 P B M1 ¼ 1

3 P B

4 S1 A M1 ¼ 0

5 M1 C

In this machine there is only one memory unit M1 and one sense line S1. Its

behaviour can be described by giving the successive situations together with the

actions of the teacher: the latter consist of the values of S1 and the rewards and

punishments. At any moment the ‘character’ consists of the above table with

each ‘P’ replaced by either U, T0, T1, D0 or D1. In working out the behaviour of

the machine it is convenient Wrst of all to make up a sequence of random digits

for use when the U cases occur. Underneath these we may write the sequence of

situations, and have other rows for the corresponding entries from the character,

and for the actions of the teacher. The character and the values stored in the

426 | Alan Turing

memory units may be kept on another sheet. The T entries may be made in

pencil and the D entries in ink. A bit of the behaviour of the machine is given

below:

Random sequence 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0

Situations 3 1 3 1 3 1 3 1 2 4 4 4 3 2 . .

Alternative given by U T T T T T U U S S S U T

0 0 0 0 0 1 1 1 0

Visible action B A B A B A B A B A A A B B

Rew. & Pun. P

Changes in S1 1 0

It will be noticed that the machine very soon got into a repetitive cycle. This

became externally visible through the repetitive BABAB . . . By means of a pain

stimulus this cycle was broken.

It is probably possible to organise these P-type machines into universal

machines, but it is not easy because of the form of memory available. It would

be necessary to organise the randomly distributed ‘memory units’ to provide a

systematic form of memory, and this would not be easy. If, however, we supply

the P-type machine with a systematic external memory this organising becomes

quite feasible. Such a memory could be provided in the form of a tape, and the

externally visible operations could include movement to right and left along the

tape, and altering the symbol on the tape to 0 or to 1. The sense lines could

include one from the symbol on the tape. Alternatively, if the memory were to be

Wnite, e.g. not more than 232 binary digits, we could use a dialling system.

(Dialling systems can also be used with an inWnite memory, but this is not of

much practical interest.) I have succeeded in organising such a (paper) machine

into a universal machine.

The details of the machine involved were as follows. There was a circular

memory consisting of 64 squares of which at any moment one was in the

machine (‘scanned’) and motion to right or left were among the ‘visible actions’.

Changing the symbol on the square was another ‘visible action’, and the symbol

was connected to one of the sense lines S1. The even-numbered squares also had

another function, they controlled the dialling of information to or from the main

memory. This main memory consisted of 232 binary digits. At any moment

one of these digits was connected to the sense line S2. The digit of the main

memory concerned was that indicated by the 32 even positioned digits of the

circular memory. Another two of the ‘visible actions’ were printing 0 or 1 in

this square of the main memory. There were also three ordinary memory units

and three sense units S3, S4, S5. Also six other externally visible actions A, B, C,

D, E, F.

This P-type machine with external memory has, it must be admitted, con-

siderably more ‘organisation’ than say the A-type unorganised machine.

Intelligent Machinery | 427

Nevertheless the fact that it can be organised into a universal machine still

remains interesting.

The actual technique by which the ‘organising’ of the P-type machine was

carried through is perhaps a little disappointing. It is not suYciently analogous

to the kind of process by which a child would really be taught. The process

actually adopted was Wrst to let the machine run for a long time with continuous

application of pain, and with various changes of the sense data S3, S4, S5.

Observation of the sequence of externally visible actions for some thousands of

moments made it possible to set up a scheme for identifying the situations, i.e. by

which one could at any moment Wnd out what the situation was, except that the

situations as a whole had been renamed. A similar investigation, with less use of

punishment, enables one to Wnd the situations which are aVected by the sense

lines; the data about the situations involving the memory units can also be found

but with more diYculty. At this stage the character has been reconstructed. There

are no occurrences of T0, T1, D0, D1. The next stage is to think up some way of

replacing the Us of the character by D0, D1 in such a way as to give the desired

modiWcation. This will normally be possible with the suggested number of

situations (1000), memory units etc. The Wnal stage is the conversion of the

character into the chosen one. This may be done simply by allowing the machine

to wander at random through a sequence of situations, and applying pain stimuli

when the wrong choice is made, pleasure stimuli when the right one is made. It is

best also to apply pain stimuli when irrelevant choices are made. This is to

prevent getting isolated in a ring of irrelevant situations. The machine is now

‘ready for use’.

The form of universal machine actually produced in this process was as

follows. Each instruction consisted of 128 digits, which we may regard as forming

four sets of 32 each of which describes one place in the main memory. These

places may be called P, Q, R, S. The meaning of the instruction is that if p is the

digit at P and q that at Q then 1� pq is to be transferred to position R and that

the next instruction will be found in the 128 digits beginning at S. This gives a

U.P.C.M., though with rather less facilities than are available say on the ACE.

I feel that more should be done on these lines. I would like to investigate other

types of unorganised machine, and also to try out organising methods that

would be more nearly analogous to our ‘methods of education’. I made a start

on the latter but found the work altogether too laborious at present. When some

electronic machines are in actual operation I hope that they will make this more

feasible. It should be easy to make a model of any particular machine that one

wishes to work on within such a U.P.C.M. instead of having to work with a paper

machine as at present. If also one decided on quite deWnite ‘teaching policies’

these could also be programmed into the machine. One would then allow

the whole system to run for an appreciable period, and then break in as a kind

of ‘inspector of schools’ and see what progress had been made. One might also be

428 | Alan Turing

able to make some progress with unorganised machines more like the A- and

B-types. The work involved with these is altogether too great for pure paper-

machine work.

One particular kind of phenomenon I had been hoping to Wnd in connection

with the P-type machines. This was the incorporation of old routines into new.

One might have ‘taught’ (i.e. modiWed or organised) a machine to add (say).

Later one might teach it to multiply by small numbers by repeated addition and

so arrange matters that the same set of situations which formed the addition

routine, as originally taught, was also used in the additions involved in the

multiplication. Although I was able to obtain a fairly detailed picture of how

this might happen I was not able to do experiments on a suYcient scale for such

phenomena to be seen as part of a larger context.

I also hoped to Wnd something rather similar to the ‘irregular verbs’ which add

variety to language. We seem to be quite content that things should not obey too

mathematically regular rules. By long experience we can pick up and apply the

most complicated rules without being able to enunciate them at all. I rather

suspect that a P-type machine without the systematic memory would behave in a

rather similar manner because of the randomly distributed memory units.

Clearly this could only be veriWed by very painstaking work; by the very nature

of the problem ‘mass production’ methods like built-in teaching procedures

could not help.

12. Discipline and initiative

If the untrained infant’s mind is to become an intelligent one, it must acquire

both discipline and initiative. So far we have been considering only discipline. To

convert a brain or machine into a universal machine is the extremest form of

discipline. Without something of this kind one cannot set up proper communi-

cation. But discipline is certainly not enough in itself to produce intelligence.

That which is required in addition we call initiative. This statement will have to

serve as a deWnition. Our task is to discover the nature of this residue as it occurs

in man, and to try and copy it in machines.

Two possible methods of setting about this present themselves. On the one

hand we have fully disciplined machines immediately available, or in a matter of

months or years, in the form of various U.P.C.M.s. We might try to graft some

initiative onto these. This would probably take the form of programming the

machine to do every kind of job that could be done, as a matter of principle,

whether it were economical to do it by machine or not. Bit by bit one would be

able to allow the machine to make more and more ‘choices’ or ‘decisions’. One

would eventually Wnd it possible to programme it so as to make its behaviour be

the logical result of a comparatively small number of general principles. When

Intelligent Machinery | 429

these became suYciently general, interference would no longer be necessary, and

the machine would have ‘grown up’. This may be called the ‘direct method’.

The other method is to start with an unorganised machine and to try to bring

both discipline and initiative into it at once, i.e. instead of trying to organise the

machine to become a universal machine, to organise it for initiative as well. Both

methods should, I think, be attempted.

Intellectual, Genetical, and Cultural Searches

A very typical sort of problem requiring some sort of initiative consists of those

of the form ‘Find a number n such that . . .’. This form covers a very great variety

of problems. For instance problems of the form ‘See if you can Wnd a way of

calculating the function . . . which will enable us to obtain the values for argu-

ments . . . to accuracy . . . within a time . . . using the U.P.C.M. . . .’ are reducible to

this form, for the problem is clearly equivalent to that of Wnding a programme to

put on the machine in question, and it is easy to put the programmes into

correspondence with the positive integers in such a way that given either the

number or the programme the other can easily be found. We should not go far

wrong for the time being if we assumed that all problems were reducible to this

form. It will be time to think again when something turns up which is obviously

not of this form.

The crudest way of dealing with such a problem is to take the integers in order

and to test each one to see whether it has the required property, and to go on

until one is found which has it. Such a method will only be successful in the

simplest cases. For instance in the case of problems of the kind mentioned above,

where one is really searching for a programme, the number required will

normally be somewhere between 21000 and 21,000,000. For practical work therefore

some more expeditious method is necessary. In a number of cases the following

method would be successful. Starting with a U.P.C.M. we Wrst put a programme

into it which corresponds to building in a logical system (like Russell’s Principia

Mathematica). This would not determine the behaviour of the machine com-

pletely: at various stages more than one choice as to the next step would be

possible. We might however arrange to take all possible arrangements of choices

in order, and go on until the machine proved a theorem which, by its form, could

be veriWed to give a solution of the problem. This may be seen to be a conversion

of the original problem into another of the same form. Instead of searching

through values of the original variable n one searches through values of some-

thing else. In practice when solving problems of the above kind one will probably

apply some very complex ‘transformation’ of the original problem, involving

searching through various variables, some more analogous to the original one,

some more like a ‘search through all proofs’. Further research into intelligence of

machinery will probably be very greatly concerned with ‘searches’ of this kind.

We may perhaps call such searches ‘intellectual searches’. They might very brieXy

430 | Alan Turing

be deWned as ‘searches carried out by brains for combinations with particular

properties’.

It may be of interest to mention two other kinds of search in this connection.

There is the genetical or evolutionary search by which a combination of genes is

looked for, the criterion being survival value. The remarkable success of this

search conWrms to some extent the idea that intellectual activity consists mainly

of various kinds of search.

The remaining form of search is what I should like to call the ‘cultural search’.

As I have mentioned, the isolated man does not develop any intellectual power. It

is necessary for him to be immersed in an environment of other men, whose

techniques he absorbs during the Wrst 20 years of his life. He may then perhaps

do a little research of his own and make a very few discoveries which are passed

on to other men. From this point of view the search for new techniques must be

regarded as carried out by the human community as a whole, rather than by

individuals.

13. Intelligence as an emotional concept

The extent to which we regard something as behaving in an intelligent manner is

determined as much by our own state of mind and training as by the properties

of the object under consideration. If we are able to explain and predict its

behaviour or if there seems to be little underlying plan, we have little temptation

to imagine intelligence. With the same object therefore it is possible that one

man would consider it as intelligent and another would not; the second man

would have found out the rules of its behaviour.

It is possible to do a little experiment on these lines, even at the present stage

of knowledge. It is not diYcult to devise a paper machine which will play a not

very bad game of chess. Now get three men as subjects for the experiment A, B,

C. A and C are to be rather poor chess players, B is the operator who works the

paper machine. (In order that he should be able to work it fairly fast it is

advisable that he be both mathematician and chess player.) Two rooms are

used with some arrangement for communicating moves, and a game is played

between C and either A or the paper machine. C may Wnd it quite diYcult to tell

which he is playing.

(This is a rather idealized form of an experiment I have actually done.)

Summary

The possible ways in which machinery might be made to show intelligent

behaviour are discussed. The analogy with the human brain is used as a guiding

principle. It is pointed out that the potentialities of the human intelligence can

Intelligent Machinery | 431

only be realised if suitable education is provided. The investigation mainly

centres round an analogous teaching process applied to machines. The idea of

an unorganised machine is deWned, and it is suggested that the infant human

cortex is of this nature. Simple examples of such machines are given, and their

education by means of rewards and punishments is discussed. In one case the

education process is carried through until the organisation is similar to that of an

ACE.

432 | Alan Turing

CHAPTER 11

Computing Machinery and

Intelligence (1950)

Alan Turing

Introduction
Jack Copeland

Together with ‘On Computable Numbers’ (Chapter 1), ‘Computing Machinery

and Intelligence’ forms Turing’s best-known work. This elegant and sometimes

amusing essay was originally published in 1950 in the leading philosophy journal

Mind. Turing’s friend Robin Gandy (like Turing a mathematical logician) said

that ‘Computing Machinery and Intelligence’

was intended not so much as a penetrating contribution to philosophy but as propaganda.

Turing thought the time had come for philosophers and mathematicians and scientists to

take seriously the fact that computers were not merely calculating engines but were

capable of behaviour which must be accounted as intelligent; he sought to persuade

people that this was so. He wrote this paper—unlike his mathematical papers—quickly

and with enjoyment. I can remember him reading aloud to me some of the passages—

always with a smile, sometimes with a giggle.1

The quality and originality of ‘Computing Machinery and Intelligence’ have

earned it a place among the classics of philosophy of mind.

The Turing Test

‘Computing Machinery and Intelligence’ contains Turing’s principal exposition

of the famous ‘imitation game’ or Turing test. The test Wrst appeared, in a restric-

ted form, in the closing paragraphs of ‘Intelligent Machinery’ (Chapter 10).

Chapters 13 and 14, dating from 1951 and 1952 respectively, contain further

1 R. Gandy, ‘Human versus Mechanical Intelligence’, in P. Millican and A. Clark (eds.), Machines and

Thought: The Legacy of Alan Turing, vol. i (Oxford: Clarendon Press, 1996), 125.

discussion and ampliWcation; unpublished until 1999, this important additional

material throws new light on how the Turing test is to be understood.2

The imitation game involves three participants: a computer, a human interro-

gator, and a human ‘foil’.3 The interrogator attempts to determine, by asking

questions of the other two participants, which of them is the computer. All com-

munication is via keyboard and screen, or an equivalent arrangement (Turing

suggested a teleprinter link). The interrogator may ask questions as penetrating

andwide-ranging as he or she likes, and the computer is permitted to do everything

possible to force a wrong identiWcation. (So the computer might answer ‘No’ in

response to ‘Are you a computer?’ andmight follow a request tomultiply one large

number by another with a long pause and a plausibly incorrect answer.) The foil

must help the interrogator to make a correct identiWcation.

The ability to play the imitation game successfully is Turing’s proposed

‘criterion for ‘‘thinking’’ ’ (pp. 442, 443). He gives two examples of the sort of

exchange that might occur between an interrogator and a machine that plays

successfully. The following is from p. 452.

Interrogator: In the Wrst line of your sonnet which reads ‘Shall I compare thee to a

summer’s day’, would not ‘a spring day’ do as well or better?

Machine: It wouldn’t scan.

Interrogator: How about ‘a winter’s day’? That would scan all right.

Machine: Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr Pickwick reminded you of Christmas?

Machine: In a way.

Interrogator: Yet Christmas is a winter’s day, and I do not think Mr Pickwick would

mind the comparison.

Machine: I don’t think you’re serious. By a winter’s day one means a typical winter’s

day, rather than a special one like Christmas.

Did Turing Propose a Definition?

Turing is sometimes said to have proposed a deWnition of ‘thinking’ or ‘intelli-

gence’; and sometimes his supposed deWnition is said to be an ‘operational’ or

‘behaviourist’ deWnition. For example:

An especially inXuential behaviorist deWnition of intelligence was put forward by Turing.4

(Ned Block)

2 This additional material was Wrst published in B. J. Copeland (ed.), ‘A Lecture and Two Radio

Broadcasts on Machine Intelligence by Alan Turing’, in K. Furukawa, D. Michie and S. Muggleton (eds.),

Machine Intelligence 15 (Oxford University Press, 1999). See also B. J. Copeland, ‘The Turing Test’, Minds

and Machines, 10 (2000), 519–39 (reprinted in J. H. Moor (ed.), The Turing Test (Dordrecht: Kluwer, 2003)).

3 The term ‘foil’ is from p. 40 of B. J. Copeland, ArtiWcial Intelligence: A Philosophical Introduction

(Oxford: Blackwell, 1993).

4 N. Block, ‘The Computer Model of the Mind’, in D. N. Osherson and H. Lasnik (eds.), An Invitation to

Cognitive Science, vol. iii (Cambridge, Mass.: MIT Press, 1990), 248.

434 | Jack Copeland

[Turing] introduced . . . an operational deWnition of ‘thinking’ or ‘intelligence’. . . by means

of a sexual guessing game.5 (Andrew Hodges)

The Turing Test [was] originally proposed as a simple operational deWnition of intelli-

gence.6 (Robert French)

There is no textual evidence to support this interpretation of Turing, however.

In ‘Computing Machinery and Intelligence’ Turing claimed to be oVering only a

‘criterion for ‘‘thinking’’ ’ (emphasis added). Moreover, in his discussion of the

Turing test in Chapter 14, Turing says quite speciWcally that his aim is not ‘to give

a deWnition of thinking’ (p. 494).

In fact, Turing made it plain in ‘Computing Machinery and Intelligence’ that

his intention was not to oVer a deWnition, for he said:

The game may perhaps be criticised on the ground that the odds are weighted too heavily

against the machine. If the man were to try and pretend to be the machine he would

clearly make a very poor showing. He would be given away at once by slowness and

inaccuracy in arithmetic. May not machines carry out something which ought to be

described as thinking but which is very diVerent from what a man does? (p. 442)

A computer carrying out something that ‘ought to be described as thinking’

would nevertheless fail the Turing test if for any reason it stood out in conversa-

tion as very diVerent from a man. It follows that ‘thinking’ cannot be deWned in

terms of success in the imitation game. Success in the game is arguably a

suYcient condition for thinking; but success in the imitation game is not also

a necessary condition for thinking. (Someone’s breathing spontaneously is a

suYcient condition for their being alive, but it is not also a necessary condition,

for someone may be alive without breathing spontaneously.)

The Male–Female Imitation Game

Turing introduced his criterion for ‘thinking’ by Wrst describing an imitation

game involving a human interrogator and two human subjects, one male (A) and

one female (B). The interrogator must determine, by question and answer, which

of A and B is the man. A’s object in the game is to try to cause the interrogator to

make the wrong identiWcation. Having introduced the imitation game in this

way, Turing said:

We now ask the question, ‘What will happen when a machine takes the part of A in this

game?’ Will the interrogator decide wrongly as often when the game is played like this as

he does when the game is played between a man and a woman? These questions replace

our original, ‘Can machines think?’ (p. 441)

5 A. Hodges, Alan Turing: The Enigma (London: Vintage, 1992), 415.

6 R. French, ‘The Turing Test: The First 50 Years’, Trends in Cognitive Sciences, 4 (2000), 115–22 (115).

Computing Machinery and Intelligence | 435

Some commentators have suggested, on the basis of this passage, that Turing’s

criterion for thinking is that the computer in the Turing test be able to imper-

sonate a woman.7 Later in the article, however, Turing described matters diVer-

ently, saying that the part of A is taken by a machine and ‘the part of B . . . by a

man’ (p. 448). This runs contrary to the suggestion that the computer is

supposed to imitate a woman (rather than a man or a woman). Moreover in

Chapter 14 Turing says that ‘[t]he idea of the test is that the machine has to try

and pretend to be a man . . . and it will pass only if the pretence is reasonably

convincing’ (p. 495). In Chapter 13 Turing presents the test in a starkly un-

gendered form: here the point of the test is to determine whether or not a

computer can ‘imitate a brain’ (p. 485). On balance, then, it seems rather

unlikely that Turing’s intention in ‘Computing Machinery and Intelligence’ was

to put forward a test in which the computer must impersonate a woman.

The role of the man-imitates-woman game is frequently misunderstood. For

example, Hodges claims that this game is irrelevant as an introduction to the

Turing test—indeed, it is a ‘red herring’.8 However, the man-imitates-woman

game forms part of the protocol for scoring the test. Will interrogators decide

wrongly as often in man-imitates-woman imitation games as they do in com-

puter-imitates-human games? This question, Turing said, replaces ‘Can ma-

chines think?’

The Current Status of the Turing Test

Section 6 of ‘Computing Machinery and Intelligence’, entitled ‘Contrary Views

on the Main Question’, occupies nearly half of the article. It contains no fewer

than nine objections to Turing’s position, together with Turing’s rebuttal of each.

One of them, the ‘Mathematical Objection’, is also discussed in Chapters 10 and

12 (the introduction to Chapter 12 gives some further information about this

important and controversial objection).

Since ‘Computing Machinery and Intelligence’ Wrst appeared, Turing’s test has

received considerable attention from philosophers, computer scientists, psych-

ologists, and others, and numerous additional objections have been raised to the

test, some of them ingenious indeed. Nevertheless, it seems to me that none of

these objections is successful (see my chapter in Moor’s The Turing Test in the list

of further reading). A discussion of one such objection, called here the Shannon–

McCarthy objection, will give something of the Xavour of the debate that still

rages over the Turing test. Another form of objection—the ‘Fiendish Expert’

objection—is discussed in the introduction to Chapter 14.

7 See, for example, S. G. Sterrett, ‘Turing’s Two Tests for Intelligence’, Minds and Machines, 10 (2000),

541–59; S. Traiger, ‘Making the Right IdentiWcation in the Turing Test’, Minds and Machines, 10 (2000),

561–72 (both reprinted in J. H. Moor (ed.), The Turing Test (Dordrecht: Kluwer, 2003)).

8 Hodges, Alan Turing, 415.

436 | Jack Copeland

The Shannon–McCarthy Objection

This objection envisages a hypothetical computer that is able to play the imita-

tion game successfully, for any set length of time, in virtue of incorporating a

very large—but nevertheless Wnite—‘look-up’ table. The table contains all the

exchanges that could possibly occur between the computer and the interrogator

during the length of time for which the test is run. The number of these is

astronomical—but Wnite. For example, the exchange displayed earlier concerning

sonnets and Mr Pickwick forms part of this (imaginary) table.

Clearly an interrogator would have no means by which to distinguish a

computer using this table from a human respondent. Yet presumably the com-

puter—which does nothing but search the table provided by its (hypothetical)

programmers—does not think. In principle, therefore, an unthinking, unintelli-

gent computer can pass the test.

Claude Shannon and John McCarthy put the objection forward in 1956:

The problem of giving a precise deWnition to the concept of ‘thinking’ and of deciding

whether or not a given machine is capable of thinking has aroused a great deal of heated

discussion. One interesting deWnition has been proposed by A. M. Turing: a machine is

termed capable of thinking if it can, under certain prescribed conditions, imitate a human

being by answering questions suYciently well to deceive a human questioner for a

reasonable period of time. A deWnition of this type has the advantages of being oper-

ational, or, in the psychologists’ term, behavioristic. . . . A disadvantage of the Turing

deWnition of thinking is that it is possible, in principle, to design a machine with a

complete set of arbitrarily chosen responses to all possible input stimuli . . . Such a

machine, in a sense, for any given input situation (including past history) merely looks

up in a ‘dictionary’ the appropriate response. With a suitable dictionary such a machine

would surely satisfy Turing’s deWnition but does not reXect our usual intuitive concept of

thinking.9

This objection has been rediscovered by a number of philosophers, and it is in

fact usually credited to Block, who published a version of it in 1981.10 (It is

sometimes referred to as the ‘blockhead’ objection to the Turing test.)

What might Turing have said in response to the objection? A hint is perhaps

provided by the following exchange between Turing and Newman (Chapter 14,

p. 503):

Newman: It is all very well to say that a machine could . . . be made to do this or that, but,

to take only one practical point, what about the time it would take to do it? It would only

take an hour or two to make up a routine to make our Manchester machine analyse all

possible variations of the game of chess right out, and Wnd the best move that way—if you

9 C. E. Shannon and J. McCarthy (eds.), Automata Studies (Princeton: Princeton University Press, 1956),

pp. v–vi.

10 N. Block, ‘Psychologism and Behaviorism’, Philosophical Review, 90 (1981), 5–43.

Computing Machinery and Intelligence | 437

didn’t mind its taking thousands of millions of years to run through the routine. Solving a

problem on the machine doesn’t mean Wnding a way to do it between now and eternity,

but within a reasonable time. . . .

Turing: To my mind this time factor is the one question which will involve all the real

technical diYculty.

The Shannon–McCarthy objection establishes only that the

Turing Test Principle If x plays Turing’s imitation game satisfactorily, then x

thinks

is false in some possible world. The objection directs our imagination toward a

possible world that is very diVerent from the actual world—a world in which an

astronomically large look-up table can be stored in a computer’s memory and

searched in a reasonable time—and points out that the Turing test principle is

false in that world. However, there is no textual evidence to indicate that Turing

was claiming anything more than that the Turing test principle is actually true,

i.e. true in the actual world. Nor did he need to claim more than this in order to

advocate the imitation game as a satisfactory real-world test.

Had Turing been proposing a deWnition of ‘thinking’, then he would indeed

have had to say, consistently, that the Turing test principle is true in all possible

worlds. (To take a more obvious case, if ‘bachelor’ is deWned as ‘unmarried male

of marriageable age’, then it is true not only in the actual world but in every

possible world that if x is an unmarried male of marriageable age, then x is a

bachelor.) At bottom, then, the Shannon–McCarthy objection depends on the

interpretational mistake of taking Turing to be proposing a deWnition.

There is further discussion of the Turing test in Chapters 13, 14, and 16.

Learning Machines

The discussion of learning begun in Chapter 10 is continued in the iconoclastic

Section 7 of ‘Computing Machinery and Intelligence’, entitled ‘Learning Ma-

chines’. Turing poses the rhetorical question: ‘Instead of trying to produce a

programme to simulate the adult mind, why not rather try to produce one which

simulates the child’s?’ (p. 460). The child’s mind may contain ‘so little mechan-

ism’ that ‘something like it can be easily programmed’. If this child-machine

‘were then subjected to an appropriate course of education one would obtain the

adult brain’. These remarks are of a piece with Turing’s suggestion in Chapter 10

that ‘the cortex of an infant is an unorganised machine, which can be organised

by suitable interfering training’ (p. 424).

Turing mentions in Section 7 that he has ‘done some experiments with one

such child-machine, and succeeded in teaching it a few things, but the teaching

method was too unorthodox for the experiment to be considered really success-

438 | Jack Copeland

ful’ (p. 461). Here he is probably referring to the experiments with an unorgan-

ized machine that are described in Chapter 10, where he says that he has

‘succeeded in organising such a (paper) machine into a universal machine’, but

that the technique used ‘is not suYciently analogous to the kind of process by

which a child would really be taught’ (pp. 427-8).

Situated AI

AI traditionally has attempted to build disembodied intelligences carrying out

abstract activities—e.g. chess-playing—and whose only way of interacting with

the world is by means of a screen or printer. An alternative approach now called

‘situated AI’ aims at building embodied intelligences situated in the real world.

‘Computing Machinery and Intelligence’ ends with a characteristically far-

sighted statement in which Turing sketches each of these two approaches to AI.

He contrasts research that focuses on ‘abstract activity, like the playing of chess’

with research aiming ‘to provide the machine with the best sense organs that

money can buy, and then teach it to understand and speak English’ (p. 463).

Turing recommended that ‘both approaches should be tried’ (ibid.; compare

Chapter 10, pp. 420–1).

Rodney Brooks, a modern pioneer of situated AI and Director of the MIT

ArtiWcial Intelligence Laboratory, pointed out that although Turing proposed

both these ‘paths toward his goal of a thinking machine’, ArtiWcial Intelligence

for a long time ‘all but ignored’ the situated approach.11 Now the tables have

turned and there is huge interest in situated AI.

One of Brooks’s experimental robots, Herbert—named after Herbert Simon—

searched the oYces and work-spaces of the MIT AI Lab for empty soda cans,

picking them up and carrying them to the trash.12 Herbert, unlike previous

generations of experimental robots, operated in real time in a busy, cluttered,

and unpredictably changing real-world environment. Brooks’s humanoid learn-

ing robot Cog—from ‘cognizer’—has four microphone-type ‘ears’ and saccading

foveated vision provided by cameras mounted on its ‘head’.13 Cog’s legless torso

is able to lean and twist. Strain gauges on the spine give Cog information about

posture, while heat and current sensors on the robot’s motors provide feedback

concerning exertion. Cog’s arm and manipulating hand are coated with electric-

ally conducting rubber membranes providing tactile information. Those working

in situated AI regard Cog as a milestone on the road toward the realization of

Turing’s dream.

11 R. Brooks, ‘Intelligence without Reason’, in L. Steels and R. Brooks (eds.), The ArtiWcial Life Route to

ArtiWcial Intelligence (Hillsdale, NJ: Erlbaum, 1995), 34. See also R. Brooks, Cambrian Intelligence: The

History of the New AI (Cambridge, Mass.: MIT Press, 1999).

12 R. Brooks, ‘Elephants Don’t Play Chess’, Robotics and Autonomous Systems, 6 (1990), 3–15.

13 R. A. Brooks and L. A. Stein, ‘Building Brains for Bodies’, Autonomous Robots, 1 (1994), 7–25.

Computing Machinery and Intelligence | 439

Further reading

Block, N., ‘Psychologism and Behaviorism’, Philosophical Review, 90 (1981), 5–43.

Dennett, D. C., ‘Can Machines Think?’, in his Brainchildren: Essays on Designing Minds

(Cambridge, Mass.: MIT Press, 1998).

French, R., ‘The Turing Test: The First 50 Years’, Trends in Cognitive Sciences, 4 (2000),

115–22.

Michie, D., ‘Turing’s Test and Conscious Thought’, ArtiWcial Intelligence, 60 (1993), 1–22.

Reprinted in P. Millican and A. Clark (eds.), Machines and Thought: The Legacy of Alan

Turing (Oxford: Clarendon Press, 1996).

Moor, J. H. (ed.), The Turing Test (Dordrecht: Kluwer, 2003).

—— ‘An Analysis of the Turing Test’, Philosophical Studies, 30 (1976), 249–57.

Provenance

What follows is the text of the original printing of ‘Computing Machinery and

Intelligence’ in Mind.14 (Unfortunately Turing’s typescript has been lost.)

14 Footnotes have been renumbered consecutively. All footnotes not marked ‘Editor’s note’ appeared in

Mind. Where the text contains numbers referring to pages ofMind these have been replaced by the numbers

of the corresponding pages of the present edition, enclosed in square brackets. Not all cross-references in

Turing’s article were dealt with correctly by the editor of Mind—some of the numbers appearing in Mind

presumably refer to pages of Turing’s original typescript. These also have been replaced by the numbers of

the corresponding pages of this volume.

440 | Jack Copeland

Computing Machinery and Intelligence

1. The Imitation Game

I propose to consider the question, ‘Can machines think?’ This should begin with

deWnitions of the meaning of the terms ‘machine’ and ‘think’. The deWnitions

might be framed so as to reXect so far as possible the normal use of the words,

but this attitude is dangerous. If the meaning of the words ‘machine’ and ‘think’

are to be found by examining how they are commonly used it is diYcult to

escape the conclusion that the meaning and the answer to the question, ‘Can

machines think?’ is to be sought in a statistical survey such as a Gallup poll. But

this is absurd. Instead of attempting such a deWnition I shall replace the question

by another, which is closely related to it and is expressed in relatively unambigu-

ous words.

The new form of the problem can be described in terms of a game which we

call the ‘imitation game’. It is played with three people, a man (A), a woman (B),

and an interrogator (C) who may be of either sex. The interrogator stays in a

room apart from the other two. The object of the game for the interrogator is

to determine which of the other two is the man and which is the woman. He

knows them by labels X and Y, and at the end of the game he says either ‘X is A

and Y is B’ or ‘X is B and Y is A’. The interrogator is allowed to put questions to

A and B thus:

C: Will X please tell me the length of his or her hair? Now suppose X is actually

A, then A must answer. It is A’s object in the game to try and cause C to make the

wrong identiWcation. His answer might therefore be

‘My hair is shingled, and the longest strands are about nine inches long.’

In order that tones of voice may not help the interrogator the answers should

be written, or better still, typewritten. The ideal arrangement is to have a

teleprinter communicating between the two rooms. Alternatively the question

and answers can be repeated by an intermediary. The object of the game for the

third player (B) is to help the interrogator. The best strategy for her is probably to

give truthful answers. She can add such things as ‘I am the woman, don’t listen to

him!’ to her answers, but it will avail nothing as theman canmake similar remarks.

We now ask the question, ‘What will happen when a machine takes the part of

A in this game?’ Will the interrogator decide wrongly as often when the game is

played like this as he does when the game is played between a man and a woman?

These questions replace our original, ‘Can machines think?’

This article Wrst appeared in Mind, 59 (1950), 433–60. It is reprinted with the permission of the Mind

Association and the Estate of Alan Turing.

2. Critique of the New Problem

As well as asking, ‘What is the answer to this new form of the question’, one may

ask, ‘Is this new question a worthy one to investigate?’ This latter question we

investigate without further ado, thereby cutting short an inWnite regress.

The new problem has the advantage of drawing a fairly sharp line between the

physical and the intellectual capacities of a man. No engineer or chemist claims

to be able to produce a material which is indistinguishable from the human skin.

It is possible that at some time this might be done, but even supposing this

invention available we should feel there was little point in trying to make a

‘thinking machine’ more human by dressing it up in such artiWcial Xesh. The

form in which we have set the problem reXects this fact in the condition which

prevents the interrogator from seeing or touching the other competitors, or

hearing their voices. Some other advantages of the proposed criterion may be

shown up by specimen questions and answers. Thus:

Q: Please write me a sonnet on the subject of the Forth Bridge.

A: Count me out on this one. I never could write poetry.

Q: Add 34957 to 70764.

A: (Pause about 30 seconds and then give as answer) 105621.

Q: Do you play chess?

A: Yes.

Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1.

It is your move. What do you play?

A: (After a pause of 15 seconds) R-R8 mate.

The question and answer method seems to be suitable for introducing almost

any one of the Welds of human endeavour that we wish to include. We do not

wish to penalise the machine for its inability to shine in beauty competitions, nor

to penalise a man for losing in a race against an aeroplane. The conditions of our

game make these disabilities irrelevant. The ‘witnesses’ can brag, if they consider

it advisable, as much as they please about their charms, strength or heroism, but

the interrogator cannot demand practical demonstrations.

The game may perhaps be criticised on the ground that the odds are weighted

too heavily against the machine. If the man were to try and pretend to be the

machine he would clearly make a very poor showing. He would be given away at

once by slowness and inaccuracy in arithmetic. May not machines carry out

something which ought to be described as thinking but which is very diVerent

from what a man does? This objection is a very strong one, but at least we can say

that if, nevertheless, a machine can be constructed to play the imitation game

satisfactorily, we need not be troubled by this objection.

It might be urged that when playing the ‘imitation game’ the best strategy for

the machine may possibly be something other than imitation of the behaviour of

442 | Alan Turing

a man. This may be, but I think it is unlikely that there is any great eVect of this

kind. In any case there is no intention to investigate here the theory of the game,

and it will be assumed that the best strategy is to try to provide answers that

would naturally be given by a man.

3. The Machines concerned in the Game

The question which we put in §1 will not be quite deWnite until we have speciWed

what we mean by the word ‘machine’. It is natural that we should wish to permit

every kind of engineering technique to be used in our machines. We also wish to

allow the possibility that an engineer or team of engineers may construct a

machine which works, but whose manner of operation cannot be satisfactorily

described by its constructors because they have applied a method which is largely

experimental. Finally, we wish to exclude from the machines men born in the

usual manner. It is diYcult to frame the deWnitions so as to satisfy these three

conditions. One might for instance insist that the team of engineers should be all

of one sex, but this would not really be satisfactory, for it is probably possible to

rear a complete individual from a single cell of the skin (say) of a man. To do so

would be a feat of biological technique deserving of the very highest praise, but

we would not be inclined to regard it as a case of ‘constructing a thinking

machine’. This prompts us to abandon the requirement that every kind of

technique should be permitted. We are the more ready to do so in view of the

fact that the present interest in ‘thinking machines’ has been aroused by a

particular kind of machine, usually called an ‘electronic computer’ or ‘digital

computer’. Following this suggestion we only permit digital computers to take

part in our game.

This restriction appears at Wrst sight to be a very drastic one. I shall attempt to

show that it is not so in reality. To do this necessitates a short account of the

nature and properties of these computers.

It may also be said that this identiWcation of machines with digital computers,

like our criterion for ‘thinking’, will only be unsatisfactory if (contrary to my

belief), it turns out that digital computers are unable to give a good showing in

the game.

There are already a number of digital computers in working order, and it

may be asked, ‘Why not try the experiment straight away? It would be easy

to satisfy the conditions of the game. A number of interrogators could be used,

and statistics compiled to show how often the right identiWcation was given.’

The short answer is that we are not asking whether all digital computers

would do well in the game nor whether the computers at present available

would do well, but whether there are imaginable computers which would do

well. But this is only the short answer. We shall see this question in a diVerent

light later.

Computing Machinery and Intelligence | 443

4. Digital Computers

The idea behind digital computers may be explained by saying that these

machines are intended to carry out any operations which could be done by a

human computer. The human computer is supposed to be following Wxed rules;

he has no authority to deviate from them in any detail. We may suppose that

these rules are supplied in a book, which is altered whenever he is put on to a

new job. He has also an unlimited supply of paper on which he does his

calculations. He may also do his multiplications and additions on a ‘desk

machine’, but this is not important.

If we use the above explanation as a deWnition we shall be in danger of

circularity of argument. We avoid this by giving an outline of the means by

which the desired eVect is achieved. A digital computer can usually be regarded

as consisting of three parts:

(i) Store.

(ii) Executive unit.

(iii) Control.

The store is a store of information, and corresponds to the human computer’s

paper, whether this is the paper on which he does his calculations or that on

which his book of rules is printed. In so far as the human computer does

calculations in his head a part of the store will correspond to his memory.

The executive unit is the part which carries out the various individual oper-

ations involved in a calculation. What these individual operations are will vary

from machine to machine. Usually fairly lengthy operations can be done such as

‘Multiply 3540675445 by 7076345687’ but in some machines only very simple

ones such as ‘Write down 0’ are possible.

We havementioned that the ‘book of rules’ supplied to the computer is replaced

in the machine by a part of the store. It is then called the ‘table of instructions’. It is

the duty of the control to see that these instructions are obeyed correctly and in the

right order. The control is so constructed that this necessarily happens.

The information in the store is usually broken up into packets of moderately

small size. In one machine, for instance, a packet might consist of ten decimal

digits. Numbers are assigned to the parts of the store in which the various packets

of information are stored, in some systematic manner. A typical instruction

might say—

‘Add the number stored in position 6809 to that in 4302 and put the result

back into the latter storage position’.

Needless to say it would not occur in the machine expressed in English. It

would more likely be coded in a form such as 6809430217. Here 17 says which of

various possible operations is to be performed on the two numbers. In this case

the operation is that described above, viz. ‘Add the number . . .’ It will be noticed

444 | Alan Turing

that the instruction takes up 10 digits and so forms one packet of information,

very conveniently. The control will normally take the instructions to be obeyed in

the order of the positions in which they are stored, but occasionally an instruc-

tion such as

‘Now obey the instruction stored in position 5606, and continue from there’

may be encountered, or again

‘If position 4505 contains 0 obey next the instruction stored in 6707, otherwise

continue straight on.’

Instructions of these latter types are very important because they make it possible

for a sequence of operations to be repeated over and over again until some

condition is fulWlled, but in doing so to obey, not fresh instructions on

each repetition, but the same ones over and over again. To take a domestic

analogy. Suppose Mother wants Tommy to call at the cobbler’s every morning

on his way to school to see if her shoes are done, she can ask him afresh

every morning. Alternatively she can stick up a notice once and for all in the

hall which he will see when he leaves for school and which tells him to call for

the shoes, and also to destroy the notice when he comes back if he has the shoes

with him.

The reader must accept it as a fact that digital computers can be constructed,

and indeed have been constructed, according to the principles we have described,

and that they can in fact mimic the actions of a human computer very closely.

The book of rules which we have described our human computer as using is of

course a convenient Wction. Actual human computers really remember what they

have got to do. If one wants to make a machine mimic the behaviour of the

human computer in some complex operation one has to ask him how it is done,

and then translate the answer into the form of an instruction table. Constructing

instruction tables is usually described as ‘programming’. To ‘programme a ma-

chine to carry out the operation A’ means to put the appropriate instruction

table into the machine so that it will do A.

An interesting variant on the idea of a digital computer is a ‘digital computer

with a random element’. These have instructions involving the throwing of a die

or some equivalent electronic process; one such instruction might for instance

be, ‘Throw the die and put the resulting number into store 1000’. Sometimes

such a machine is described as having free will (though I would not use this

phrase myself). It is not normally possible to determine from observing

a machine whether it has a random element, for a similar eVect can be

produced by such devices as making the choices depend on the digits of the

decimal for p.
Most actual digital computers have only a Wnite store. There is no theoretical

diYculty in the idea of a computer with an unlimited store. Of course only a

Wnite part can have been used at any one time. Likewise only a Wnite amount can

have been constructed, but we can imagine more and more being added as

Computing Machinery and Intelligence | 445

required. Such computers have special theoretical interest and will be called

inWnitive1 capacity computers.

The idea of a digital computer is an old one. Charles Babbage, Lucasian

Professor of Mathematics at Cambridge from 1828 to 1839, planned such a

machine, called the Analytical Engine, but it was never completed. Although

Babbage had all the essential ideas, his machine was not at that time such a very

attractive prospect. The speed which would have been available would be deW-

nitely faster than a human computer but something like 100 times slower than

the Manchester machine, itself one of the slower of the modern machines. The

storage was to be purely mechanical, using wheels and cards.

The fact that Babbage’s Analytical Engine was to be entirely mechanical will

help us to rid ourselves of a superstition. Importance is often attached to the fact

that modern digital computers are electrical, and that the nervous system also is

electrical. Since Babbage’s machine was not electrical, and since all digital

computers are in a sense equivalent, we see that this use of electricity cannot

be of theoretical importance. Of course electricity usually comes in where fast

signalling is concerned, so that it is not surprising that we Wnd it in both these

connections. In the nervous system chemical phenomena are at least as import-

ant as electrical. In certain computers the storage system is mainly acoustic. The

feature of using electricity is thus seen to be only a very superWcial similarity. If

we wish to Wnd such similarities we should look rather for mathematical analo-

gies of function.

5. Universality of Digital Computers

The digital computers considered in the last section may be classiWed amongst

the ‘discrete state machines’. These are the machines which move by sudden

jumps or clicks from one quite deWnite state to another. These states are

suYciently diVerent for the possibility of confusion between them to be ignored.

Strictly speaking there are no such machines. Everything really moves continu-

ously. But there are many kinds of machine which can proWtably be thought of as

being discrete state machines. For instance in considering the switches for a

lighting system it is a convenient Wction that each switch must be deWnitely on or

deWnitely oV. There must be intermediate positions, but for most purposes we

can forget about them. As an example of a discrete state machine we might

consider a wheel which clicks round through 1208 once a second, but may be

stopped by a lever which can be operated from outside; in addition a lamp is to

light in one of the positions of the wheel. This machine could be described

abstractly as follows. The internal state of the machine (which is described by the

position of the wheel) may be q1, q2 or q3. There is an input signal i0 or i1

1 Editor’s note. Perhaps ‘inWnitive’ is a mis-printing in Mind of ‘inWnite’.

446 | Alan Turing

(position of lever). The internal state at any moment is determined by the last

state and input signal according to the table

q1 q2

Last State

q3

q2 q3 q1

q1

i0
Input

i1 q2 q3

The output signals, the only externally visible indication of the internal state (the

light) are described by the table

State q1 q2 q3

Output o0 o0 o1

This example is typical of discrete state machines. They can be described by such

tables provided they have only a Wnite number of possible states.

It will seem that given the initial state of the machine and the input signals it is

always possible to predict all future states. This is reminiscent of Laplace’s view

that from the complete state of the universe at one moment of time, as described

by the positions and velocities of all particles, it should be possible to predict all

future states. The prediction which we are considering is, however, rather nearer

to practicability than that considered by Laplace. The system of the ‘universe as a

whole’ is such that quite small errors in the initial conditions can have an

overwhelming eVect at a later time. The displacement of a single electron by a

billionth of a centimetre at one moment might make the diVerence between a

man being killed by an avalanche a year later, or escaping. It is an essential

property of the mechanical systems which we have called ‘discrete state ma-

chines’ that this phenomenon does not occur. Even when we consider the actual

physical machines instead of the idealised machines, reasonably accurate know-

ledge of the state at one moment yields reasonably accurate knowledge any

number of steps later.

As we have mentioned, digital computers fall within the class of discrete state

machines. But the number of states of which such a machine is capable is usually

enormously large. For instance, the number for the machine now working at

Manchester is about 2165, 000, i.e. about 1050, 000. Compare this with our example

of the clicking wheel described above, which had three states. It is not diYcult to

see why the number of states should be so immense. The computer includes a

store corresponding to the paper used by a human computer. It must be possible

to write into the store any one of the combinations of symbols which might have

been written on the paper. For simplicity suppose that only digits from 0 to 9 are

used as symbols. Variations in handwriting are ignored. Suppose the computer is

allowed 100 sheets of paper each containing 50 lines each with room for 30 digits.

Then the number of states is 10100�50�30, i.e. 10150, 000. This is about the number

Computing Machinery and Intelligence | 447

of states of three Manchester machines put together. The logarithm to the base

two of the number of states is usually called the ‘storage capacity’ of the machine.

Thus the Manchester machine has a storage capacity of about 165,000 and the

wheel machine of our example about 1.6. If two machines are put together their

capacities must be added to obtain the capacity of the resultant machine. This

leads to the possibility of statements such as ‘The Manchester machine contains

64 magnetic tracks each with a capacity of 2560, eight electronic tubes with a

capacity of 1280. Miscellaneous storage amounts to about 300 making a total of

174,380.’

Given the table corresponding to a discrete state machine it is possible to

predict what it will do. There is no reason why this calculation should not be

carried out by means of a digital computer. Provided it could be carried out

suYciently quickly the digital computer could mimic the behaviour of any

discrete state machine. The imitation game could then be played with the

machine in question (as B) and the mimicking digital computer (as A) and the

interrogator would be unable to distinguish them. Of course the digital com-

puter must have an adequate storage capacity as well as working suYciently fast.

Moreover, it must be programmed afresh for each new machine which it is

desired to mimic.

This special property of digital computers, that they can mimic any discrete

state machine, is described by saying that they are universal machines. The

existence of machines with this property has the important consequence that,

considerations of speed apart, it is unnecessary to design various new machines

to do various computing processes. They can all be done with one digital

computer, suitably programmed for each case. It will be seen that as a conse-

quence of this all digital computers are in a sense equivalent.

We may now consider again the point raised at the end of §3. It was suggested

tentatively that the question, ‘Can machines think?’ should be replaced by ‘Are

there imaginable digital computers which would do well in the imitation game?’

If we wish we can make this superWcially more general and ask ‘Are there discrete

state machines which would do well?’ But in view of the universality property we

see that either of these questions is equivalent to this, ‘Let us Wx our attention on

one particular digital computer C. Is it true that by modifying this computer to

have an adequate storage, suitably increasing its speed of action, and providing it

with an appropriate programme, C can be made to play satisfactorily the part of

A in the imitation game, the part of B being taken by a man?’

6. Contrary Views on the Main Question

We may now consider the ground to have been cleared and we are ready to

proceed to the debate on our question, ‘Can machines think?’ and the variant of

it quoted at the end of the last section. We cannot altogether abandon the

448 | Alan Turing

original form of the problem, for opinions will diVer as to the appropriateness of

the substitution and we must at least listen to what has to be said in this

connexion.

It will simplify matters for the reader if I explain Wrst my own beliefs in the

matter. Consider Wrst the more accurate form of the question. I believe that in

about Wfty years’ time it will be possible to programme computers, with a storage

capacity of about 109, to make them play the imitation game so well that an

average interrogator will not have more than 70 per cent. chance of making the

right identiWcation after Wve minutes of questioning. The original question, ‘Can

machines think?’ I believe to be too meaningless to deserve discussion. Neverthe-

less I believe that at the end of the century the use of words and general educated

opinion will have altered so much that one will be able to speak of machines

thinking without expecting to be contradicted. I believe further that no useful

purpose is served by concealing these beliefs. The popular view that scientists

proceed inexorably from well-established fact to well-established fact, never

being inXuenced by any unproved conjecture, is quite mistaken. Provided it is

made clear which are proved facts and which are conjectures, no harm can result.

Conjectures are of great importance since they suggest useful lines of research.

I now proceed to consider opinions opposed to my own.

(1) The Theological Objection. Thinking is a function of man’s immortal

soul. God has given an immortal soul to every man and woman, but not to

any other animal or to machines. Hence no animal or machine can think.

I am unable to accept any part of this, but will attempt to reply in theological

terms. I should Wnd the argument more convincing if animals were classed with

men, for there is a greater diVerence, to my mind, between the typical animate

and the inanimate than there is between man and the other animals. The

arbitrary character of the orthodox view becomes clearer if we consider how it

might appear to a member of some other religious community. How do Chris-

tians regard the Moslem view that women have no souls? But let us leave this

point aside and return to the main argument. It appears to me that the argument

quoted above implies a serious restriction of the omnipotence of the Almighty. It

is admitted that there are certain things that He cannot do such as making one

equal to two, but should we not believe that He has freedom to confer a soul on

an elephant if He sees Wt? We might expect that He would only exercise this

power in conjunction with a mutation which provided the elephant with an

appropriately improved brain to minister to the needs of this soul. An argument

of exactly similar form may be made for the case of machines. It may seem

diVerent because it is more diYcult to ‘‘swallow’’. But this really only means that

we think it would be less likely that He would consider the circumstances suitable

for conferring a soul. The circumstances in question are discussed in the rest of

this paper. In attempting to construct such machines we should not be irrever-

ently usurping His power of creating souls, any more than we are in the

Computing Machinery and Intelligence | 449

procreation of children: rather we are, in either case, instruments of His will

providing mansions for the souls that He creates.

However, this is mere speculation. I am not very impressed with theological

arguments whatever they may be used to support. Such arguments have often

been found unsatisfactory in the past. In the time of Galileo it was argued that

the texts, ‘‘And the sun stood still . . . and hasted not to go down about a whole

day’’ (Joshua x. 13) and ‘‘He laid the foundations of the earth, that it should not

move at any time’’ (Psalm cv. 5) were an adequate refutation of the Copernican

theory. With our present knowledge such an argument appears futile. When that

knowledge was not available it made a quite diVerent impression.

(2) The ‘Heads in the Sand’ Objection. ‘‘The consequences of machines

thinking would be too dreadful. Let us hope and believe that they cannot do so.’’

This argument is seldom expressed quite so openly as in the form above. But it

aVects most of us who think about it at all. We like to believe that Man is in some

subtle way superior to the rest of creation. It is best if he can be shown to be

necessarily superior, for then there is no danger of him losing his commanding

position. The popularity of the theological argument is clearly connected with

this feeling. It is likely to be quite strong in intellectual people, since they value

the power of thinking more highly than others, and are more inclined to base

their belief in the superiority of Man on this power.

I do not think that this argument is suYciently substantial to require refuta-

tion. Consolation would be more appropriate: perhaps this should be sought in

the transmigration of souls.

(3) The Mathematical Objection. There are a number of results of math-

ematical logic which can be used to show that there are limitations to the powers

of discrete-state machines. The best known of these results is known as Gödel ’s

theorem,3 and shows that in any suYciently powerful logical system statements

can be formulated which can neither be proved nor disproved within the system,

unless possibly the system itself is inconsistent. There are other, in some respects

similar, results due to Church, Kleene, Rosser, and Turing. The latter result is the

most convenient to consider, since it refers directly to machines, whereas the

others can only be used in a comparatively indirect argument: for instance if

Gödel’s theorem is to be used we need in addition to have some means of

describing logical systems in terms of machines, and machines in terms of logical

systems. The result in question refers to a type of machine which is essentially a

digital computer with an inWnite capacity. It states that there are certain things

that such a machine cannot do. If it is rigged up to give answers to questions as in

2 Possibly this view is heretical. St Thomas Aquinas (Summa Theologica, quoted by Bertrand Russell,

p. 480) states that God cannot make a man to have no soul. But this may not be a real restriction on His

powers, but only a result of the fact that men’s souls are immortal, and therefore indestructible. (Editor’s

note: the text in Mind contains no reference-marker for this footnote.)

3 Author’s names in italics refer to the Bibliography.

450 | Alan Turing

the imitation game, there will be some questions to which it will either give a

wrong answer, or fail to give an answer at all however much time is allowed for a

reply. There may, of course, be many such questions, and questions which cannot

be answered by one machine may be satisfactorily answered by another. We are of

course supposing for the present that the questions are of the kind to which an

answer ‘Yes’ or ‘No’ is appropriate, rather than questions such as ‘What do you

think of Picasso?’ The questions that we know the machines must fail on are of

this type, ‘‘Consider the machine speciWed as follows . . .Will this machine ever

answer ‘Yes’ to any question?’’ The dots are to be replaced by a description of

some machine in a standard form, which could be something like that used in §5.

When the machine described bears a certain comparatively simple relation to the

machine which is under interrogation, it can be shown that the answer is either

wrong or not forthcoming. This is the mathematical result: it is argued that it

proves a disability of machines to which the human intellect is not subject.

The short answer to this argument is that although it is established that there

are limitations to the powers of any particular machine, it has only been stated,

without any sort of proof, that no such limitations apply to the human intellect.

But I do not think this view can be dismissed quite so lightly. Whenever one of

these machines is asked the appropriate critical question, and gives a deWnite

answer, we know that this answer must be wrong, and this gives us a certain

feeling of superiority. Is this feeling illusory? It is no doubt quite genuine, but

I do not think too much importance should be attached to it. We too often give

wrong answers to questions ourselves to be justiWed in being very pleased at such

evidence of fallibility on the part of the machines. Further, our superiority can

only be felt on such an occasion in relation to the one machine over which we

have scored our petty triumph. There would be no question of triumphing

simultaneously over all machines. In short, then, there might be men cleverer

than any given machine, but then again there might be other machines cleverer

again, and so on.

Those who hold to the mathematical argument would, I think, mostly

be willing to accept the imitation game as a basis for discussion. Those who

believe in the two previous objections would probably not be interested in any

criteria.

(4) The Argument from Consciousness. This argument is very well expressed

in Professor JeVerson’s Lister Oration for 1949, from which I quote. ‘‘Not until a

machine can write a sonnet or compose a concerto because of thoughts and

emotions felt, and not by the chance fall of symbols, could we agree that machine

equals brain—that is, not only write it but know that it had written it. No

mechanism could feel (and not merely artiWcially signal, an easy contrivance)

pleasure at its successes, grief when its valves fuse, be warmed by Xattery, be made

miserable by its mistakes, be charmed by sex, be angry or depressed when it

cannot get what it wants.’’

Computing Machinery and Intelligence | 451

This argument appears to be a denial of the validity of our test. According to

the most extreme form of this view the only way by which one could be sure that

a machine thinks is to be the machine and to feel oneself thinking. One could

then describe these feelings to the world, but of course no one would be justiWed

in taking any notice. Likewise according to this view the only way to know that a

man thinks is to be that particular man. It is in fact the solipsist point of view. It

may be the most logical view to hold but it makes communication of ideas

diYcult. A is liable to believe ‘A thinks but B does not’ whilst B believes ‘B thinks

but A does not’. Instead of arguing continually over this point it is usual to have

the polite convention that everyone thinks.

I am sure that Professor JeVerson does not wish to adopt the extreme and

solipsist point of view. Probably he would be quite willing to accept the imitation

game as a test. The game (with the player B omitted) is frequently used in

practice under the name of viva voce to discover whether some one really

understands something or has ‘learnt it parrot fashion’. Let us listen in to a

part of such a viva voce :

Interrogator: In the Wrst line of your sonnet which reads ‘Shall I compare

thee to a summer’s day’, would not ‘a spring day’ do as well or better?

Witness: It wouldn’t scan.

Interrogator: How about ‘a winter’s day’. That would scan all right.

Witness: Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

Witness: In a way.

Interrogator: Yet Christmas is a winter’s day, and I do not think

Mr. Pickwick would mind the comparison.

Witness: I don’t think you’re serious. By a winter’s day one means a

typical winter’s day, rather than a special one like Christmas.

And so on. What would Professor JeVerson say if the sonnet-writing machine

was able to answer like this in the viva voce ? I do not know whether he would

regard the machine as ‘merely artiWcially signalling’ these answers, but if

the answers were as satisfactory and sustained as in the above passage I do

not think he would describe it as ‘an easy contrivance’. This phrase is, I

think, intended to cover such devices as the inclusion in the machine of a record

of someone reading a sonnet, with appropriate switching to turn it on from time

to time.

In short then, I think that most of those who support the argument from

consciousness could be persuaded to abandon it rather than be forced into the

solipsist position. They will then probably be willing to accept our test.

I do not wish to give the impression that I think there is no mystery about

consciousness. There is, for instance, something of a paradox connected with any

attempt to localise it. But I do not think these mysteries necessarily need to be

452 | Alan Turing

solved before we can answer the question with which we are concerned in this

paper.

(5) Arguments from Various Disabilities. These arguments take the form, ‘‘I

grant you that you can make machines do all the things you have mentioned but

you will never be able to make one to do X’’. Numerous features X are suggested

in this connexion. I oVer a selection:

Be kind, resourceful, beautiful, friendly (p. [454]), have initiative, have a sense of humour,

tell right from wrong, make mistakes (p. [454]), fall in love, enjoy strawberries and cream

(p. [453]), make some one fall in love with it, learn from experience (pp. [460]f.), use

words properly, be the subject of its own thought (pp. [454–5]), have as much diversity of

behaviour as a man, do something really new (pp. [455–6]). (Some of these disabilities are

given special consideration as indicated by the page numbers.)

No support is usually oVered for these statements. I believe they are mostly

founded on the principle of scientiWc induction. A man has seen thousands of

machines in his lifetime. From what he sees of them he draws a number of

general conclusions. They are ugly, each is designed for a very limited purpose,

when required for a minutely diVerent purpose they are useless, the variety of

behaviour of any one of them is very small, etc., etc. Naturally he concludes that

these are necessary properties of machines in general. Many of these limitations

are associated with the very small storage capacity of most machines. (I am

assuming that the idea of storage capacity is extended in some way to cover

machines other than discrete-state machines. The exact deWnition does not

matter as no mathematical accuracy is claimed in the present discussion.) A

few years ago, when very little had been heard of digital computers, it was

possible to elicit much incredulity concerning them, if one mentioned their

properties without describing their construction. That was presumably due to

a similar application of the principle of scientiWc induction. These applications

of the principle are of course largely unconscious. When a burnt child fears the

Wre and shows that he fears it by avoiding it, I should say that he was applying

scientiWc induction. (I could of course also describe his behaviour in many other

ways.) The works and customs of mankind do not seem to be very suitable

material to which to apply scientiWc induction. A very large part of space-time

must be investigated, if reliable results are to be obtained. Otherwise we may (as

most English children do) decide that everybody speaks English, and that it is

silly to learn French.

There are, however, special remarks to be made about many of the disabilities

that have been mentioned. The inability to enjoy strawberries and cream may

have struck the reader as frivolous. Possibly a machine might be made to enjoy

this delicious dish, but any attempt to make one do so would be idiotic. What is

important about this disability is that it contributes to some of the other

disabilities, e.g. to the diYculty of the same kind of friendliness occurring

Computing Machinery and Intelligence | 453

between man and machine as between white man and white man, or between

black man and black man.

The claim that ‘‘machines cannot make mistakes’’ seems a curious one. One is

tempted to retort, ‘‘Are they any the worse for that?’’ But let us adopt a more

sympathetic attitude, and try to see what is really meant. I think this criticism

can be explained in terms of the imitation game. It is claimed that the interro-

gator could distinguish the machine from the man simply by setting them a

number of problems in arithmetic. The machine would be unmasked because of

its deadly accuracy. The reply to this is simple. The machine (programmed for

playing the game) would not attempt to give the right answers to the arithmetic

problems. It would deliberately introduce mistakes in a manner calculated to

confuse the interrogator. A mechanical fault would probably show itself through

an unsuitable decision as to what sort of a mistake to make in the arithmetic.

Even this interpretation of the criticism is not suYciently sympathetic. But we

cannot aVord the space to go into it much further. It seems to me that this

criticism depends on a confusion between two kinds of mistake. We may call

them ‘errors of functioning’ and ‘errors of conclusion’. Errors of functioning

are due to some mechanical or electrical fault which causes the machine to

behave otherwise than it was designed to do. In philosophical discussions one

likes to ignore the possibility of such errors; one is therefore discussing ‘abstract

machines’. These abstract machines are mathematical Wctions rather than phys-

ical objects. By deWnition they are incapable of errors of functioning. In this

sense we can truly say that ‘machines can never make mistakes’. Errors of

conclusion can only arise when some meaning is attached to the output signals

from the machine. The machine might, for instance, type out mathematical

equations, or sentences in English. When a false proposition is typed we say

that the machine has committed an error of conclusion. There is clearly no

reason at all for saying that a machine cannot make this kind of mistake. It

might do nothing but type out repeatedly ‘0 ¼ 1’. To take a less perverse

example, it might have some method for drawing conclusions by scientiWc

induction. We must expect such a method to lead occasionally to erroneous

results.

The claim that a machine cannot be the subject of its own thought can

of course only be answered if it can be shown that the machine has some

thought with some subject matter. Nevertheless, ‘the subject matter of a ma-

chine’s operations’ does seem to mean something, at least to the people who deal

with it. If, for instance, the machine was trying to Wnd a solution of the equation

x2 � 40x � 11¼ 0 one would be tempted to describe this equation as part of the

machine’s subject matter at that moment. In this sort of sense a machine

undoubtedly can be its own subject matter. It may be used to help in making

up its own programmes, or to predict the eVect of alterations in its own

structure. By observing the results of its own behaviour it can modify its own

454 | Alan Turing

programmes so as to achieve some purpose more eVectively. These are possibil-

ities of the near future, rather than Utopian dreams.

The criticism that a machine cannot have much diversity of behaviour is just a

way of saying that it cannot have much storage capacity. Until fairly recently a

storage capacity of even a thousand digits was very rare.

The criticisms that we are considering here are often disguised forms of the

argument from consciousness. Usually if one maintains that a machine can do

one of these things, and describes the kind of method that the machine could

use, one will not make much of an impression. It is thought that the method

(whatever it may be, for it must be mechanical) is really rather base. Compare the

parenthesis in JeVerson’s statement quoted on p. [451].

(6) Lady Lovelace’s Objection. Our most detailed information of Babbage’s

Analytical Engine comes from a memoir by Lady Lovelace. In it she states, ‘‘The

Analytical Engine has no pretensions to originate anything. It can do whatever we

know how to order it to perform’’ (her italics). This statement is quoted by

Hartree (p. 70) who adds: ‘‘This does not imply that it may not be possible to

construct electronic equipment which will ‘think for itself ’, or in which, in

biological terms, one could set up a conditioned reXex, which would serve as a

basis for ‘learning’. Whether this is possible in principle or not is a stimulating

and exciting question, suggested by some of these recent developments. But it

did not seem that the machines constructed or projected at the time had this

property.’’

I am in thorough agreement with Hartree over this. It will be noticed that he

does not assert that the machines in question had not got the property, but

rather that the evidence available to Lady Lovelace did not encourage her to

believe that they had it. It is quite possible that the machines in question had in a

sense got this property. For suppose that some discrete-state machine has the

property. The Analytical Engine was a universal digital computer, so that, if its

storage capacity and speed were adequate, it could by suitable programming be

made to mimic the machine in question. Probably this argument did not occur

to the Countess or to Babbage. In any case there was no obligation on them to

claim all that could be claimed.

This whole question will be considered again under the heading of learning

machines.

A variant of Lady Lovelace’s objection states that a machine can ‘never

do anything really new’. This may be parried for a moment with the saw,

‘There is nothing new under the sun’. Who can be certain that ‘original work’

that he has done was not simply the growth of the seed planted in him

by teaching, or the eVect of following well-known general principles. A better

variant of the objection says that a machine can never ‘take us by surprise’.

This statement is a more direct challenge and can be met directly. Machines

take me by surprise with great frequency. This is largely because I do not do

Computing Machinery and Intelligence | 455

suYcient calculation to decide what to expect them to do, or rather because,

although I do a calculation, I do it in a hurried, slipshod fashion, taking risks.

Perhaps I say to myself, ‘I suppose the voltage here ought to be the same as there:

anyway let’s assume it is’. Naturally I am often wrong, and the result is a surprise

for me for by the time the experiment is done these assumptions have been

forgotten. These admissions lay me open to lectures on the subject of my vicious

ways, but do not throw any doubt on my credibility when I testify to the

surprises I experience.

I do not expect this reply to silence my critic. He will probably say that such

surprises are due to some creative mental act on my part, and reXect no credit on

the machine. This leads us back to the argument from consciousness, and far

from the idea of surprise. It is a line of argument we must consider closed, but it

is perhaps worth remarking that the appreciation of something as surprising

requires as much of a ‘creative mental act’ whether the surprising event origin-

ates from a man, a book, a machine or anything else.

The view that machines cannot give rise to surprises is due, I believe, to a

fallacy to which philosophers and mathematicians are particularly subject. This

is the assumption that as soon as a fact is presented to a mind all consequences

of that fact spring into the mind simultaneously with it. It is a very useful

assumption under many circumstances, but one too easily forgets that it is

false. A natural consequence of doing so is that one then assumes that there is

no virtue in the mere working out of consequences from data and general

principles.

(7) Argument from Continuity in the Nervous System. The nervous system is

certainly not a discrete-state machine. A small error in the information about the

size of a nervous impulse impinging on a neuron, may make a large diVerence to

the size of the outgoing impulse. It may be argued that, this being so, one cannot

expect to be able to mimic the behaviour of the nervous system with a discrete-

state system.

It is true that a discrete-state machine must be diVerent from a continuous

machine. But if we adhere to the conditions of the imitation game, the interro-

gator will not be able to take any advantage of this diVerence. The situation can

be made clearer if we consider some other simpler continuous machine.

A diVerential analyser will do very well. (A diVerential analyser is a certain

kind of machine not of the discrete-state type used for some kinds of calcula-

tion.) Some of these provide their answers in a typed form, and so are suitable

for taking part in the game. It would not be possible for a digital computer to

predict exactly what answers the diVerential analyser would give to a problem,

but it would be quite capable of giving the right sort of answer. For instance, if

asked to give the value of p (actually about 3:1416) it would be reasonable to

choose at random between the values 3.12, 3.13, 3.14, 3.15, 3.16 with the

probabilities of 0.05, 0.15, 0.55, 0.19, 0.06 (say). Under these circumstances it

456 | Alan Turing

would be very diYcult for the interrogator to distinguish the diVerential analyser

from the digital computer.

(8) The Argument from Informality of Behaviour. It is not possible to pro-

duce a set of rules purporting to describe what a man should do in every

conceivable set of circumstances. One might for instance have a rule that one

is to stop when one sees a red traYc light, and to go if one sees a green one, but

what if by some fault both appear together? One may perhaps decide that it is

safest to stop. But some further diYculty may well arise from this decision later.

To attempt to provide rules of conduct to cover every eventuality, even those

arising from traYc lights, appears to be impossible. With all this I agree.

From this it is argued that we cannot be machines. I shall try to reproduce the

argument, but I fear I shall hardly do it justice. It seems to run something like this.

‘If each man had a deWnite set of rules of conduct by which he regulated his life he

would be no better than a machine. But there are no such rules, so men cannot be

machines.’ The undistributed middle is glaring. I do not think the argument is

ever put quite like this, but I believe this is the argument used nevertheless. There

may however be a certain confusion between ‘rules of conduct’ and ‘laws of

behaviour’ to cloud the issue. By ‘rules of conduct’ I mean precepts such as ‘Stop

if you see red lights’, on which one can act, and of which one can be conscious. By

‘laws of behaviour’ I mean laws of nature as applied to a man’s body such as ‘if

you pinch him he will squeak’. If we substitute ‘laws of behaviour which regulate

his life’ for ‘laws of conduct by which he regulates his life’ in the argument quoted

the undistributed middle is no longer insuperable. For we believe that it is not

only true that being regulated by laws of behaviour implies being some sort of

machine (though not necessarily a discrete-state machine), but that conversely

being such a machine implies being regulated by such laws. However, we cannot

so easily convince ourselves of the absence of complete laws of behaviour as of

complete rules of conduct. The only way we know of for Wnding such laws is

scientiWc observation, and we certainly know of no circumstances under which

we could say, ‘We have searched enough. There are no such laws.’

We can demonstrate more forcibly that any such statement would be unjus-

tiWed. For suppose we could be sure of Wnding such laws if they existed. Then given

a discrete-state machine it should certainly be possible to discover by observation

suYcient about it to predict its future behaviour, and this within a reasonable

time, say a thousand years. But this does not seem to be the case. I have set up on

the Manchester computer a small programme using only 1000 units of storage,

whereby the machine supplied with one sixteen Wgure number replies with

another within two seconds. I would defy anyone to learn from these

replies suYcient about the programme to be able to predict any replies to untried

values.

(9) The Argument from Extra-Sensory Perception. I assume that the reader is

familiar with the idea of extra-sensory perception, and the meaning of the four

Computing Machinery and Intelligence | 457

items of it, viz. telepathy, clairvoyance, precognition and psycho-kinesis. These

disturbing phenomena seem to deny all our usual scientiWc ideas. How we

should like to discredit them! Unfortunately the statistical evidence, at least for

telepathy, is overwhelming. It is very diYcult to rearrange one’s ideas so as to Wt

these new facts in. Once one has accepted them it does not seem a very big step to

believe in ghosts and bogies. The idea that our bodies move simply according to

the known laws of physics, together with some others not yet discovered but

somewhat similar, would be one of the Wrst to go.

This argument is to my mind quite a strong one. One can say in reply that

many scientiWc theories seem to remain workable in practice, in spite of clashing

with E.S.P.; that in fact one can get along very nicely if one forgets about it. This

is rather cold comfort, and one fears that thinking is just the kind of phenom-

enon where E.S.P. may be especially relevant.

A more speciWc argument based on E.S.P. might run as follows: ‘‘Let us play the

imitation game, using as witnesses amanwho is good as a telepathic receiver, and a

digital computer. The interrogator can ask such questions as ‘What suit does the

card in my right hand belong to?’ The man by telepathy or clairvoyance gives the

right answer 130 times out of 400 cards. The machine can only guess at random,

and perhaps gets 104 right, so the interrogator makes the right identiWcation.’’

There is an interesting possibility which opens here. Suppose the digital computer

contains a random number generator. Then it will be natural to use this to decide

what answer to give. But then the random number generator will be subject to the

psycho-kinetic powers of the interrogator. Perhaps this psycho-kinesis might

cause the machine to guess right more often than would be expected on a

probability calculation, so that the interrogator might still be unable to make

the right identiWcation. On the other hand, hemight be able to guess right without

any questioning, by clairvoyance. With E.S.P. anything may happen.

If telepathy is admitted it will be necessary to tighten our test up. The situation

could be regarded as analogous to that which would occur if the interrogator

were talking to himself and one of the competitors was listening with his ear to

the wall. To put the competitors into a ‘telepathy-proof room’ would satisfy all

requirements.

7. Learning Machines

The reader will have anticipated that I have no very convincing arguments of a

positive nature to support my views. If I had I should not have taken such

pains to point out the fallacies in contrary views. Such evidence as I have I shall

now give.

Let us return for a moment to Lady Lovelace’s objection, which stated that the

machine can only do what we tell it to do. One could say that a man can ‘inject’

an idea into the machine, and that it will respond to a certain extent and then

458 | Alan Turing

drop into quiescence, like a piano string struck by a hammer. Another simile

would be an atomic pile of less than critical size: an injected idea is to correspond

to a neutron entering the pile from without. Each such neutron will cause a

certain disturbance which eventually dies away. If, however, the size of the pile is

suYciently increased, the disturbance caused by such an incoming neutron will

very likely go on and on increasing until the whole pile is destroyed. Is there a

corresponding phenomenon for minds, and is there one for machines? There

does seem to be one for the human mind. The majority of them seem to be ‘sub-

critical’, i.e. to correspond in this analogy to piles of sub-critical size. An idea

presented to such a mind will on average give rise to less than one idea in reply.

A smallish proportion are super-critical. An idea presented to such a mind may

give rise to a whole ‘theory’ consisting of secondary, tertiary and more remote

ideas. Animals minds seem to be very deWnitely sub-critical. Adhering to this

analogy we ask, ‘Can a machine be made to be super-critical?’

The ‘skin of an onion’ analogy is also helpful. In considering the functions of

the mind or the brain we Wnd certain operations which we can explain in purely

mechanical terms. This we say does not correspond to the real mind: it is a sort

of skin which we must strip oV if we are to Wnd the real mind. But then in what

remains we Wnd a further skin to be stripped oV, and so on. Proceeding in this

way do we ever come to the ‘real’ mind, or do we eventually come to the skin

which has nothing in it? In the latter case the whole mind is mechanical. (It

would not be a discrete-state machine however. We have discussed this.)

These last two paragraphs do not claim to be convincing arguments. They

should rather be described as ‘recitations tending to produce belief ’.

The only really satisfactory support that can be given for the view expressed

at the beginning of §6, will be that provided by waiting for the end of the

century and then doing the experiment described. But what can we say in the

meantime? What steps should be taken now if the experiment is to be successful?

As I have explained, the problem is mainly one of programming. Advances in

engineering will have to be made too, but it seems unlikely that these will not be

adequate for the requirements. Estimates of the storage capacity of the brain vary

from 1010 to 1015 binary digits. I incline to the lower values and believe that only

a very small fraction is used for the higher types of thinking. Most of it is

probably used for the retention of visual impressions. I should be surprised if

more than 109 was required for satisfactory playing of the imitation game, at any

rate against a blind man. (Note—The capacity of the Encyclopaedia Britannica,

11th edition, is 2� 109.) A storage capacity of 107 would be a very practicable

possibility even by present techniques. It is probably not necessary to increase the

speed of operations of the machines at all. Parts of modern machines which can

be regarded as analogues of nerve cells work about a thousand times faster than

the latter. This should provide a ‘margin of safety’ which could cover losses of

speed arising in many ways. Our problem then is to Wnd out how to programme

Computing Machinery and Intelligence | 459

these machines to play the game. At my present rate of working I produce about

a thousand digits of programme a day, so that about sixty workers, working

steadily through the Wfty years might accomplish the job, if nothing went into the

waste-paper basket. Some more expeditious method seems desirable.

In the process of trying to imitate an adult human mind we are bound to think

a good deal about the process which has brought it to the state that it is in. We

may notice three components,

(a) The initial state of the mind, say at birth,

(b) The education to which it has been subjected,

(c) Other experience, not to be described as education, to which it has been

subjected.

Instead of trying to produce a programme to simulate the adult mind, why not

rather try to produce one which simulates the child’s? If this were then subjected

to an appropriate course of education one would obtain the adult brain. Pre-

sumably the child-brain is something like a note-book as one buys it from the

stationers. Rather little mechanism, and lots of blank sheets. (Mechanism and

writing are from our point of view almost synonymous.) Our hope is that there

is so little mechanism in the child-brain that something like it can be easily

programmed. The amount of work in the education we can assume, as a Wrst

approximation, to be much the same as for the human child.

We have thus divided our problem into two parts. The child-programme and

the education process. These two remain very closely connected. We cannot

expect to Wnd a good child-machine at the Wrst attempt. One must experiment

with teaching one such machine and see how well it learns. One can then try

another and see if it is better or worse. There is an obvious connection between

this process and evolution, by the identiWcations

Structure of the child machine ¼ Hereditary material

Changes of the child machine ¼ Mutations

Natural selection ¼ Judgment of the experimenter

One may hope, however, that this process will be more expeditious than evolu-

tion. The survival of the Wttest is a slow method for measuring advantages. The

experimenter, by the exercise of intelligence, should be able to speed it up.

Equally important is the fact that he is not restricted to random mutations. If

he can trace a cause for some weakness he can probably think of the kind of

mutation which will improve it.

It will not be possible to apply exactly the same teaching process to the

machine as to a normal child. It will not, for instance, be provided with legs,

so that it could not be asked to go out and Wll the coal scuttle. Possibly it might

not have eyes. But however well these deWciencies might be overcome by clever

engineering, one could not send the creature to school without the other

460 | Alan Turing

children making excessive fun of it. It must be given some tuition. We need not

be too concerned about the legs, eyes, etc. The example of Miss Helen Keller

shows that education can take place provided that communication in both

directions between teacher and pupil can take place by some means or other.

We normally associate punishments and rewards with the teaching process.

Some simple child-machines can be constructed or programmed on this sort of

principle. The machine has to be so constructed that events which shortly

preceded the occurrence of a punishment-signal are unlikely to be repeated,

whereas a reward-signal increased the probability of repetition of the events

which led up to it. These deWnitions do not presuppose any feelings on the

part of the machine. I have done some experiments with one such child-

machine, and succeeded in teaching it a few things, but the teaching method

was too unorthodox for the experiment to be considered really successful.

The use of punishments and rewards can at best be a part of the teaching

process. Roughly speaking, if the teacher has no other means of communicating

to the pupil, the amount of information which can reach him does not exceed

the total number of rewards and punishments applied. By the time a child has

learnt to repeat ‘Casabianca’ he would probably feel very sore indeed, if the text

could only be discovered by a ‘Twenty Questions’ technique, every ‘no ’ taking

the form of a blow. It is necessary therefore to have some other ‘unemotional’

channels of communication. If these are available it is possible to teach a

machine by punishments and rewards to obey orders given in some language,

e.g. a symbolic language. These orders are to be transmitted through the ‘un-

emotional’ channels. The use of this language will diminish greatly the number

of punishments and rewards required.

Opinions may vary as to the complexity which is suitable in the child machine.

One might try to make it as simple as possible consistently with the general

principles. Alternatively one might have a complete system of logical inference

‘built in’.4 In the latter case the store would be largely occupied with deWnitions

and propositions. The propositions would have various kinds of status, e.g. well-

established facts, conjectures, mathematically proved theorems, statements given

by an authority, expressions having the logical form of proposition but not

belief-value. Certain propositions may be described as ‘imperatives.’ The ma-

chine should be so constructed that as soon as an imperative is classed as ‘well-

established’ the appropriate action automatically takes place. To illustrate this,

suppose the teacher says to the machine, ‘Do your homework now’. This may

cause ‘‘Teacher says ‘Do your homework now’ ’’ to be included amongst the well-

established facts. Another such fact might be, ‘‘Everything that teacher says is

true’’. Combining these may eventually lead to the imperative, ‘Do your home-

work now’, being included amongst the well-established facts, and this, by the

4 Or rather ‘programmed in’ for our child-machine will be programmed in a digital computer. But the

logical system will not have to be learnt.

Computing Machinery and Intelligence | 461

construction of the machine, will mean that the homework actually gets started,

but the eVect is very satisfactory. The processes of inference used by the machine

need not be such as would satisfy the most exacting logicians. There might

for instance be no hierarchy of types. But this need not mean that type fallacies

will occur, any more than we are bound to fall over unfenced cliVs. Suitable

imperatives (expressed within the systems, not forming part of the rules of

the system) such as ‘Do not use a class unless it is a subclass of one which

has been mentioned by teacher’ can have a similar eVect to ‘Do not go too near

the edge’.

The imperatives that can be obeyed by a machine that has no limbs are bound

to be of a rather intellectual character, as in the example (doing homework)

given above. Important amongst such imperatives will be ones which regulate the

order in which the rules of the logical system concerned are to be applied. For at

each stage when one is using a logical system, there is a very large number of

alternative steps, any of which one is permitted to apply, so far as obedience to

the rules of the logical system is concerned. These choices make the diVerence

between a brilliant and a footling reasoner, not the diVerence between a sound

and a fallacious one. Propositions leading to imperatives of this kind might be

‘‘When Socrates is mentioned, use the syllogism in Barbara’’ or ‘‘If one method

has been proved to be quicker than another, do not use the slower method’’.

Some of these may be ‘given by authority’, but others may be produced by the

machine itself, e.g. by scientiWc induction.

The idea of a learning machine may appear paradoxical to some readers. How

can the rules of operation of the machine change? They should describe com-

pletely how themachine will react whatever its history might be, whatever changes

it might undergo. The rules are thus quite time-invariant. This is quite true. The

explanation of the paradox is that the rules which get changed in the learning

process are of a rather less pretentious kind, claiming only an ephemeral validity.

The reader may draw a parallel with the Constitution of the United States.

An important feature of a learning machine is that its teacher will often be

very largely ignorant of quite what is going on inside, although he may still be

able to some extent to predict his pupil’s behaviour. This should apply most

strongly to the later education of a machine arising from a child-machine of

well-tried design (or programme). This is in clear contrast with normal proced-

ure when using a machine to do computations: one’s object is then to have a

clear mental picture of the state of the machine at each moment in the compu-

tation. This object can only be achieved with a struggle. The view that ‘the

machine can only do what we know how to order it to do’5 appears strange in

face of this. Most of the programmes which we can put into the machine will

result in its doing something that we cannot make sense of at all, or which we

5 Compare Lady Lovelace’s statement (p. [455]), which does not contain the word ‘only’.

462 | Alan Turing

regard as completely random behaviour. Intelligent behaviour presumably con-

sists in a departure from the completely disciplined behaviour involved in

computation, but a rather slight one, which does not give rise to random

behaviour, or to pointless repetitive loops. Another important result of preparing

our machine for its part in the imitation game by a process of teaching and

learning is that ‘human fallibility’ is likely to be omitted6 in a rather natural way,

i.e. without special ‘coaching’. (The reader should reconcile this with the point of

view on p. [454].)7 Processes that are learnt do not produce a hundred per cent.

certainty of result; if they did they could not be unlearnt.

It is probably wise to include a random element in a learning machine (see

p. [445]). A random element is rather useful when we are searching for a solution

of some problem. Suppose for instance we wanted to Wnd a number between 50

and 200 which was equal to the square of the sum of its digits, we might start at

51 then try 52 and go on until we got a number that worked. Alternatively we

might choose numbers at random until we got a good one. This method has the

advantage that it is unnecessary to keep track of the values that have been tried,

but the disadvantage that one may try the same one twice, but this is not very

important if there are several solutions. The systematic method has the disadvan-

tage that there may be an enormous block without any solutions in the region

which has to be investigated Wrst. Now the learning process may be regarded as a

search for a form of behaviour which will satisfy the teacher (or some other

criterion). Since there is probably a very large number of satisfactory solutions

the random method seems to be better than the systematic. It should be noticed

that it is used in the analogous process of evolution. But there the systematic

method is not possible. How could one keep track of the diVerent genetical

combinations that had been tried, so as to avoid trying them again?

We may hope that machines will eventually compete with men in all purely

intellectual Welds. But which are the best ones to start with? Even this is a diYcult

decision. Many people think that a very abstract activity, like the playing of chess,

would be best. It can also be maintained that it is best to provide the machine

with the best sense organs that money can buy, and then teach it to understand

and speak English. This process could follow the normal teaching of a child.

Things would be pointed out and named, etc. Again I do not know what the

right answer is, but I think both approaches should be tried.

We can only see a short distance ahead, but we can see plenty there that needs

to be done.

6 Editor’s note. Presumably ‘omitted’ is a typographical error in Mind.

7 Editor’s note. The cross-reference in Mind is to ‘pp. 24, 25’. These are presumably pages of Turing’s

original typescript. The approximate position of the material is indicated by the fact that another un-

corrected cross-reference in Mind places Turing’s quotation from JeVerson on p. 21 of the original

typescript.

Computing Machinery and Intelligence | 463

Bibliography

Samuel Butler, Erewhon, London, 1865. Chapters 23, 24, 25, The Book of the Machines.

Alonzo Church, ‘‘An Unsolvable Problem of Elementary Number Theory’’, American

Journal of Mathematics, 58 (1936), 345–363.

K. Gödel, ‘‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I’’, Monatshefte für Mathematik und Physik (1931), 173–189.

D. R. Hartree, Calculating Instruments and Machines, New York, 1949.

S. C. Kleene, ‘‘General Recursive Functions of Natural Numbers’’, American Journal of

Mathematics, 57 (1935), 153–173 and 219–244.

G. JeVerson, ‘‘The Mind of Mechanical Man’’. Lister Oration for 1949. British Medical

Journal, vol. i (1949), 1105–1121.

Countess of Lovelace, ‘Translator’s notes to an article on Babbage’s Analytical Engine’,

ScientiWc Memoirs (ed. by R. Taylor), vol. 3 (1842), 691–731.

Bertrand Russell, History of Western Philosophy, London, 1940.

A. M. Turing, ‘‘On Computable Numbers, with an Application to the Entscheidungspro-

blem’’ [Chapter 1].

464 | Alan Turing

CHAPTER 12

Intelligent Machinery, A Heretical

Theory (c.1951)

Alan Turing

Introduction
Jack Copeland

The ’51 Society

Turing gave the presentation ‘Intelligent Machinery, A Heretical Theory’ on a

radio discussion programme called The ’51 Society. Named after the year in which

the programme Wrst went to air, The ’51 Society was produced by the BBC Home

Service at their Manchester studio and ran for several years.1A presentation by the

week’s guest would be followed by a panel discussion. Regulars on the panel

includedMax Newman, Professor of Mathematics at Manchester, the philosopher

Michael Polanyi, then Professor of Social Studies at Manchester, and the math-

ematician Peter Hilton, a younger member of Newman’s department at Manches-

ter who had worked with Turing and Newman at Bletchley Park.

Machine Learning

Turing’s target in ‘Intelligent Machinery, A Heretical Theory’ is the claim that

‘You cannot make a machine to think for you’ (p. 472). A common theme in his

writing is that if a machine is to be intelligent, then it will need to ‘learn by

experience’ (probably with some pre-selection, by an external educator, of the

experiences to which the machine will be subjected). The present article con-

tinues the discussion of machine learning begun in Chapters 10 and 11. Turing

remarks that the ‘human analogy alone’ suggests that a process of education

‘would in practice be an essential to the production of a reasonably intelligent

machine within a reasonably short space of time’ (p. 473). He emphasizes the

1 Peter Hilton in interview with Copeland (June 2001).

point, also made in Chapter 11, that one might ‘start from a comparatively

simple machine, and, by subjecting it to a suitable range of ‘‘experience’’ trans-

form it into one which was more elaborate, and was able to deal with a far greater

range of contingencies’ (p. 473).

Turing goes on to give some indication of how learning might be accom-

plished, introducing the idea of a machine’s building up what he calls ‘indexes of

experiences’ (p. 474). (This idea is not mentioned elsewhere in his writings.) An

example of an index of experiences is a list (ordered in some way) of situations in

which the machine has found itself, coupled with the action that was taken, and

the outcome, good or bad. The situations are described in terms of features.

Faced with a choice as to what to do next, the machine looks up features of its

present situation in whatever indexes it has. If this procedure aVords more than

one candidate action, the machine selects between them by means of some rule,

possibly itself learned through experience. Turing very reasonably grounds his

belief that comparatively crude selection-rules will lead to satisfactory behaviour

in the fact that engineering problems are regularly solved by ‘the crudest rule of

thumb procedure . . . e.g. whether a function increases or decreases with one of its

variables’ (p. 474).

In response to the problem of how the educator is to indicate to the machine

whether a situation or outcome is a ‘favourable’ one or not, Turing returns to the

possibility of incorporating two ‘keys’ in the machine, which can be manipulated

by the educator, and which represent ‘pleasure’ and ‘pain’ (p. 474). This is an

idea that Turing discusses more fully in Chapter 10, where he considers adding

two input lines to a (modiWed) Turing machine, the pleasure (or reward) line

and the pain (or punishment) line. He calls the result a ‘P-type machine’

(‘P’ standing for ‘pleasure–pain’).2

Random Elements

Turing ends his discussion of machine learning with the suggestion that a

‘random element’ be incorporated in the machine (p. 475). This would, as he

says, result in the behaviour of the machine being by no means completely

determined by the experiences to which it was subjected (p. 475). The idea

that a random element be included in a learning machine appears elsewhere in

Turing’s discussions of machine intelligence. In Chapter 11 he says: ‘A random

element is rather useful when . . . searching for a solution of some problem’

(p. 463). He gives this example:

2 A detailed description of Turing’s P-type machines is given in B. J. Copeland and D. Proudfoot, ‘On

Alan Turing’s Anticipation of Connectionism’, Synthese, 108 (1996), 361–77 (reprinted in R. Chrisley (ed.),

ArtiWcial Intelligence: Critical Concepts in Cognitive Science, ii: Symbolic AI (London: Routledge, 2000)).

466 | Jack Copeland

Suppose for instance we wanted to Wnd a number between 50 and 200 which was equal to

the square of the sum of its digits, we might start at 51 then try 52 and so on until we got

a number that worked. Alternatively we might choose numbers at random until we got a

good one.

Turing continues (p. 463):

The systematic method has the disadvantage that there may be an enormous block

without any solutions in the region which has to be investigated Wrst. Now the learning

process may be regarded as a search for a form of behaviour which will satisfy the teacher

(or some other criterion). Since there is probably a very large number of satisfactory

solutions the random method seems to be better than the systematic. It should be noticed

that it is used in the analogous process of evolution.

Turing’s discussion of ‘pleasure–pain systems’ in Chapter 10 also mentions

randomness (p. 425):

I will use this term [‘pleasure–pain’ system] to mean an unorganised machine of the

following general character: The conWgurations of the machine are described by two

expressions, which we may call the character-expression and the situation-expression.

The character and situation at any moment, together with the input signals, determine the

character and situation at the next moment. The character may be subject to some

random variation. Pleasure interference has a tendency to Wx the character i.e. towards

preventing it changing, whereas pain stimuli tend to disrupt the character, causing

features which had become Wxed to change, or to become again subject to random

variation.

The Mathematical Objection

In what are some of the most interesting remarks in ‘Intelligent Machinery, A

Heretical Theory’, Turing sketches and rebuts an argument against the possibility

of computing machines emulating the full intelligence of human beings. The

objection is stated as follows in Chapter 10 (pp. 410–11):

Recently the theorem of Gödel and related results . . . have shown that if one tries to use

machines for such purposes as determining the truth or falsity of mathematical theorems

and one is not willing to tolerate an occasional wrong result, then any given machine will

in some cases be unable to give an answer at all. On the other hand the human intelligence

seems to be able to Wnd methods of ever-increasing power for dealing with such problems

‘transcending’ the methods available to machines.

In Chapter 11 he terms this the ‘Mathematical Objection’ (p. 450).

As Turing notes, the ‘related results’ include what he himself proved in ‘On

Computable Numbers’. The import of the satisfactoriness problem (explained in

‘Computable Numbers: A Guide’) is that no Turing machine can correctly

determine the truth or falsity of each statement of the form ‘such-and-such

Intelligent Machinery, A Heretical Theory | 467

Turing machine is circle-free’. Whichever Turing machine one chooses to ask,

there will be statements of this form for which the chosen machine either gives

no answer or gives the wrong answer (compare Chapter 11, pp. 450–1). (In

Chapter 3, Turing extends this result to his oracle machines: no oracle machine

can correctly determine the truth or falsity of each statement of the form ‘such-

and-such oracle machine is circle-free’ (pp. 156–7).)

Post formulated a version of the Mathematical Objection as early as 1921.3

However, the objection has become known over the years as the ‘Gödel argu-

ment’. In 1961, in a famous article, the philosopher John Lucas claimed the Gödel

argument establishes that ‘mechanism’—which Lucas characterizes as the view

that ‘minds [can] be explained as machines’—is false.4 More recently, the

mathematical physicist Roger Penrose has endorsed a version of the Gödel

argument.5

Lucas was happy to assert, on the basis of the Mathematical Objection, that

‘no scientiWc enquiry can ever exhaust the . . . human mind’.6 Not many who

admire the explanatory power of science would be happy to endorse this

conclusion. Penrose himself appears to hold that the mind can be explained in

ultimately physical terms. However, it is diYcult to say what scientiWc concep-

tion of the mind could be available to someone who endorses the Mathematical

Objection. This is because the objection, if sound, could be used equally well to

support the conclusion, not only that the mind is not a Turing machine, but also

that it is not any one of a very broad range of machines (which includes the

oracle machines). Given the enormous diversity of types of machine in this

range, it is an open question whether there is any scientiWc conception of the

mind that the Mathematical Objection (if sound) would not rule out.7

Penrose acknowledges that the objection applies not only to the view that the

mind is equivalent to a Turing machine but ‘much more generally’, saying: ‘No

doubt there are readers who believe that the last vestige of credibility of my

[version of the Gödel] argument has disappeared at this stage! I certainly should

not blame any reader for feeling this way.’8

So far, however, Penrose has not made it clear what scientiWc conception of the

mind can remain for one who endorses the argument, remarking only that, since

3 E. L. Post, ‘Absolutely Unsolvable Problems and Relatively Undecidable Propositions: Account of an

Anticipation’, in M. Davis (ed.), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable

Problems and Computable Functions (New York: Raven, 1965), 417; see also 423.

4 J. R. Lucas, ‘Minds, Machines and Gödel’, Philosophy, 36 (1961), 112–27 (112).

5 See his The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford:

Oxford University Press, 1989); ‘Précis of The Emperor’s New Mind: Concerning Computers, Minds, and the

Laws of Physics’, Behavioral and Brain Sciences, 13 (1990), 643–55 and 692–705; Shadows of the Mind: A

Search for the Missing Science of Consciousness (Oxford: Oxford University Press, 1994); ‘Beyond the

Doubting of a Shadow’, Psyche, 2/23 (1996).

6 Lucas, ‘Minds, Machines and Gödel’, 127.

7 See B. J. Copeland, ‘Turing’s O-machines, Penrose, Searle, and the Brain’, Analysis, 58 (1998), 128–38.

8 Penrose, ‘Beyond the Doubting of a Shadow’, section 3.10, and Shadows of the Mind, 381.

468 | Jack Copeland

the argument ‘can be applied in very general circumstances indeed’, the mind is

‘something very mysterious’.9

Turing’s Answer to the Mathematical Objection

In Chapter 11 Turing says (p. 451): ‘The short answer to this argument is that

although it is established that there are limitations to the powers of any particu-

lar machine, it has only been stated, without any sort of proof, that no such

limitations apply to the human intellect.’ This remark might appear to cut to the

heart of the matter. However, Turing expresses dissatisfaction with it, saying that

the Mathematical Objection cannot ‘be dismissed so lightly’. He goes on to

broach a further line of attack on the argument, pointing out that humans

‘often give wrong answers to questions’, and it is this line of attack that he

pursues in ‘Intelligent Machinery, A Heretical Theory’.

In the quotation from Chapter 10 given above, Turing notes that the Math-

ematical Objection rests on a proviso that the machine is not allowed to make

mistakes, and as he goes on to point out, ‘the condition that the machine must

not make mistakes . . . is not a requirement for intelligence’ (p. 411). In ‘Intelli-

gent Machinery, A Heretical Theory’ he suggests that the ‘danger of the math-

ematician making mistakes is an unavoidable corollary of his power of

sometimes hitting upon an entirely new method’ (p. 472). Turing envisages

machines also able to hit upon new methods: ‘My contention is that machines

can be constructed which will simulate the behaviour of the human mind very

closely. They will make mistakes at times, and at times they may make new and

very interesting statements.’

Turing makes a similar point in Chapter 9 (pp. 393–4):

[I]f a mathematician is confronted with such a problem [e.g. determining the truth or

falsity of statements of the form ‘p is provable in such-and-such system’—Ed.] he would

search around and Wnd new methods of proof, so that he ought eventually to be able to

reach a decision about any given formula. . . . I would say that fair play must be given

to the machine. Instead of it sometimes giving no answer we could arrange that it

gives occasional wrong answers. But the human mathematician would likewise make

blunders when trying out new techniques. It is easy for us to regard these blunders as

not counting and give him another chance, but the machine would probably be allowed

no mercy.

The use of heuristic search carries with it the risk of the computer producing a

proportion of incorrect answers (see ‘ArtiWcial Intelligence’). This fact would

have been very familiar to Turing from his experience with the bombe. Probably

Turing was thinking of heuristic search when he wrote this, the earliest surviving

9 ‘Beyond the Doubting of a Shadow’, section 13.2.

Intelligent Machinery, A Heretical Theory | 469

statement of his views concerning machine intelligence, in ‘Proposed Electronic

Calculator’: ‘There are indications however that it is possible to make the

machine display intelligence at the risk of its making occasional serious mistakes.

By following up this aspect the machine could probably be made to play very

good chess.’10

In ‘Intelligent Machinery, A Heretical Theory’ Turing passes immediately from

his remarks on the Mathematical Objection to a discussion of machine learning.

This juxtaposition perhaps indicates that Turing’s view was this: it is the possi-

bility of a machine’s learning newmethods and techniques that ultimately defeats

the Mathematical Objection. In the simplest possible case, the machine’s tutor—

a human mathematician—can just present the machine with a better method

whenever the machine produces an incorrect answer to a problem. This new

input in eVect alters the machine’s standard description, transforming it into a

diVerent Turing machine (see ‘Computable Numbers: A Guide’). Alternatively a

machine may itself be able to search around (albeit fallibly) for better methods.

The search might involve the use of a random element. As in the preceding case,

the standard description of the machine alters in consequence of the learning

process, as the machine overwrites its previous algorithm with a successor. (As

Turing says in Chapter 9: ‘What we want is a machine that can learn from

experience. The possibility of letting the machine alter its own instructions

provides the mechanism for this.’) Thus the learning machine may traverse the

space of what in one of his letters to Newman (Chapter 4, p. 215) Turing calls

‘proof Wnding’ machines. In the same letter Turing says:

One imagines diVerent machines allowing diVerent sets of proofs, and by choosing a

suitable machine one can approximate ‘truth’ by ‘provability’ better than with a less

suitable machine, and can in a sense approximate it as well as you please.

The learning machine successively mutates from one proof-Wnding Turing

machine into another, becoming capable of wider sets of proofs as new, more

powerful methods of proof are acquired.

The Future

Turing ends ‘Intelligent Machinery, A Heretical Theory’ with a vision of the

future, now hackneyed, in which intelligent computers ‘outstrip our feeble

powers’ and ‘take control’. There is more of the same in Chapter 13. No doubt

this is comic-strip stuV. Nevertheless, these images of Turing’s reveal his pro-

found grasp of the potential of the universal Turing machine at a time when the

10 ‘Proposed Electronic Calculator’, National Physical Laboratory, 1945, 16 (National Physical Laboratory

library; a digital facsimile of the original typescript is in The Turing Archive for the History of Computing

<www.AlanTuring.net/proposed_electronic_calculator> (page reference is to the original typescript)).

470 | Jack Copeland

www.AlanTuring.net/proposed_electronic_calculator

only computers in existence were minuscule, and none but the most straightfor-

ward of tasks had been successfully programmed.11

Further reading

Benacerraf, P., ‘God, the Devil, and Gödel’, Monist, 51 (1967), 9–32.

Copeland, B. J., ‘Turing’s O-machines, Penrose, Searle, and the Brain’, Analysis, 58 (1998),

128–38.

Gandy, R., ‘Human versus Mechanical Intelligence’, in P. Millican and A. Clark (eds.),

Machines and Thought: The Legacy of Alan Turing (Oxford: Clarendon Press, 1996).

Lucas, J. R., ‘Minds, Machines and Gödel’, Philosophy, 36 (1961), 112–27.

—— ‘Minds, Machines and Gödel: A Retrospect’, in P. Millican and A. Clark (eds.),

Machines and Thought: The Legacy of Alan Turing (Oxford: Clarendon Press, 1996).

Penrose, R., Shadows of the Mind: A Search for the Missing Science of Consciousness

(Oxford: Oxford University Press, 1994).

Piccinini, G., ‘Alan Turing and the Mathematical Objection’, Minds and Machines, 13

(2003), 23–48.

Provenance

The text that follows is from a typescript entitled ‘Intelligent Machinery, A

Heretical Theory’ and marked ‘Typist’s Typescript’.12

11 In this chapter Turing speaks of the ‘mechanic who has constructed the machine’. This is perhaps a

glimpse of Turing’s attitude toward Kilburn, Williams, and the other engineers who built the Manchester

computer. Kilburn himself was hardly less dismissive of the logicians’ contributions (for example in an

interview with Christopher Evans in 1976, ‘The Pioneers of Computing: An Oral History of Computing’

(London: Science Museum)).

12 The typescript is among the Turing Papers in the Modern Archive Centre, King’s College, Cambridge

(catalogue reference B 4). Turing’s mother Sara included the text of ‘Intelligent Machinery, A Heretical

Theory’ in her biography Alan M. Turing but unfortunately incorporated some errors (S. Turing, Alan M.

Turing (Cambridge: HeVer, 1959), 128–34.) The present edition Wrst appeared in B. J. Copeland (ed.),

‘A Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing’, in K. Furukawa, D. Michie,

and S. Muggleton (eds.), Machine Intelligence 15 (Oxford: Oxford University Press, 1999).

Intelligent Machinery, A Heretical Theory | 471

Intelligent Machinery, A Heretical Theory

‘You cannot make a machine to think for you.’ This is a commonplace that is

usually accepted without question. It will be the purpose of this paper to

question it.

Most machinery developed for commercial purposes is intended to carry out

some very speciWc job, and to carry it out with certainty and considerable speed.

Very often it does the same series of operations over and over again without any

variety. This fact about the actual machinery available is a powerful argument to

many in favour of the slogan quoted above. To a mathematical logician this

argument is not available, for it has been shown that there are machines

theoretically possible which will do something very close to thinking. They

will, for instance, test the validity of a formal proof in the system of Principia

Mathematica, or even tell of a formula of that system whether it is provable or

disprovable. In the case that the formula is neither provable nor disprovable such

a machine certainly does not behave in a very satisfactory manner, for it

continues to work indeWnitely without producing any result at all, but this

cannot be regarded as very diVerent from the reaction of the mathematicians,

who have for instance worked for hundreds of years on the question as to

whether Fermat’s last theorem is true or not. For the case of machines of this

kind a more subtle argument is necessary. By Gödel’s famous theorem, or some

similar argument, one can show that however the machine is constructed there

are bound to be cases where the machine fails to give an answer, but a mathem-

atician would be able to. On the other hand, the machine has certain advantages

over the mathematician. Whatever it does can be relied upon, assuming no

mechanical ‘breakdown’, whereas the mathematician makes a certain proportion

of mistakes. I believe that this danger of the mathematician making mistakes is

an unavoidable corollary of his power of sometimes hitting upon an entirely new

method. This seems to be conWrmed by the well known fact that the most reliable

people will not usually hit upon really new methods.

My contention is that machines can be constructed which will simulate the

behaviour of the human mind very closely. They will make mistakes at times, and

at times they may make new and very interesting statements, and on the whole

the output of them will be worth attention to the same sort of extent as the

output of a human mind. The content of this statement lies in the greater

frequency expected for the true statements, and it cannot, I think, be given an

exact statement. It would not, for instance, be suYcient to say simply that the

machine will make any true statement sooner or later, for an example of such a

machine would be one which makes all possible statements sooner or later. We

Printed with the permission of the BBC and the Estate of Alan Turing.

know how to construct these, and as they would (probably) produce true and

false statements about equally frequently, their verdicts would be quite worthless.

It would be the actual reaction of the machine to circumstances that would prove

my contention, if indeed it can be proved at all.

Let us go rather more carefully into the nature of this ‘proof ’. It is clearly

possible to produce a machine which would give a very good account of itself for

any range of tests, if the machine were made suYciently elaborate. However, this

again would hardly be considered an adequate proof. Such a machine would give

itself away by making the same sort of mistake over and over again, and being

quite unable to correct itself, or to be corrected by argument from outside. If the

machine were able in some way to ‘learn by experience’ it would be much more

impressive. If this were the case there seems to be no real reason why one should

not start from a comparatively simple machine, and, by subjecting it to a suitable

range of ‘experience’ transform it into one which was more elaborate, and was

able to deal with a far greater range of contingencies. This process could probably

be hastened by a suitable selection of the experiences to which it was subjected.

This might be called ‘education’. But here we have to be careful. It would be quite

easy to arrange the experiences in such a way that they automatically caused the

structure of the machine to build up into a previously intended form, and this

would obviously be a gross form of cheating, almost on a par with having a man

inside the machine. Here again the criterion as to what would be considered

reasonable in the way of ‘education’ cannot be put into mathematical terms, but

I suggest that the following would be adequate in practice. Let us suppose that it

is intended that the machine shall understand English, and that owing to its

having no hands or feet, and not needing to eat, nor desiring to smoke, it will

occupy its time mostly in playing games such as Chess and GO, and possibly

Bridge. The machine is provided with a typewriter keyboard on which any

remarks to it are typed, and it also types out any remarks that it wishes to

make. I suggest that the education of the machine should be entrusted to some

highly competent schoolmaster who is interested in the project but who is

forbidden any detailed knowledge of the inner workings of the machine. The

mechanic who has constructed the machine, however, is permitted to keep the

machine in running order, and if he suspects that the machine has been operat-

ing incorrectly may put it back to one of its previous positions and ask the

schoolmaster to repeat his lessons from that point on, but he may not take any

part in the teaching. Since this procedure would only serve to test the bona Wdes

of the mechanic, I need hardly say that it would not be adopted in the experi-

mental stages. As I see it, this education process would in practice be an essential

to the production of a reasonably intelligent machine within a reasonably short

space of time. The human analogy alone suggests this.

I may now give some indication of the way in which such a machine might be

expected to function. The machine would incorporate a memory. This does not

Intelligent Machinery, A Heretical Theory | 473

need very much explanation. It would simply be a list of all the statements that

had been made to it or by it, and all the moves it had made and the cards it had

played in its games. This would be listed in chronological order. Besides this

straightforward memory there would be a number of ‘indexes of experiences’. To

explain this idea I will suggest the form which one such index might possibly

take. It might be an alphabetical index of the words that had been used giving the

‘times’ at which they had been used, so that they could be looked up in the

memory. Another such index might contain patterns of men on parts of a GO

board that had occurred. At comparatively late stages of education the memory

might be extended to include important parts of the conWguration of the

machine at each moment, or in other words it would begin to remember what

its thoughts had been. This would give rise to fruitful new forms of indexing.

New forms of index might be introduced on account of special features observed

in the indexes already used. The indexes would be used in this sort of way.

Whenever a choice has to be made as to what to do next, features of the present

situation are looked up in the indexes available, and the previous choice in the

similar situations, and the outcome, good or bad, is discovered. The new choice

is made accordingly. This raises a number of problems. If some of the indications

are favourable and some are unfavourable what is one to do? The answer to this

will probably diVer frommachine to machine and will also vary with its degree of

education. At Wrst probably some quite crude rule will suYce, e.g. to do

whichever has the greatest number of votes in its favour. At a very late stage of

education the whole question of procedure in such cases will probably have been

investigated by the machine itself, by means of some kind of index, and this may

result in some highly sophisticated, and, one hopes, highly satisfactory, form of

rule. It seems probable however that the comparatively crude forms of rule will

themselves be reasonably satisfactory, so that progress can on the whole be made

in spite of the crudeness of the choice [of] rules.1 This seems to be veriWed by the

fact that engineering problems are sometimes solved by the crudest rule of

thumb procedure which only deals with the most superWcial aspects of the

problem, e.g. whether a function increases or decreases with one of its variables.

Another problem raised by this picture of the way behaviour is determined is the

idea of ‘favourable outcome’. Without some such idea, corresponding to the

‘pleasure principle’ of the psychologists, it is very diYcult to see how to proceed.

Certainly it would be most natural to introduce some such thing into the

machine. I suggest that there should be two keys which can be manipulated by

the schoolmaster, and which represent the ideas of pleasure and pain. At later

stages in education the machine would recognise certain other conditions as

desirable owing to their having been constantly associated in the past with

pleasure, and likewise certain others as undesirable. Certain expressions of

1 Editor’s note. Words enclosed in square brackets do not appear in the typescript.

474 | Alan Turing

anger on the part of the schoolmaster might, for instance, be recognised as so

ominous that they could never be overlooked, so that the schoolmaster would

Wnd that it became unnecessary to ‘apply the cane’ any more.

To make further suggestions along these lines would perhaps be unfruitful at

this stage, as they are likely to consist of nothing more than an analysis of actual

methods of education applied to human children. There is, however, one feature

that I would like to suggest should be incorporated in the machines, and that is

a ‘random element’. Each machine should be supplied with a tape bearing a

random series of Wgures, e.g. 0 and 1 in equal quantities, and this series of Wgures

should be used in the choices made by the machine. This would result in the

behaviour of the machine not being by any means completely determined by the

experiences to which it was subjected, and would have some valuable uses when

one was experimenting with it. By faking the choices made one would be able to

control the development of the machine to some extent. One might, for instance,

insist on the choice made being a particular one at, say, 10 particular places, and

this would mean that about one machine in 1024 or more would develop to as

high a degree as the one which had been faked. This cannot very well be given an

accurate statement because of the subjective nature of the idea of ‘degree of

development’ to say nothing of the fact that the machine that had been faked

might have been also fortunate in its unfaked choices.

Let us now assume, for the sake of argument, that these machines are a

genuine possibility, and look at the consequences of constructing them. To do

so would of course meet with great opposition, unless we have advanced greatly

in religious toleration from the days of Galileo. There would be great opposition

from the intellectuals who were afraid of being put out of a job. It is probable

though that the intellectuals would be mistaken about this. There would be

plenty to do, [trying to understand what the machines were trying to say,]2 i.e.

in trying to keep one’s intelligence up to the standard set by the machines, for it

seems probable that once the machine thinking method had started, it would not

take long to outstrip our feeble powers. There would be no question of the

machines dying, and they would be able to converse with each other to sharpen

their wits. At some stage therefore we should have to expect the machines to take

control, in the way that is mentioned in Samuel Butler’s ‘Erewhon’.

2 Editor’s note. The words ‘trying to understand what the machines were trying to say,’ are handwritten

and are marked in the margin ‘Inserted from Turing’s Typescript’.

Intelligent Machinery, A Heretical Theory | 475

CHAPTER 13

Can Digital Computers Think? (1951)

Alan Turing

Introduction
Jack Copeland

The lecture ‘Can Digital Computers Think?’ was broadcast on BBC Radio on 15

May 1951, and was repeated on 3 July of that year.1 (Sara Turing relates that

Turing did not listen to the Wrst broadcast but did ‘pluck up courage’ to listen to

the repeat.2) Turing’s was the second lecture in a series with the general title

‘Automatic Calculating Machines’. Other speakers in the series included

Newman, D. R. Hartree, M. V. Wilkes, and F. C. Williams.3

Imitating the Brain

Turing’s principal aim in this lecture is to defend his view that ‘it is not altogether

unreasonable to describe digital computers as brains’, and he argues for the

proposition that ‘If any machine can appropriately be described as a brain,

then any digital computer can be so described’.

The lecture casts light upon Turing’s attitude towards talk of machines think-

ing. In Chapter 11 he says that in his view the question ‘Can machines think?’ is

‘too meaningless to deserve discussion’ (p. 449). However, in the present chapter

he makes liberal use of such phrases as ‘programm[ing] a machine . . . to think’

and ‘the attempt to make a thinking machine’. In one passage, Turing says

(p. 485): ‘our main problem [is] how to programme a machine to imitate a

brain, or as we might say more brieXy, if less accurately, to think.’ He shows the

same willingness to discuss the question ‘Can machines think?’ in Chapter 14.

Turing’s view is that a machine which imitates the intellectual behaviour of a

human brain can itself appropriately be described as a brain or as thinking. In

1 Alan M. Turing (Cambridge: HeVer, 1959), 102.

2 Ibid.

3 Letter from Maurice Wilkes to Copeland (9 July 1997).

Chapter 14, Turing emphasizes that it is only the intellectual behaviour of the

brain that need be considered (pp. 494–5): ‘To take an extreme case, we are not

interested in the fact that the brain has the consistency of cold porridge. We don’t

want to say ‘‘This machine’s quite hard, so it isn’t a brain, and so it can’t think.’’ ’

It is, of course, the ability of the machine to imitate the intellectual behaviour

of a human brain that is examined in the Turing test (Chapter 11). Thus: any

machine that plays the imitation game successfully can appropriately be de-

scribed as a brain or as thinking.

Freedom of the Will

This chapter contains one of the two discussions of free will occurring in Turing’s

mature writings, both of which are tantalizingly brief. (The early essay entitled

‘Nature of Spirit, which possibly dates from Turing’s undergraduate days, also

contains a discussion of free will. There Turing wrote: ‘the theory which held that

as eclipses etc. are predestined so were all our actions breaks down . . .We have a

will which is able to determine the action of the atoms probably in a small

portion of the brain, or possibly all over it.’4) The other discussion occurs in

Chapter 11, where Turing says (p. 445):

An interesting variant on the idea of a digital computer is a ‘digital computer with a

random element’. These have instructions involving the throwing of a die or some

equivalent electronic process . . . Sometimes such a machine is described as having free

will (though I would not use this phrase myself). It is not normally possible to determine

from observing a machine whether it has a random element, for a similar eVect can be

produced by such devices as making the choices depend on the digits of the decimal for p.

Unfortunately, Turing does not expand on the remark ‘I would not use this

phrase myself.’ Possibly he means simply that the addition of a random element

to a computer is not in itself suYcient to warrant the attribution of free will.

Presumably one would at least need to add cognition and initiative as well before

the machine could reasonably be described as having free will (compare Chapter

10, pp. 424, 429–30). Alternatively, it is possible that Turing is objecting to the

term ‘free will’ itself, much as he objects elsewhere in Chapter 11 to the word

‘think’ (‘too meaningless to deserve discussion’).

Turing introduced this idea of a ‘digital computer with a random element’

more fully in Chapter 10 (p. 416):

It is possible to modify the above described types of discrete machines by allowing several

alternative operations to be applied at some points, the alternatives to be chosen by a

random process. Such a machine will be described as ‘partially random’. If we wish to say

4 A copy of ‘Nature of Spirit’ is among the Turing Papers in the Modern Archive Centre, King’s College,

Cambridge.

Can Digital Computers Think? | 477

deWnitely that a machine is not of this kind we will describe it as ‘determined’. Sometimes a

machine may be strictly speaking determined but appear superWcially as if it were partially

random. This would occur if for instance the digits of the number pwere used to determine

the choices of a partially random machine where previously a dice thrower or electronic

equivalent had been used. These machines are known as apparently partially random.

Turing discusses partially random machines further in Chapter 12 and in

Chapter 9, where he mentions the possibility of including in the ACE a ‘random

element, some electronic roulette wheel’ (p. 391).

In ‘Can Digital Computers Think?’ Turing raises both the possibility that ‘the

feeling of free will which we all have is an illusion’ and the possibility that ‘we

really have got free will but yet there is no way of telling from our behaviour that

this is so’. In parallel, he raises the question whether the behaviour of the brain ‘is

in principle predictable by calculation’ (i.e. by Turing machine). In discussing

this possibility, he observes that we ‘certainly do not know how any such

calculation should be done’. He points out that, furthermore, some physicists

argue that no such prediction is even theoretically possible, ‘on account of the

indeterminacy principle in quantum mechanics’. Turing does not state his own

position on these issues in the course of the lecture. However, in an interview

given long after Turing’s death, Max Newman stated that Turing ‘had a deep-

seated conviction that the real brain has a ‘‘roulette wheel’’ somewhere in it.’5

This seems to indicate that Turing’s view was that the brain is a partially random

machine. Whether or not Turing would have asserted, on that basis, that we

‘really have got free will’ is not known.

Can Computers Think?

Turing’s overarching aim in the lecture is to answer the question posed by his

title. His strategy is to argue for the proposition mentioned above:

If any machine can appropriately be described as a brain, then any digital

computer can be so described.

His initial bald statement of his argument is (p. 483):

If now some particular machine can be described as a brain we have only to programme

our digital computer to imitate it and it will also be a brain. If it is accepted that real

brains, as found in animals, and in particular in men, are a sort of machine it will follow

that our digital computer suitably programmed, will behave like a brain.

Turing goes on to Xesh out his argument in various ways, turning eventually to

the problem of free will (p. 484): ‘There are still some diYculties. To behave like a

5 Newman in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of

Computing’ (London: Science Museum)).

478 | Jack Copeland

brain seems to involve free will, but the behaviour of a digital computer, when it

has been programmed, is completely determined.’ Turing argues resourcefully

that, even if it is true that brains have free will, this in fact presents no diYculty

for his claim that a suitably programmed computer can imitate the brain

(pp. 484–5):

a machine which is to imitate a brain must appear to behave as if it had free will, and it

may well be asked how this is to be achieved. One possibility is to make its behaviour

depend on something like a roulette wheel or a supply of radium. . . . It is, however, not

really even necessary to do this. It is not diYcult to design machines whose behaviour

appears quite random to anyone who does not know the details of their construction.

Such machines are ‘apparently partially random’ (p. 416). Examples of appar-

ently partially random machines are the German Enigma machine and the

Lorenz SZ 40 cipher machine (‘Tunny’). Since both these machines can be

simulated by a digital computer, an appropriately programmed digital computer

is apparently partially random. (In Chapter 11 Turing mentions having written a

programme for the Manchester computer that produced apparently partially

random behaviour. When given a number, the programme would reply with

a number. Turing said ‘I would defy anyone to learn from these replies suYcient

about the programme to be able to predict any replies to untried values’

(p. 457).)

Apparently partially random machines imitate partially random machines. If

the brain is a partially random machine, an appropriately programmed digital

computer may nevertheless give a convincing imitation of a brain. The appear-

ance that this deterministic machine gives of possessing free will may be said

to be mere sham, but this will not aVect the machine’s ability to play the

imitation game successfully. And by Turing’s principle, above, any machine that

plays the imitation game successfully can appropriately be described as a brain.

The Church–Turing Thesis and Calculating Machines

In ‘Can Digital Computers Think?’ Turing puts foward a thesis that, while not

the same as the Church–Turing thesis (see Chapter 1 and ‘Computable Numbers:

A Guide’), is in eVect the result of replacing the term ‘human computer’ in the

Church–Turing thesis by ‘calculating machine’, and replacing ‘universal Turing

machine’ by ‘digital computer of suYcient speed and storage capacity’.

The Church–Turing thesis states that any work that can be carried out by a

human computer (i.e. by an obedient clerk working with pencil on paper in

accordance with an eVective procedure) can equally well be carried out by the

universal Turing machine. The present thesis (pp. 482–3) states that any work

that can be carried out by any calculating machine can equally well be carried out

by a digital computer of suYcient speed and storage capacity:

Can Digital Computers Think? | 479

A digital computer is a universal machine in the sense that it can be made to replace any

machine of a certain very wide class. It will not replace a bulldozer or a steam-engine or a

telescope, but it will replace any rival design of calculating machine.

Newman wrote in the same vein a few years previously:

A universal machine is a single machine which, when provided with suitable instructions,

will perform any calculation that could be done by a specially constructed machine. No

real machine can be truly universal because its size is limited . . . but subject to this

limitation of size, the machines now being made in America and in this country will be

‘universal’—if they work at all; that is, they will do every kind of job that can be done by

special machines.6

If Turing were requested to clarify the notion of a ‘calculating machine’, he

would perhaps oVer paradigm examples such as the Brunsviga (a popular desk

calculating machine), a diVerential analyser (an analogue computing device),

special-purpose electronic machines like Colossus and ENIAC, and so on (com-

pare Chapter 10, pp. 412–13). Or perhaps he would say, with greater generality,

that a calculating machine is any machine that duplicates the abilities of a human

mathematician working mechanically with paper and pencil, i.e. in accordance

with an eVective (‘rule of thumb’) procedure. It was in this manner that he

explained the idea of an electronic computing machine in the opening paragraph

of his Programmers’ Handbook : ‘Electronic computers are intended to carry out

any deWnite rule of thumb process which could have been done by a human

operator working in a disciplined but unintelligent manner.’7

Turing’s remarks in Chapter 17 on the status of the Church–Turing thesis are

also relevant here (and see also the section ‘Normal Forms and the Church-

Turing Thesis’ in the introduction to Chapter 17).

Other Notable Features

Other features of note in the lecture include the continuation of the discussion of

‘Lady Lovelace’s dictum’, begun in Chapter 11, and Turing’s glorious analogy

comparing trying to programme a computer to behave like a brain with trying to

write a treatise about family life on Mars—and moreover with insuYcient paper.

(Newman once remarked on the ‘comical but brilliantly apt analogies with which

he [Turing] explained his ideas’.8)

6 M. H. A. Newman, ‘General Principles of the Design of All-Purpose Computing Machines’, Proceedings

of the Royal Society of London, Series A, 195 (1948), 271–4 (271–2).

7 A. M. Turing, Programmers’ Handbook for Manchester Electronic Computer, University of Manchester

Computing Laboratory (1950), 1. A digital facsimile of the Programmers’ Handbook is available in The

Turing Archive for the History of Computing <www.AlanTuring.net/ programmers_handbook>.

8 Newman writing in the Manchester Guardian, 11 June 1954.

480 | Jack Copeland

www.AlanTuring.net/programmers_handbook

Further reading

Copeland, B. J., ArtiWcial Intelligence: A Philosophical Introduction (Oxford: Blackwell,

1993). Chapter 3: ‘Can a Machine Think?’; chapter 7: ‘Freedom’.

—— ‘Narrow versus Wide Mechanism: Including a Re-examination of Turing’s Views on

the Mind–Machine Issue’, Journal of Philosophy, 97 (2000), 5–32. Reprinted in

M. Scheutz, Computationalism: New Directions (Cambridge, Mass.: MIT Press, 2002).

Dennett, D. C., Elbow Room: The Varieties of Freewill Worth Wanting (Oxford: Clarendon

Press, 1984).

Simons, G., The Biology of Computer Life (Brighton: Harvester, 1985).

Provenance

The text that follows is from Turing’s typescript and incorporates corrections

made in his hand.9

9 The typescript is in the Modern Archive Centre, King’s College, Cambridge (catalogue reference B 5).

The present edition Wrst appeared in B. J. Copeland (ed.), ‘A Lecture and Two Radio Broadcasts on Machine

Intelligence by Alan Turing’, in K. Furukawa, D. Michie and S. Muggleton (eds.), Machine Intelligence 15

(Oxford: Oxford University Press, 1999).

Can Digital Computers Think? | 481

Can Digital Computers Think?

Digital computers have often been described as mechanical brains. Most scien-

tists probably regard this description as a mere newspaper stunt, but some do

not. One mathematician has expressed the opposite point of view to me rather

forcefully in the words ‘It is commonly said that these machines are not brains,

but you and I know that they are.’ In this talk I shall try to explain the ideas

behind the various possible points of view, though not altogether impartially.

I shall give most attention to the view which I hold myself, that it is not

altogether unreasonable to describe digital computers as brains. A diVerent

point of view has already been put by Professor Hartree.

First we may consider the naive point of view of the man in the street. He

hears amazing accounts of what these machines can do: most of them apparently

involve intellectual feats of which he would be quite incapable. He can only

explain it by supposing that the machine is a sort of brain, though he may prefer

simply to disbelieve what he has heard.

The majority of scientists are contemptuous of this almost superstitious atti-

tude. They know something of the principles on which the machines are con-

structed and of the way inwhich they are used. Their outlook was well summed up

by Lady Lovelace over a hundred years ago, speaking of Babbage’s Analytical

Engine. She said, as Hartree has already quoted, ‘The Analytical Engine has no

pretensions whatever to originate anything. It can do whatever we know how to

order it to perform.’ This very well describes the way inwhich digital computers are

actually used at the present time, and in which they will probably mainly be used

for many years to come. For any one calculation the whole procedure that the

machine is to go through is planned out in advance by a mathematician. The less

doubt there is about what is going to happen the better the mathematician is

pleased. It is like planning amilitary operation. Under these circumstances it is fair

to say that the machine doesn’t originate anything.

There is however a third point of view, which I hold myself. I agree with Lady

Lovelace’s dictum as far as it goes, but I believe that its validity depends on

considering how digital computers are used rather than how they could be used.

In fact I believe that they could be used in such a manner that they could

appropriately be described as brains. I should also say that ‘If any machine can

appropriately be described as a brain, then any digital computer can be so

described.’

This last statement needs some explanation. It may appear rather startling, but

with some reservations it appears to be an inescapable fact. It can be shown to

follow from a characteristic property of digital computers, which I will call their

universality. A digital computer is a universal machine in the sense that it can be

Printed with the permission of the BBC and the Estate of Alan Turing.

made to replace any machine of a certain very wide class. It will not replace a

bulldozer or a steam-engine or a telescope, but it will replace any rival design of

calculating machine, that is to say any machine into which one can feed data and

which will later print out results. In order to arrange for our computer to imitate

a given machine it is only necessary to programme the computer to calculate

what the machine in question would do under given circumstances, and in

particular what answers it would print out. The computer can then be made to

print out the same answers.

If now some particular machine can be described as a brain we have only to

programme our digital computer to imitate it and it will also be a brain. If it is

accepted that real brains, as found in animals, and in particular in men, are a sort

of machine it will follow that our digital computer, suitably programmed, will

behave like a brain.

This argument involves several assumptions which can quite reasonably be

challenged. I have already explained that the machine to be imitated must be

more like a calculator than a bulldozer. This is merely a reXection of the fact that

we are speaking of mechanical analogues of brains, rather than of feet or jaws. It

was also necessary that this machine should be of the sort whose behaviour is in

principle predictable by calculation. We certainly do not know how any such

calculation should be done, and it was even argued by Sir Arthur Eddington that

on account of the indeterminacy principle in quantum mechanics no such

prediction is even theoretically possible.

Another assumption was that the storage capacity of the computer used

should be suYcient to carry out the prediction of the behaviour of the machine

to be imitated. It should also have suYcient speed. Our present computers

probably have not got the necessary storage capacity, though they may well

have the speed. This means in eVect that if we wish to imitate anything so

complicated as the human brain we need a very much larger machine than any

of the computers at present available. We probably need something at least a

hundred times as large as the Manchester Computer. Alternatively of course a

machine of equal size or smaller would do if suYcient progress were made in the

technique of storing information.

It should be noticed that there is no need for there to be any increase in the

complexity of the computers used. If we try to imitate ever more complicated

machines or brains we must use larger and larger computers to do it. We do not

need to use successively more complicated ones. This may appear paradoxical,

but the explanation is not diYcult. The imitation of a machine by a computer

requires not only that we should have made the computer, but that we should

have programmed it appropriately. The more complicated the machine to be

imitated the more complicated must the programme be.

This may perhaps be made clearer by an analogy. Suppose two men both

wanted to write their autobiographies, and that one had had an eventful life, but

Can Digital Computers Think? | 483

very little had happened to the other. There would be two diYculties troubling

the man with the more eventful life more seriously than the other. He would have

to spend more on paper and he would have to take more trouble over thinking

what to say. The supply of paper would not be likely to be a serious diYculty,

unless for instance he were on a desert island, and in any case it could only be a

technical or a Wnancial problem. The other diYculty would be more fundamen-

tal and would become more serious still if he were not writing his life but a work

on something he knew nothing about, let us say about family life on Mars. Our

problem of programming a computer to behave like a brain is something like

trying to write this treatise on a desert island. We cannot get the storage capacity

we need: in other words we cannot get enough paper to write the treatise on, and

in any case we don’t know what we should write down if we had it. This is a poor

state of aVairs, but, to continue the analogy, it is something to know how to

write, and to appreciate the fact that most knowledge can be embodied in books.

In view of this it seems that the wisest ground on which to criticise the descrip-

tion of digital computers as ‘mechanical brains’ or ‘electronic brains’ is that,

although they might be programmed to behave like brains, we do not at present

know how this should be done. With this outlook I am in full agreement. It leaves

open the question as to whether we will or will not eventually succeed in Wnding

such a programme. I, personally, am inclined to believe that such a programme

will be found. I think it is probable for instance that at the end of the century it will

be possible to programme a machine to answer questions in such a way that it will

be extremely diYcult to guess whether the answers are being given by a man or by

themachine. I am imagining something like a viva-voce examination, but with the

questions and answers all typewritten in order that we need not consider such

irrelevant matters as the faithfulness with which the human voice can be imitated.

This only represents my opinion; there is plenty of room for others.

There are still some diYculties. To behave like a brain seems to involve free

will, but the behaviour of a digital computer, when it has been programmed, is

completely determined. These two facts must somehow be reconciled, but to do

so seems to involve us in an age-old controversy, that of ‘free will and determin-

ism’. There are two ways out. It may be that the feeling of free will which we all

have is an illusion. Or it may be that we really have got free will, but yet there is

no way of telling from our behaviour that this is so. In the latter case, however

well a machine imitates a man’s behaviour it is to be regarded as a mere sham. I

do not know how we can ever decide between these alternatives but whichever is

the correct one it is certain that a machine which is to imitate a brain must

appear to behave as if it had free will, and it may well be asked how this is to be

achieved. One possibility is to make its behaviour depend on something like a

roulette wheel or a supply of radium. The behaviour of these may perhaps be

predictable, but if so, we do not know how to do the prediction.

484 | Alan Turing

It is, however, not really even necessary to do this. It is not diYcult to design

machines whose behaviour appears quite random to anyone who does not know

the details of their construction. Naturally enough the inclusion of this random

element, whichever technique is used, does not solve our main problem, how to

programme a machine to imitate a brain, or as we might say more brieXy, if less

accurately, to think. But it gives us some indication of what the process will be

like. We must not always expect to know what the computer is going to do. We

should be pleased when the machine surprises us, in rather the same way as one

is pleased when a pupil does something which he had not been explicitly taught

to do.

Let us now reconsider Lady Lovelace’s dictum. ‘The machine can do whatever

we know how to order it to perform.’ The sense of the rest of the passage is such

that one is tempted to say that the machine can only do what we know how to

order it to perform. But I think this would not be true. Certainly the machine can

only do what we do order it to perform, anything else would be a mechanical

fault. But there is no need to suppose that, when we give it its orders we know

what we are doing, what the consequences of these orders are going to be. One

does not need to be able to understand how these orders lead to the machine’s

subsequent behaviour, any more than one needs to understand the mechanism

of germination when one puts a seed in the ground. The plant comes up whether

one understands or not. If we give the machine a programme which results in its

doing something interesting which we had not anticipated I should be inclined

to say that the machine had originated something, rather than to claim that its

behaviour was implicit in the programme, and therefore that the originality lies

entirely with us.

I will not attempt to say much about how this process of ‘programming a

machine to think’ is to be done. The fact is that we know very little about it, and

very little research has yet been done. There are plentiful ideas, but we do not yet

know which of them are of importance. As in the detective stories, at the

beginning of the investigation any triXe may be of importance to the investigator.

When the problem has been solved, only the essential facts need to be told to the

jury. But at present we have nothing worth putting before a jury. I will only say

this, that I believe the process should bear a close relation of that of teaching.

I have tried to explain what are the main rational arguments for and against

the theory that machines could be made to think, but something should also be

said about the irrational arguments. Many people are extremely opposed to the

idea of machine that thinks, but I do not believe that it is for any of the reasons

that I have given, or any other rational reason, but simply because they do not

like the idea. One can see many features which make it unpleasant. If a machine

can think, it might think more intelligently than we do, and then where should

we be? Even if we could keep the machines in a subservient position, for instance

by turning oV the power at strategic moments, we should, as a species, feel

Can Digital Computers Think? | 485

greatly humbled. A similar danger and humiliation threatens us from the possib-

ility that we might be superseded by the pig or the rat. This is a theoretical

possibility which is hardly controversial, but we have lived with pigs and rats for

so long without their intelligence much increasing, that we no longer trouble

ourselves about this possibility. We feel that if it is to happen at all it will not be

for several million years to come. But this new danger is much closer. If it comes

at all it will almost certainly be within the next millennium. It is remote but not

astronomically remote, and is certainly something which can give us anxiety.

It is customary, in a talk or article on this subject, to oVer a grain of comfort,

in the form of a statement that some particularly human characteristic could

never be imitated by a machine. It might for instance be said that no machine

could write good English, or that it could not be inXuenced by sex-appeal or

smoke a pipe. I cannot oVer any such comfort, for I believe that no such bounds

can be set. But I certainly hope and believe that no great eVorts will be put into

making machines with the most distinctively human, but non-intellectual char-

acteristics such as the shape of the human body; it appears to me to be quite

futile to make such attempts and their results would have something like the

unpleasant quality of artiWcial Xowers. Attempts to produce a thinking machine

seem to me to be in a diVerent category. The whole thinking process is still rather

mysterious to us, but I believe that the attempt to make a thinking machine will

help us greatly in Wnding out how we think ourselves.

486 | Alan Turing

CHAPTER 14

Can Automatic Calculating Machines

Be Said To Think? (1952)

Alan Turing, Richard Braithwaite,

Geoffrey Jefferson, Max Newman

Introduction
Jack Copeland

This discussion between Turing, Newman, R. B. Braithwaite, and G. JeVerson was

recorded by the BBC on 10 January 1952 and broadcast on BBC Radio on the

14th, and again on the 23rd, of that month. This is the earliest known recorded

discussion of artiWcial intelligence.1

The Participants

The anchor man of the discussion is Richard Braithwaite (1900–90). Braithwaite

was at the time Sidgwick Lecturer in Moral Science at the University of Cam-

bridge, where the following year he was appointed Knightsbridge Professor of

Moral Philosophy. Like Turing, he was a Fellow of King’s College. Braithwaite’s

main work lay in the philosophy of science and in decision and games theory

(which he applied in moral philosophy).

GeoVrey JeVerson (1886–1961) retired from the Chair of Neurosurgery at

Manchester University in 1951. In his Lister Oration, delivered at the Royal

1 The present material together with the dialogues recorded in Wittgenstein’s Lectures on the Foundations

of Mathematics (ed. C. Diamond, Ithaca, NY: Cornell University Press, 1976) are the only known transcrip-

tions of discussions involving Turing. (Some rather compressed notes of a discussion between Turing,

Newman, Young, Polanyi, and others, entitled ‘Rough Draft of the Discussion on the Mind and the

Computing Machine, held on Thursday, 27th October, 1949, in the Philosophy Seminar’ (anon., n.d.,

University of Manchester Philosophy Department), are in The Turing Archive for the History of Computing

<www.AlanTuring.net/philosophy_seminar_oct1949>. I am grateful to Wolfe Mays for making these notes

available.)

www.AlanTuring.net/philosophy_seminar_oct1949

College of Surgeons of England on 9 June 1949, he had declared: ‘When we hear

it said that wireless valves think, we may despair of language.’2

Turing gave a substantial discussion of JeVerson’s views in ‘Computing Ma-

chinery and Intelligence’ (pp. 451–2), rebutting the ‘argument from conscious-

ness’ that he found in the Lister Oration. In the present chapter, JeVerson takes

numerous pot shots at the notion of a machine thinking, which for the most part

Turing and Newman are easily able to turn aside.

JeVerson may have thought little of the idea of machine intelligence, but he

held Turing in considerable regard, saying after Turing’s death that he ‘had real

genius, it shone from him’.3

The Turing Test Revisited

From the point of view of Turing scholarship, the most important parts of ‘Can

Automatic Calculating Machines Be Said to Think’ are the passages containing

Turing’s exposition of the imitation game or Turing test. The description of the

test that Turing gave in ‘Computing Machinery and Intelligence’ is here modiWed

in a number of signiWcant ways.

The lone interrogator of the original version is replaced by a ‘jury’ (p. 495).

Each jury must judge ‘quite a number of times’ and ‘sometimes they really are

dealing with a man and not a machine’. For a machine to pass the test, a

‘considerable proportion’ of the jury ‘must be taken in by the pretence’. The

members of the jury interrogate the contestants, but their contributions ‘don’t

really have to be questions, any more than questions in a law court are really

questions’; for example, ‘I put it to you that you are only pretending to be a man’

is ‘quite in order’.

In its original presentation (Chapter 11), the Turing test is a three-party game

involving the parallel interrogation by a human of a computer and a human foil.

According to the 1952 formulation, however, members of a jury interview a

series of contestants one at a time, some of the contestants being machines and

some humans. In the original form of the test, each interrogator knows that one

of each pair of interviewees is a human and one a machine, but in the single-

interviewee version of the test, this condition is necessarily absent. It appears that

the earlier formulation is in fact superior, since the single-interviewee version is

open to a biasing eVect which disfavours the machine. Results of the Loebner

series of single-interviewee Turing tests reveal a strong propensity among jurors

to classify human respondents as machines. (New York businessman Hugh

Loebner started the annual Loebner Prize competition in 1991, oVering the

2 G. JeVerson, ‘The Mind of Mechanical Man’, British Medical Journal, 25 June 1949, 1105–10 (1110).

3 Letter from JeVerson to Sara Turing, 18 Oct. 1954. The letter is among the Turing Papers in the Modern

Archive Centre, King’s College, Cambridge (catalogue reference A 16).

488 | Jack Copeland

sum of $100,000 to the programmer(s) of the Wrst programme to pass the Turing

test. $2,000 is awarded each year for the best eVort. So far the grand prize

remains unclaimed.) In the Loebner competition held at Dartmouth College,

New Hampshire, in January 2000, human respondents were mistaken for com-

puters on ten occasions, a computer for a human on none. The same eVect was

present in a series of single-interviewee tests performed with Kenneth Colby’s

historic programme Parry.4 In a total of ten interviews, there were Wve misiden-

tiWcations; in four of these a human respondent was mistaken for a computer.

Presumably this phenomenon is the result of a determination on the part of the

jurors not to be fooled by a programme. This lengthening of the odds against the

machine cannot occur in the three-player form of the test.

Turing’s Predictions

Turing is often misquoted as having predicted that, by the turn of the twentieth

century, artiWcial intelligence indistinguishable from human intelligence would

be in existence. What he in fact wrote in 1950 was that (p. 449):

in about Wfty years’ time it will be possible to programme computers . . . to make them

play the imitation game so well that an average interrogator will not have more than 70

per cent chance of making the right identiWcation after Wve minutes of questioning.

Some commentators have reported this prediction the wrong way about, as the

claim that, by the end of the twentieth century, computers would succeed in

deceiving the interrogator 70 per cent of the time.5

In ‘Can Automatic Calculating Machines Be Said to Think’, Turing oVered a

prediction that is interestingly diVerent from the above, and which seems to

concern success of a more substantial nature (p. 495):

Newman: I should like to be there when your match between a man and a machine takes

place, and perhaps to try my hand at making up some of the questions. But that will be

a long time from now, if the machine is to stand any chance with no questions barred?

Turing : Oh yes, at least 100 years, I should say.

In Chapter 11, Turing describes a form of the imitation game in which the

interrogator must attempt to distinguish between a woman (the foil) and a man

pretending to be a woman. This form of the game serves as a reference point for

evaluating the computer’s performance in the computer-human imitation game

(p. 441):

4 J. F. Heiser, K. M. Colby, W. S. Faught and R. C. Parkison, ‘Can Psychiatrists Distinguish a Computer

Simulation of Paranoia from the Real Thing?’, Journal of Psychiatric Research, 15 (1980), 149–62.

5 See, for example, R. Brooks, ‘Intelligence without Reason’, in L. Steels and R. Brooks (eds.), The

ArtiWcial Life Route to ArtiWcial Intelligence (Mahwah, NJ: Erlbaum, 1995), n. 8, and P. Millican and A. Clark

(eds.), Machines and Thought: The Legacy of Alan Turing (Oxford: Oxford University Press, 1996), 61.

Can Automatic Calculating Machines Be Said To Think? | 489

We now ask the question, ‘What will happen when a machine takes the part of A in this

[man-imitates-woman] game?’ Will the interrogator decide wrongly as often when the

game is played like this as he does when the game is played between a man and a woman?

Reformulating Turing’s 1952 prediction in these terms produces: It will be at

least 100 years (2052) before a computer is able to play the imitation game

suYciently well so that jurors will decide wrongly as often in man-imitates-

woman imitation games as in computer-imitates-human imitation games, in

each case no questions being barred.

‘Fiendish Expert’ Objections to the Turing Test

‘Fiendish expert’ objections, of which there are many, are of the form: ‘An expert

could unmask the computer by asking it . . .’. All can be dealt with in a similar

fashion. (Some other objections to the test are discussed in the introduction to

Chapter 11.)

An interesting example is put forward by Robert French.6 French’s objection

involves the phenomenon of associative priming, observed in what psychologists

call the word/non-word recognition task. A subject seated in front of a screen is

presented for a brief time with what may or may not be a word (e.g. ‘dog ’,

‘dok ’). If the subject recognizes the letters as a word he or she must press a

button. The experimenter measures the time that the subject takes to respond. It

is found that, on average, subjects require less time to recognize a word if the

word is preceded by a brief presentation of an associated word (e.g. ‘Wsh’ may

facilitate the recognition of ‘chips’, ‘bread’ of ‘butter’). French’s claim is that this

priming eVect may be used to unmask the computer in the Turing test:

The Turing Test interrogator makes use of this phenomenon as follows. The day before the

Test, she selects a set of words (and non-words), runs the lexical decision task on the

interviewees and records average recognition times. She then comes to the Test armed

with the results . . . [and] identiWes as the human being the candidate whose results more

closely resemble the average results produced by her sample population of interviewees.

The machine would invariably fail this type of test because there is no a priori way of

determining associative strengths . . . Virtually the only way a machine could determine,

even on average, all of the associative strengths between human concepts is to have

experienced the world as the human candidate and the interviewers had.7

Turing, however, was happy to rule out expert jurors. In ‘Can Automatic

Calculating Machines Be Said to Think’ he said that the interrogator ‘should

not be expert about machines’ (p. 495), and in chapter 10, describing the chess-

player version of the test, he said that the discriminator should be a ‘rather poor’

chess player (p. 431). Turing did not mention other kinds of expert, but the

6 R. French, ‘Subcognition and the Limits of the Turing Test’, Mind, 99 (1990), 53–65.

7 Ibid. 17.

490 | Jack Copeland

reasons for excluding experts about machines apply equally well to experts about

minds.

In any case, French’s proposal is illegitimate. The speciWcations of the Turing

test are clear: the interrogator is allowed only to put questions. There is no

provision for the use of the equipment necessary for administering the lexical

decision task and for measuring the contestants’ reaction times. One might as

well allow the interrogator to bring along equipment for measuring the contest-

ants’ magnetic Welds or energy dissipation.8

Can Machines Think?

In Chapter 11, Turing said that the question ‘Can machines think?’ is ‘too

meaningless to deserve discussion’ (p. 449). He certainly did not allow this

view to prevent him from indulging rather often in such discussion. In the

present chapter, Turing records a considerably milder attitude to the question

(p. 495):

You might call it a test to see whether the machine thinks, but it would be better to avoid

begging the question, and say that the machines that pass are (let’s say) ‘Grade A’

machines. . . . [The question whether] machines really could pass the test [is] not the

same as ‘Do machines think?’, but it seems near enough for our present purpose, and

raises much the same diYculties.

In Chapter 10 Turing wrote (p. 431):

The extent to which we regard something as behaving in an intelligent manner is

determined as much by our own state of mind and training as by the properties of the

object under consideration. If we are able to explain or predict its behaviour . . . we have

little temptation to imagine intelligence. With the same object therefore it is possible that

one man would consider it as intelligent and another would not; the second man would

have found out the rules of its behaviour.

Turing develops this point in the present discussion (p. 500):

As soon as one can see the cause and eVect working themselves out in the brain, one

regards it as not being thinking, but a sort of unimaginative donkey-work. From this point

of view one might be tempted to deWne thinking as consisting of ‘those mental processes

that we don’t understand’. If this is right then to make a thinking machine is to make one

which does interesting things without our really understanding quite how it is done.

Many years later Marvin Minsky put forward this same view, saying that

‘intelligence’ is simply our name for whichever problem-solving mental processes

8 There is additional discussion of French’s objections to the Turing test in my ‘The Turing Test’, Minds

and Machines, 10 (2000), 519–39 (reprinted in J. H. Moor (ed.), The Turing Test (Dordrecht: Kluwer, 2003)).

Can Automatic Calculating Machines Be Said To Think? | 491

we do not yet understand.9Minsky likens intelligence to the concept ‘unexplored

regions of Africa’: it disappears as soon as we discover it.

Analogy and Creativity

Turing sketches an interesting mechanical explanation of how analogy works in

the human brain, and suggests that a digital computer can be made to do the

same (p. 499). Another proposal which does not appear elsewhere in Turing’s

writings concerns the vexed issue of creativity. A machine that combines words

more or less at random and then scores the combinations ‘for various merits’

would, he says, be able to Wnd useful new concepts. His example is ‘lumping

together rain, hail, snow and sleet, under the word ‘‘precipitation’’ ’ (p. 499). He

agrees with Newman that this process would be ‘shockingly slow’. Nevertheless,

this brief suggestion of Turing’s is an economical illustration of the possibility of

a machine’s acquiring new concepts for itself.

Machine Learning

‘Can Automatic Calculating Machines Be Said to Think’ contains a lengthy

discussion of machine learning, in which Turing alludes to the P-type machines

of Chapter 10 (pp. 425–9). He says in response to JeVerson’s point that real

learning involves intervention by teachers, ‘I have made some experiments in

teaching a machine to do some simple operation, and a very great deal of such

intervention was needed’ (p. 497). Turing emphasizes several times that a

learning machine, if it is to be eVective, must not only learn Wrst-order facts

but must also be able to learn to improve its learning methods (compare the

discussion of the Mathematical Objection in Chapter 12 and elsewhere).

Newman gives a simple illustration (on p. 496) of how a computer can learn to

do better with practice. His example makes use of the idea of the computer

modifying its own programme, mentioned by Turing in Chapter 9 (p. 393).

Faced with a two-move chess problem, the machine initially follows an instruc-

tion to choose a move at random. If the move, say B-Q5, is found to lead to

forced mate in two moves, then the machine changes the instruction to ‘Try B-

Q5’. When presented with the same problem again, the machine immediately

gives the right answer.

Newman’s Test

Towards the end of the discussion Newman suggested a test—and the term

‘Newman’s test’ seems appropriate—for when machines have ‘begun to think’

9 M. Minsky, The Society of Mind (London: Pan Books, 1988), 71.

492 | Jack Copeland

(pp. 504–5). That stage of development has been reached, he said, when a

machine can solve a mathematical problem for which no eVective method exists.

Provenance

The discussion is taken from a BBC script (which is marked ‘Not checked in

Talks Department with ‘‘as broadcast’’ script’).10

10 The script is in the Modern Archive Centre, King’s College, Cambridge (catalogue reference B 6). It

was Wrst published in B. J. Copeland (ed.), ‘A Lecture and Two Radio Broadcasts on Machine Intelligence by

Alan Turing’, in K. Furukawa, D. Michie, and S. Muggleton (eds.), Machine Intelligence 15 (Oxford: Oxford

University Press, 1999).

Can Automatic Calculating Machines Be Said To Think? | 493

Can Automatic Calculating Machines
Be Said To Think?

Braithwaite : We’re here today to discuss whether calculating machines can be

said to think in any proper sense of the word. Thinking is ordinarily regarded

as so much a speciality of man, and perhaps of other higher animals, that the

question may seem too absurd to be discussed. But, of course, it all depends

on what is to be included in thinking. The word is used to cover a multitude of

diVerent activities. What would you, JeVerson, as a physiologist, say were the

most important elements involved in thinking?

JeVerson: I don’t think that we need waste too much time on [a] deWnition of

thinking since it will be hard to get beyond phrases in common usage, such as

having ideas in the mind, cogitating, meditating, deliberating, solving prob-

lems or imagining. Philologists say that the word ‘Man’ is derived from a

Sanskrit word that means ‘to think’, probably in the sense of judging between

one idea and another. I agree that we could no longer use the word ‘thinking’

in a sense that restricted it to man. No one would deny that many animals

think, though in a very limited way. They lack insight. For example, a dog

learns that it is wrong to get on cushions or chairs with muddy paws, but he

only learns it as a venture that doesn’t pay. He has no conception of the real

reason, that he damages fabrics by doing that.

The average person would perhaps be content to deWne thinking in very

general terms such as revolving ideas in the mind, of having notions in one’s

head, of having one’s mind occupied by a problem, and so on. But it is only

right to add that our minds are occupied much of the time with trivialities.

One might say in the end that thinking was the general result of having a

suYciently complex nervous system. Very simple ones do not provide the

creature with any problems that are not answered by simple reXex mechan-

isms. Thinking then becomes all the things that go on in one’s brain, things

that often end in an action but don’t necessarily do so. I should say that it was

the sum total of what the brain of man or animal does. Turing, what do you

think about it? Have you a mechanical deWnition?

Turing : I don’t want to give a deWnition of thinking, but if I had to I should

probably be unable to say anything more about it than that it was a sort of

buzzing that went on inside my head. But I don’t really see that we need to

agree on a deWnition at all. The important thing is to try to draw a line

between the properties of a brain, or of a man, that we want to discuss, and

those that we don’t. To take an extreme case, we are not interested in the fact

Printed with the permission of the BBC, Lewis C. Braithwaite, Antony A. JeVerson, Edward Newman, and

the Estate of Alan Turing.

that the brain has the consistency of cold porridge. We don’t want to say

‘This machine’s quite hard, so it isn’t a brain, and so it can’t think.’ I would like

to suggest a particular kind of test that one might apply to a machine. You

might call it a test to see whether the machine thinks, but it would be better to

avoid begging the question, and say that the machines that pass are (let’s say)

‘Grade A’ machines. The idea of the test is that the machine has to try and

pretend to be a man, by answering questions put to it, and it will only pass if

the pretence is reasonably convincing. A considerable proportion of a jury,

who should not be expert about machines, must be taken in by the pretence.

They aren’t allowed to see the machine itself—that would make it too easy. So

the machine is kept in a far away room and the jury are allowed to ask it

questions, which are transmitted through to it: it sends back a typewritten

answer.

Braithwaite : Would the questions have to be sums, or could I ask it what it had

had for breakfast?

Turing : Oh yes, anything. And the questions don’t really have to be questions,

any more than questions in a law court are really questions. You know the sort

of thing. ‘I put it to you that you are only pretending to be a man’ would be

quite in order. Likewise the machine would be permitted all sorts of tricks so

as to appear more man-like, such as waiting a bit before giving the answer, or

making spelling mistakes, but it can’t make smudges on the paper, any more

than one can send smudges by telegraph. We had better suppose that each jury

has to judge quite a number of times, and that sometimes they really are

dealing with a man and not a machine. That will prevent them saying ‘It must

be a machine’ every time without proper consideration.

Well, that’s my test. Of course I am not saying at present either that

machines really could pass the test, or that they couldn’t. My suggestion is

just that this is the question we should discuss. It’s not the same as ‘Do

machines think,’ but it seems near enough for our present purpose, and raises

much the same diYculties.

Newman : I should like to be there when your match between a man and a

machine takes place, and perhaps to try my hand at making up some of the

questions. But that will be a long time from now, if the machine is to stand any

chance with no questions barred?

Turing : Oh yes, at least 100 years, I should say.

JeVerson : Newman, how well would existing machines stand up to this test? What

kind of things can they do now?

Newman : Of course, their strongest line is mathematical computing, which they

were designed to do, but they would also do well at some questions that don’t

look numerical, but can easily be made so, like solving a chess problem or

looking you up a train in the time-table.

Braithwaite : Could they do that?

Can Automatic Calculating Machines Be Said To Think? | 495

Newman: Yes. Both these jobs can be done by trying all the possibilities, one after

another. The whole of the information in an ordinary time-table would have

to be written in as part of the programme, and the simplest possible routine

would be one that found the trains from London to Manchester by testing

every train in the time-table to see if it calls at both places, and printing out

those that do. Of course, this is a dull, plodding method, and you could

improve on it by using a more complicated routine, but if I have understood

Turing’s test properly, you are not allowed to go behind the scenes and criticise

the method, but must abide by the scoring on correct answers, found reason-

ably quickly.

JeVerson: Yes, but all the same a man who has to look up trains frequently gets

better at it, as he learns his way about the time-table. Suppose I give a machine

the same problem again, can it learn to do better without going through the

whole rigmarole of trying everything over every time? I’d like to have your

answer to that because it’s such an important point. Can machines learn to do

better with practice?

Newman: Yes, it could. Perhaps the chess problem provides a better illustration of

this. First I should mention that all the information required in any job—the

numbers, times of trains, positions of pieces, or whatever it is, and also the

instructions saying what is to be done with them—all this material is stored in

the same way. (In theManchester machine it is stored as a pattern on something

resembling a television screen.) As the work goes on the pattern is changed.

Usually it is the part of the pattern that contains the data that changes, while the

instructions stay Wxed. But it is just as simple to arrange that the instructions

themselves shall be changed now and then. Well, now a programme could be

composed that would cause the machine to do this: a 2-move chess problem is

recorded into the machine in some suitable coding, and whenever the machine

is started, a white move is chosen at random (there is a device for making

random choices in our machine). All the consequences of this move are now

analysed, and if it does not lead to forced mate in two moves, the machine

prints, say, ‘P-Q3, wrongmove’, and stops. But the analysis shows that when the

right move is chosen the machine not only prints, say, ‘B-Q5, solution’, but it

changes the instruction calling for a random choice to one that says ‘Try B-Q5.’

The result is that whenever themachine is started again it will immediately print

out the right solution—and this without the man who made up the routine

knowing beforehand what it was. Such a routine could certainly be made now,

and I think this can fairly be called learning.

JeVerson: Yes, I suppose it is. Human beings learn by repeating the same exercises

until they have perfected them. Of course it goes further, and at the same time

—we learn generally to shift the knowledge gained about one thing to another

set of problems, seeing relevances and relationships. Learning means remem-

bering. How long can a machine store information for?

496 | Turing, Braithwaite, Jefferson, Newman

Newman: Oh, at least as long as a man’s lifetime, if it is refreshed occasionally.

JeVerson: Another diVerence would be that in the learning process there is much

more frequent intervention by teachers, parental or otherwise, guiding the arts

of learning. You mathematicians put the programme once into the machine

and leave it to it. You wouldn’t get any distance at all with human beings if that

is what you did. In fact, the only time you do that in the learning period is at

examinations.

Turing : It’s quite true that when a child is being taught, his parents and teachers

are repeatedly intervening to stop him doing this or encourage him to do that.

But this will not be any the less so when one is trying to teach a machine. I have

made some experiments in teaching a machine to do some simple operation,

and a very great deal of such intervention was needed before I could get any

results at all. In other words the machine learnt so slowly that it needed a great

deal of teaching.

JeVerson: But who was learning, you or the machine?

Turing : Well, I suppose we both were. One will have to Wnd out how to make

machines that will learn more quickly if there is to be any real success. One

hopes too that there will be a sort of snowball eVect. The more things the

machine has learnt the easier it ought to be for it to learn others. In learning to

do any particular thing it will probably also be learning to learn more

eYciently. I am inclined to believe that when one has taught it to do certain

things one will Wnd that some other things which one had planned to teach it

are happening without any special teaching being required. This certainly

happens with an intelligent human mind, and if it doesn’t happen when one

is teaching a machine there is something lacking in the machine. What do you

think about learning possibilities, Braithwaite?

Braithwaite : No-one has mentioned what seems to me the great diYculty about

learning, since we’ve only discussed learning to solve a particular problem. But

the most important part of human learning is learning from experience—not

learning from one particular kind of experience, but being able to learn from

experience in general. A machine can easily be constructed with a feed-back

device so that the programming of the machine is controlled by the relation of

its output to some feature in its external environment—so that the working of

the machine in relation to the environment is self-corrective. But this requires

that it should be some particular feature of the environment to which the

machine has to adjust itself. The peculiarity of men and animals is that they

have the power of adjusting themselves to almost all the features. The feature

to which adjustment is made on a particular occasion is the one the man is

attending to and he attends to what he is interested in. His interests are

determined, by and large, by his appetites, desires, drives, instincts—all the

things that together make up his ‘springs of action’. If we want to construct a

machine which will vary its attention to things in its environment so that it

Can Automatic Calculating Machines Be Said To Think? | 497

will sometimes adjust itself to one and sometimes to another, it would seem to

be necessary to equip the machine with something corresponding to a set of

appetites. If the machine is built to be treated only as a domestic pet, and is

spoon-fed with particular problems, it will not be able to learn in the varying

way in which human beings learn. This arises from the necessity of adapting

behaviour suitably to environment if human appetites are to be satisWed.

JeVerson: Turing, you spoke with great conWdence about what you are going to be

able to do. You make it sound as if it would be fairly easy to modify

construction so that the machine reacted more like a man. But I recollect

that from the time of Descartes and Borelli on people have said that it would

be only a matter of a few years, perhaps 3 or 4 or maybe 50, and a replica of

man would have been artiWcially created. We shall be wrong, I am sure, if we

give the impression that these things would be easy to do.

Newman: I agree that we are getting rather far away from computing machines as

they exist at present. These machines have rather restricted appetites, and they

can’t blush when they’re embarrassed, but it’s quite hard enough, and I think a

very interesting problem, to discover how near these actually existing ma-

chines can get to thinking. Even if we stick to the reasoning side of thinking, it

is a long way from solving chess problems to the invention of new mathemat-

ical concepts or making a generalisation that takes in ideas that were current

before, but had never been brought together as instances of a single general

notion.

Braithwaite : For example?

Newman: The diVerent kinds of number. There are the integers, 0, 1, �2, and so

on; there are the real numbers used in comparing lengths, for example the

circumference of a circle and its diameter; and the complex numbers involvingp�1; and so on. It is not at all obvious that these are instances of one thing,

‘number’. The Greek mathematicians used entirely diVerent words for the

integers and the real numbers, and had no single idea to cover both. It is

really only recently that the general notion of kinds of number has been

abstracted from these instances and accurately deWned. To make this sort of

generalisation you need to have the power of recognising similarities, seeing

analogies between things that had not been put together before. It is not just a

matter of testing things for a speciWed property and classifying them accord-

ingly. The concept itself has to be framed, something has to be created, say the

idea of a number-Weld. Can we even guess at the way a machine could make

such an invention from a programme composed by a man who had not the

concept in his own mind?

Turing : It seems to me, Newman, that what you said about ‘trying out possibil-

ities’ as a method applies to quite an extent, even when a machine is required

to do something as advanced as Wnding a useful new concept. I wouldn’t like

to have to deWne the meaning of the word ‘concept’, nor to give rules for rating

498 | Turing, Braithwaite, Jefferson, Newman

their usefulness, but whatever they are they’ve got outward and visible forms,

which are words and combinations of words. A machine could make up such

combinations of words more or less at random, and then give them marks for

various merits.

Newman: Wouldn’t that take a prohibitively long time?

Turing : It would certainly be shockingly slow, but it could start on easy things,

such as lumping together rain, hail, snow and sleet, under the word ‘precipi-

tation.’ Perhaps it might do more diYcult things later on if it was learning all

the time how to improve its methods.

Braithwaite : I don’t think there’s much diYculty about seeing analogies that can

be formally analysed and explicitly stated. It is then only a question of

designing the machine so that it can recognise similarities of mathematical

structure. The diYculty arises if the analogy is a vague one about which little

more can be said than that one has a feeling that there is some sort of

similarity between two cases but one hasn’t any idea as to the respect in

which the two cases are similar. A machine can’t recognise similarities when

there is nothing in its programme to say what are the similarities it is expected

to recognise.

Turing : I think you could make a machine spot an analogy, in fact it’s quite a

good instance of how a machine could be made to do some of those things

that one usually regards as essentially a human monopoly. Suppose that

someone was trying to explain the double negative to me, for instance, that

when something isn’t not green it must be green, and he couldn’t quite get it

across. He might say ‘Well, it’s like crossing the road. You cross it, and then

you cross it again, and you’re back where you started.’ This remark might just

clinch it. This is one of the things one would like to work with machines, and I

think it would be likely to happen with them. I imagine that the way analogy

works in our brains is something like this. When two or more sets of ideas

have the same pattern of logical connections, the brain may very likely

economise parts by using some of them twice over, to remember the logical

connections both in the one case and in the other. One must suppose that

some part of my brain was used twice over in this way, once for the idea of

double negation and once for crossing the road, there and back. I am really

supposed to know about both these things but can’t get what it is the man is

driving at, so long as he is talking about all those dreary nots and not-nots.

Somehow it doesn’t get through to the right part of the brain. But as soon as

he says his piece about crossing the road it gets through to the right part, but

by a diVerent route. If there is some such purely mechanical explanation of

how this argument by analogy goes on in the brain, one could make a digital

computer do the same.

JeVerson: Well, there isn’t a mechanical explanation in terms of cells and con-

necting Wbres in the brain.

Can Automatic Calculating Machines Be Said To Think? | 499

Braithwaite : But could a machine really do this? How would it do it?

Turing : I’ve certainly left a great deal to the imagination. If I had given a longer

explanation I might have made it seem more certain that what I was describing

was feasible, but you would probably feel rather uneasy about it all, and you’d

probably exclaim impatiently, ‘Well, yes, I see that a machine could do all that,

but I wouldn’t call it thinking.’ As soon as one can see the cause and eVect

working themselves out in the brain, one regards it as not being thinking, but a

sort of unimaginative donkey-work. From this point of view one might be

tempted to deWne thinking as consisting of ‘those mental processes that we

don’t understand’. If this is right then to make a thinking machine is to make

one which does interesting things without our really understanding quite how

it is done.

JeVerson: If you mean that we don’t know the wiring in men, as it were, that is

quite true.

Turing : No, that isn’t at all what I mean. We know the wiring of our machine, but

it already happens there in a limited sort of way. Sometimes a computing

machine does do something rather weird that we hadn’t expected. In principle

one could have predicted it, but in practice it’s usually too much trouble.

Obviously if one were to predict everything a computer was going to do one

might just as well do without it.

Newman: It is quite true that people are disappointed when they discover what the

big computing machines actually do, which is just to add and multiply, and use

the results to decide what further additions and multiplications to do. ‘That’s

not thinking’, is the natural comment, but this is rather begging the question. If

you go into one of the ancient churches in Ravenna you see somemost beautiful

pictures round the walls, but if you peer at them through binoculars you might

say, ‘Why, they aren’t really pictures at all, but just a lot of little coloured stones

with cement in between.’ The machine’s processes are mosaics of very simple

standard parts, but the designs can be of great complexity, and it is not obvious

where the limit is to the patterns of thought they could imitate.

Braithwaite : But how many stones are there in your mosaic? JeVerson, is there a

suYcient multiplicity of the cells in the brain for them to behave like a

computing machine?

JeVerson: Yes, there are thousands, tens of thousands more cells in the brain than

there are in a computing machine, because the present machine contains—

how many did you say?

Turing : Half a million digits. I think we can assume that is the equivalent of half a

million nerve cells.

Braithwaite : If the brain works like a computing machine then the present

computing machine cannot do all the things the brain does. Agreed; but if a

computing machine were made that could do all the things the brain does,

wouldn’t it require more digits than there is room for in the brain?

500 | Turing, Braithwaite, Jefferson, Newman

JeVerson: Well, I don’t know. Suppose that it is right to equate digits in a machine

with nerve cells in a brain. There are various estimates, somewhere between

ten thousand million and Wfteen thousand million cells are supposed to be

there. Nobody knows for certain, you see. It is a colossal number. You would

need 20,000 or more of your machines to equate digits with nerve cells. But it

is not, surely, just a question of size. There would be too much logic in your

huge machine. It wouldn’t be really like a human output of thought. To make

it more like, a lot of the machine parts would have to be designed quite

diVerently to give greater Xexibility and more diverse possibilities of use. It’s a

very tall order indeed.

Turing : It really is the size that matters in this case. It is the amount of infor-

mation that can be stored up. If you think of something very complicated that

you want one of these machines to do, you may Wnd the particular machine

you have got won’t do, but if any machine can do it at all, then it can be done

by your Wrst computer, simply increased in its storage capacity.

JeVerson: If we are really to get near to anything that can be truly called ‘thinking’

the eVects of external stimuli cannot be missed out; the intervention of all

sorts of extraneous factors, like the worries of having to make one’s living, or

pay one’s taxes, or get food that one likes. These are not in any sense minor

factors, they are very important indeed, and worries concerned with them may

greatly interfere with good thinking, especially with creative thinking. You see

a machine has no environment, and man is in constant relation to his

environment, which, as it were punches him whilst he punches back. There

is a vast background of memories in a man’s brain that each new idea or

experience has to Wt in with. I wonder if you could tell me how far a calculating

machine meets that situation. Most people agree that man’s Wrst reaction to a

new idea (such as the one we are discussing today) is one of rejection, often

immediate and horriWed denial of it. I don’t see how a machine could as it

were say ‘Now Professor Newman or Mr. Turing, I don’t like this programme

at all that you’ve just put into me, in fact I’m not going to have anything to do

with it.’

Newman: One diYculty about answering that is one that Turing has already

mentioned. If someone says, ‘Could a machine do this, e.g. could it say ‘‘I

don’t like the programme you have just put into me’’ ’, and a programme for

doing that very thing is duly produced, it is apt to have an artiWcial and ad hoc

air, and appear to be more of a trick than a serious answer to the question. It is

like those passages in the Bible, which worried me as a small boy, that say that

such and such was done ‘that the prophecy might be fulWlled which says’ so

and so. This always seemed to me a most unfair way of making sure that the

prophecy came true. If I answer your question, JeVerson, by making a routine

which simply caused the machine to say just the words ‘Newman and Turing, I

don’t like your programme’, you would certainly feel this was a rather childish

Can Automatic Calculating Machines Be Said To Think? | 501

trick, and not the answer to what you really wanted to know. But yet it’s hard

to pin down what you want.

JeVerson: I want the machine to reject the problem because it oVends it in some

way. That leads me to enquire what the ingredients are of ideas that we reject

because we instinctively don’t care for them. I don’t know why I like some

pictures and some music and am bored by other sorts. But I’m not going to

carry that line on because we are all diVerent, our dislikes are based on our

personal histories and probably too on small diVerences of construction in all

of us, I mean by heredity. Your machines have no genes, no pedigrees.

Mendelian inheritance means nothing to wireless valves. But I don’t want to

score debating points! We ought to make it clear that not even Turing thinks

that all that he has to do is to put a skin on the machine and that it is alive!

We’ve been trying for a more limited objective whether the sort of thing that

machines do can be considered as thinking. But is not your machine more

certain than any human being of getting its problem right at once, and

infallibly?

Newman: Oh!

Turing : Computing machines aren’t really infallible at all. Making up checks on

their accuracy is quite an important part of the art of using them. Besides

making mistakes they sometimes haven’t done quite the calculation one had

expected, and one gets something that might be called a ‘misunderstanding’.

JeVerson: At any rate, they are not inXuenced by the emotions. You have only to

upset a person enough and he becomes confused, he can’t think of the answers

and may make a fool of himself. It is high emotional content of mental

processes in the human being that makes him quite diVerent from a machine.

It seems to me to come from the great complexity of his nervous system with

its 1010 cells and also from his endocrine system which imports all sorts of

emotions and instincts, such as those to do with sex. Man is essentially a

chemical machine, he is much aVected by hunger and fatigue, by being ‘out of

sorts’ as we say, also by innate judgements, and by sexual urges. This chemical

side is tremendously important, not the least so because the brain does

exercise a remote control over the most important chemical processes that

go on in our bodies. Your machines don’t have to bother with that, with being

tired or cold or happy or satisWed. They show no delight at having done

something never done before. No, they are ‘mentally’ simple things. I mean

that however complicated their structure is (and I know it is very compli-

cated), compared with man they are very simple and perform their tasks with

an absence of distracting thoughts which is quite inhuman.

Braithwaite : I’m not sure that I agree. I believe that it will be necessary to provide

the machine with something corresponding to appetites, or other ‘springs of

action’, in order that it will pay enough attention to relevant features in its

environment to be able to learn from experience. Many psychologists have

502 | Turing, Braithwaite, Jefferson, Newman

held that the emotions in men are by-products of their appetites and that they

serve a biological function in calling higher levels of mental activity into play

when the lower levels are incapable of coping with an external situation. For

example, one does not feel afraid when there is no danger, or a danger which

can be avoided more or less automatically: fear is a symptom showing that the

danger has to be met by conscious thought. Perhaps it will be impossible to

build a machine capable of learning in general from experience without

incorporating in it an emotional apparatus, the function of which will be to

switch over to a diVerent part of the machine when the external environment

diVers too much from what would satisfy the machine’s appetites by more

than a certain amount. I don’t want to suggest that it will be necessary for the

machine to be able to throw a Wt of tantrums. But in humans tantrums

frequently fulWl a deWnite function—that of escaping from responsibility;

and to protect a machine against a too hostile environment it may be essential

to allow it, as it were, to go to bed with a neurosis, or psychogenic illness—just

as, in a simpler way, it is provided with a fuse to blow, if the electric power

working it threatens its continued existence.

Turing : Well, I don’t envisage teaching the machine to throw temperamental

scenes. I think some such eVects are likely to occur as a sort of by-product of

genuine teaching, and that one will be more interested in curbing such

displays than in encouraging them. Such eVects would probably be distinctly

diVerent from the corresponding human ones, but recognisable as variations

on them. This means that if the machine was being put through one of my

imitation tests, it would have to do quite a bit of acting, but if one was

comparing it with a man in a less strict sort of way the resemblance might

be quite impressive.

Newman: I still feel that too much of our argument is about what hypothetical

future machines will do. It is all very well to say that a machine could easily be

made to do this or that, but, to take only one practical point, what about the

time it would take to do it? It would only take an hour or two to make up a

routine to make our Manchester machine analyse all possible variations of the

game of chess right out, and Wnd the best move that way—if you didn’t mind

its taking thousands of millions of years to run through the routine. Solving a

problem on the machine doesn’t mean Wnding a way to do it between now and

eternity, but within a reasonable time. This is not just a technical detail that

will be taken care of by future improvements. It’s most unlikely that the

engineers can ever give us a factor of more than a thousand or two times

our present speeds. To assume that runs that would take thousands of millions

of years on our present machines will be done in a Xash on machines of the

future, is to move into the realms of science Wction.

Turing : To my mind this time factor is the one question which will involve all the

real technical diYculty. If one didn’t know already that these things can be

Can Automatic Calculating Machines Be Said To Think? | 503

done by brains within a reasonable time one might think it hopeless to try

with a machine. The fact that a brain can do it seems to suggest that the

diYculties may not really be so bad as they now seem.

Braithwaite : I agree that we ought not to extend our discussion to cover whether

calculating machines could be made which would do everything that a man

can do. The point is, surely, whether they can do all that it is proper to call

thinking. Appreciation of a picture contains elements of thinking, but it also

contains elements of feeling; and we’re not concerned with whether a machine

can be made that will feel. Similarly with moral questions: we’re only con-

cerned with them so far as they are also intellectual ones. We haven’t got to

give the machine a sense of duty or anything corresponding to a will: still less

need it be given temptations which it would then have to have an apparatus

for resisting. All that it has got to do in order to think is to be able to solve,

or to make a good attempt at solving, all the intellectual problems with which

it might be confronted by the environment in which it Wnds itself. This

environment, of course, must include Turing asking it awkward questions as

well as natural events such as being rained upon, or being shaken up by an

earthquake.

Newman: But I thought it was you who said that a machine wouldn’t be able to

learn to adjust to its environment if it hadn’t been provided with a set of

appetites and all that went with them?

Braithwaite : Yes, certainly. But the problems raised by a machine having appetites

are not properly our concern today. It may be the case that it wouldn’t be able to

learn from experience without them; but we’re only required to consider

whether it would be able to learn at all—since I agree that being able to learn

is an essential part of thinking. So oughtn’t we to get back to something centred

on thinking? Can a machine make up new concepts, for example?

Newman: There are really two questions that can be asked about machines and

thinking, Wrst, what do we require before we agree that the machine does

everything that we call thinking? This is really what we have been talking about

for most of the time; but there is also another interesting and important

question: Where does the doubtful territory begin? What is the nearest thing

to straight computing that the present machines perhaps can’t do?

Braithwaite : And what would your own answer be?

Newman: I think perhaps to solve mathematical problems for which no method

is known, in the way that men do; to Wnd new methods. This is a much more

modest aim than inventing new mathematical concepts. What happens when

you try to solve a new problem in the ordinary way is that you think about it

for a few seconds, or a few years, trying out all the analogies you can think of

with problems that have been solved, and then you have an idea. You try it out

in detail. If it is no good you must wait for another idea. This is a little like the

chess-problem routine, where one move after another is tried, but with one

504 | Turing, Braithwaite, Jefferson, Newman

very important diVerence, that if I am even a moderately good mathematician

the ideas that I get are not just random ones, but are pre-selected so that there

is an appreciable chance that after a few trials one of them will be successful.

Henry Moore says about the studies he does for his sculpture, ‘When the work

is more than an exercise, inexplicable jumps occur. This is where the imagin-

ation comes in.’ If a machine could really be got to imitate this sudden pounce

on an idea, I believe that everyone would agree that it had begun to think, even

though it didn’t have appetites or worry about the income tax. And suppose

that we also stuck to what we know about the physiology of human thinking,

how much would that amount to, JeVerson?

JeVerson: We know a great deal about the end-product, thinking itself. Are not

the contents of our libraries and museums the total up to date? Experimental

psychology has taught us a lot about the way that we use memory and

association of ideas, how we Wll in gaps in knowledge and improvise from a

few given facts. But exactly how we do it in terms of nerve cell actions we don’t

know. We are particularly ignorant of the very point that you mentioned just

now, Newman, the actual physiology of the pounce on an idea, of the sudden

inspiration. Thinking is clearly a motor activity of the brain’s cells, a sugges-

tion supported by the common experience that so many people think better

with a pen in their hand than viva voce or by reverie and reXection. But you

can’t so far produce ideas in a man’s mind by stimulating his exposed brain

here or there electrically. It would have been really exciting if one could have

done that—if one could have perhaps excited original thoughts by local

stimulation. It can’t be done. Nor does the electro-encephalograph show us

how the process of thinking is carried out. It can’t tell you what a man is

thinking about. We can trace the course, say, of a page of print or of a stream

of words into the brain, but we eventually lose them. If we could follow them

to their storage places we still couldn’t see how they are reassembled later as

ideas. You have the great advantage of knowing how your machine was made.

We only know that we have in the human nervous system a concern compact

in size and in its way perfect for its job. We know a great deal about its

microscopical structure and its connections. If fact, we know everything except

how these myriads of cells allow us to think. But, Newman, before we say ‘not

only does this machine think but also here in this machine we have an exact

counterpart of the wiring and circuits of human nervous systems,’ I ought to

ask whether machines have been built or could be built which are as it were

anatomically diVerent, and yet produce the same work.

Newman: The logical plan of all of them is rather similar, but certainly their

anatomy, and I suppose you could say their physiology, varies a lot.

JeVerson: Yes, that’s what I imagined—we cannot then assume that any one of

these electronic machines is a replica of part of a man’s brain even though the

result of its actions has to be conceded as thought. The real value of the

Can Automatic Calculating Machines Be Said To Think? | 505

machine to you is its end results, its performance, rather than that its plan

reveals to us a model of our brains and nerves. Its usefulness lies in the fact

that electricity travels along wires 2 or 3 million times faster than nerve

impulses pass along nerves. You can set it to do things that man would need

thousands of lives to complete. But that old slow coach, man, is the one with

the ideas—or so I think. It would be fun some day, Turing, to listen to a

discussion, say on the Fourth Programme, between two machines on why

human beings think that they think!

506 | Turing, Braithwaite, Jefferson, Newman

Artificial Life
Jack Copeland

1. What is ‘Artificial Life’?

The highly interdisciplinary Weld of ArtiWcial Life was so named by Christopher

Langton, a physicist working at the Los Alamos National Laboratory.1 In 1987

Langton organized at Los Alamos what he described as an ‘interdisciplinary

workshop on the synthesis and simulation of living systems’.2 The workshop

was a rallying point, bringing together researchers with shared interests and

diverse backgrounds.

ArtiWcial Life (‘A-Life’) aims to achieve theoretical understanding of naturally

occurring biological life, in particular of the most conspicuous feature of living

matter, its ability to self-organize, i.e. to develop form and structure spontan-

eously. Langton deWnes ArtiWcial Life as ‘the study of man-made systems that

exhibit behaviors characteristic of natural living systems’.3 A-Life, he says, ‘com-

plements the traditional biological sciences concerned with the analysis of living

organisms by attempting to synthesise life-like behaviors within computers and

other artiWcial media’.4

The use of computers to simulate living and life-like systems is central to

A-Life. Langton says:

Computers should be thought of as an important laboratory tool for the study of life,

substituting for the array of incubators, culture dishes, microscopes, electrophoretic gels,

pipettes, centrifuges, and other assorted wet-lab paraphernalia, one simple-to-master

piece of experimental equipment.5

Langton even suggests that the ‘ultimate goal of the study of artiWcial life

would be to create ‘‘life’’ in some other medium, ideally a virtual medium where

the essence of life has been abstracted from the details of its implementation in

any particular hardware’.6

1 C. G. Langton, ‘Studying ArtiWcial Life with Cellular Automata’, Physica D, 22 (1986), 120–49.

2 C. G. Langton (ed.), ArtiWcial Life: The Proceedings of an Interdisciplinary Workshop on the Synthesis and

Simulation of Living Systems (Redwood City, Calif.: Addison-Wesley, 1989).

3 C. G. Langton, ‘ArtiWcial Life’, in Langton, ArtiWcial Life, 1.

4 Ibid.

5 Ibid. 32.

6 Langton, ‘Studying ArtiWcial Life with Cellular Automata’, 147.

2. Morphogenesis

Turing was the earliest pioneer of computer-based A-Life: he was the Wrst to use

computer simulation to investigate a theory of the development of organization

and pattern in living things.7 Early in 1951, the world’s Wrst commercially

manufactured general-purpose electronic digital computer, the Manchester-

built Ferranti Mark I, was installed in the Computing Machine Laboratory at

Manchester University.8 Turing immediately set about using the machine to

model biological growth. In February 1951 he wrote to a colleague at the

National Physical Laboratory:

Our new machine [the Ferranti Mark I] is to start arriving on Monday. I am hoping as one

of the Wrst jobs to do something about ‘chemical embryology’. In particular I think one

can account for the appearance of Fibonacci numbers in connection with Wr-cones.9

In a Fibonacci number-series, each number, except for the Wrst two, is the sum of

the two previous numbers: for example 1, 3, 4, 7, 11 . . .

In brief, Turing’s ‘chemical embryology’ is the hypothesis that the develop-

ment of anatomical structure in the animal or plant embryo is a result of the fact

that diVusing chemicals reacting with one another can form spatial patterns. This

is a thoroughly reductionist view: forms found in living matter are accounted for

by the fact that, under appropriate conditions, sheer chemical reaction produces

pattern and form.

Turing took his cue from the zoologist D’Arcy Thompson (to whose work

Turing refers at the end of Chapter 15). D’Arcy Thompson held that the forms of

living things, no less than naturally occurring forms in inorganic matter, are to

be explained in terms of ‘the operation of physical forces or mathematical laws’.10

Cell and tissue, shell and bone, leaf and Xower, are so many portions of matter, and it is in

obedience to the laws of physics that their particles have been moved, moulded and

conformed. . . . The form . . . of any portion of matter, whether it be living or dead, and

7 Another early pioneer of A-Life was the neurophysiologist W. Grey Walter (a founder of the Ratio

Club, of which Turing was also a member). His famous ‘tortoises’—built from about 1949 onwards—were

mobile, battery-powered devices exhibiting life-like properties. He constructed them in order to show that

seemingly complex behaviour can result from simple mechanisms (W. Grey Walter, The Living Brain

(London: Gerald Duckworth, 1953), 82–7 and appendix B). Although digital computers were not involved,

Grey Walter’s work certainly conforms to Langton’s description given above: ‘ArtiWcial Life . . . attempt[s] to

synthesise life-like behaviors within computers and other artiWcial media’ (italics added).

8 A digital facsimile of Turing’s Programmers’ Handbook for Manchester Electronic Computer (University

of Manchester Computing Machine Laboratory, 1950) is in The Turing Archive for the History of

Computing <www.AlanTuring.net/programmers_handbook>.

9 Letter from Turing to Michael Woodger, undated, received 12 Feb. 1951 (in the Woodger Papers,

National Museum of Science and Industry, Kensington, London; a digital facsimile is in the Turing Archive

for the History of Computing <www.AlanTuring.net/turing_woodger_feb51>).

10 W. D’Arcy Thompson, On Growth and Form (2nd edn. Cambridge: Cambridge University Press,

1942), 3.

508 | Jack Copeland

www.AlanTuring.net/programmers_handbook
www.AlanTuring.net/turing_woodger_feb51

the changes of form which are apparent in its . . . growth, may in all cases alike be described

as due to the action of force.11

Concerning the puzzling fact that the scales of a Wr-cone, or the Xorets of a

sunXower, are grouped together in numbers that form a Fibonacci series, D’Arcy

Thompson boldly declared:

while the Fibonacci series stares us in the face in the Wr-cone, it does so for mathematical

reasons; and its supposed usefulness, and the hypothesis of its introduction into plant-

structure through natural selection, are matters which deserve no place in the plain study

of botanical phenomena.12

Turing summarized his own theory as the suggestion that ‘certain well-known

physical laws are suYcient to account for many of the facts’ of morphogenesis

(p. 519). (‘Morphogenesis’ means ‘generation of form’.) Turing described an

idealized chemical mechanism, now called the reaction-diVusion model. He

showed that this mechanism could lead to a number of simple but life-like

patterns and forms. The reaction-diVusion model is the topic of Chapter 15,

‘The Chemical Basis of Morphogenesis’. ‘The Chemical Basis of Morphogenesis’

has been widely cited in the biological literature and today reaction-diVusion

remains a possible, although still unconWrmed, explanation of aspects of the

generation of biological pattern and form.

The geneticist C. H. Waddington commented in a letter to Turing in 1952 that

the most clear-cut application of Turing’s theory appeared to be ‘in the arising of

spots, streaks, and Xecks of various kinds in apparently uniform areas such as the

wings of butterXies, the shells of molluscs, the skin of tigers, leopards, etc’.13

Modern computer simulations of Turing’s reaction-diVusion mechanism have

indeed produced leopard-like spots, cheetah-like spots, and giraVe-like stripes, as

well as textures reminiscent of reptile skin, corals, and the surfaces of some

fungi.14 Turing himself, however, envisaged diverse applications of his theory

(as he indicated in the letter to biologist J. Z. Young quoted below), includ-

ing leaf arrangements and the appearance of Fibonacci sequences, and

phenomena such as gastrulation. (Gastrulation is a process of rearrange-

ment of cells in the spherical embryo, involving the folding inwards of part

of the surface, producing a depression akin to the dent formed by poking a

balloon with a Wnger.) Furthermore, Turing described his research into

11 Ibid. 10, 16.

12 Ibid. 933.

13 Letter from Waddington to Turing (11 Sept. 1952). The letter is among the Turing Papers in the

Modern Archive Centre, King’s College, Cambridge (catalogue reference D 5).

14 J. D. Murray, ‘A Pre-pattern Formation Mechanism for Animal Coat Markings’, Journal of Theoretical

Biology, 88 (1981), 161–99; G. Turk, ‘Generating Textures on Arbitrary Surfaces Using Reaction-DiVusion’,

Computer Graphics, 25 (1991), 289–98; A. Witkin and M. Kass, ‘Reaction-DiVusion Textures’, Computer

Graphics, 25 (1991), 299–308.

Artificial Life | 509

morphogenesis as ‘not altogether unconnected’ to his work on neural net-

works (see Chapter 10).

Turing simulated the reaction-diVusion mechanism using the Ferranti com-

puter. A mathematician using paper and pencil to analyse the behaviour of a

reaction-diVusion system risks becoming overwhelmed by formidable math-

ematical complexity, and must make (what Turing calls) ‘simplifying assump-

tions’. Turing explains that use of the computer enables such assumptions to be

dispensed with to some extent. This freedom enables Turing to employ non-

linear diVerential equations to describe the chemical interactions hypothesized

by his theory.15 Non-linear diVerential equations are mathematically intractable.

Turing used the computer to explore in detail particular cases of interactions

governed by equations of this type. He may well have been the Wrst researcher to

engage in the computer-assisted exploration of non-linear systems.16 (It was not

until Benoit Mandelbrot’s discovery of the ‘Mandelbrot set’ in 1979 that the

computer-assisted investigation of non-linear systems gained widespead

attention.17)

Turing’s work on morphogenesis was in every respect ahead of its time. He

died while in the midst of this groundbreaking work, leaving a large pile of

handwritten notes and various programmes.18 This material is still not fully

understood.

The computer programme shown in Figure 1, which is in Turing’s own

hand, formed part of his study of the development of the Wr-cone. He also

investigated the development of the sunXower. The photograph and diagram

shown in Figure 2 are from his notes.19

3. The Reaction-Diffusion Model

In reaction-diVusion, two or more chemicals diVuse through the embryo reacting

with each other. Turing showed that under certain conditions a stable pattern

of chemical concentrations will be reached. For example, in the case of an artiW-

cially simple embryo consisting of nothing but a ring of twenty cells, reaction-

diVusion will produce a stable, regular pattern of concentration and rarefaction

around the circumference of the ring. The points of highest concentration

15 See p. 561 of Chapter 15; also section 2 of Turing’s ‘Morphogen Theory of Phyllotaxis’, in Morphogen-

esis: Collected Works of A. M. Turing, ed. P. T. Saunders (Amsterdam: North-Holland, 1992).

16 Unless perhaps the computer-assisted modelling of non-linear systems was Wrst undertaken a little

earlier, in secret, by members of the Los Alamos group in connection with nuclear explosions.

17 B. B. Mandelbrot, The Fractal Geometry of Nature (New York: Freeman, 1977; revised and expanded

1982, 1983). For a popular exposition see J. Gleick, Chaos: Making a New Science (London: Cardinal, 1988).

18 Some—but by no means all—of this material appears in Morphogenesis, ed. Saunders.

19 The notes and programme sheets are among the Turing Papers in the Modern Archive Centre, King’s

College, Cambridge (catalogue references C 25, C 27).

510 | Jack Copeland

Figure 1.

occur equidistantly from one another. Turing picturesquely describes this pattern

as a stationary ‘chemical wave’. His suggestion is that at the points of high

concentration around the ring, the chemical acts as a trigger to stimulate growth.

For example, a ring of cells might sprout leaves at these points, or tentacles,

producing a structure reminiscent of Hydra (‘something like a sea-anenome but

liv[ing] in fresh water and hav[ing] from about Wve to ten tentacles’ (p. 556)).

Regular but non-stationary patterns of concentration—travelling waves—are

also possible. Turing suggested that the movements of the tail of a spermatozoon

may provide an example of these travelling waves.

Artificial Life | 511

It might be wondered how genes Wt into this picture. Given our current

knowledge of the role played by genes in the determination of anatomical

structure, is Turing’s theory archaic? Not at all. On Turing’s account, reaction-

diVusion is the mechanism by which genes determine the anatomical structure of

the resulting organism. The function of genes, he suggested, is catalytic. The

genes are presumed to catalyse the production of appropriate chemicals, so

setting reaction-diVusion in train.

Turing calls the chemicals that diVuse and react ‘morphogens’, suggesting

hormones as an example. However, his aim is not to give a taxonomy of

morphogens or to describe speciWc morphogens, but rather to demonstrate in

the abstract that, given certain realistic assumptions about unspeciWed morpho-

gens, reaction-diVusion will produce pattern. These assumptions include the

rates at which the morphogens diVuse between the cells, the rates at which the

various chemical reactions between the morphogens take place, and the ways in

which these rates change (due, for example, to increases in temperature in the

tissue, or increases in concentration of morphogens that act as catalysts). The

initial concentrations of the morphogens must be speciWed, and the number,

dimensions, and positions of the cells making up the mass of tissue through

which the morphogens diVuse. This mass—the embryo—is assumed to be

initially homogeneous. (Other features of the situation, such as the motions

and elasticities of the cells, are ignored in order to simplify the model.)

Turing represents the reactions between morphogens purely schematically,

making no assumptions concerning the actual chemical compositions of the

substances involved. For example, two reactions might be speciWed like this:

morphogens X and Y react to produce Z; Z and morphogen A react to produce

Figure 2. Turing’s numbering of the individual florets of a sunflower.

20 Editor’s note. A blastula is a hollow sphere of cells, one cell in thickness.

512 | Jack Copeland

2Y. The Wrst reaction therefore depletes the supply of morphogen Y, while the

second tends to build up the concentration of Y.

Uniform diVusion and uniform reaction in a uniform mass of tissue can

produce only uniformity, not diVerentiation and pattern. Some sort of sym-

metry-breaker must be thrown into the mix. As Turing put it (p. 525):

There appears superWcially to be a diYculty confronting this theory of morphogenesis,

or, indeed, almost any other theory of it. An embryo in its spherical blastula20 stage

has spherical symmetry, or if there are any deviations from perfect symmetry, they cannot

be regarded as of any particular importance, for the deviations vary greatly from embryo

to embryo within a species, though the organisms developed from them are barely

distinguishable. One may take it therefore that there is perfect spherical symmetry. But

a system which has spherical symmetry, and whose state is changing because of chemical

reactions and diVusion, will remain spherically symmetrical forever. . . . It certainly

cannot result in an organism such as a horse, which is not spherically symmetrical.

Turing suggested various possible symmetry-breakers, including small disturb-

ances caused by the presence of anatomical structures neighbouring the embryo,

and purely statistical Xuctuations at themolecular level. An example of the latter is

statistical Xuctuation in the number of molecules of a given morphogen passing

through the wall of a cell, so producing small Xuctuations in the concentration of

that morphogen within the cell. Turing’s point is that in certain circumstances,

small Xuctuations such as this can bring about large eVects, just as a small nudge

that under normal circumstances would have no eVect on a person’s balance could

be enough to topple someone balancing on one foot.

Turing demonstrated that under appropriate conditions small departures

from uniformity can indeed lead to the formation of chemical waves.

4. Genetic Algorithms

An important concept both in ArtiWcial Life and in ArtiWcial Intelligence is that

of a genetic algorithm (GA). GAs employ methods analogous to the processes of

natural evolution in order to produce successive generations of software entities

that are increasingly Wt for their intended purpose. Turing anticipated the

concept of a genetic algorithm in a brief passage of his ‘Intelligent Machinery’,

where he described what he called a ‘genetical or evolutionary search’ (Chapter

10, p. 431; see also Chapter 11, p. 463, and the introduction to Chapter 16,

p. 565). The actual term ‘genetic algorithm’ was introduced circa 1975 by John

Holland and his research group at the University of Michigan.21 Holland’s work

is responsible for the current intense interest in GAs. (Holland, a student of

Arthur Burks, was inXuenced by von Neumann’s ideas—see below.)

21 J. H. Holland, Adaptation in Natural and ArtiWcial Systems (Cambridge, Mass.: MIT Press, 1992), p. x.

Artificial Life | 513

Turing described an early example of a GA in connection with his chess-player

in Chapter 16.

One of the Wrst GAs to be implemented (in the 1950s) formed part of the

learning mechanism of Samuel’s checkers or draughts programme mentioned

above in ‘ArtiWcial Intelligence’.22 Samuel’s programme used heuristics to rank

moves and board positions (the programme ‘looked ahead’ as many as ten turns

of play). To speed up learning, Samuel would set up two copies of the pro-

gramme, Alpha and Beta, on the same computer and leave them to play game

after game with each other. The learning procedure consisted in the computer

making small numerical changes to Alpha’s ranking procedure, leaving Beta’s

unchanged, and then comparing Alpha’s and Beta’s performance over a few

games. If Alpha played worse than Beta, these changes to the ranking procedure

were discarded, but if Alpha played better than Beta then Beta’s ranking proced-

ure was replaced with Alpha’s. As in biological evolution, the Wtter survived. Over

many such cycles of mutation and selection, the programme’s quality of play

increased markedly.

The use of GAs is burgeoning, in AI and elsewhere. In one application a GA-

based system and a witness to a crime cooperate to generate on-screen faces that

become closer and closer to the recollected face of the criminal.23 In A-Life,

researchers study GAs as a means of studying the process of evolution itself.

5. John von Neumann and A-Life

John von Neumann was another important early pioneer of ArtiWcial Life. In his

1948 Hixon Symposium, entitled ‘The General and Logical Theory of Automata’,

he said:

Natural organisms are, as a rule, much more complicated and subtle, and therefore much

less well understood in detail, than are artiWcial automata. Nevertheless . . . a good deal of

our experiences and diYculties with our artiWcial automata can be to some extent

projected on our interpretations of natural organisms.24

Arthur Burks (who edited and completed von Neumann’s posthumously

published volume Theory of Self-Reproducing Automata, listed in the section of

Further Reading) wrote this concerning von Neumann’s research on the problem

of self-reproduction:

22 A. L. Samuel, ‘Some Studies in Machine Learning Using the Game of Checkers’, IBM Journal of

Research and Development, 3 (1959), 211–29; reprinted in E. A. Feigenbaum and J. Feldman (eds.),

Computers and Thought (New York: McGraw-Hill, 1963).

23 D. E. Goldberg, ‘Genetic and Evolutionary Algorithms Come of Age’, Communications of the Associ-

ation for Computing Machinery, 37 (1994), 113–19.

24 J. von Neumann, ‘The General and Logical Theory of Automata’, in vol. v of von Neumann’s Collected

Works, ed. A. H. Taub (Oxford: Pergamon Press, 1963), 288–9.

514 | Jack Copeland

Von Neumann had the familiar natural phenomenon of self-reproduction in mind . . . but

he was not trying to simulate the self-reproduction of a natural system at the levels of

genetics and biochemistry. He wished to abstract from the natural self-reproduction

problem its logical form.25

This passage is quoted approvingly by Langton, who italicizes the Wnal sentence

and comments:

This approach is the Wrst to capture the essence of ArtiWcial Life. To understand the Weld

of ArtiWcial Life, one need only replace references to ‘self-reproduction’ in the above with

references to any other biological phenomenon.26

Von Neumann was thinking about issues relevant to A-Life at least as early as

1946. In a letter to the cyberneticist Norbert Wiener (dated 29 November 1946),

von Neumann wrote: ‘I did think a good deal about self-reproductive mechan-

isms. I can formulate the problem rigorously, in about the style in which Turing

did it for his mechanisms.’27 There is no doubt that von Neumann’s theorizing

about self-reproduction was strongly inXuenced by Turing’s discovery of the

universal computing machine (or ‘universal automaton’, as von Neumann called

it). Von Neumann’s colleague Herman Goldstine wrote:

von Neumann had a profound concern for automata. In particular, he always had a deep

interest in Turing’s work. . . . Turing proved a most remarkable and unexpected result. . . .

In essence what he showed is that any particular automaton can be described by a Wnite set

of instructions, and that when this is fed to his universal automaton it in turn imitates the

special one. . . . Von Neumann was enormously intrigued with these ideas, and he started

in 1947 working on . . . how complex a device or construct needed to be in order to be self-

reproductive.28

In his Hixon Symposium, von Neumann said:

For the question which concerns me here, that of ‘self-reproduction’ of automata,

Turing’s procedure is too narrow in one respect only. His automata are purely computing

machines. Their output is a piece of tape with zeros and ones on it. What is needed . . . is

an automaton whose output is other automata. There is, however, no diYculty in

principle in dealing with this broader concept and in deriving from it the equivalent of

Turing’s result. . . . The problem of self-reproduction can . . . be stated like this: Can one

build an aggregate out of . . . elements in such a manner that if it is put into a reservoir, in

which there Xoat all these elements in large numbers, it will then begin to construct other

aggregates, each of which will at the end turn out to be another automaton exactly like the

25 A. W. Burks (ed.), Essays on Cellular Automata (Urbana: University of Illinois Press, 1970), p. xv.

26 C. G. Langton, ‘ArtiWcial Life’, in M. A. Boden (ed.), The Philosophy of ArtiWcial Life (Oxford: Oxford

University Press, 1996), 47.

27 Letter from von Neumann to Wiener, 29 Nov. 1946 (in the von Neumann Archive at the Library of

Congress, Washington, DC).

28 H. H. Goldstine, The Computer from Pascal to von Neumann (Princeton: Princeton University Press,

1972), 271, 274–5.

Artificial Life | 515

original one? This is feasible, and the principle on which it can be based is closely related

to Turing’s [universal automaton] outlined earlier.29

In lectures von Neumann described a ‘universal constructor’ (remarking, ‘You

see, I’m coming quite close to Turing’s trick with universal automata’).30 Just as

complete descriptions of Turing machines can be fed into the universal automa-

ton in the form of programmes, complete descriptions of automata can be

inserted into the universal constructor. The universal constructor Xoats in a

medium—or sea—in which also Xoat, in practically unlimited supply, the

components from which the universal constructor is made. Given a complete

description of an automaton, the universal constructor will assemble that

automaton.

If what is inserted into the universal constructor is a description I of the

universal constructor itself, the constructor assembles a duplicate of itself—self-

reproduction. Since the duplicate is to be an exact copy, it must contain the

description I. This is done by a copying mechanism in the universal constructor

and the copy of I is inserted into the oVspring.31 Thus the oVspring, too, is capable

of self-reproduction. Von Neumann likened the description I to the gene, saying

that the copying mechanism ‘performs the fundamental act of reproduction, the

duplication of the genetic material, which is clearly the fundamental operation in

the multiplication of living cells’.32 Allowing the copying mechanism to make

occasional random errors aVords the possibility of random mutation in the

genes of the oVspring, thus opening the door to Darwinian evolution.33

In his letter to Wiener (29 November 1946), von Neumann voiced some

concerns that might equally well be raised concerning the focus of modern

research in A-Life and ArtiWcial Intelligence. Von Neumann pointed out that

when automata theorists choose the human nervous system as their model,

they are unrealistically selecting ‘the most complicated object under the sun—

literally’. Moreover, he said, there is little advantage in choosing instead simpler

organisms with fewer neurons, for example, the ant: any nervous system exhibits

‘exceptional complexity’. Von Neumann suggested that automata theorists ‘turn

to simpler systems’, and he recommended attention to ‘organisms of the virus or

bacteriophage type’. These, he pointed out, are ‘self-reproductive and . . . are able

to orient themselves in an unorganized milieu, to move towards food, to

appropriate it and to use it’. He estimated that a typical bacteriophage might

consist of 6 million atoms grouped into a few hundred thousand ‘mechanical

elements’, saying that this represents ‘a degree of complexity which is not

29 von Neumann, ‘The General and Logical Theory of Automata’, 315.

30 J. von Neumann, Theory of Self-Reproducing Automata, ed. and completed by A. W. Burks (Urbana:

University of Illinois Press, 1966), 83.

31 von Neumann ‘The General and Logical Theory of Automata’, 316–17.

32 Ibid., 317.

33 Ibid. 317–18.

516 | Jack Copeland

necessarily beyond human endurance’. By following this path, he said, the

‘decisive break’ might be achieved.

6. Letter from Turing to Young

Shortly before the Ferranti computer arrived in 1951, Turing wrote about his

work on morphogenesis in a letter to the biologist J. Z. Young. The letter

connects Turing’s work on morphogenesis with his interest in neural networks

(Chapter 10), and moreover to some extent explains why he did not follow up

his earlier suggestion (Chapter 10, p. 428) and use the Ferranti computer to

simulate his ‘unorganised machines’.

I am afraid I am very far from the stage where I feel inclined to start asking any

anatomical questions [about the brain]. According to my notions of how to set about it

that will not occur until quite a late stage when I have a fairly deWnite theory about how

things are done.

At present I am not working on the problem at all, but on my mathematical theory of

embryology . . . This is yielding to treatment, and it will so far as I can see, give satisfactory

explanations of

i) Gastrulation.

ii) Polyogonally symmetrical structures, e.g., starWsh, Xowers.

iii) Leaf arrangement, in particular the way the Fibonacci series (0, 1, 1, 2, 3, 5, 8,

13, . . .) comes to be involved.

iv) Colour patterns on animals, e.g., stripes, spots and dappling.

v) Patterns on nearly spherical structures such as some Radiolaria, but this is more

diYcult and doubtful.

I am really doing this now because it is yielding more easily to treatment. I think it is

not altogether unconnected with the other problem. The brain structure has to be one

which can be achieved by the genetical embryological mechanism, and I hope that this

theory that I am now working on may make clearer what restrictions this really implies.

What you tell me about growth of neurons under stimulation is very interesting in this

connection. It suggests means by which the neurons might be made to grow so as to form

a particular circuit, rather than to reach a particular place.34

Further reading

Boden, M. A.,Mind as Machine: A History of Cognitive Science (Oxford: Oxford University

Press, 2005).

——(ed.), The Philosophy of ArtiWcial Life (Oxford: Oxford University Press, 1996).

34 Letter from Turing to Young, 8 Feb. 1951 (a copy of the letter is in the Modern Archive Centre, King’s

College, Cambridge (catalogue reference K 78)).

Artificial Life | 517

Holland, J. H., ‘Genetic Algorithms’, ScientiWc American, 267 (July 1992), 44–50.

Swinton, J., ‘Watching the Daisies Grow: Turing and Fibonacci Phyllotaxis’, in C. Teuscher

(ed.), Alan Turing: Life and Legacy of a Great Thinker (Berlin: Springer-Verlag, 2004).

Turing, A. M., Morphogenesis: Collected Works of A. M. Turing, ed. P. T. Saunders

(Amsterdam: North-Holland, 1992).

Turk, G., ‘Generating Textures on Arbitrary Surfaces Using Reaction-DiVusion’, Computer

Graphics, 25 (1991), 289–98.

von Neumann, J., Theory of Self-Reproducing Automata, ed. and completed by A. W. Burks

(Urbana: University of Illinois Press, 1966).

518 | Jack Copeland

CHAPTER 15

The Chemical Basis of

Morphogenesis (1952)

Alan Turing

It is suggested that a system of chemical substances, called morphogens, reacting together

and diVusing through a tissue, is adequate to account for the main phenomena of

morphogenesis. Such a system, although it may originally be quite homogenous, may

later develop a pattern or structure due to an instability of the homogeneous equilibrium,

which is triggered oV by random disturbances. Such reaction-diVusion systems are

considered in some detail in the case of an isolated ring of cells, a mathematically

convenient, though biologically unusual system. The investigation is chieXy concerned

with the onset of instability. It is found that there are six essentially diVerent forms which

this may take. In the most interesting form stationary waves appear on the ring. It is

suggested that this might account, for instance, for the tentacle patterns on Hydra and for

whorled leaves. A system of reactions and diVusion on a sphere is also considered. Such a

system appears to account for gastrulation. Another reaction system in two dimensions

gives rise to patterns reminiscent of dappling. It is also suggested that stationary waves in

two dimensions could account for the phenomena of phyllotaxis.

The purpose of this paper is to discuss a possible mechanism by which the genes of a

zygote may determine the anatomical structure of the resulting organism. The theory does

not make any new hypotheses; it merely suggests that certain well-known physical laws are

suYcient to account for many of the facts. The full understanding of the paper requires a

good knowledge of mathematics, some biology, and some elementary chemistry. Since

readers cannot be expected to be experts in all of these subjects, a number of elementary

facts are explained, which can be found in text-books, but whose omission would make

the paper diYcult reading.

1. A model of the embryo. Morphogens

In this section a mathematical model of the growing embryo will be described.

This model will be a simpliWcation and an idealization, and consequently a

falsiWcation. It is to be hoped that the features retained for discussion are those

of greatest importance in the present state of knowledge.

This article Wrst appeared in Philosophical Transactions of the Royal Society of London, Series B, 237

(1952–54), 37–72. It is reprinted with the permission of the Royal Society and the Estate of Alan Turing.

The model takes two slightly diVerent forms. In one of them the cell theory is

recognized but the cells are idealized into geometrical points. In the other the

matter of the organism is imagined as continuously distributed. The cells are not,

however, completely ignored, for various physical and physico-chemical charac-

teristics of the matter as a whole are assumed to have values appropriate to the

cellular matter.

With either of the models one proceeds as with a physical theory and deWnes

an entity called ‘the state of the system’. One then describes how that state is to be

determined from the state at a moment very shortly before. With either model

the description of the state consists of two parts, the mechanical and the

chemical. The mechanical part of the state describes the positions, masses,

velocities and elastic properties of the cells, and the forces between them. In

the continuous form of the theory essentially the same information is given in

the form of the stress, velocity, density and elasticity of the matter. The chemical

part of the state is given (in the cell form of theory) as the chemical composition

of each separate cell; the diVusibility of each substance between each two adja-

cent cells must also be given. In the continuous form of the theory the concen-

trations and diVusibilities of each substance have to be given at each point. In

determining the changes of state one should take into account

(i) The changes of position and velocity as given by Newton’s laws of motion.

(ii) The stresses as given by the elasticities and motions, also taking into

account the osmotic pressures as given from the chemical data.

(iii) The chemical reactions.

(iv) The diVusion of the chemical substances. The region in which this

diVusion is possible is given from the mechanical data.

This account of the problem omits many features, e.g. electrical properties and

the internal structure of the cell. But even so it is a problem of formidable

mathematical complexity. One cannot at present hope to make any progress with

the understanding of such systems except in very simpliWed cases. The interde-

pendence of the chemical and mechanical data adds enormously to the diYculty,

and attention will therefore be conWned, so far as is possible, to cases where these

can be separated. The mathematics of elastic solids is a well-developed subject,

and has often been applied to biological systems. In this paper it is proposed to

give attention rather to cases where the mechanical aspect can be ignored and the

chemical aspect is the most signiWcant. These cases promise greater interest, for

the characteristic action of the genes themselves is presumably chemical. The

systems actually to be considered consist therefore of masses of tissues which are

not growing, but within which certain substances are reacting chemically, and

through which they are diVusing. These substances will be called morphogens,

the word being intended to convey the idea of a form producer. It is not intended

to have any very exact meaning, but is simply the kind of substance concerned in

520 | Alan Turing

this theory. The evocators of Waddington provide a good example of morpho-

gens (Waddington 1940). These evocators diVusing into a tissue somehow

persuade it to develop along diVerent lines from those which would have been

followed in its absence. The genes themselves may also be considered to be

morphogens. But they certainly form rather a special class. They are quite

indiVusible. Moreover, it is only by courtesy that genes can be regarded as

separate molecules. It would be more accurate (at any rate at mitosis) to regard

them as radicals of the giant molecules known as chromosomes. But presumably

these radicals act almost independently, so that it is unlikely that serious errors

will arise through regarding the genes as molecules. Hormones may also be

regarded as quite typical morphogens. Skin pigments may be regarded as mor-

phogens if desired. But those whose action is to be considered here do not come

squarely within any of these categories.

The function of genes is presumed to be purely catalytic. They catalyze the

production of other morphogens, which in turn may only be catalysts. Eventu-

ally, presumably, the chain leads to some morphogens whose duties are not

purely catalytic. For instance, a substance might break down into a number of

smaller molecules, thereby increasing the osmotic pressure in a cell and promot-

ing its growth. The genes might thus be said to inXuence the anatomical form of

the organism by determining the rates of those reactions which they catalyze. If

the rates are assumed to be those determined by the genes, and if a comparison

of organisms is not in question, the genes themselves may be eliminated from the

discussion. Likewise any other catalysts obtained secondarily through the agency

of the genes may equally be ignored, if there is no question of their concen-

trations varying. There may, however, be some other morphogens, of the nature

of evocators, which cannot be altogether forgotten, but whose role may neverthe-

less be subsidiary, from the point of view of the formation of a particular organ.

Suppose, for instance, that a ‘leg-evocator’ morphogen were being produced in a

certain region of an embryo, or perhaps diVusing into it, and that an attempt was

being made to explain the mechanism by which the leg was formed in the

presence of the evocator. It would then be reasonable to take the distribution

of the evocator in space and time as given in advance and to consider the

chemical reactions set in train by it. That at any rate is the procedure adopted

in the few examples considered here.

2. Mathematical background required

The greater part of this present paper requires only a very moderate knowledge of

mathematics. What is chieXy required is an understanding of the solution of linear

diVerential equations with constant coeYcients. (This is also what is chieXy

required for an understanding of mechanical and electrical oscillations.) The

solution of such an equation takes the form of a sum
P

Aebt , where the quantities

The Chemical Basis of Morphogenesis | 521

A, b may be complex, i.e. of the form aþ ib, where a and b are ordinary

(real) numbers and i ¼ �1p
. It is of great importance that the physical sign-

iWcance of the various possible solutions of this kind should be appreciated, for

instance, that

(a) Since the solutions will normally be real one can also write them in the

form R
P

Aebt or
P

RAebt (R means ‘real part of ’).

(b) That if A ¼ A0eif and b ¼ aþ ib, where A0, a, b, f are real, then

RAebt ¼ A0eat cos (bt þ f):

Thus each such term represents a sinusoidal oscillation if a ¼ 0, a damped

oscillation if a < 0, and an oscillation of ever-increasing amplitude if

a > 0.

(c) If any one of the numbers b has a positive real part the system in question

is unstable.

(d) After a suYciently great lapse of time all the terms Aebt will be negligible

in comparison with those for which b has the greatest real part, but unless

this greatest real part is itself zero these dominant terms will eventually

either tend to zero or to inWnite values.

(e) That the indeWnite growth mentioned in (b) and (d) will in any physical or

biological situation eventually be arrested due to a breakdown of the

assumptions under which the solution was valid. Thus, for example, the

growth of a colony of bacteria will normally be taken to satisfy the equa-

tion dy=dt ¼ ay(a > 0), y being the number of organisms at time t, and

this has the solution y ¼ Aeat . When, however, the factor eat has reached

some billions the food supply can no longer be regarded as unlimited and

the equation dy=dt ¼ ay will no longer apply.

The following relatively elementary result will be needed, but may not be

known to all readers:

XN
r¼1

exp
2pirs
N

�
¼ 0 if 0 < s < N ,

¼ N if s ¼ 0 or s ¼ N :but

The Wrst case can easily be proved when it is noticed that the left-hand side is a

geometric progression. In the second case all the terms are equal to 1.

The relative degrees of diYculty of the various sections are believed to be as

follows. Thosewho are unable to follow the pointsmade in this section should only

attempt §§3, 4, 11, 12, 14 and part of §13. Those who can just understand this

section should proWt also from §§7, 8, 9. The remainder, §§5, 10, 13, will probably

only be understood by those deWnitely trained as mathematicians.

522 | Alan Turing

3. Chemical reactions

It has been explained in a preceding section that the system to be considered

consists of a number of chemical substances (morphogens) diVusing through a

mass of tissue of given geometrical form and reacting together within it. What

laws are to control the development of this situation? They are quite simple. The

diVusion follows the ordinary laws of diVusion, i.e. each morphogen moves from

regions of greater to regions of less concentration, at a rate proportional to the

gradient of the concentration, and also proportional to the ‘diVusibility’ of the

substance. This is very like the conduction of heat, diVusibility taking the place of

conductivity. If it were not for the walls of the cells the diVusibilities would be

inversely proportional to the square roots of the molecular weights. The pores of

the cell walls put a further handicap on the movement of the larger molecules in

addition to that imposed by their inertia, and most of them are not able to pass

through the walls at all.

The reaction rates will be assumed to obey the ‘law of mass action’. This states

that the rate at which a reaction takes place is proportional to the concentrations

of the reacting substances. Thus, for instance, the rate at which silver chloride

will be formed and precipitated from a solution of silver nitrate and sodium

chloride by the reaction

Agþþ Cl� ! AgCl

will be proportional to the product of the concentrations of the silver ion Agþ

and the chloride ion Cl�. It should be noticed that the equation

AgNO3 þ NaCl! AgClþNaNO3

is not used because it does not correspond to an actual reaction but to the Wnal

outcome of a number of reactions. The law of mass action must only be applied to

the actual reactions. Very often certain substances appear in the individual reac-

tions of a group, but not in the Wnal outcome. For instance, a reaction A! Bmay

really take the form of two steps Aþ G ! C and C ! B þ G. In such a case the

substance G is described as a catalyst, and as catalyzing the reaction A! B.

(Catalysis according to this plan has been considered in detail by Michaelis &

Menten (1913).) The eVect of the genes is presumably achieved almost entirely by

catalysis. They are certainly not permanently used up in the reactions.

Sometimes one can regard the eVect of a catalyst as merely altering a reaction

rate. Consider, for example, the case mentioned above, but suppose also that A

can become detached from G, i.e. that the reaction C ! Aþ G is taken into

account. Also suppose that the reactions Aþ G ! C both proceed much faster

than C ! B þ G. Then the concentrations of A, G, C will be related by

the condition that there is equilibrium between the reactions Aþ G ! C

and C ! Aþ G, so that (denoting concentrations by square brackets)

The Chemical Basis of Morphogenesis | 523

[A][G] ¼ k[C] for some constant k. The reaction C ! B þ G will of course

proceed at a rate proportional to [C], i.e. to [A][G]. If the amount of C is always

small compared with the amount of G one can say that the presence of the

catalyst and its amount merely alter the mass action constant for the reaction

A! B, for the whole proceeds at a rate proportional to [A]. This situation does

not, however, hold invariably. It may well happen that nearly all of G takes the

combined form C so long as any of A is left. In this case the reaction proceeds at a

rate independent of the concentration of A until A is entirely consumed. In either

of these cases the rate of the complete group of reactions depends only on the

concentrations of the reagents, although usually not according to the law of mass

action applied crudely to the chemical equation for the whole group. The same

applies in any case where all reactions of the group with one exception proceed at

speeds much greater than that of the exceptional one. In these cases the rate of

the reaction is a function of the concentrations of the reagents. More generally

again, no such approximation is applicable. One simply has to take all the actual

reactions into account.

According to the cell model then, the number and positions of the cells are

given in advance, and so are the rates at which the various morphogens diVuse

between the cells. Suppose that there are N cells andMmorphogens. The state of

the whole system is then given by MN numbers, the quantities of the M

morphogens in each of N cells. These numbers change with time, partly because

of the reactions, partly because of the diVusion. To determine the part of the rate

of change of one of these numbers due to diVusion, at any one moment, one only

needs to know the amounts of the same morphogen in the cell and its neigh-

bours, and the diVusion coeYcient for that morphogen. To Wnd the rate of

change due to chemical reaction one only needs to know the concentrations of all

morphogens at that moment in the one cell concerned.

This description of the system in terms of the concentrations in the various

cells is, of course, only an approximation. It would be justiWed if, for instance, the

contents were perfectly stirred. Alternatively, it may often be justiWed on the

understanding that the ‘concentration in the cell’ is the concentration at a certain

representative point, although the idea of ‘concentration at a point’ clearly itself

raises diYculties. The author believes that the approximation is a good one,

whatever argument is used to justify it, and it is certainly a convenient one.

It would be possible to extend much of the theory to the case of organisms

immersed in a Xuid, considering the diVusion within the Xuid as well as from cell

to cell. Such problems are not, however, considered here.

4. The breakdown of symmetry and homogeneity

There appears superWcially to be a diYculty confronting this theory of morpho-

genesis, or, indeed, almost any other theory of it. An embryo in its spherical

524 | Alan Turing

blastula stage has spherical symmetry, or if there are any deviations from perfect

symmetry, they cannot be regarded as of any particular importance, for the

deviations vary greatly from embryo to embryo within a species, though the

organisms developed from them are barely distinguishable. One may take it

therefore that there is perfect spherical symmetry. But a system which has

spherical symmetry, and whose state is changing because of chemical reactions

and diVusion, will remain spherically symmetrical for ever. (The same would

hold true if the state were changing according to the laws of electricity and

magnetism, or of quantum mechanics.) It certainly cannot result in an organism

such as a horse, which is not spherically symmetrical.

There is a fallacy in this argument. It was assumed that the deviations from

spherical symmetry in the blastula could be ignored because it makes no

particular diVerence what form of asymmetry there is. It is, however, important

that there are some deviations, for the system may reach a state of instability in

which these irregularities, or certain components of them, tend to grow. If this

happens a new and stable equilibrium is usually reached, with the symmetry

entirely gone. The variety of such new equilibria will normally not be so great as

the variety of irregularities giving rise to them. In the case, for instance, of the

gastrulating sphere, discussed at the end of this paper, the direction of the axis of

the gastrula can vary, but nothing else.

The situation is very similar to that which arises in connexion with electrical

oscillators. It is usually easy to understand how an oscillator keeps going when

once it has started, but on a Wrst acquaintance it is not obvious how the

oscillation begins. The explanation is that there are random disturbances always

present in the circuit. Any disturbance whose frequency is the natural frequency

of the oscillator will tend to set it going. The ultimate fate of the system will be a

state of oscillation at its appropriate frequency, and with an amplitude (and a

wave form) which are also determined by the circuit. The phase of the oscillation

alone is determined by the disturbance.

If chemical reactions and diVusion are the only forms of physical change

which are taken into account the argument above can take a slightly diVerent

form. For if the system originally has no sort of geometrical symmetry but is a

perfectly homogeneous and possibly irregularly shaped mass of tissue, it will

continue indeWnitely to be homogeneous. In practice, however, the presence of

irregularities, including statistical Xuctuations in the numbers of molecules

undergoing the various reactions, will, if the system has an appropriate kind of

instability, result in this homogeneity disappearing.

This breakdown of symmetry or homogeneity may be illustrated by the case of

a pair of cells originally having the same, or very nearly the same, contents. The

system is homogeneous: it is also symmetrical with respect to the operation of

interchanging the cells. The contents of either cell will be supposed describable

by giving the concentrations X and Y of two morphogens. The chemical reactions

The Chemical Basis of Morphogenesis | 525

will be supposed such that, on balance, the Wrst morphogen (X) is produced at

the rate 5X � 6Y þ 1 and the second (Y) at the rate 6X � 7Y þ 1. When,

however, the strict application of these formulae would involve the concentration

of a morphogen in a cell becoming negative, it is understood that it is instead

destroyed only at the rate at which it is reaching that cell by diVusion. The Wrst

morphogen will be supposed to diVuse at the rate 0�5 for unit diVerence of

concentration between the cells, the second, for the same diVerence, at the rate

4�5. Now if both morphogens have unit concentration in both cells there is

equilibrium. There is no resultant passage of either morphogen across the cell

walls, since there is no concentration diVerence, and there is no resultant

production (or destruction) of either morphogen in either cell since

5X � 6Y þ 1 and 6X � 7Y þ 1 both have the value zero for X ¼ 1, Y ¼ 1.

But suppose the values are X1 ¼ 1�06, Y1 ¼ 1�02 for the Wrst cell and

X2 ¼ 0�94, Y2 ¼ 0�98 for the second. Then the two morphogens will be being

produced by chemical action at the rates 0�18, 0�22 respectively in the Wrst cell

and destroyed at the same rates in the second. At the same time there is a Xow

due to diVusion from the Wrst cell to the second at the rate 0�06 for the Wrst

morphogen and 0�18 for the second. In sum the eVect is a Xow from the second

cell to the Wrst at the rates 0�12, 0�04 for the two morphogens respectively. This

Xow tends to accentuate the already existing diVerences between the two cells.

More generally, if

X1 ¼ 1þ 3x, X2 ¼ 1� 3x, Y1 ¼ 1þ x, Y2 ¼ 1� x,

at some moment the four concentrations continue afterwards to be expressible in

this form, and x increases at the rate 2x. Thus there is an exponential drift away

from the equilibrium condition. It will be appreciated that a drift away from the

equilibrium occurs with almost any small displacement from the equilibrium

condition, though not normally according to an exact exponential curve.

A particular choice was made in the above argument in order to exhibit the

drift with only very simple mathematics.

Before it can be said to follow that a two-cell system can be unstable, with

inhomogeneity succeeding homogeneity, it is necessary to show that the reaction

rate functions postulated really can occur. To specify actual substances, concen-

trations and temperatures giving rise to these functions would settle the matter

Wnally, but would be diYcult and somewhat out of the spirit of the present

inquiry. Instead, it is proposed merely to mention imaginary reactions which

give rise to the required functions by the law of mass action, if suitable reaction

constants are assumed. It will be suYcient to describe

(i) A set of reactions producing the Wrst morphogen at the constant rate 1,

and a similar set forming the second morphogen at the same rate.

(ii) A set destroying the second morphogen (Y) at the rate 7Y.

526 | Alan Turing

(iii) A set converting the Wrst morphogen (X) into the second (Y) at the rate

6X.

(iv) A set producing the Wrst morphogen (X) at the rate 11X.

(v) A set destroying the Wrst morphogen (X) at the rate 6Y, so long as any of

it is present.

The conditions of (i) can be fulWlled by reactions of the type A! X , B ! Y ,

where A and B are substances continually present in large and invariable concen-

trations. The conditions of (ii) are satisWed by a reaction of the form Y ! D, D

being an inert substance, and (iii) by the reaction X ! Y or X ! Y þ E. The

remaining two sets are rather more diYcult. To satisfy the conditions of (iv) one

may suppose that X is a catalyst for its own formation from A. The actual

reactions could be the formation of an unstable compound U by the reaction

Aþ X ! U , and the subsequent almost instantaneous breakdown U ! 2X . To

destroy X at a rate proportional to Y as required in (v) one may suppose that a

catalyst C is present in small but constant concentration and immediately

combines with X , X þ C ! V . The modiWed catalyst reacting with Y, at a rate

proportional to Y, restores the catalyst but not the morphogen X, by the reactions

V þ Y ! W , W ! C þ H , of which the latter is assumed instantaneous.

It should be emphasized that the reactions here described are by no means

those which are most likely to give rise to instability in nature. The choice of the

reactions to be discussed was dictated entirely by the fact that it was desirable

that the argument be easy to follow. More plausible reaction systems are de-

scribed in §10.

Unstable equilibrium is not, of course, a condition which occurs very natur-

ally. It usually requires some rather artiWcial interference, such as placing a

marble on the top of a dome. Since systems tend to leave unstable equilibria

they cannot often be in them. Such equilibria can, however, occur naturally

through a stable equilibrium changing into an unstable one. For example, if a rod

is hanging from a point a little above its centre of gravity it will be in stable

equilibrium. If, however, a mouse climbs up the rod the equilibrium eventually

becomes unstable and the rod starts to swing. A chemical analogue of this

mouse-and-pendulum system would be that described above with the same

diVusibilities but with the two morphogens produced at the rates

(3þ I)X � 6Y þ I � 1 and 6X � (9þ I)Y � I þ 1:

This system is stable if I < 0 but unstable if I > 0. If I is allowed to increase,

corresponding to the mouse running up the pendulum, it will eventually become

positive and the equilibrium will collapse. The system which was originally

discussed was the case I ¼ 2, and might be supposed to correspond to the

mouse somehow reaching the top of the pendulum without disaster, perhaps

by falling vertically on to it.

The Chemical Basis of Morphogenesis | 527

5. Left-handed and right-handed organisms

The object of this section is to discuss a certain diYculty which might be thought

to show that the morphogen theory of morphogenesis cannot be right. The

diYculty is mainly concerned with organisms which have not got bilateral

symmetry. The argument, although carried through here without the use of

mathematical formulae, may be found diYcult by non-mathematicians, and

these are therefore recommended to ignore it unless they are already troubled

by such a diYculty.

An organism is said to have ‘bilateral symmetry’ if it is identical with its own

reXexion in some plane. This plane of course always has to pass through some

part of the organism, in particular through its centre of gravity. For the purpose

of this argument it is more general to consider what may be called ‘left–right

symmetry’. An organism has left-right symmetry if its description in any right-

handed set of rectangular Cartesian co-ordinates is identical with its description

in some set of left-handed axes. An example of a body with left–right symmetry,

but not bilateral symmetry, is a cylinder with the letter P printed on one end, and

with the mirror image of a P on the other end, but with the two upright strokes

of the two letters not parallel. The distinction may possibly be without a

diVerence so far as the biological world is concerned, but mathematically it

should not be ignored.

If the organisms of a species are suYciently alike, and the absence of left–right

symmetry suYciently pronounced, it is possible to describe each individual as

either right-handed or left-handed without there being diYculty in classifying

any particular specimen. In man, for instance, one could take the X-axis in the

forward direction, the Y-axis at right angles to it in the direction towards the side

on which the heart is felt, and the Z-axis upwards. The specimen is classed as left-

handed or right-handed according as the axes so chosen are left-handed or right-

handed. A new classiWcation has of course to be deWned for each species.

The fact that there exist organisms which do not have left–right symmetry

does not in itself cause any diYculty. It has already been explained how various

kinds of symmetry can be lost in the development of the embryo, due to the

particular disturbances (or ‘noise’) inXuencing the particular specimen not

having that kind of symmetry, taken in conjunction with appropriate kinds of

instability. The diYculty lies in the fact that there are species in which the

proportions of left-handed and right-handed types are very unequal. It will be

as well to describe Wrst an argument which appears to show that this should not

happen. The argument is very general, and might be applied to a very wide class

of theories of morphogenesis.

An entity may be described as ‘P-symmetrical’ if its description in terms of one

set of right-handed axes is identical with its description in terms of any other set

of right-handed axes with the same origin. Thus, for instance, the totality of

528 | Alan Turing

positions that a corkscrew would take up when rotated in all possible ways about

the origin has P-symmetry. The entity will be said to be ‘F-symmetrical’ when

changes from right-handed axes to left-handed may also be made. This would

apply if the corkscrew were replaced by a bilaterally symmetrical object such as a

coal scuttle, or a left–right symmetrical object. In these terms one may say that

there are species such that the totality of specimens from that species, together

with the rotated specimens, is P-symmetrical, but very far from F-symmetrical.

On the other hand, it is reasonable to suppose that

(i) The laws of physics are F-symmetrical.

(ii) The initial totality of zygotes for the species is F-symmetrical.

(iii) The statistical distribution of disturbances is F-symmetrical. The indi-

vidual disturbances of course will in general have neither F-symmetry

nor P-symmetry.

It should be noticed that the ideas of P-symmetry and F-symmetry as deWned

above apply even to so elaborate an entity as ‘the laws of physics’. It should also

be understood that the laws are to be the laws taken into account in the theory in

question rather than some ideal as yet undiscovered laws.

Now it follows from these assumptions that the statistical distribution of

resulting organisms will have F-symmetry, or more strictly that the distribution

deduced as the result of working out such a theory will have such symmetry. The

distribution of observed mature organisms, however, has no such symmetry. In

the Wrst place, for instance, men are more often found standing on their feet than

their heads. This may be corrected by taking gravity into account in the laws,

together with an appropriate change of deWnition of the two kinds of symmetry.

But it will be more convenient if, for the sake of argument, it is imagined that

some species has been reared in the absence of gravity, and that the resulting

distribution of mature organisms is found to be P-symmetrical but to yield more

right-handed specimens than left-handed and so not to have F-symmetry. It

remains therefore to explain this absence of F-symmetry.

Evidently one or other of the assumptions (i) to (iii) must be wrong, i.e. in a

correct theory one of them would not apply. In the morphogen theory already

described these three assumptions do all apply, and it must therefore be regarded

as defective to some extent. The theory may be corrected by taking into account

the fact that the morphogens do not always have an equal number of left-and

right-handed molecules. According to one’s point of view one may regard this as

invalidating either (i), (ii) or even (iii). Simplest perhaps is to say that the totality

of zygotes just is not F-symmetrical, and that this could be seen if one looked at

the molecules. This is, however, not very satisfactory from the point of view of

this paper, as it would not be consistent with describing states in terms of

concentrations only. It would be preferable if it was found possible to Wnd

more accurate laws concerning reactions and diVusion. For the purpose of

The Chemical Basis of Morphogenesis | 529

accounting for unequal numbers of left- and right-handed organisms it is

unnecessary to do more than show that there are corrections which would not

be F-symmetrical when there are laevo- or dextrorotatory morphogens, and

which would be large enough to account for the eVects observed. It is not very

diYcult to think of such eVects. They do not have to be very large, but must, of

course, be larger than the purely statistical eVects, such as thermal noise or

Brownian movement.

There may also be other reasons why the totality of zygotes is not

F-symmetrical, e.g. an asymmetry of the chromosomes themselves. If these also

produce a suYciently large eVect, so much the better.

Though these eVects may be large compared with the statistical disturbances

they are almost certainly small compared with the ordinary diVusion and reac-

tion eVects. This will mean that they only have an appreciable eVect during a

short period in which the breakdown of left–right symmetry is occurring. Once

their existence is admitted, whether on a theoretical or experimental basis, it is

probably most convenient to give them mathematical expression by regarding

them as P-symmetrically (but not F-symmetrically) distributed disturbances.

However, they will not be considered further in this paper.

6. Reactions and diffusion in a ring of cells

The original reason for considering the breakdown of homogeneity was an

apparent diYculty in the diVusion-reaction theory of morphogenesis. Now

that the diYculty is resolved it might be supposed that there is no reason for

pursuing this aspect of the problem further, and that it would be best to proceed

to consider what occurs when the system is very far from homogeneous. A great

deal more attention will nevertheless be given to the breakdown of homogeneity.

This is largely because the assumption that the system is still nearly homoge-

neous brings the problem within the range of what is capable of being treated

mathematically. Even so many further simplifying assumptions have to be made.

Another reason for giving this phase such attention is that it is in a sense the

most critical period. That is to say, that if there is any doubt as to how the

organism is going to develop it is conceivable that a minute examination of it

just after instability has set in might settle the matter, but an examination of it at

any earlier time could never do so.

There is a great variety of geometrical arrangement of cells which might be

considered, but one particular type of conWguration stands out as being particu-

larly simple in its theory, and also illustrates the general principles very well. This

conWguration is a ring of similar cells. One may suppose that there are N such

cells. It must be admitted that there is no biological example to which the theory

of the ring can be immediately applied, though it is not diYcult to Wnd ones in

which the principles illustrated by the ring apply.

530 | Alan Turing

It will be assumed at Wrst that there are only two morphogens, or rather only

two interesting morphogens. There may be others whose concentration does not

vary either in space or time, or which can be eliminated from the discussion for

one reason or another. These other morphogens may, for instance, be catalysts

involved in the reactions between the interesting morphogens. An example of a

complete system of reactions is given in §10. Some consideration will also be

given in §§8, 9 to the case of three morphogens. The reader should have no

diYculty in extending the results to any number of morphogens, but no essen-

tially new features appear when the number is increased beyond three.

The two morphogens will be called X and Y. These letters will also be used to

denote their concentrations. This need not lead to any real confusion. The

concentration of X in cell r may be written Xr , and Yr has a similar meaning.

It is convenient to regard ‘cell N’ and ‘cell O’ as synonymous, and likewise ‘cell 1’

and cell ‘N þ 1’. One can then say that for each r satisfying 1 < r < N cell r

exchanges material by diVusion with cells r � 1 and r þ 1. The cell-to-cell

diVusion constant for X will be called m, and that for Y will be called n. This
means that for unit concentration diVerence of X, this morphogen passes at the

rate m from the cell with the higher concentration to the (neighbouring) cell with

the lower concentration. It is also necessary to make assumptions about the rates

of chemical reaction. The most general assumption that can be made is that for

concentrations X and Y chemical reactions are tending to increase X at the rate

f(X, Y) and Y at the rate g(X, Y). When the changes in X and Y due to diVu-

sion are also taken into account the behaviour of the system may be described by

the 2N diVerential equations

dXr

dt
¼ f (Xr , Yr)þ m(Xrþ1 � 2Xr þ Xr�1)

dYr

dt
¼ g(Xr , Yr)þ n(Yrþ1 � 2Yr þ Yr�1)

9>=
>; (r ¼ 1, . . . , N): (6:1)

If f (h, k): g(h, k) ¼ 0, then an isolated cell has an equilibrium with concen-

trations X ¼ h, Y ¼ k. The ring system also has an equilibrium, stable or

unstable, with each Xr equal to h and each Yr equal to k. Assuming that

the system is not very far from this equilibrium it is convenient to put

Xr ¼ h þ xr , Yr ¼ k þ yr . One may also write ax þ by for f (h þ x, y þ k) and

cx þ dy for g(h þ x, y þ k). Since f (h, k) ¼ g(h, k) ¼ 0 no constant terms are

required, and since x and y are supposed small the terms in higher powers of x

and y will have relatively little eVect and one is justiWed in ignoring them. The

four quantities a, b, c, d may be called the ‘marginal reaction rates’. Collectively

they may be described as the ‘marginal reaction rate matrix’. When there are M

morphogens this matrix consists of M2 numbers. A marginal reaction rate has

the dimensions of the reciprocal of a time, like a radioactive decay rate, which is

in fact an example of a marginal (nuclear) reaction rate.

The Chemical Basis of Morphogenesis | 531

With these assumptions the equations can be rewritten as

dxr

dt
¼ axr þ byr þ m(xrþ1 � 2xr þ xr�1),

dyr

dt
¼ cxr þ dyr þ n(yrþ1 � 2yr þ yr�1):

9>=
>; (6:2)

To solve the equations one introduces new co-ordinates x0, . . . , xN�1 and

Z0, . . . , ZN�1 by putting

xr ¼
XN�1
s¼0

exp
2pirs
N

�
xs,

yr ¼
XN�1
s¼0

exp
2pirs
N

�
Zs:

9>>>>=
>>>>;

(6:3)

These relations can also be written as

xr ¼
1

N

XN
s¼1

exp � 2pirs
N

�
xs ,

Zr ¼
1

N

XN
s¼1

exp � 2pirs
N

�
ys,

9>>>>=
>>>>;

(6:4)

as may be shown by using the equations

XN
s¼1

exp
2pirs
N

�
¼ 0 if 0 < r < N ,

¼ N if r ¼ 0 or r ¼ N ,

(6:5)

(referred to in §2). Making this substitution one obtains

dxs
dt
¼ 1

N

XN
s¼1

exp � 2pirs
N

�
axr þ byr þ m exp � 2pis

N

�
� 2þ exp

2pis
N

� 	

xs

�

¼ axs þ bZs þ m exp � 2pis
N

�
� 2þ exp

2pis
N

� 	

xs

¼ a � 4m sin2
ps
N

� �
xs þ bZs: (6:6)

Likewise
dZs
dt
¼ cxs þ d � 4n sin2

ps
N

� �
Zs: (6:7)

The equations have now been converted into a quite manageable form, with the

variables separated. There are now two equations concerned with x1 and Z1, two
concerned with x2 and Z2, etc. The equations themselves are also of a well-known

532 | Alan Turing

standard form, being linear with constant coeYcients. Let ps and p0s be the roots
of the equation

p � a þ 4m sin2
ps
N

� �
p � d þ 4n sin2

ps
N

� �
¼ bc (6:8)

(with Rps > Rp0s for deWniteness), then the solution of the equations is of the

form

xs ¼ Ase
pst þ Bse

p0s t ,

Zs ¼ Cse
pst þ Dse

p0s t ,

)
(6:9)

where, however, the coeYcients As , Bs, Cs, Ds are not independent but are

restricted to satisfy

As ps � a þ 4m sin2
ps
N

� �
¼ bCs,

Bs p0s � a þ 4m sin2
ps
N

� �
¼ bDs:

9>=
>; (6:10)

If it should happen that ps ¼ p0s the equations (6.9) have to be replaced by

xs ¼ (As þ Bst)e
pst ,

Zs ¼ (Cs þ Dst)e
pst :

)
(6:9)0

and (6.10) remains true. Substituting back into (6.3) and replacing the variables

xr , yr by Xr , Yr (the actual concentrations) the solution can be written

Xr ¼ h þ
XN
s¼1

(Ase
pst þ Bse

p0s t) exp
2pirs
N

�
,

Yr ¼ k þ
XN
s¼1

(Cse
pst þ Dse

p0s t) exp
2pirs
N

�
:

9>>>>=
>>>>;

(6:11)

Here As, Bs, Cs, Ds are still related by (6.10), but otherwise are arbitrary

complex numbers; ps and p0s are the roots of (6.8).
The expression (6.11) gives the general solution of the equations (6.1) when one

assumes that departures from homogeneity are suYciently small that the func-

tions f(X, Y) and g(X, Y) can safely be taken as linear. The form (6.11) given is not

very informative. It will be considerably simpliWed in §8. Another implicit as-

sumption concerns random disturbing inXuences. Strictly speaking one should

consider such inXuences to be continuously at work. This would make the

mathematical treatment considerably more diYcult without substantially altering

the conclusions. The assumptionwhich is implicit in the analysis, here and in §8, is

that the state of the system at t ¼ 0 is not one of homogeneity, since it has been

displaced from such a state by the disturbances; but after t ¼ 0 further disturb-

ances are ignored. In §9 the theory is reconsidered without this latter assumption.

The Chemical Basis of Morphogenesis | 533

7. Continuous ring of tissue

As an alternative to a ring of separate cells one might prefer to consider a

continuous ring of tissue. In this case one can describe the position of a point

of the ring by the angle y which a radius to the point makes with a Wxed reference

radius. Let the diVusibilities of the two substances be m0 and n0. These are not

quite the same as m and n of the last section, since m and n are in eVect referred to

a cell diameter as unit of length, whereas m0 and n0 are referred to a conventional

unit, the same unit in which the radius r of the ring is measured.

Then

m ¼ m0
N

2pr

	
2

, n ¼ n0
N

2pr

	
2

:

The equations are

@X

@t
¼ a(X � h)þ b(Y � k)þ m0

r2
@2X

@y2
,

@Y

@t
¼ c(X � h)þ d(Y � k)þ n0

r2
@2Y

@y2
,

9>>=
>>; (7:1)

which will be seen to be the limiting case of (6.2). The marginal reaction rates a,

b, c, d are, as before, the values at the equilibrium position of

@f =@X , @f =@Y , @g=@X , @g=@Y . The general solution of the equations is

X ¼ h þ
X1
s¼�1

(Ase
pst þ Bse

p0s t)eisy,

Y ¼ k þ
X1
s¼�1

(Cse
pst þ Dse

p0s t)eisy,

9>>>>=
>>>>;

(7:2)

where ps, p
0
s are now roots of

p � a þ m0s 2

r2

	

p � d þ n0s 2

r2

	

¼ bc (7:3)

and

As ps � a þ m0s 2

r2

	

¼ bCs,

Bs p0s � a þ m0s 2

r2

	

¼ bDs:

9>>>=
>>>; (7:4)

This solution may be justiWed by considering the limiting case of the solution

(6.11). Alternatively, one may observe that the formula proposed is a solution, so

that it only remains to prove that it is the most general one. This will follow if

values of As , Bs , Cs, Ds can be found to Wt any given initial conditions. It is well

534 | Alan Turing

known that any function of an angle (such as X) can be expanded as a ‘Fourier

series’

X(y) ¼
X1
s¼�1

Gse
isy (X(y) being values of X at t ¼ 0),

provided, for instance, that its Wrst derivative is continuous. If also

Y (y) ¼
X1
s¼�1

Hse
isy (Y (y) being values of Y at t ¼ 0),

then the required initial conditions are satisWed provided As þ Bs ¼ Gs

and Cs þ Ds ¼ Hs. Values As, Bs , Cs , Ds to satisfy these conditions can be

found unless ps ¼ p0s . This is an exceptional case and its solution if required

may be found as the limit of the normal case.

8. Types of asymptotic behaviour in the ring after

a lapse of time

As the reader was reminded in § 2, after a lapse of time the behaviour of an

expression of the form of (6.11) is eventually dominated by the terms for which

the corresponding ps has the largest real part. There may, however, be several

terms for which this real part has the same value, and these terms will together

dominate the situation, the other terms being ignored by comparison. There will,

in fact, normally be either two or four such ‘leading’ terms. For if ps0 is one of

them then pN�s0 ¼ ps0 , since

sin2
p(N � s0)

N
¼ sin2

ps0
N

,

so that ps0 and pN�s0 are roots of the same equation (6.8). If also ps0 is complex

then Rps0 ¼ Rp0s0 , and so in all

Rps0 ¼ Rp0s0 ¼ RpN�s0 ¼ Rp0N�s0 :

One need not, however, normally anticipate that any further terms will have to be

included. If ps0 and ps1 are to have the same real part, then, unless s1 ¼ s0
or s0 þ s1 ¼ N the quantities a, b, c, d, m, n will be restricted to satisfy some

special condition, which they would be unlikely to satisfy by chance. It is possible

to Wnd circumstances in which as many as ten terms have to be included if such

special conditions are satisWed, but these have no particular physical or biological

importance. It is assumed below that none of these chance relations hold.

It has already been seen that it is necessary to distinguish the cases where the

value of ps0 for one of the dominant terms is real from those where it is complex.

These may be called respectively the stationary and the oscillatory cases.

The Chemical Basis of Morphogenesis | 535

Stationary case. After a suYcient lapse of time Xr � h and Yr � k approach

asymptotically to the forms

Xr � h ¼ 2RAs0 exp
2pis0r
N
þ It

�
,

Yr � k ¼ 2RCs0 exp
2pis0r
N
þ It

�
:

9>>>=
>>>; (8:1)

Oscillatory case. After a suYcient lapse of time Xr � h and Yr � k approach the

forms

Xr � h ¼ 2eItR As0 exp
2pis0r
N
þ ivt

�
þ AN�s0 exp �

2pis0r
N
� ivt

� � �
,

Yr � k ¼ 2eItR Cs0 exp
2pis0r
N
þ ivt

�
þ CN�s0 exp �

2pis0r
N
� ivt

� � �
:

9>>>=
>>>; (8:2)

The real part of ps0 has been represented by I, standing for ‘instability’, and in the

oscillatory case its imaginary part is v. By the use of the R operation (real part

of), two terms have in each case been combined in one.

The meaning of these formulae may be conveniently described in terms of

waves. In the stationary case there are stationary waves on the ring having s0
lobes or crests. The coeYcients As0 and Cs0 are in a deWnite ratio given by (6�10),
so that the pattern for one morphogen determines that for the other. With the

lapse of time the waves become more pronounced provided there is genuine

instability, i.e. if I is positive. The wave-length of the waves may be obtained by

dividing the number of lobes into the circumference of the ring. In the oscillatory

case the interpretation is similar, but the waves are now not stationary but

travelling. As well as having a wave-length they have a velocity and a frequency.

The frequency is v=2p, and the velocity is obtained by multiplying the wave-

length by the frequency. There are two wave trains moving round the ring in

opposite directions.

The wave-lengths of the patterns on the ring do not depend only on the

chemical data a, b, c, d, m0, n0 but on the circumference of the ring, since they

must be submultiples of the latter. There is a sense, however, in which there is a

‘chemical wave-length’ which does not depend on the dimensions of the ring.

This may be described as the limit to which the wave-lengths tend when the rings

are made successively larger. Alternatively (at any rate in the case of continuous

tissue), it may be described as the wave-length when the radius is chosen to give

the largest possible instability I. One may picture the situation by supposing that

the chemical wave-length is true wave-length which is achieved whenever pos-

sible, but that on a ring it is necessary to ‘make do’ with an approximation which

divides exactly into the circumference.

Although all the possibilities are covered by the stationary and oscillatory

alternatives there are special cases of them which deserve to be treated separately.

536 | Alan Turing

One of these occurs when s0 ¼ 0, and may be described as the ‘case of extreme

long wave-length’, though this term may perhaps preferably be reserved to

describe the chemical data when they are such that s0 is zero whatever the

dimensions of the ring. There is also the case of ‘extreme short wave-length’.

This means that sin2 (ps0=N) is as large as possible, which is achieved by s0 being

either 1
2
N , or 1

2
(N � 1). If the remaining possibilities are regarded as forming

the ‘case of Wnite wave-length’, there are six subcases altogether. It will be shown

that each of these really can occur, although two of them require three or more

morphogens for their realization.

(a) Stationary case with extreme long wave-length. This occurs for instance if

m ¼ n ¼ 1
4
, b ¼ c ¼ 1, a ¼ d. Then ps ¼ a � sin2 ps

N
þ 1. This is certainly real

and is greatest when s ¼ 0. In this case the contents of all the cells are the same;

there is no resultant Xow from cell to cell due to diVusion, so that each is

behaving as if it were isolated. Each is in unstable equilibrium, and slips out of

it in synchronism with the others.

(b) Oscillatory case with extreme long wave-length. This occurs, for instance, if

m ¼ n ¼ 1
4
, b ¼ �c ¼ 1, a ¼ d. Thenps ¼ a � sin2 ps

N
± i. This is complex and its

real part is greatest when s ¼ 0. As in case (a) each cell behaves as if it were isolated.

ThediVerence fromcase (a) is that thedeparture fromtheequilibriumisoscillatory.

(c) Stationary waves of extreme short wave-length. This occurs, for instance, if

n ¼ 0, m ¼ 1, d ¼ I , a ¼ I � 1, b ¼ �c ¼ 1 : ps is

I � 1
2
� 2 sin2

ps
N
þ 2 sin2

ps
N
þ 1

2

	
2

�1
()s

,

and is greatest when sin2(ps=N) is greatest. If N is even the contents of each cell

are similar to those of the next but one, but distinctly diVerent from those of its

immediate neighbours. If, however, the number of cells is odd this arrangement

is impossible, and the magnitude of the diVerence between neighbouring

cells varies round the ring, from zero at one point to a maximum at a point

diametrically opposite.

(d) Stationary waves of Wnite wave-length. This is the case which is of greatest

interest, and has most biological application. It occurs, for instance,

if a ¼ I � 2, b ¼ 2�5, c ¼ �1�25, d ¼ I þ 1�5, m0 ¼ 1, n0 ¼ 1
2
, and m

m 0 ¼ n
n 0 ¼

N
2pr

� �2

. As before r is the radius of the ring, and N the number of cells in it. If

one writes U for N
pr

� �2

sin2 ps
N
, then equation (6.8) can, with these special values,

be written

(p � I)2 þ (1
2
þ 3

2
U)(p � I)þ 1

2
(U � 1

2
)2 ¼ 0 : (8:3)

This has a solution p ¼ I if U ¼ 1
2
. On the other hand, it will be shown that if U

has any other (positive) value then both roots for p � I have negative real parts.

Their product is positive being 1
2
(U � 1

2
)2, so that if they are real they both have

The Chemical Basis of Morphogenesis | 537

the same sign. Their sum in this case is � 1
2
� 3

2
U which is negative. Their

common sign is therefore negative. If, however, the roots are complex their

real parts are both equal to � 1
4
� 3

4
U , which is negative.

If the radius r of the ring be chosen so that for some integer

s0,
1
2
¼ U ¼ N

pr

� �2

sin2 ps0
N
, there will be stationary waves with s0 lobes and a

wave-length which is also equal to the chemical wave-length, for ps0 will be equal

to I, whereas every other ps will have a real part smaller than I. If, however, the

radius is chosen so that N
pr

� �2

sin2 ps
N
¼ 1

2
cannot hold with an integral s, then (in

this example) the actual number of lobes will be one of the two integers nearest

to the (non-integral) solutions of this equation, and usually the nearest.

Examples can, however, be constructed where this simple rule does not apply.

Figure 1 shows the relation (8.3) in graphical form. The curved portions of the

graphs are hyperbolae.

The two remaining possibilities can only occur with three or more morpho-

gens. With one morphogen the only possibility is (a).

(e) Oscillatory case with a Wnite wave-length. This means that there are genuine

travelling waves. Since the example to be given involves three morphogens it is

not possible to use the formulae of § 6. Instead, one must use the corresponding

three morphogen formulae. That which corresponds to (6�8) or (7�3) is most

conveniently written as

0 0.2

−0.2

−0.3

−0.4

−0.1

0.4 0.6 0.8 1.0

p

U

Figure 1. Values of Rp (instability or growth rate), and jIpj (radian frequency of

oscillation), related to wave-length 2pU�
1
2 as in the relation (8.3) with I ¼ 0. This is a

case of stationary waves with Wnite wave-length. Full line, Rp; broken line, �jIpj (zero
for U > 0 � 071); dotted line, Rp0. The full circles on the curve for Rp indicate the values

of U, p actually achievable on the finite ring considered in §10, with s ¼ 0 on the extreme

left, s ¼ 5 on the right.

538 | Alan Turing

a11 � p � m1U a12 a13
a21 a22 � p � m2U a23
a31 a32 a33 � p � m3U

������
������ ¼ 0, (8:4)

where again U has been written for N
pr

� �2

sin2 ps
N
. (This means essentially that

U ¼ 2p
l

� �2
, where l is the wave-length.) The four marginal reactivities are

superseded by nine a11, . . . , a33, and the three diVusibilities are m1,m2, m3.
Special values leading to travelling waves are

m1 ¼ 2
3
, m2 ¼ 1

3
, m3 ¼ 0,

a11 ¼ � 10
3
, a12 ¼ 3, a13 ¼ �1,

a21 ¼ �2, a22 ¼ 7
3
, a23 ¼ 0,

a31 ¼ 3, a32 ¼ �4, a33 ¼ 0,

9>>>=
>>>; (8:5)

and with them (8.4) reduces to

p3 þ p2(U þ 1)þ p(1þ 2
9
(U � 1)2)þ U þ 1 ¼ 0 : (8:6)

If U ¼ 1 the roots are ± i and �2. If U is near to I they are approximately

�1� U and ± iþ (U�1)2
18

(± i� 1), and all have negative real parts. If the greatest

real part is not the value zero, achieved with U ¼ 1, then the value zero must be

reached again at some intermediate value of U. Since P is then pure imaginary

the even terms of (8.6) must vanish, i.e. (p2 þ 1)(U þ 1) ¼ 0. But this can only

happen if p ¼ ± i, and the vanishing of the odd terms then shows that U ¼ 1.

Hence zero is the largest real part for any root p of (8.6). The corresponding p is

± i and U is 1. This means that there are travelling waves with unit (chemical)

radian frequency and unit (chemical) velocity. If I is added to a11, a22 and a33,

the instability will become I in place of zero.

(f) Oscillatory case with extreme short wave-length. This means that there is

metabolic oscillation with neighbouring cells nearly 1808 out of phase. It can be

achieved with three morphogens and the following chemical data:

m ¼ 1, m2 ¼ m3 ¼ 0,

a11 ¼ �1, a12 ¼ �1, a13 ¼ 0,

a21 ¼ 1, a22 ¼ 0, a23 ¼ �1,
a31 ¼ 0, a32 ¼ 1, a33 ¼ 0 :

9>>>=
>>>; (8:7)

With these values (8.4) reduces to

p3 þ p2(U þ 1)þ 2p þ U þ 1 ¼ 0 : (8:8)

This may be shown to have all the real parts of its roots negative if U50, for if

U ¼ 0 the roots are near to �0�6, � 0�2 ± 1�3i, and if U be continuously

increased the values of p will alter continuously. If they ever attain values with

The Chemical Basis of Morphogenesis | 539

a positive real part they must pass through pure imaginary values (or zero). But

if p is pure imaginary p3 þ 2p and (p2 þ 1)(U þ 1) must both vanish, which is

impossible if U50. As U approaches inWnity, however, one of the roots app-

roaches i. Thus Rp ¼ 0 can be approached as closely as desired by large values of

U, but not attained.

9. Further consideration of the mathematics of the ring

In this section some of the Wner points concerning the development of wave

patterns are considered. These will be of interest mainly to those who wish to do

further research on the subject, and can well be omitted on a Wrst reading.

(1) General formulae for the two morphogen case. Taking the limiting case of a

ring of large radius (or a Wlament), one may write
N

pr

	
2

sin2
pS
N
¼ U ¼ 2p

l

	
2

in (6.11) or
s2

r2
¼ U ¼ 2p

l

	
2

in (7.3) and obtain

(p � a þ m0U)(p � d þ n0U) ¼ bc, (9:1)

which has the solution

p ¼ a þ d

2
� m0 þ n0

2
U ±

m0 � n0

2
U þ d � a

2

	
2

þbc
()s

� (9:2)

One may put I(U) for the real part of this, representing the instability for waves

of wave-length l ¼ 2pU�
1
2. The dominant waves correspond to the maximum of

I(U). This maximum may either be at U ¼ 0 or U ¼ 1 or at a stationary point

on the part of the curve which is hyperbolic (rather than straight). When this last

case occurs the values of p (or I) and U at the maximum are

p ¼ I ¼ (dm0 � an0 � 2 (
p

m0n0) (
p �bc)(m0 � n0)�1,

U ¼ a � d þ m0 þ n0

(
p

m0n0)
(
p �bc)

	

(m0 � n0)�1�

9>=
>; (9:3)

The conditions which lead to the four cases (a), (b), (c), (d) described in the last

section are

(a) (Stationary waves of extreme long wave-length.) This occurs if either

(i) bc > 0, (ii) bc < 0 and
d � a

(
p �bc)>

m0 þ n0

(
p

m0n0)
, (iii) bc < 0 and

d � a

(
p �bc)<�2.

The condition for instability in either case is that either bc > ad or a þ d > 0.

(b) (Oscillating case with extreme long wave-length, i.e. synchronized oscilla-

tions.)

This occurs if

bc < 0 and � 2 <
d � a

(
p �bc) <

4 (
p

m0n0)
m0 þ n0

:

540 | Alan Turing

There is instability if in addition a þ d > 0.

(c) (Stationary waves of extreme short wave-length.) This occurs if

bc < 0, m0 > n0 ¼ 0.

There is instability if, in addition, a þ d > 0.

(d) (Stationary waves of Wnite wave-length.) This occurs if

bc < 0 and
4 (
p

m0n0)
m0 þ n0

<
d � a

(
p �bc) <

m0 þ n0

(m
p 0n0)

, (9:4a)

and there is instability if also

d

(
p �bc)

m0

n0

r
� a

(
p �bc)

n0

m0

r
> 2 : (9:4b)

It has been assumed that n04m0 > 0. The case where m04n0 > 0 can be obtained

by interchanging the two morphogens. In the case m0 ¼ n0 ¼ 0 there is no co-

operation between the cells whatever.

Some additional formulae will be given for the case of stationary waves of

Wnite wave-length. The marginal reaction rates may be expressed parametrically

in terms of the diVusibilities, the wave-length, the instability, and two other

parameters a and w. Of these a may be described as the ratio of X � h to Y � k

in the waves. The expressions for the marginal reaction rates in terms of these

parameters are

a ¼ m0(n0 � m0)�1(2n0U0 þ w)þ I ,

b ¼ m0(n0 � m0)�1((m0 þ n0)U0 þ w)a,

c ¼ n0(m0 � n0)�1((m0 þ n0)U0 þ w)a�1,

d ¼ n0(m0 � n0)�1(2m0U0 þ w)þ I ,

9>>>>=
>>>>;

(9:5)

and when these are substituted into (9.2) it becomes

p ¼ I � 1
2
w� m0 þ n0

2
U þ m0 þ n0

2
U þ 1

2
w

	
2

�m0n0(U � U0)
2

()s
� (9:6)

Here 2pU
�1

2

0 is the chemical wave-length and 2pU�
1
2 the wave-length of

the Fourier component under consideration. w must be positive for case (d) to

apply.

If s be regarded as a continuous variable one can consider (9.2) or (9.6)

as relating s to p, and dp=ds and d2p=ds2 have meaning. The value of d2p=ds2

at the maximum is of some interest, and will be used below in this section. Its

value is

d2p

ds2
¼ � (
p

m0n0)
r2

� 8 (
p

m0n0)
m0 þ n0

cos2
ps
N

(1þ wU�10 (m0 þ n0)�1)�1� (9:7)

The Chemical Basis of Morphogenesis | 541

(2) In §§6, 7, 8 it was supposed that the disturbances were not continuously

operative, and that the marginal reaction rates did not change with the passage of

time. These assumptions will now be dropped, though it will be necessary to

make some other, less drastic, approximations to replace them. The (statistical)

amplitude of the ‘noise’ disturbances will be assumed constant in time. Instead of

(6.6), (6.7), one then has

dx
dt
¼ a0xþ bZþ R1(t),

dZ
dt
¼ cxþ d0Zþ R2(t),

9>=
>; (9:8)

where x, Z have been written for xs, Zs since smay now be supposed Wxed. For the

same reason a � 4m sin2 pS
N
has been replaced by a0 and d � 4n sin2 pS

N
by d0. The

noise disturbances may be supposed to constitute white noise, i.e. if (t1, t2) and

(t3, t4) are two non-overlapping intervals then
R t2
t1
R1(t)dt and

R t4
t3
R2(t)dt are

statistically independent and each is normally distributed with variances

b1(t2 � t1) and b1(t4 � t3) respectively, b1 being a constant describing the

amplitude of the noise. Likewise for R2(t), the constant b1 being replaced by

b2. If p and p0 are the roots of (p � a0)(p � d0) ¼ bc and p is the greater (both

being real), one can make the substitution

x ¼ b(u þ v),

Z ¼ (p � a0)u þ (p0 � a0)v,

)
(9:9)

which transforms (9.8) into

du

dt
¼ pu þ p0 � a0

(p0 � p)b
R1(t)� R2(t)

p0 � p
þ x

d

dt

p0 � a0

(p0 � p)b

	

� Z

d

dt

1

p0 � p

	

, (9:11)

with a similar equation for v, of which the leading terms are dv=dt ¼ p0v. This
indicates that v will be small, or at least small in comparison with u after a lapse

of time. If it is assumed that v ¼ 0 holds (9.11) may be written

du

dt
¼ qu þ L1(t)R1(t)þ L2(t)R2(t), (9:12)

where

L1(t) ¼ p0 � a0

(p0 � p)b
, L2(t) ¼ 1

p 0 � p
, q ¼ p þ bL01(t) : (9:13)

The solution of this equation is

u ¼
Z t

�1
(L1(w)R1(w)þ L2(w)R2(w)) exp

Z t

w

q(z)dz

�
dw : (9:14)

542 | Alan Turing

One is, however, not so much interested in such a solution in terms of the

statistical disturbances as in the consequent statistical distribution of values of

u, x and Z at various times after instability has set in. In view of the properties of

‘white noise’ assumed above, the values of u at time t will be distributed

according to the normal error law, with the varianceZ t

�1
[b1(L1(w))

2 þ b2(L2(w))
2] exp 2

Z t

w

q(z)dz

�
dw� (9:15)

There are two commonly occurring cases in which one can simplify this expres-

sion considerably without great loss of accuracy. If the system is in a distinctly

stable state, then q(t), which is near to p(t), will be distinctly negative, and

exp
R t

w
q(z)dz

� �
will be small unless w is near to t. But then L1(w) and L2(w)

may be replaced by L1(t) and L2(t) in the integral, and also q(z) may be replaced

by q(t). With these approximations the variance is

(� 2q(t))�1[b1(L1(t))
2 þ b2(L2(t))

2]: (9:16)

A second case where there is a convenient approximation concerns times when

the system is unstable, so that q(t) > 0. For the approximation concerned to

apply 2
R t

w
q(z)dz must have its maximum at the last moment w (¼ t0) when

q(t0) ¼ 0, and it must be the maximum by a considerable margin (e.g. at least 5)

over all other local maxima. These conditions would apply for instance if q(z)

were always increasing and had negative values at a suYciently early time. One

also requires q0(t0) (the rate of increase of q at time t0) to be reasonably large; it

must at least be so large that over a period of time of length (q0(t0))�
1
2) near to t0

the changes in L1(t) and L2(t) are small, and q0(t) itself must not appreciably

alter in this period. Under these circumstances the integrand is negligible when w

is considerably diVerent from t0, in comparison with its values at that time, and

therefore one may replace L1(w) and L2(w) by L1(t0) and L2(t0), and q0(w) by
q0(t0). This gives the value

p
p

(q0(t0))�
1
2[b1(L1(t0))

2 þ b2(L2(t0))
2] exp 2

Z t

t0

q(z)dz

�
, (9:17)

for the variance of u.

The physical signiWcance of this latter approximation is that the disturbances

near the time when the instability is zero are the only ones which have any

appreciable ultimate eVect. Those which occur earlier are damped out by the

subsequent period of stability. Those which occur later have a shorter period of

instability within which to develop to greater amplitude. This principle is

familiar in radio, and is fundamental to the theory of the superregenerative

receiver.

The Chemical Basis of Morphogenesis | 543

Naturally one does not often wish to calculate the expression (9.17), but it is

valuable as justifying a common-sense point of view of the matter. The factor

exp
R t

t0
q(z)dz

h i
is essentially the integrated instability and describes the extent to

which one would expect disturbances of appropriate wave-length to grow be-

tween times t0 and t. Taking the terms in b1, b2 into consideration separately,

the factor p
p

b1(q
0(t0))�

1
2(L1(t0))

2 indicates that the disturbances on the Wrst

morphogen should be regarded as lasting for a time p
p

(q1(t0))
�1

2(bL1(t0))
2: The

dimensionless quantities bL1(t0), bL2(t0) will not usually be suYciently large or

small to justify their detailed calculation.

(3) The extent to which the component for which ps is greatest may be

expected to outdistance the others will now be considered in case (d). The

greatest of the ps will be called ps0 . The two closest competitors to s0 will be

s0 � 1 and s0 þ 1; it is required to determine how close the competition is. If the

variation in the chemical data is suYciently small it may be assumed that,

although the exponents ps0�1, ps0 , ps0þ1 may themselves vary appreciably in

time, the diVerences ps0 � ps0�1 and ps0 � ps0þ1 are constant. It certainly can

happen that one of these diVerences is zero or nearly zero, and there is then

‘neck and neck’ competition. The weakest competition occurs when ps0�1 ¼
ps0þ1. In this case

ps0 � ps0�1 ¼ ps0 � ps0þ1 ¼ �1
2
(ps0þ1 � 2ps0 þ ps0�1):

But if s0 is reasonably large ps0þ1 � 2ps0 þ ps0�1 can be set equal to (d2p=ds2)s¼s0 .
It may be concluded that the rate at which the most quickly growing component

grows cannot exceed the rate for its closest competitor by more than about
1
2
(d2p=ds2)s¼s0 . The formula (9.7), by which d2p=ds2 can be estimated, may be

regarded as the product of two factors. The dimensionless factor never exceeds 4.

The factor (
p

m0n0)=r2 may be described in very rough terms as ‘the reciprocal of

the time for the morphogens to diVuse a length equal to a radius’. In equally

rough terms one may say that a time of this order of magnitude is required for

the most quickly growing component to get a lead, amounting to a factor whose

logarithm is of the order of unity, over its closest competitors, in the favourable

case where ps0�1 ¼ ps0þ1.
(4) Very little has yet been said about the eVect of considering non-linear

reaction rate functions when far from homogeneity. Any treatment so systematic

as that given for the linear case seems to be out of the question. It is possible,

however, to reach some qualitative conclusions about the eVects of non-linear

terms. Suppose that z1 is the amplitude of the Fourier component which is most

unstable (on a basis of the linear terms), and which may be supposed to have

wave-length l. The non-linear terms will cause components with wave-lengths
1
2
l, 1

3
l, 1

4
l, . . . to appear as well as a space-independent component. If only

quadratic terms are taken into account and if these are somewhat small, then the

544 | Alan Turing

component of wave-length 1
2
l and the space-independent component will be the

strongest. Suppose these have amplitudes z2 and z1. The state of the system is

thus being described by the numbers z0, z1, z2. In the absence of non-linear

terms they would satisfy equations

dz0

dt
¼ p0z0,

dz1

dt
¼ p1z1,

dz2

dt
¼ p2z2,

and if there is slight instability p1 would be a small positive number, but p0 and

p2 distinctly negative. The eVect of the non-linear terms is to replace these

equations by ones of the form

dz0

dt
¼ p0z0 þ Az21 þ Bz22 ,

dz1

dt
¼ p1z1 þ Cz2z1 þ Dz0z1,

dz2

dt
¼ p2z2 þ Ez21 þ Fz0z2:

As a Wrst approximation one may put dz0=dt ¼ dz2=dt ¼ 0 and ignore z41 and

higher powers; z0 and z1 are then found to be proportional to z21 , and the

equation for z1 can be written dz1=dt ¼ p0z1 � kz31 . The sign of k in this

diVerential equation is of great importance. If it is positive, then the eVect of

the term kz31 is to arrest the exponential growth of z1 at the value (
p

p1=k). The

‘instability’ is then very conWned in its eVect, for the waves can only reach a Wnite

amplitude, and this amplitude tends to zero as the instability (p1) tends to zero.

If, however, k is negative the growth becomes something even faster than expo-

nential, and, if the equation dz1=dt ¼ p1z1 � kz31 held universally, it would result

in the amplitude becoming inWnite in a Wnite time. This phenomenon may be

called ‘catastrophic instability’. In the case of two-dimensional systems cata-

strophic instability is almost universal, and the corresponding equation takes

the form dz1=dt ¼ p1z1 þ kz21 . Naturally enough in the case of catastrophic

instability the amplitude does not really reach inWnity, but when it is suYciently

large some eVect previously ignored becomes large enough to halt the growth.

(5) Case (a) as described in §8 represents a most extremely featureless form of

pattern development. This may be remedied quite simply by making less drastic

simplifying assumptions, so that a less gross account of the pattern can be given by

the theory. It was assumed in § 9 that only the most unstable Fourier components

would contribute appreciably to the pattern, though it was seen above (heading

(3) of this section) that (in case (d)) this will only apply if the period of time

involved is adequate to permit the morphogens, supposed for this purpose to be

chemically inactive, to diVuse over the whole ring or organ concerned. The same

may be shown to apply for case (a). If this assumption is dropped a much more

interesting form of pattern can be accounted for. To do this it is necessary to

consider not merely the components with U ¼ 0 but some others with small

The Chemical Basis of Morphogenesis | 545

positive values of U. One may assume the form At � BU for p. Linearity in U

is assumed because only small values of U are concerned, and the term At is

included to represent the steady increase in instability. By measuring time from

the moment of zero instability the necessity for a constant term is avoided. The

formula (9.17) may be applied to estimate the statistical distribution of the

amplitudes of the components. Only the factor exp 2
R t

t0
q(z)dz

h i
will depend

very much on U, and taking q(t) ¼ p(t) ¼ At � BU , t0 must be BU=A and the

factor is

exp [A(t � BU=A)2]:

The term in U 2 can be ignored if At2 is fairly large, for then either B2U 2=A2 is

small or the factor e�BUt is. But At2 certainly is large if the factor eAt
2

, applying

when U ¼ 0, is large. With this approximation the variance takes the

form Ce�
1
2
k2U , with only the two parameters C, k to distinguish the pattern

populations. By choosing appropriate units of concentration and length

these pattern populations may all be reduced to a standard one, e.g. with

C ¼ k ¼ 1. Random members of this population may be produced by consider-

ing any one of the type (a) systems to which the approximations used above

apply. They are also produced, but with only a very small amplitude scale, if a

homogeneous one-morphogen system undergoes random disturbances without

diVusion for a period, and then diVusion without disturbance. This process

is very convenient for computation, and can also be applied to two dimen-

sions. Figure 2 shows such a pattern, obtained in a few hours by a manual

computation.

Figure 2. An example of a ‘dappled’ pattern as resulting from a type (a) morphogen

system. A marker of unit length is shown. See text, §9, 11.

546 | Alan Turing

To be more deWnite a set of numbers ur, s was chosen, each being ± 1, and

taking the two values with equal probability. A function f (x, y) is related to these

numbers by the formula

f (x, y) ¼P
ur, s exp [� 1

2
((x � hr)2 þ (y � hs)2)]:

In the actual computation a somewhat crude approximation to the function

exp [� 1
2
(x2 þ y2)]

was used and hwas about 0�7. In the Wgure the set of points where f(x, y) is positive
is shown black. The outlines of the black patches are somewhat less irregular than

they should be due to an inadequacy in the computation procedure.

10. A numerical example

The numerous approximations and assumptions that have been made in the

foregoing analysis may be rather confusing to many readers. In the present

section it is proposed to consider in detail a single example of the case of most

interest, (d). This will be made as speciWc as possible. It is unfortunately not

possible to specify actual chemical reactions with the required properties, but it

is thought that the reaction rates associated with the imagined reactions are not

unreasonable.

The detail to be speciWed includes

(i) The number and dimensions of the cells of the ring.

(ii) The diVusibilities of the morphogens.

(iii) The reactions concerned.

(iv) The rates at which the reactions occur.

(v) Information about random disturbances.

(vi) Information about the distribution, in space and time, of those morpho-

gens which are of the nature of evocators.

These will be taken in order.

(i) It will be assumed that there are twenty cells in the ring, and that they have

a diameter of 0�1mm each. These cells are certainly on the large rather than the

small side, but by no means impossibly so. The number of cells in the ring has

been chosen rather small in order that it should not be necessary to make the

approximation of continuous tissue.

(ii) Two morphogens are considered. They will be called X and Y, and the

same letters will be used for their concentrations. This will not lead to any real

confusion. The diVusion constant for X will be assumed to be 5� 10�8 cm2s�1

and that for Y to be 2�5� 10�8 cm2s�1. With cells of diameter 0�01 cm this means

that X Xows between neighbouring cells at the rate 5� 10�4 of the diVerence of
X-content of the two cells per second. In other words, if there is nothing altering

The Chemical Basis of Morphogenesis | 547

the concentrations but diVusion the diVerence of concentrations suVers an

exponential decay with time constant 1000 s, or ‘half-period’ of 700 s. These

times are doubled for Y.

If the cell membrane is regarded as the only obstacle to diVusion the permea-

bility of the membranes to the morphogen is 5� 10�6 cm=s or 0�018 cm/h. Values

as large as 0�1 cm/h have been observed (Davson & Danielli 1943, Wgure 28).

(iii) The reactions are the most important part of the assumptions. Four

substances A, X, Y, B are involved; these are isomeric, i.e. the molecules of the

four substances are all rearrangements of the same atoms. Substances C, C 0, W
will also be concerned. The thermodynamics of the problem will not be discussed

except to say that it is contemplated that of the substances A, X, Y, B the one with

the greatest free energy is A, and that with the least is B. Energy for the whole

process is obtained by the degradation of A into B. The substance C is in eVect a

catalyst for the reaction Y ! X , and may also be regarded as an evocator, the

system being unstable if there is a suYcient concentration of C.

The reactions postulated are

Y þ X ! W ,

W þ A ! 2Y þ B instantly,

2X ! W ,

A ! X ,

Y ! B,

Y þ C ! C 0 instantly,

C 0 ! X þ C:

(iv) For the purpose of stating the reaction rates special units will be intro-

duced (for the purpose of this section only). They will be based on a period of

1000 s as units of time, and 10�11 mole=cm3
as concentration unit.1 There will be

little occasion to use any but these special units (s .u .). The concentration of A

will be assumed to have the large value of 1000 s .u . and the catalyst C, together

with its combined form C 0 the concentration 10�3(1þ g) s .u. , the dimension-

less quantity g being often supposed somewhat small, though values over as large

a range as from �0�5 to 0�5 may be considered. The rates assumed will be

Y þ X ! W at the rate 25
16
YX ,

2X ! W at the rate 7
64
X2,

A! X at the rate 1
16
� 10�3A,

C 0 ! X þ C at the rate 55
32
� 10þ3C 0,

Y ! B at the rate 1
16
Y :

1 A somewhat larger value of concentration unit (e.g. 10�9 mole=cm3) is probably more suitable. The

choice of unit only aVects the calculations through the amplitude of the random disturbances.

548 | Alan Turing

With the values assumed for A and C 0 the net eVect of these reactions is to

convert X into Y at the rate 1
32
[50XY þ 7X2 � 55(1þ g)] at the same time

producing X at the constant rate 1
16
, and destroying Yat the rate Y/16. If, however,

the concentration of Y is zero and the rate of increase of Y required by these

formulae is negative, the rate of conversion of Y into X is reduced suYciently to

permit Y to remain zero.

In the special units m ¼ 1
2
, n ¼ 1

4
.

(v) Statistical theory describes in detail what irregularities arise from the

molecular nature of matter. In a period in which, on the average, one should

expect a reaction to occur between n pairs (or other combinations) of molecules,

the actual number will diVer from the mean by an amount whose mean square is

also n, and is distributed according to the normal error law. Applying this to a

reaction proceeding at a rate F (s .u .) and taking the volume of the cell as

10�8 cm3 (assuming some elongation tangentially to the ring) it will be found

that the root mean square irregularity of the quantity reacting in a period t of

time (s .u .) is 0�004 (Ft)
p

.

The diVusion of a morphogen from a cell to a neighbour may be treated as if

the passage of a molecule from one cell to another were a monomolecular

reaction; a molecule must be imagined to change its form slightly as it passes

the cell wall. If the diVusion constant for a wall is m, and quantitiesM1, M2 of the

relevant morphogen lie on the two sides of it, the root-mean-square irregularity

in the amount passing the wall in a period t is

0�004 {(M1 þM2)mt}
p

:

These two sources of irregularity are the most signiWcant of those which arise

from truly statistical cause, and are the only ones which are taken into account in

the calculations whose results are given below. There may also be disturbances

due to the presence of neighbouring anatomical structures, and other similar

causes. These are of great importance, but of too great variety and complexity to

be suitable for consideration here.

(vi) The only morphogen which is being treated as an evocator is C. Changes

in the concentration of A might have similar eVects, but the change would have

to be rather great. It is preferable to assume that A is a ‘fuel substance’ (e.g.

glucose) whose concentration does not change. The concentration of C, together

with its combined form C 0, will be supposed the same in all cells, but it changes

with the passage of time. Two diVerent varieties of the problem will be con-

sidered, with slightly diVerent assumptions.

The results are shown in table 1. There are eight columns, each of which gives

the concentration of a morphogen in each of the twenty cells; the circumstances to

which these concentrations refer diVer from column to column. The Wrst Wve

columns all refer to the same ‘variety’ of the imaginary organism, but there are two

specimens shown. The specimens diVer merely in the chance factors which

The Chemical Basis of Morphogenesis | 549

Table 1. Some stationary-wave patterns

Wrst specimen

cell

number

incipient pattern final pattern

zffl}|ffl{ second

specimen:

incipient

‘slow

cooking’:

incipient
four-lobed equilibrium

X Y

zfflfflfflffl}|fflfflfflffl{
X Y

zfflfflfflffl}|fflfflfflffl{
Y Y X Y

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
0 1�130 0�929 0�741 1�463 0�834 1�057 1�747 0�000
1 1�123 0�940 0�761 1�469 0�833 0�903 1�685 0�000
2 1�154 0�885 0�954 1�255 0�766 0�813 1�445 2�500
3 1�215 0�810 1�711 0�000 0�836 0�882 0�445 2�500
4 1�249 0�753 1�707 0�000 0�930 1�088 1�685 0�000
5 1�158 0�873 0�875 1�385 0�898 1�222 1�747 0�000
6 1�074 1�003 0�700 1�622 0�770 1�173 1�685 0�000
7 1�078 1�000 0�699 1�615 0�740 0�956 0�445 2�500
8 1�148 0�896 0�885 1�382 0�846 0�775 0�445 2�500
9 1�231 0�775 1�704 0�000 0�937 0�775 1�685 0�000
10 1�204 0�820 1�708 0�000 0�986 0�969 1�747 0�000
11 1�149 0�907 0�944 1�273 1�019 1�170 1�685 0�000
12 1�156 0�886 0�766 1�451 0�899 1�203 0�445 2�500
13 1�170 0�854 0�744 1�442 0�431 1�048 0�445 2�500
14 1�131 0�904 0�756 1�478 0�485 0�868 1�685 0�000
15 1�090 0�976 0�935 1�308 0�919 0�813 1�747 0�000
16 1�109 0�957 1�711 0�000 1�035 0�910 1�685 0�000
17 1�201 0�820 1�706 0�000 1�003 1�050 0�445 2�500
18 1�306 0�675 0�927 1�309 0�899 1�175 0�445 2�500
19 1�217 0�811 0�746 1�487 0�820 1�181 1�685 0�000

were involved. With this variety the value of g was allowed to increase at the rate

of 2�7s .u . from the value � 1
4
to þ 1

16
. At this point a pattern had deWnitely begun

to appear, and was recorded. The parameter g was then allowed to decrease at the

same rate to zero and then remained there until there was no more appreciable

change. The pattern was then recorded again. The concentrations of Y in these

two recordings are shown in Wgure 3 as well as in table 1. For the second specimen

only one column of Wgures is given, viz. those for the Y morphogen in the

incipient pattern. At this stage the X values are closely related to the Y values,

as may be seen from the Wrst specimen (or from theory). The Wnal values can be

made almost indistinguishable from those for the Wrst specimen by renumbering

the cells and have therefore not been given. These two specimens may be said to

belong to the ‘variety with quick cooking’, because the instability is allowed to

increase so quickly that the pattern appears relatively soon. The eVect of this

haste might be regarded as rather unsatisfactory, as the incipient pattern is very

irregular. In both specimens the four-lobed component is present in considerable

550 | Alan Turing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.5

1.0

1.5

Figure 3. Concentrations of Y in the development of the first specimen (taken from table

1). original homogeneous equilibrium; incipient pattern; ———— final

equilibrium.

strength in the incipient pattern. It ‘beats’ with the three-lobed component

producing considerable irregularity. The relative magnitudes of the three- and

four-lobed components depend on chance and vary from specimen to specimen.

The four-lobed component may often be the stronger, and may occasionally be

so strong that the Wnal pattern is four-lobed. How often this happens is not

known, but the pattern, when it occurs, is shown in the last two columns of the

table. In this case the disturbances were supposed removed for some time before

recording, so as to give a perfectly regular pattern.

The remaining column refers to a second variety, one with ‘slow cooking’. In

this the value of gwas allowed to increase only at the rate 10�5. Its initial value was
�0�010, but is of no signiWcance. The Wnal value was 0�003. With this pattern,

when shown graphically, the irregularities are deWnitely perceptible, but are

altogether overshadowed by the three-lobed component. The possibility of the

ultimate pattern being four-lobed is not to be taken seriously with this variety.

The set of reactions chosen is such that the instability becomes ‘catastrophic’

when the second-order terms are taken into account, i.e. the growth of the waves

tends to make the whole system more unstable than ever. This eVect is Wnally

halted when (in some cells) the concentration of Y has become zero. The

constant conversion of Y into X through the agency of the catalyst C can then

no longer continue in these cells, and the continued growth of the amplitude of

the waves is arrested. When g ¼ 0 there is of course an equilibrium with

X ¼ Y ¼ 1 in all cells, which is very slightly stable. There are, however, also

The Chemical Basis of Morphogenesis | 551

other stable equilibria with g ¼ 0, two of which are shown in the table. These

Wnal equilibria may, with some trouble but little diYculty, be veriWed to be

solutions of the equations (6.1) with

dX

dt
¼ dY

dt
¼ 0,

and

32f (X ,Y) ¼ 57� 50XY � 7Y 2, 32g(X ,Y) ¼ 50XY þ 7Y 2 � 2Y � 55:

The morphogen concentrations recorded at the earlier times connect more

directly with the theory given in §§6 to 9. The amplitude of the waves was then

still suYciently small for the approximation of linearity to be still appropriate,

and consequently the ‘catastrophic’ growth had not yet set in.

The functions f(X, Y) and g(X, Y) of §6 depend also on g and are

f (X ,Y) ¼ 1
32
[� 7X2 � 50XY þ 57þ 55g],

g(X ,Y) ¼ 1
32
[7X2 þ 50XY � 2Y � 55� 55g]:

In applying the theory it will be as well to consider principally the behaviour of

the system when g remains permanently zero. Then for equilibrium

f (X ,Y) ¼ g(X ,Y) ¼ 0 which means that X ¼ Y ¼ 1, i.e. h ¼ k ¼ 1. One also

Wnds the following values for various quantities mentioned in §§ 6 to 9:

a ¼ �2, b ¼ �1�5625, c ¼ 2, d ¼ 1�500, s ¼ 3�333,
I ¼ 0, a ¼ 0�625, w ¼ 0�500, (d � a)(�bc)�1

2 ¼ 1�980,
(mþ n)(mn)�

1
2 ¼ 2�121, p0 ¼ �0�25 ± 0�25i,

p2 ¼ �0�0648, p3 ¼ �0�0034, p4 ¼ �0� 0118:
(The relation between p and U for these chemical data, and the values pn, can be

seen in Wgure 1, the values being so related as to make the curves apply to this

example as well as that in §8.) The value s ¼ 3�333 leads one to expect a three-

lobed pattern as the commonest, and this is conWrmed by the values pn. The

four-lobed pattern is evidently the closest competitor. The closeness of the

competition may be judged from the diVerence p3 � p4 ¼ 0�0084, which sug-

gests that the three-lobed component takes about 120 s .u . or about 33 h to gain

an advantage of a neper (i.e. about 2�7:1) over the four-lobed one. However, the

fact that g is diVerent from 0 and is changing invalidates this calculation to some

extent.

The Wgures in table 1 were mainly obtained with the aid of the Manchester

University Computer.

Although the above example is quite adequate to illustrate the mathematical

principles involved it may be thought that the chemical reaction system is

552 | Alan Turing

somewhat artiWcial. The following example is perhaps less so. The same ‘special

units’ are used. The reactions assumed are

A! X at the rate 10�3A, A ¼ 103,

X þ Y ! C at the rate 103XY ,

C ! X þ Y at the rate 106C,

C ! D at the rate 62�5C,
B þ C ! W at the rate 0�125BC, B ¼ 103,

W ! Y þ C instantly,

Y ! E at the rate 0�0625Y ,
Y þ V ! V 0 instantly,

V 0 ! E þ V at the rate 62�5V 0, V 0 ¼ 10�3b.

The eVect of the reactions X þ Y ! C is that C ¼ 10�3XY . The reaction C ! D

destroys C, and therefore in eVect both X and Y, at the rate 1
16
XY . The reaction

A! X forms X at the constant rate 1, and the pair Y þ V ! V 0 ! E þ V

destroys Y at the constant rate 1
16
b. The pair B þ C ! W ! Y þ C forms Y at

the rate 1
8
XY , and Y ! E destroys it at the rate 1

16
Y . The total eVect therefore is

that X is produced at the rate f (X ,Y) ¼ 1
16
(16� XY), and Y at the rate

g(X ,Y) ¼ 1
16
(XY � Y � b). However, g(X ,Y) ¼ 0 if Y < 0. The diVusion con-

stants will be supposed to be m ¼ 1
4
, n ¼ 1

16
. The homogeneity condition gives

hk ¼ 16, k ¼ 16� b.

It will be seen from conditions (9.4a) that case (d) applies if and only if
4
k
þ k

4
< 2�75, i.e. if k lies between 1�725 and 9�257. Condition (9.4b) shows that

there will be instability if in addition 8
k
þ k

8
> 3
p þ 1

2
, i.e. if k does not lie between

4�98 and 12�8. It will also be found that the wave-length corresponding to

k ¼ 4�98 is 4�86 cell diameters.

In the case of a ring of six cells with b ¼ 12 there is a stable equilibrium, as

shown in table 2.

Table 2.

cell 0 1 2 3 4 5

X 7�5 3�5 2�5 2�5 3�5 7�5
Y 0 8 8 8 8 0

It should be recognized that these equilibria are only dynamic equilibria. The

molecules which together make up the chemical waves are continually changing,

though their concentrations in any particular cell are only undergoing small

statistical Xuctuations. Moreover, in order to maintain the wave pattern a

continual supply of free energy is required. It is clear that this must be so since

there is a continual degradation of energy through diVusion. This energy is

supplied through the ‘fuel substances’ (A, B in the last example), which are

degraded into ‘waste products’ (D, E).

The Chemical Basis of Morphogenesis | 553

11. Restatement and biological interpretation of the results

Certain readers may have preferred to omit the detailed mathematical treatment

of §§ 6 to 10. For their beneWt the assumptions and results will be brieXy

summarized, with some change of emphasis.

The system considered was either a ring of cells each in contact with its

neighbours, or a continuous ring of tissue. The eVects are extremely similar in

the two cases. For the purposes of this summary it is not necessary to distinguish

between them. A system with two or three morphogens only was considered, but

the results apply quite generally. The system was supposed to be initially in a

stable homogeneous condition, but disturbed slightly from this state by some

inXuences unspeciWed, such as Brownian movement or the eVects of neighbour-

ing structures or slight irregularities of form. It was supposed also that slow

changes are taking place in the reaction rates (or, possibly, the diVusibilities) of

the two or three morphogens under consideration. These might, for instance, be

due to changes of concentration of other morphogens acting in the role of

catalyst or of fuel supply, or to a concurrent growth of the cells, or a change

of temperature. Such changes are supposed ultimately to bring the system out of

the stable state. The phenomena when the system is just unstable were the

particular subject of the inquiry. In order to make the problem mathematically

tractable it was necessary to assume that the system never deviated very far from

the original homogeneous condition. This assumption was called the ‘linearity

assumption’ because it permitted the replacement of the general reaction rate

functions by linear ones. This linearity assumption is a serious one. Its justiWca-

tion lies in the fact that the patterns produced in the early stages when it is valid

may be expected to have strong qualitative similarity to those prevailing in the

later stages when it is not. Other, less important, assumptions were also made at

the beginning of the mathematical theory, but the detailed eVects of these were

mostly considered in § 9, and were qualitatively unimportant.

The conclusions reached were as follows. After the lapse of a certain period of

time from the beginning of instability, a pattern of morphogen concentrations

appears which can best be described in terms of ‘waves’. There are six types of

possibility which may arise.

(a) The equilibrium concentrations and reaction rates may become such that

there would be instability for an isolated cell with the same content as any one of

the cells of the ring. If that cell drifts away from the equilibrium position, like an

upright stick falling over, then, in the ring, each cell may be expected to do

likewise. In neighbouring cells the drift may be expected to be in the same

direction, but in distant cells, e.g. at opposite ends of a diameter there is no

reason to expect this to be so.

This is the least interesting of the cases. It is possible, however, that it might

account for ‘dappled’ colour patterns, and an example of a pattern in two

554 | Alan Turing

dimensions produced by this type of process is shown in Wgure 2 for com-

parison with ‘dappling’. If dappled patterns are to be explained in this way they

must be laid down in a latent form when the foetus is only a few inches long.

Later the distances would be greater than the morphogens could travel by

diVusion.

(b) This case is similar to (a), except that the departure from equilibrium is

not a unidirectional drift, but is oscillatory. As in case (a) there may not be

agreement between the contents of cells at great distances.

There are probably many biological examples of this metabolic oscillation, but

no really satisfactory one is known to the author.

(c) There may be a drift from equilibrium, which is in opposite directions in

contiguous cells.

No biological examples of this are known.

(d) There is a stationary wave pattern on the ring, with no time variation,

apart from a slow increase in amplitude, i.e. the pattern is slowly becoming more

marked. In the case of a ring of continuous tissue the pattern is sinusoidal, i.e.

the concentration of one of the morphogens plotted against position on the ring

is a sine curve. The peaks of the waves will be uniformly spaced round the ring.

The number of such peaks can be obtained approximately by dividing the so-

called ‘chemical wave-length’ of the system into the circumference of the ring.

The chemical wave-length is given for the case of two morphogens by the

formula (9.3). This formula for the number of peaks of course does not give a

whole number, but the actual number of peaks will always be one of the two

whole numbers nearest to it, and will usually be the nearest. The degree of

instability is also shown in (9.3).

The mathematical conditions under which this case applies are given in

equations (9.4a), (9.4b).

Biological examples of this case are discussed at some length below.

(e) For a two-morphogen system only the alternatives (a) to (d) are possible,

but with three or more morphogens it is possible to have travelling waves. With a

ring there would be two sets of waves, one travelling clockwise and the other

anticlockwise. There is a natural chemical wave-length and wave frequency in

this case as well as a wave-length; no attempt was made to develop formulae for

these.

In looking for biological examples of this there is no need to consider only

rings. The waves could arise in a tissue of any anatomical form. It is important to

know what wave-lengths, velocities and frequencies would be consistent with the

theory. These quantities are determined by the rates at which the reactions occur

(more accurately by the ‘marginal reaction rates’, which have the dimensions of

the reciprocal of a time), and the diVusibilities of the morphogens. The possible

range of values of the reaction rates is so immensely wide that they do not even

give an indication of orders of magnitude. The diVusibilities are more helpful. If

The Chemical Basis of Morphogenesis | 555

one were to assume that all the dimensionless parameters in a system of travelling

waves were the same as in the example given in § 8, one could say that the

product of the velocity and wave-length of the waves was 3p times the diVusi-

bility of the most diVusible morphogen. But this assumption is certainly false,

and it is by no means obvious what is the true range of possible values for the

numerical constant (here 3p). The movements of the tail of a spermatozoon

suggest themselves as an example of these travelling waves. That the waves are

within one cell is no real diYculty. However, the speed of propagation seems to

be somewhat greater than can be accounted for except with a rather large

numerical constant.

(f) Metabolic oscillation with neighbouring cells in opposite phases. No

biological examples of this are known to the author.

It is diYcult also to Wnd cases to which case (d) applies directly, but this is

simply because isolated rings of tissue are very rare. On the other hand, systems

that have the same kind of symmetry as a ring are extremely common, and it is to

be expected that under appropriate chemical conditions, stationary waves may

develop on these bodies, and that their circular symmetry will be replaced by a

polygonal symmetry. Thus, for instance, a plant shoot may at one time have

circular symmetry, i.e. appear essentially the same when rotated through any

angle about a certain axis; this shoot may later develop a whorl of leaves, and

then it will only suVer rotation through the angle which separates the leaves, or

any multiple of it. This same example demonstrates the complexity of the

situation when more than one dimension is involved. The leaves on the shoots

may not appear in whorls, but be imbricated. This possibility is also capable of

mathematical analysis, and will be considered in detail in a later paper. The cases

which appear to the writer to come closest biologically to the ‘isolated ring of

cells’ are the tentacles of (e.g.) Hydra, and the whorls of leaves of certain plants

such as WoodruV (Asperula odorata).

Hydra is something like a sea-anemone but lives in fresh water and has from

about Wve to ten tentacles. A part of a Hydra cut oV from the rest will rearrange

itself so as to form a complete new organism. At one stage of this proceeding the

organism has reached the form of a tube open at the head end and closed at the

other end. The external diameter is somewhat greater at the head end than over

the rest of the tube. The whole still has circular symmetry. At a somewhat later

stage the symmetry has gone to the extent that an appropriate stain will bring out

a number of patches on the widened head end. These patches arise at the points

where the tentacles are subsequently to appear (Child 1941, p. 101 and Wgure 30).

According to morphogen theory it is natural to suppose that reactions, similar to

those which were considered in connection with the ring of tissue, take place in

the widened head end, leading to a similar breakdown of symmetry. The

situation is more complicated than the case of the thin isolated ring, for the

portion of the Hydra concerned is neither isolated nor very thin. It is not

556 | Alan Turing

unreasonable to suppose that this head region is the only one in which the

chemical conditions are such as to give instability. But substances produced in

this region are still free to diVuse through the surrounding region of lesser

activity. There is no great diYculty in extending the mathematics to cover this

point in particular cases. But if the active region is too wide the system no longer

approximates the behaviour of a thin ring and one can no longer expect the

tentacles to form a single whorl. This also cannot be considered in detail in the

present paper.

In the case of woodruV the leaves appear in whorls on the stem, the number of

leaves in a whorl varying considerably, sometimes being as few as Wve or as many

as nine. The numbers in consecutive whorls on the same stem are often equal,

but by no means invariably. It is to be presumed that the whorls originate in rings

of active tissue in the meristematic area, and that the rings arise at suYciently

great distance to have little inXuence on one another. The number of leaves in the

whorl will presumably be obtainable by the rule given above, viz. by dividing the

chemical wave-length into the circumference, though both these quantities will

have to be given some new interpretation more appropriate to woodruV than to

the ring. Another important example of a structure with polygonal symmetry is

provided by young root Wbres just breaking out from the parent root. Initially

these are almost homogeneous in cross-section, but eventually a ring of fairly

evenly spaced spots appear, and these later develop into vascular strands. In this

case again the full explanation must be in terms of a two-dimensional or even a

three-dimensional problem, although the analysis for the ring is still illuminat-

ing. When the cross-section is very large the strands may be in more than one

ring, or more or less randomly or hexagonally arranged. The two-dimensional

theory (not expounded here) also goes a long way to explain this.

Flowers might appear superWcially to provide the most obvious examples of

polygonal symmetry, and it is probable that there are many species for which this

‘waves round a ring’ theory is essentially correct. But it is certain that it does not

apply for all species. If it did it would follow that, taking Xowers as a whole, i.e.

mixing up all species, there would be no very markedly preferred petal (or

corolla, segment, stamen, etc.) numbers. For when all species are taken into

account one must expect that the diameters of the rings concerned will take on

nearly all values within a considerable range, and that neighbouring diameters

will be almost equally common. There may also be some variation in chemical

wave-length. Neighbouring values of the ratio circumferences to wave-length

should therefore be more or less equally frequent, and this must mean that

neighbouring petal numbers will have much the same frequency. But this is not

borne out by the facts. The number Wve is extremely common, and the number

seven rather rare. Such facts are, in the author’s opinion, capable of explanation

on the basis of morphogen theory, and are closely connected with the theory of

phyllotaxis. They cannot be considered in detail here.

The Chemical Basis of Morphogenesis | 557

The case of aWlament of tissue calls for some comment. The equilibriumpatterns

on such a Wlament will be the same as on a ring, which has been cut at a point where

the concentrations of the morphogens are a maximum or a minimum. This could

account for the segmentation of such Wlaments. It should be noticed, however, that

the theory will not apply unmodiWed for Wlaments immersed in water.

12. Chemical waves on spheres. Gastrulation

The treatment of homogeneity breakdown on the surface of a sphere is not much

more diYcult than in the case of the ring. The theory of spherical harmonics, on

which it is based, is not, however, known to many that are not mathematical

specialists. Although the essential properties of spherical harmonics that are used

are stated below, many readers will prefer to proceed directly to the last para-

graph of this section.

The anatomical structure concerned in this problem is a hollow sphere of

continuous tissue such as a blastula. It is supposed suYciently thin that one can

treat it as a ‘spherical shell’. This latter assumption is merely for the purpose of

mathematical simpliWcation; the results are almost exactly similar if it is omitted.

As in § 7 there are to be two morphogens, and a, b, c, d, m0, n0, h, k are also to

have the same meaning as they did there. The operator r2 will be used here to

mean the superWcial part of the Laplacian, i.e. r2V will be an abbreviation of

1

r2
@2V

@f2
þ 1

r2 sin2 y
@

@y
sin y

@V

@y

	

,

where y and f are spherical polar co-ordinates on the surface of the sphere and r
is its radius. The equations corresponding to (7.1) may then be written

@X

@t
¼ a(X � h)þ b(Y � k)þ m0r2X ,

@Y

@t
¼ c(X � h)þ d(Y � k)þ n0r2Y :

9>>=
>>; (12:1)

It is well known (e.g. Jeans 1927, chapter 8) that any function on the surface of

the sphere, or at least any that is likely to arise in a physical problem, can be

‘expanded in spherical surface harmonics’. This means that it can be expressed in

the form

X1
n¼0

Xn
m¼�n

Am
n P

m
n (cos y) e

imf

" #
:

The expression in the square bracket is described as a ‘surface harmonic of degree

n’. Its nearest analogue in the ring theory is a Fourier component. The essential

property of a spherical harmonic of degree n is that when the operator r2 is

558 | Alan Turing

applied to it the eVect is the same as multiplication by �n(nþ 1)=r2. In view of

this fact it is evident that a solution of (12.1) is

X ¼ h þ
X1
n¼0

Xn
m¼�n

(Am
n e

iqnt þ Bm
n e

iq0nt)Pm
n (cos y) e

imf,

Y ¼ k þ
X1
n¼0

Xn
m¼�n

(Cm
n e

iqnt þ Dm
n e

iq0nt)Pm
n (cos y) e

if,

9>>>>=
>>>>;

(12:2)

where qn and q0n are the two roots of

q � a þ m0

r2
n(nþ 1)

	

q � d þ n0

r2
n(nþ 1)

	

¼ bc (12:3)

and

Am
n qn � a þ m0

r2
n(nþ 1)

	

¼ bCm

n ,

Bm
n q0n � a þ m0

r2
n(nþ 1)

	

¼ cDm

n :

(12:4)

This is the most general solution, since the coeYcients Am
n and Bm

n can be chosen

to give any required values of X, Y when t ¼ 0, except when (12.3) has two equal

roots, in which case a treatment is required which is similar to that applied in

similar circumstances in § 7. The analogy with § 7 throughout will indeed be

obvious, though the summation with respect to m does not appear there. The

meaning of this summation is that there are a number of diVerent patterns with

the same wave-length, which can be superposed with various amplitude factors.

Then supposing that, as in § 8, one particular wave-length predominates, (12.2)

reduces to

X � h ¼ eiqn0 t
Xn0

m¼�n0
Am
n0
Pm
n0
(cos y) eimf,

b(Y � k) ¼ qn0 � a þ m0

r2
n(nþ 1)

	

(X � h):

9>>>=
>>>; (12:5)

In other words, the concentrations of the two morphogens are proportional, and

both of them are surface harmonics of the same degree n0, viz. that which makes

the greater of the roots qn0 , q
0
n0

have the greatest value.

It is probable that the forms of various nearly spherical structures, such as

radiolarian skeletons, are closely related to these spherical harmonic patterns.

The most important application of the theory seems, however, to be to the

gastrulation of a blastula. Suppose that the chemical data, including the chemical

wave-length, remain constant as the radius of the blastula increases. To be quite

speciWc suppose that

The Chemical Basis of Morphogenesis | 559

m0 ¼ 2, n0 ¼ 1, a ¼ �4, b ¼ �8, c ¼ 4, d ¼ 7:

With these values the system is quite stable so long as the radius is less than about

2. Near this point, however, the harmonics of degree 1 begin to develop and a

pattern of form (12.5) with n0 ¼ 1 makes its appearance. Making use of the facts

that

P0
1(cos y) ¼ cos y, P1

1(cos y) ¼ P�11 (cos y) ¼ sin y,

it is seen that X � h is of the form

X � h ¼ A cos yþ B sin y cosfþ C sin y sinf, (12:6)

which may also be interpreted as

X � h ¼ A0 cos y0, (12:7)

where y0 is the angle which the radius y, fmakes with the Wxed direction having

direction cosines proportional to B, C, A and A0 ¼ (
p

A2 þ B2 þ C2).

The outcome of the analysis therefore is quite simply this. Under certain not

very restrictive conditions (which include a requirement that the sphere be

relatively small but increasing in size) the pattern of the breakdown of homo-

geneity is axially symmetrical, not about the original axis of spherical polar co-

ordinates, but about some new axis determined by the disturbing inXuences. The

concentrations of the Wrst morphogen are given by (12.7), where y0 is measured

from this new axis; and Y � k is proportional to X � h. Supposing that the Wrst

morphogen is, or encourages the production of, a growth hormone, one must

expect the blastula to grow in an axially symmetric manner, but at a greater rate

at one end of the axis than at the other. This might under many circumstances

lead to gastrulation, though the eVects of such growth are not very easily

determinable. They depend on the elastic properties of the tissue as well as on

the growth rate at each point. This growth will certainly lead to a solid of

revolution with a marked diVerence between the two poles, unless, in addition

to the chemical instability, there is a mechanical instability causing the break-

down of axial symmetry. The direction of the axis of gastrulation will be quite

random according to this theory. It may be that it is found experimentally that

the axis is normally in some deWnite direction such as that of the animal pole.

This is not essentially contradictory to the theory, for any small asymmetry of the

zygote may be suYcient to provide the ‘disturbance’ which determines the axis.

13. Non-linear theory. Use of digital computers

The ‘wave’ theory which has been developed here depends essentially on the

assumption that the reaction rates are linear functions of the concentrations, an

assumption which is justiWable in the case of a system just beginning to leave a

560 | Alan Turing

homogeneous condition. Such systems certainly have a special interest as giving

the Wrst appearance of a pattern, but they are the exception rather than the rule.

Most of an organism, most of the time, is developing from one pattern into

another, rather than from homogeneity into a pattern. One would like to be able

to follow this more general process mathematically also. The diYculties are,

however, such that one cannot hope to have any very embracing theory of such

processes, beyond the statement of the equations. It might be possible, however,

to treat a few particular cases in detail with the aid of a digital computer. This

method has the advantage that it is not so necessary to make simplifying

assumptions as it is when doing a more theoretical type of analysis. It might

even be possible to take the mechanical aspects of the problem into account as

well as the chemical, when applying this type of method. The essential disadvan-

tage of the method is that one only gets results for particular cases. But this

disadvantage is probably of comparatively little importance. Even with the ring

problem, considered in this paper, for which a reasonably complete mathemat-

ical analysis was possible, the computational treatment of a particular case was

most illuminating. The morphogen theory of phyllotaxis, to be described, as

already mentioned, in a later paper, will be covered by this computational

method. Non-linear equations will be used.

It must be admitted that the biological examples which it has been possible to

give in the present paper are very limited. This can be ascribed quite simply to

the fact that biological phenomena are usually very complicated. Taking this in

combination with the relatively elementary mathematics used in this paper one

could hardly expect to Wnd that many observed biological phenomena would be

covered. It is thought, however, that the imaginary biological systems which have

been treated, and the principles which have been discussed, should be of some

help in interpreting real biological forms.

References

Child, C. M. 1941. Patterns and problems of development. University of Chicago Press.

Davson, H. & Danielli, J. F. 1943. The permeability of natural membranes. Cambridge

University Press.

Jeans, J. H. 1927. The mathematical theory of elasticity and magnetism, 5th ed. Cambridge

University Press.

Michaelis, L. & Menten, M. L. 1913. Die Kinetik der Invertinwirkung. Biochemische

Zeitschrift 49: 333–369.

Thompson, Sir D’Arcy 1942. On growth and form, 2nd ed. Cambridge University Press.

Waddington, C. H. 1940. Organisers and genes. Cambridge University Press.

The Chemical Basis of Morphogenesis | 561

CHAPTER 16

Chess (1953)

Alan Turing

Introduction
Jack Copeland

Chess and AI

Chess and some other board games are a test-bed for ideas in ArtiWcial Intelli-

gence. Donald Michie—Turing’s wartime colleague and subsequently founder of

the Department of Machine Intelligence and Perception at the University of

Edinburgh—explains the relevance of chess to AI:

Computer chess has been described as the Drosophila melanogaster of machine intelli-

gence. Just as Thomas Hunt Morgan and his colleagues were able to exploit the special

limitations and conveniences of the Drosophila fruit Xy to develop a methodology of

genetic mapping, so the game of chess holds special interest for the study of the

representation of human knowledge in machines. Its chief advantages are: (1) chess

constitutes a fully deWned and well-formalized domain; (2) the game challenges the

highest levels of human intellectual capacity; (3) the challenge extends over the full

range of cognitive functions such as logical calculation, rote learning, concept-formation,

analogical thinking, imagination, deductive and inductive reasoning; (4) a massive and

detailed corpus of chess knowledge has accumulated over the centuries in the form of

chess instructional works and commentaries; (5) a generally accepted numerical scale of

performance is available in the form of the U.S. Chess Federation and International ELO

rating system.1

History of Computer Chess

In 1945, in his paper ‘Proposed Electronic Calculator’, Turing predicted that

computers would probably play ‘very good chess’, an opinion echoed in 1949 by

Claude Shannon of Bell Telephone Laboratories, another leading early theoret-

1 D. Michie, On Machine Intelligence (2nd edn. Chichester: Ellis Horwood, 1986), 78–9.

ician of computer chess.2 By 1958, Herbert Simon and Allen Newell were

predicting that within ten years the world chess champion would be a computer,

unless barred by the rules.3 Just under forty years later, on 11 May 1997,

IBM’s Deep Blue beat the reigning world champion, Gary Kasparov, in a

six-game match.

Turing was theorizing about the mechanization of chess as early as 1941.

Fellow codebreakers at GC & CS remember him experimenting with two heuris-

tics now commonly used in computer chess, minimax and best-Wrst.4 The

minimax heuristic involves assuming that one’s opponent will move in such a

way as to maximize their gains; one then makes one’s own move in such a way as

to minimize the losses caused by the opponent’s expected move.5 The best-Wrst

heuristic involves ranking the moves available to a player by means of a rule

of thumb scoring system and examining the consequences of the highest-

scoring move Wrst.

Turochamp

In 1948 Turing and the mathematical economist David Champernowne designed

a chess-playing routine known as ‘Turochamp’.

Champernowne later gave this description of Turochamp:

It was in the late summer of 1948 that Turing and I did try out a loose system of rules for

deciding on the next move in a chess game which we thought could be fairly easily

programmed for a computer. My long-suVering wife, a beginner at chess, took on the

system and lost. . . . Here is what I think I remember about the system but I may have

been inXuenced by what I have since read about other people’s systems. There was a

system for estimating the eVects of any move on White’s estimated net advantage over

Black. This allowed for:

(1) Captures, using the conventional scale of 10 for pawn, 30 for knight or bishop, 50

for rook, 100 for queen and something huge, say 5000, for king.

(2) Change in mobility; i.e., change in the number of squares to which any piece or

pawn could immediately move legitimately (1 each).

(3) Special incentives for: (a) Castling (3 points). (b) Advancing a passed pawn (1 or 2

points). (c) Getting a rook onto the seventh rank (4 points perhaps).

(I don’t think occupation of one of the 4 central squares gained any special bonus. We did

not cater to the end-game.) Most of our attention went to deciding which moves were to

2 C. E. Shannon, ‘Programming a Computer for Playing Chess’, Philosophical Magazine, 41 (1950), 256–75.

3 H. A. Simon and A. Newell, ‘Heuristic Problem Solving: The Next Advance in Operations Research’,

Operations Research, 6 (1958), 1–10.

4 Michie in interview with Copeland (Oct. 1995).

5 The foundations of the minimax approach were laid in 1928 by von Neumann in his fundamental

‘minimax theorem’ (J. von Neumann, ‘Zur Theorie der Gesellschaftsspiele’, Mathematische Annalen, 100

(1928), 295–320).

Chess | 563

be followed up. My memory about this is infuriatingly weak. Captures had to be followed

up at least to the point where no further capture was immediately possible. Checks and

forcing moves had to be followed further. We were particularly keen on the idea that

whereas certain moves would be scorned as pointless and pursued no further others would

be followed quite a long way down certain paths. In the actual experiment I suspect we

were a bit slapdash about all this and must have made a number of slips since the

arithmetic was extremely tedious with pencil and paper. Our general conclusion was

that a computer should be fairly easy to programme to play a game of chess against a

beginner and stand a fair chance of winning or least reaching a winning position.6

Turing started to code the Turochamp for the Ferranti Mark I computer at

Manchester University but he never completed the task.7

The First Working Chess Programme

Dietrich Prinz, who worked for the engineering Wrm Ferranti Ltd., wrote the Wrst

chess programme to be fully implemented. It ran in November 1951 on the

University of Manchester Ferranti Mark I.8 Prinz, like Michie, Strachey, and

others, was inXuenced by an important article published in 1950 by Donald

Davies, ‘A Theory of Chess and Noughts and Crosses’ (see Further Reading).

Prinz ‘learned all about programming the [Mark I] computer at seminars given

by Alan Turing and Cecily Popplewell’.9 (Like Turing, Prinz wrote a program-

ming manual for the Mark I.10)

Prinz’s programme was for solving simple problems of the mate-in-two

variety.11 The programme would examine every possible move until a solution

was found. On average, several thousand moves had to be examined in the

course of solving a problem, and the programme was considerably slower than

a human player. Unlike Prinz’s programme, Turochamp could in principle play a

complete game and operated not by exhaustive search but under the guidance of

heuristics.

Prinz saw in chess programming an ‘indication of the methods that might be

used to treat structural or logistic problems occurring in other Welds by means of

6 Champernowne’s account is from a letter that he wrote to Computer Chess (4 (Jan. 1980), 80–1); it is

published here by permission of W. and R. P. Champernowne.

7 D. Michie, ‘Game-Playing and Game-Learning Automata’, in L. Fox (ed.), Advances in Programming

and Non-numerical Computation (New York: Pergamon, 1966), 189.

8 B. V. Bowden (ed.), Faster Than Thought (London: Pitman, 1953), 295.

9 C. Gradwell, ‘Early Days’, reminiscences in a Newsletter ‘For those who worked on the Manchester Mk

I computers’, Apr. 1994. (I am grateful to Prinz’s daughter, Daniela Derbyshire, for sending me a copy of

Gradwell’s article.)

10 D. G. Prinz, ‘Introduction to Programming on the Manchester Electronic Digital Computer’, n.d.,

Ferranti Ltd. (a digital facsimile is in The Turing Archive for the History of Computing <www.Alan

Turing.net/prinz>).

11 Prinz’s programme is described in Bowden (ed.), Faster Than Thought, 295–7 and in D. G. Prinz,

‘Robot Chess’, Research, 5 (1952), 261–6.

564 | Jack Copeland

www.AlanTuring.net/prinz
www.AlanTuring.net/prinz

electronic computers’.12 Prinz used the Ferranti Mark I to solve logical problems

(as also did Audrey Bates), and in 1949, 1950, and 1951 Ferranti built three small

experimental special-purpose computers for theorem-proving and other logical

work.13 (This was several years before the Logic Theorist of Newell, Simon,

and Shaw—often incorrectly said to be the Wrst AI programme—made its

debut at the Dartmouth conference (see ‘ArtiWcial Intelligence’, above).)

Turing’s Approach in ‘Chess’

Turing says that the system of rules set out in ‘Chess’ is based on an ‘introspective

analysis’ of his own thought processes when playing (but with ‘considerable

simpliWcations’). His system anticipates much that has become standard in chess

programming: the use of heuristics to guide the search through the ‘tree’ of

possible moves and counter-moves; the use of evaluation rules which assign

numerical values, indicative of strength or weakness, to board conWgurations; the

minimax strategy; and variable look-ahead whereby, instead of the consequences

of every possible move being followed equally far, the ‘more proWtable moves

[are] considered in greater detail than the less’ (p. 571). Turing also realized the

necessity of using ‘an entirely diVerent system for the end-game’ (p. 574).

The learning procedure that Turing proposes in ‘Chess’ involves the machine

trying out variations in its method of play—e.g. varying the numerical values

that are assigned to the various pieces. The machine adopts any variation that

leads to more satisfactory results. This procedure is an early example of a genetic

algorithm or GA (see ‘ArtiWcial Life’, above).

Chess Bulldozers

Turing likened the claim that no chess programme can outplay its programmer

to the claim that no animal can swallow an animal heavier than itself. Both

claims, he said, ‘are, so far as I know, untrue’. He pointed out that a programme

might outplay its programmer simply in virtue of ‘the speed of the machine,

which might make it feasible to carry the analysis . . . farther than a man could do

in the same time’ (p. 575).

Critics question the worth of research into computer chess. NoamChomsky has

said famously that a computer beating a grandmaster at chess is as interesting as a

bulldozer winning a weight-lifting competition.14 Deep Blue did indeed bulldoze

12 Prinz, ‘Robot Chess’, 266.

13 D. G. Prinz and J. B. Smith, ‘Machines for the Solution of Logical Problems’, in Bowden (ed.), Faster

Than Thought, ch. 15; W. Mays and D. G. Prinz, ‘A Relay Machine for the Demonstration of Symbolic Logic’,

Nature, 165/4188 (4 Feb. 1950), 197–8; M. A. Bates, ‘On the Mechanical Solution of a Problem in Church’s

Lambda Calculus’, M.Sc. thesis, University of Manchester.

14 N. Chomsky, Language and Thought (London: Moyer Bell, 1993), 93.

Chess | 565

its way to victory—256 parallel processors enabled it to examine 200 million

possible moves per second and to look ahead as many as fourteen turns of play.

The huge improvement in computer chess since Turing’s day owes much more

to advances in hardware engineering than to advances in AI. Massive increases in

cpu speed and memory have meant that successive generations of machines have

been able to examine increasingly many possible moves. Turing’s expectation was

that chess-programming would contribute to the study of how human beings

think. In fact, little or nothing about human thought processes appears to have

been learned from the series of projects that culminated in Deep Blue.

The Turing Test Again

In the introductory paragraphs of his essay, Turing touches on some philosoph-

ical issues ‘unconnected with chess’. In a reference to the imitation game (Chap-

ter 11), he again states his belief that one could ‘make a machine which would

answer questions put to it, in such a way that it would not be possible to

distinguish its answers from those of a man’ (p. 569). On the question of what

justiWcation there is for this, he says that he knows of ‘no really convincing

argument to support this belief and certainly of none to disprove it.’

Consciousness

In ‘Chess’ Turing is careful to distinguish the question whether one could make a

machine that would play the imitation game successfully from the question

‘Could one make a machine which would have feelings like you and I do?’

(p. 569). Examples of ‘feelings’ are pleasure, grief, misery, and anger (Chapter 11,

p. 451). The assertion ‘No mechanism could feel’ forms the basis of the objection

to the Turing test that in Chapter 11 Turing dubs the ‘Argument from Con-

sciousness’. His remarks in the present chapter clarify the discussion that he gives

of this objection in Chapter 11.

The answer that Turing gives in ‘Chess’ to his question ‘Could one make a

machine which would have feelings’ is this (p. 569): ‘I shall never know, any more

than I shall ever be quite certain that you feel as I do.’ Thus his view appears to be

that the question ‘Can machines think?’ is independent of the question whether

machines can feel, and that an aYrmative answer may be given to the former in

the absence of our having any answer at all to the latter. If he is right—and

arguably he is15—then the assertion ‘No mechanism could feel’, even if true, goes

wide of the mark as an objection to the Turing test. As Turing sensibly says in

Chapter 11 (pp. 452–3):

15 See section 3.1 (‘Is Consciousness Necessary for Thought?’) of B. J. Copeland, ArtiWcial Intelligence: A

Philosophical Introduction (Oxford: Blackwell, 1993).

566 | Jack Copeland

I do not wish to give the impression that I think there is no mystery about conscious-

ness. . . . But I do not think these mysteries necessarily need to be solved before we can

answer the question with which we are concerned in this paper [i.e. ‘Can machines

think?’].

Consciousness and Computer Simulation

Turing asserts (p. 569) that in the case of the questions ‘Could one make a

machine to play chess, and to improve its play?’, and ‘Could one make a machine

which would answer questions put to it, in such a way that it would not be

possible to distinguish its answers from those of a man?’, the phrase ‘Could one

make a machine to . . .’ might equally well be replaced by ‘Could one programme

an electronic computer to . . .’. On pp. 569–70 Turing supports this claim

with an argument that also appears, in somewhat diVerent forms, in Chapters

11 and 13:

if some other machine had been constructed to do the job we could use an electronic

computer (of suYcient storage capacity), suitably programmed, to calculate what this

machine would do, and in particular what answer it would give.

(If no superior method presented itself, then the computer could be supplied with

a ‘look-up table’ setting out the behaviour of the other machine (see Chapter 11).)

In the case, however, of the question ‘Could one make a machine which would

have feelings like you and I do?’, Turing indicates (on p. 569) that replacing ‘Could

one make a machine to . . .’ by ‘Could one programme an electronic computer

to . . .’ might possibly result in a question that is not equivalent. Turing says in

Chapter 13 that ‘any machine of a certain very wide class’ can be replaced equiva-

lently by a digital computer, but notes that not every machine can be so replaced,

giving as examples of those that cannot bulldozers, steam-engines, and telescopes

(p. 483). Presumably, therefore, Turing considered it an open question whether a

machine capable of feeling belongs to the Wrst or second of these two classes.

The Church–Turing Thesis

‘Chess’ contains a formulation of the Church–Turing thesis that does not appear

elsewhere in Turing’s writings (p. 570):

If one can explain quite unambiguously in English, with the aid of mathematical symbols

if required, how a calculation is to be done, then it is always possible to programme any

digital computer to do that calculation, provided the storage capacity is adequate.

As elsewhere (e.g. in Chapter 10 (p. 414) and Chapter 17 (pp. 588–9)), Turing

emphasizes here that this thesis ‘is not the sort of thing that admits of clear cut

Chess | 567

proof ’, but nevertheless ‘amongst workers in the Weld it is regarded as being clear

as day’ (p. 570). (The phrase ‘how a calculation is to be done’ should be

understood as being elliptical for some such phrase as ‘how a calculation is to

be done by an obedient clerk working in accordance with a systematic method’.)

Turing applies this thesis to the question ‘Could one programme an electronic

computer to play a reasonably good game of chess?’ He points out that, in view

of the thesis, there is no need to set out an actual programme in order to show

that the answer to the question is aYrmative. It suYces to explain, ‘unambigu-

ously in English’, the rules by which the machine is to choose its move in each

position. This Turing proceeds to do.

Further reading

Davies, D. W., ‘A Theory of Chess and Noughts and Crosses’, Science News, 16 (1950),

40–64.

Newborn, M., Kasparov Versus Deep Blue: Computer Chess Comes of Age, (Springer: New

York, 1997).

Shannon, C. E. ‘Programming a Computer for Playing Chess’, Philosophical Magazine, 41

(1950), 256–75.

—— ‘A Chess-Playing Machine’, ScientiWc American, 182 (1950), 48–51.

Provenance

Turing’s essay ‘Chess’ was published in the 1953 collection Faster Than Thought,

where it formed a section of a chapter entitled ‘Digital Computers Applied To

Games’. (Edited by Vivian Bowden, Faster Than Thought is a fascinating survey of

the then state of the art in digital computing.) The chapter was co-authored by

Audrey Bates, Bowden, and Christopher Strachey. Bowden’s editorial remarks do

not make it clear which parts of ‘Digital Computers Applied To Games’ were

written by which author.16 Fortunately, Turing’s typescript of his contribution

has survived.17 It is this which is printed here.18

16 The whole article is mistakenly attributed to Turing alone inMechanical Intelligence: Collected Works of

A. M. Turing, ed. D. C. Ince (Amsterdam: North-Holland, 1992).

17 Turing’s typescript is itself entitled ‘Digital Computers applied to Games’. In Faster Than Thought

Turing’s essay was published under the narrower and more accurate title ‘Chess’. The typescript is among the

Turing Papers in the Modern Archive Centre, King’s College, Cambridge (catalogue reference B 7).

18 Bowden’s edition of the essay diVers from Turing’s typescript in numerous respects, many of them

minor. The present edition follows Turing’s typescript. Some obvious typing errors have been corrected and

in one case a conjectured missing word has been added in square brackets. Some signiWcant diVerences

between the typescript and Bowden’s edition are mentioned in footnotes. (Bowden’s edition is reprinted in

Turing, Mechanical Intelligence, ed. Ince, 288–95.)

568 | Jack Copeland

Chess

When one is asked ‘Could one make a machine to play chess?’, there are several

possible meanings which might be given to the words. Here are a few:

i) Could one make a machine which would obey the rules of chess, i.e. one

which would play random legal moves, or which could tell one whether a

given move is a legal one?

ii) Could one make a machine which would solve chess problems, e.g. tell

one whether, in a given position, white has a forced mate in three?

iii) Could one make a machine which would play a reasonably good game of

chess, i.e. which, confronted with an ordinary (that is, not particularly

unusual) chess position, would after two or three minutes of calculation,

indicate a passably good legal move?

iv) Could one make a machine to play chess, and to improve its play, game by

game, proWting from its experience?

To these we may add two further questions, unconnected with chess, which are

likely to be on the tip of the reader’s tongue.

v) Could one make a machine which would answer questions put to it, in

such a way that it would not be possible to distinguish its answers from

those of a man?

vi) Could one make a machine which would have feelings like you and I do?

The problem to be considered here is iii), but to put this problem into

perspective with the others I shall give the very briefest of answers to each of

them.

To i) and ii) I should say ‘This certainly can be done. If it has not been done

already it is merely because there is something better to do.’

Question iii) we are to consider in greater detail, but the short answer is ‘Yes,

but the better the standard of play required, the more complex will the machine

be, and the more ingenious perhaps the designer.’

To iv) and v) I should answer ‘I believe so. I know of no really convincing

argument to support this belief and certainly of none to disprove it.’

To vi) I should say ‘I shall never know, any more than I shall ever be quite

certain that you feel as I do.’

In each of these problems except possibly the last, the phrase ‘Could one make

a machine to . . .’ might equally well be replaced by ‘Could one programme an

electronic computer to . . .’. Clearly the electronic computer so programmed

would itself constitute a machine. And on the other hand if some other machine

Printed with the permission of Financial Times Management and the Estate of Alan Turing.

had been constructed to do the job we could use an electronic computer (of

suYcient storage capacity), suitably programmed, to calculate what this machine

would do, and in particular what answer it would give.

After these preliminaries let us give our minds to the problem of making a

machine, or of programming a computer, to play a tolerable game of chess.

In this short discussion it is of course out of the question to provide actual

programmes, but this does not really matter on account of the following

principle:

If one can explain quite unambiguously in English, with the aid of mathemat-

ical symbols if required, how a calculation is to be done, then it is always

possible to programme any digital computer to do that calculation, provided

the storage capacity is adequate.

This is not the sort of thing that admits of clear cut proof, but amongst

workers in the Weld it is regarded as being clear as day. Accepting this principle,

our problem is reduced to explaining ‘unambiguously in English’ the rules by

which the machine is to choose its move in each position. For deWniteness we

will suppose the machine is playing white.

If the machine could calculate at an inWnite speed, and also had unlimited

storage capacity, a comparatively simple rule would suYce, and would give a

result that in a sense could not be improved on. This rule could be stated:

Consider every possible continuation of the game from the given position.

There is only a Wnite number of them (at any rate if the Wfty-move rule makes

a draw obligatory, not merely permissive). Work back from the end of these

continuations, marking a position with white to play as ‘win’ if there is a move

which turns it into a position previously marked as ‘win’. If this does not

occur, but there is a move which leads to a position marked ‘draw’, then mark

the position ‘draw’. Failing this, mark it ‘lose’. Mark a position with black to

play by a similar rule with ‘win’ and ‘lose’ interchanged. If after this process

has been completed it is found that there are moves which lead to a position

marked ‘win’, one of these should be chosen. If there is none marked ‘win’

choose one marked ‘draw’ if such exists. If all moves lead to a position marked

‘lose’, any move may be chosen.

Such a rule is practically applicable in the game of noughts and crosses, but in

chess is of merely academic interest.

Even when the rule can be applied it is not very appropriate for use against a

weak opponent, who may make mistakes which ought to be exploited.

In spite of the impracticability of this rule it bears some resemblance to what

one really does when playing chess. One does not follow all the continuations of

play, but one follows some of them. One does not follow them until the end of

the game, but one follows them a move or two, perhaps more. Eventually a

570 | Alan Turing

position seems, rightly or wrongly, too bad to be worth further consideration, or

(less frequently) too good to hesitate longer over. The further a position is from

the one on the board the less likely is it to occur, and therefore the shorter is the

time which can be assigned for its consideration. Following this idea we might

have a rule something like this:

Consider all continuations of the game consisting of a move by white, a reply by

black, and another move and reply. The value of the position at the end of each

of these sequences of moves is estimated according to some suitable rule. The

values at earlier positions are then calculated by working backwards move by

move as in the theoretical rule given before. Themove to be chosen is that which

leads to the position with the greatest value.

It is possible to arrange that no two positions have the same value. The rule is

then unambiguous. A very simple form of values, but one not having this

property, is an ‘evaluation of material’, e.g. on the basis

P ¼ 1

Kt ¼ 3

B ¼ 3 1
2

R ¼ 5

Q ¼ 10

Checkmate ± 10001

If B is black’s total and W is white’s, then W=B is quite a good measure of

value. This is better than W�B as the latter does not encourage exchanges when

one has the advantage. Some small extra arbitrary function of position may be

added to ensure deWniteness in the result.

The weakness of this rule is that it follows all combinations equally far. It

would be much better if the more proWtable moves were considered in greater

detail than the less. It would also be desirable to take into account more than

mere ‘value of material’.

After this introduction I shall describe a particular set of rules, which could

without diYculty be made into a machine programme. It is understood that the

machine is white and white is next to play. The current position is called the

‘position of the board’, and the positions arising from it by later moves ‘positions

in the analysis’.2

1 Editor’s note. In the Bowden edition. Turing’s ‘+ ’ has been replaced with ‘¼’.
2 Editor’s note. In the Bowden edition, Turing’s ‘position of the board’ has been replaced by ‘position on

the board’.

Chess | 571

‘Considerable’ Moves, i.e. Moves to be considered in the analysis
by the machine

Every possibility for white’s next move and for black’s reply is ‘considerable’. If a

capture is considerable then any recapture is considerable. The capture of an

undefended piece or the capture of a piece of higher value by one of lower value

is always considerable. A move giving checkmate is considerable.

Dead position

A position in the analysis is dead if there are no considerable moves in that

position, i.e. if it is more than two moves ahead of the present position, and no

capture or recapture or mate can be made in the next move.

Value of position

The value of a dead position is obtained by adding up the piece values as above, and

forming the ratioW=B of white’s total to black’s. In other positions with white to

play the value is the greatest value of: (a) the positions obtained by considerable

moves, or (b) the position itself evaluated as if a dead position, the latter alternative

to be omitted if all moves are considerable. The same process is to be undertaken

for one of black’s moves, but the machine will then choose the least value.

Position-play value

Each white piece has a certain position-play contribution and so has the black

king. These must all be added up to give the position-play value.

For a Q, R, B or Kt, count

i) The square root of the number of moves the piece can make from the

position, counting a capture as two moves, and not forgetting that the

king must not be left in check.

ii) (If not a Q) 1�0 if it is defended, and an additional 0�5 if twice defended.
For a K, count

iii) For moves other than castling as i) above.

iv) It is then necessary to make some allowance for the vulnerability of the

K. This can be done by assuming it to be replaced by a friendly Q on the

same square, estimating as in i), but subtracting instead of adding.

v) Count 1�0 for the possibility of castling later not being lost by moves of K

or rooks, a further 1�0 if castling could take place on the next move, and

yet another 1�0 for the actual performance of castling.

For a P, count

vi) 0�2 for each rank advanced.

vii) 0�3 for being defended by at least one piece (not P).

For the black K, count

572 | Alan Turing

viii) 1�0 for the threat of checkmate.

ix) 0�5 for check.

We can now state the rule for play as follows.

The move chosen must have the greatest possible value, and, consistent with

this, the greatest possible position-play value. If this condition admits of

several solutions a choice may be made at random, or according to an

arbitrary additional condition.

Note that no ‘analysis’ is involved in position-play evaluation. This is in order

to reduce the amount of work done on deciding the move.

The game below was played between this machine and a weak player who did

not know the system. To simplify the calculations the square roots were rounded

oV to one decimal place (i.e. the table below was used). No ‘random choices’

actually arose in this game. The increase of position-play value is given after

white’s move if relevant. An asterisk indicates that every other move had a lower

position-play value. 0—0 indicates castling.3

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Square Root 0 1 1�4 1�7 2�0 2�2 2�4 2�6 2�8 3�0 3�2 3�3 3�5 3�6
White (Machine) Black

1. P—K4 4�2* P—K4

2. Kt—QB3 3�1* Kt—KB3
3. P—Q4 3�1* B—QKt5
4. Kt—KB3(1) 2�0 P—Q3

5. B—Q2 3�6* Kt—QB3
6. P—Q5 0�2 Kt—Q5

7. P—KR4(2) 1�1* B—Kt5
8. P—QR4(2) 1�0* Kt � Kt ch.

9. P � Kt B—KR4

10. B—Kt5 ch. 2�4* P—QB3
11. P � P 0—0

12. P � P R—Kt1
13. B—R6 �1�5 Q—R4

14. Q—K2 0�6 Kt—Q2

15. KR—Kt1(3) 1�2* Kt—B4(4)

16. R—Kt5(5) B—Kt3
17. B—Kt5 0�4 Kt � KtP

18. 0—0 3�0* Kt—B4
19. B—B6 KR—QB1

Continued

3 Editor’s note. In the Bowden edition a diVerent game is to shown, diverging from the present game at

the 21st move.

Chess | 573

White (Machine) Black

20. B—Q5 B � Kt

21. P � B(2) �0�7 Q � P

22. B—K3(6) Q—R6 ch.

23. K—Q2 Kt—R5

24. B � RP(7) R—Kt7
25. P—B4 Q—B6 ch.

26. K—B1 R—R7

27. B � BP ch. B � B

28. R � KtP ch.(5) K � R

29. B—K3(8) R—R8 mate

Notes:

1. If B—Q2 3�6* then P � P is foreseen.

2. Most inappropriate moves from a positional point of

view.

3. If 0—0 then B� Kt, B� B,Q� P.

4. The fork is unforeseen.

5. Heads in the sand!

6. Only this or B—K1 can prevent Q—R8 mate.

7. Fiddling while Rome burns.

8. Mate is foreseen, but ‘business as usual’.

Numerous criticisms of the machine’s play may be made. It is quite defenceless

against ‘forks’, although it may be able to see certain other kinds of combination.

It is of course not diYcult to devise improvements of the programme [so] that

these simple forks are foreseen. The reader may be able to think of some such

improvements for himself. Since no claim is made that the above rule is particu-

larly good, I have been content to leave this Xaw without remedy; clearly a line

has to be drawn between the Xaws which one will attempt to eliminate and those

which must be accepted as a risk. Another criticism is that the scheme proposed,

although reasonable in the middle game, is futile in the end game. The change-

over from the middle game to the end-game is usually suYciently clean cut for it

to be possible to have an entirely diVerent system for the end-game. This should

of course include quite deWnite programmes for the standard situations, such as

mate with rook and king, or king and pawn against king. There is no intention to

discuss the end-game further here.

If I were to sum up the weakness of the above system in a few words I would

describe it as a caricature of my own play. It was in fact based on an introspective

analysis of my thought processes when playing, with considerable simpliWca-

tions. It makes oversights which are very similar to those which I make myself,

and which may in both cases be ascribed to the considerable moves being rather

inappropriately chosen. This fact might be regarded as supporting the rather glib

view which is often expressed, to the eVect that ‘one cannot programme a

machine to play a better game than one plays oneself ’. This statement should I

574 | Alan Turing

think be compared with another of rather similar form. ‘No animal can swallow

an animal heavier than himself.’ Both statements are, so far as I know, untrue.

They are also both of a kind that one is rather easily bluVed into accepting, partly

because one thinks that there ought to be some rather slick way of demonstrating

them, and one does not like to admit that one does not see what this argument is.

They are also both supported by normal experience, and need rather exceptional

cases to falsify them. The statement about chess programming may be falsiWed

quite simply by the speed of the machine, which might make it feasible to carry

the analysis a move farther than a man could do in the same time. This eVect is

rather less than might be supposed. Although electronic computers are very fast

where conventional computing is concerned, their advantage is much reduced

where enumeration of cases, etc., is involved on a large scale. Take for instance

the problem of counting the possible moves from a given position in chess. If the

number is 30 a man might do it in 45 seconds and the machine in 1 second. The

machine has still an advantage, but it is much less overwhelming than it would

be for instance where calculating cosines.

In connection with the question, numbered iv) above, as to the ability of a

chess-machine to proWt from experience, one can see that it would be quite

possible to programme the machine to try out variations in its method of play

(e.g. variations in piece value) and adopt the one giving the most satisfactory

results. This could certainly be described as ‘learning’, though it is not quite

representative of learning as we know it. It might also be possible to programme

the machine to search for new types of combination in chess. If this product

produced results which were quite new, and also interesting to the programmer,

who should have the credit? Compare this with the situation where the Defence

Minister has given orders for research to be done to Wnd a counter to the bow

and arrow. Should the inventor of the shield have the credit, or should the

Defence Minister?

Chess | 575

CHAPTER 17

Solvable and Unsolvable Problems (1954)

Alan Turing

Introduction
Jack Copeland

Unsolvable Problems

In Chapter 1 Turing proves the existence of mathematical problems that cannot

be solved by the universal Turing machine. There he also advances the thesis,

now called the Church–Turing thesis, that any systematic method for solving

mathematical problems can be carried out by the universal Turing machine.

Combining these two propositions yields the result that there are mathematical

problems which cannot be solved by any systematic method—cannot, in other

words, be solved by any algorithm.

Substitution Puzzles

In ‘Solvable and Unsolvable Problems’ Turing sets out to explain this result to a

lay audience. The article Wrst appeared in Science News, a popular science journal

of the time. Starting from concrete examples of problems that do admit of

algorithmic solution, Turing works his way towards an example of a problem

that is not solvable by any systematic method. Loosely put, this is the problem of

sorting puzzles into those that will ‘come out’ and those that will not. Turing

gives an elegant argument showing that a sharpened form of this problem is not

solvable by means of a systematic method (pp. 591–2).

The sharpened form of the problem involves what Turing calls ‘the substitu-

tion type of puzzle’. An typical example of a substitution puzzle is this. Starting

with the word BOB, is it possible to produce BOOOB by replacing selected

occurrences of the pair OB by BOOB and selected occurences of the triple BOB

by O? The answer is yes:

BOB! BBOOB! BBOBOOB! BOOOB:

Turing suggests that any puzzle can be re-expressed as a substitution puzzle.

Some row of letters can always be used to represent the ‘starting position’

envisaged in a particular puzzle, e.g. in the case of a chess problem, the pieces

on the board and their positions. Desired outcomes, for example board positions

that count as wins, can be described by further rows of letters, and the rules of

the puzzle, whatever they are, are to be represented in terms of permissible

substitutions of groups of letters for other groups of letters.

As Turing points out, it is not only ‘toy’ puzzles that can be re-expressed as

substitution puzzles, but also mathematical problems, for instance the problem

of Wnding a proof of a given mathematical theorem within an axiom system

(which Turing describes as ‘a very good example of a puzzle’). The axioms—

which are simply strings of mathematical symbols—form the starting position.

The theorem—another string of symbols—is the winning position. The rules of

the puzzle are substitutions that enable strings of mathematical symbols to be

transformed into other strings, much as in the case of the transition from BOB to

BBOOB in the earlier example.

Turing calls the substitution formulation of any puzzle its ‘normal form’ and

states the following normal form principle (p. 588):

Given any puzzle, we can Wnd a corresponding substitution puzzle which is equivalent to

it in the sense that given a solution of the one we can easily use it to Wnd a solution of the

other.

Normal Forms and the Church–Turing Thesis

The normal form principle for puzzles closely parallels the Church–Turing thesis,

which says that given any systematic method, we can Wnd a corresponding

Turing machine that is equivalent to it.

Neither the normal form principle for puzzles nor the Church–Turing thesis is

susceptible to deWnite proof (see ‘Computable Numbers: A Guide’). While few

doubt that the Church–Turing thesis is in fact true, the very nature of the thesis

has always been a matter for debate. Church, for example, described the thesis as

a deWnition.1 Post, on the other hand, described it as a ‘working hypothesis’ that

is in need of ‘continual veriWcation’, and he criticized Church for masking this

hypothesis as a deWnition.2 Turing’s remarks in ‘Solvable and Unsolvable

Problems’ about the status of the normal form principle for puzzles are of

outstanding interest for the light that they may cast on his view concerning

1 A. Church, ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics,

58 (1936), 345–63 (356).

2 E. L. Post, ‘Finite Combinatory Processes - Formulation 1’, Journal of Symbolic Logic, 1 (1936), 103–5

(105).

Solvable and Unsolvable Problems | 577

the status of the Church–Turing thesis. In this connection, see also the

material from Turing’s draft typescript quoted in n. 9 on p. 590.

Turing says of the normal form principle (pp. 588–9):

The statement is . . . one which one does not attempt to prove. Propaganda is more

appropriate to it than proof, for its status is something between a theorem and a

deWnition. In so far as we know a priori what is a puzzle and what is not, the statement

is a theorem. In so far as we do not know what puzzles are, the statement is a deWnition

which tells us something about what they are. One can of course deWne a puzzle by some

phrase beginning, for instance, ‘A set of deWnite rules . . .’, but this just throws us back on

the deWnition of ‘deWnite rules’. Equally one can reduce it to the deWnition of ‘computable

function’ or ‘systematic procedure’. A deWnition of any one of these would deWne all the

rest.

Turing would perhaps have said much the same concerning not only the

Church–Turing thesis but also the thesis introduced in Chapter 13:

A digital computer will replace any rival design of calculating machine.

In so far as we do not know what calculating machines are, the statement is a

deWnition which tells us something about what they are.

Proof of Unsolvability

Having introduced the normal form principle for puzzles, Turing turns to his

central project of establishing that ‘there cannot be any systematic procedure for

determining whether a puzzle be solvable or not’ (p. 590). In particular, there

cannot be a systematic procedure for determining whether substitution puzzles

are or are not solvable. Turing argues by reductio ad absurdum. He shows that the

supposition that there is a systematic procedure for determining whether substi-

tution puzzles are or are not solvable leads to an outright contradiction, and on

that basis concludes that there can be no such procedure. The argument turns on

the impossibility of applying a certain procedure to itself.

Any systematic procedure is in eVect a puzzle, since in following the procedure

one applies rules to some ‘starting position’ until one or another result is

achieved. So if there were a systematic procedure for determining whether each

puzzle is or is not solvable, then by the normal form principle, there is a

substitution puzzle—call it K—that is equivalent to this procedure. When

applied to any substitution puzzle, K—if it exists—must ‘come out’ either with

the result solvable or with the result not solvable . Since K is applicable

to any substitution puzzle, K can be applied to itself in order to determine

whether it itself is or is not solvable. Turing shows (p. 592) that this supposed

ability of K to pronounce on its own solvability leads to outright contradiction,

and so concludes that K cannot exist.

578 | Jack Copeland

The Meaning of ‘Unsolvable’

Turing points out that the result he has established, namely that there is no

systematic method for deciding whether or not substitution puzzles come out, is

often expressed by saying that there is no decision procedure for puzzles of this

type, and that the decision problem for this type of puzzle is unsolvable. He

continues (p. 592): ‘so one comes to speak (as in the title of this article) about

‘‘unsolvable problems’’ meaning in eVect puzzles for which there is no decision

procedure. This is the technical meaning which the words are now given by

mathematical logicians.’

As Turing says, this terminology is potentially confusing. It is natural to use

the words ‘unsolvable problem’ to mean a problem for which no solution can

possibly be found. It would be a confusion to think that Turing has shown that

the problem of deciding whether or not substitution puzzles come out is an

unsolvable problem in this natural sense. Indeed, with suYcient time, inventive-

ness, and patience, mathematicians may always be able to establish whether or

not any given substitution puzzle comes out. If that is so, then the problem of

deciding whether or not substitution puzzles come out is solvable, in the natural

sense of the word.

What Turing has shown is that there is no systematic method for deciding

whether or not substitution puzzles come out, i.e. there is no general procedure,

applicable by rote, that one can employ in order to decide whether or not each

substitution puzzle comes out. The ‘decision problem’ for substitution puzzles is

the problem of Wnding such a rote procedure (a ‘decision procedure’); in showing

that there is no such procedure, Turing has shown that the decision problem for

substitution puzzles is unsolvable in the natural sense.

Turing therefore recommends that, in order to ‘minimize confusion’, one

should ‘always speak of ‘‘unsolvable decision problems’’, rather than just ‘‘un-

solvable problems’’ ’ (p. 592).

Significance of Turing’s Result

Turing ends the chapter with a comment on the signiWcance of what he has

shown. His result concerning the decision problem for substitution puzzles ‘may

be regarded as going some way towards a demonstration, within mathematics

itself, of the inadequacy of ‘‘reason’’ unsupported by common sense’. For he has,

he says, set ‘certain bounds to what we can hope to achieve purely by reasoning’.

The phrase ‘purely by reasoning’ here presumably means ‘purely by algorith-

mic methods’. Some mathematical problems require for their solution not only

‘reason’, in this sense, but also what Turing refers to in Chapter 3 as ‘intuition’

(see also Chapter 4). There he says (pp. 192–3):

Solvable and Unsolvable Problems | 579

The activity of the intuition consists in making spontaneous judgements which are not the

result of conscious trains of reasoning. . . . Often it is possible to Wnd some other way of

verifying the correctness of an intuitive judgement. We may, for instance, judge that all

positive integers are uniquely factorizable into primes; a detailed mathematical argument

leads to the same result. This argument will also involve intuitive judgements, but they

will be less open to criticism than the original judgement about factorization. . . . The

necessity for using the intuition is . . . greatly reduced by setting down formal rules for

carrying out inferences which are always intuitively valid. . . . In pre-Gödel times it was

thought by some that it would probably be possible to carry this programme to such a

point that all the intuitive judgements of mathematics could be replaced by a Wnite

number of these rules. The necessity for intuition would then be entirely eliminated.

The argument of ‘Solvable and Unsolvable Problems’ illustrates why it is that

the need for intuition cannot always be eliminated in favour of formal rules.

Gödel’s Theorem

Turing notes that the unsolvability of the decision problem for substitution

puzzles aVords an elegant proof of the following rather general statement

(p. 593):

no systematic method of proving mathematical theorems is suYciently com-

plete to settle every mathematical question, yes or no.

The proof Turing gives is as follows. Each statement of the form ‘such-and-such

substitution puzzle comes out’ can be expressed in the form of a mathematical

statement. So if there were a systematic method of settling every question that

can be posed in mathematical form, this method would serve as a decision

procedure for substitution puzzles. Given that there is no such decision proced-

ure, it follows that no systematic method is able to settle every mathematical

question.

Turing remarks that the above statement follows ‘by a famous theorem of

Gödel’ and describes himself as providing ‘an independent proof ’ of the state-

ment (p. 593). Turing might also have pointed out that his own ‘On Computable

Numbers’ yields a proof of this statement.

Gödel’s famous incompleteness theorem of 1931 is, however, importantly less

general than the above statement, since it concerns only one particular systematic

method of proving mathematical theorems, the system set out by Whitehead and

Russell in Principia Mathematica3 (as explained in ‘Computable Numbers: A

Guide’). Gödel did later generalize his result of 1931 to all formal systems

(containing a certain amount of arithmetic), but emphasized the importance

that Turing’s work played in this generalization. Gödel said in 1964:

3 A. N. Whitehead and B. Russell, Principia Mathematica, vols. i–iii (Cambridge: Cambridge University

Press, 1910–13).

580 | Jack Copeland

[D]ue to A. M. Turing’s work, a precise and unquestionably adequate deWnition of the

general concept of formal system can now be given . . . Turing’s work gives an analysis of

the concept of ‘mechanical procedure’ (alias ‘algorithm’ or ‘computation procedure’ or

‘Wnite combinatorial procedure’). . . . A formal system can simply be deWned to be any

mechanical procedure for producing formulas, called provable formulas.4

In his references to Gödel’s work, Turing hides his own light under a bushel.

Further reading

Boone, W. W., review of Turing’s ‘The Word Problem in Semi-Groups with Cancellation’,

Journal of Symbolic Logic, 17 (1952), 74–6.

Turing, A. M., ‘The Word Problem in Semi-Groups with Cancellation’, Annals of Math-

ematics, 52 (1950), 491–505. Reprinted in Pure Mathematics: Collected Works of A. M.

Turing, ed. J. L. Britton (Amsterdam: North-Holland, 1992).

Provenance

What follows is the text of the original printing of ‘Solvable and Unsolvable

Problems’ in Science News.5 Unfortunately Turing’s own typescript appears to

have been lost. However, a sizeable fragment of a draft typescript, with additions

in Turing’s handwriting, has been preserved.6 (Turing recycled the draft pages,

covering the reverse sides with handwritten notes concerning morphogen-

esis.) The fragment corresponds to pp. 584–9. For the most part the pub-

lished version follows the draft pages closely (except for punctuation and

occasional changes of word and word-order). SigniWcant diVerences between

the draft and the published version are mentioned in footnotes.

4 K. Gödel, ‘Postscriptum’, in M. Davis (ed.), The Undecidable (New York: Raven, 1965), 71–3 (71–2); the

Postscriptum, dated 1964, is to Gödel’s 1934 paper ‘On Undecidable Propositions of Formal Mathematical

Systems’ (ibid. 41–71).

5 Footnotes have been renumbered consecutively. Footnotes not marked ‘Editor’s note’ appeared in

Science News. A page reference to Science News been replaced by the number (in square brackets) of the

corresponding page of this volume.

6 The fragment is among the Turing Papers in the Modern Archive Centre, King’s College, Cambridge; at

the time of writing it is uncatalogued.

Solvable and Unsolvable Problems | 581

Solvable and Unsolvable Problems

If one is given a puzzle to solve one will usually, if it proves to be diYcult, ask the

owner whether it can be done. Such a question should have a quite deWnite

answer, yes or no, at any rate provided the rules describing what you are allowed

to do are perfectly clear. Of course the owner of the puzzle may not know the

answer. One might equally ask, ‘How can one tell whether a puzzle is solvable?’,

but this cannot be answered so straightforwardly. The fact of the matter is that

there is no systematic method of testing puzzles to see whether they are solvable

or not. If by this one meant merely that nobody had ever yet found a test which

could be applied to any puzzle, there would be nothing at all remarkable in the

statement. It would have been a great achievement to have invented such a test,

so we can hardly be surprised that it has never been done. But it is not merely

that the test has never been found. It has been proved that no such test ever can

be found.

Let us get away from generalities a little and consider a particular puzzle. One

which has been on sale during the last few years and has probably been seen by

most of the readers of this article illustrates a number of the points involved

quite well. The puzzle consists of a large square within which are some smaller

movable squares numbered 1 to 15, and one empty space, into which any of the

neighbouring squares can be slid leaving a new empty space behind it. One may

be asked to transform a given arrangement of the squares into another by a

succession of such movements of a square into an empty space. For this puzzle

there is a fairly simple and quite practicable rule by which one can tell whether

the transformation required is possible or not. One Wrst imagines the transform-

ation carried out according to a diVerent set of rules. As well as sliding the

squares into the empty space one is allowed to make moves each consisting of

two interchanges, each of one pair of squares. One would, for instance, be

allowed as one move to interchange the squares numbered 4 and 7, and also

the squares numbered 3 and 5. One is permitted to use the same number in both

pairs. Thus one may replace 1 by 2, 2 by 3, and 3 by 1 as a move because this is

the same as interchanging Wrst (1, 2) and then (1, 3). The original puzzle is

solvable by sliding if it is solvable according to the new rules. It is not solvable by

sliding if the required position can be reached by the new rules, together with a

‘cheat’ consisting of one single interchange of a pair of squares.1 Suppose, for

instance, that one is asked to get back to the standard position—

This article Wrst appeared in Science News, 31 (1954), 7–23, published by the Penguin Press, and is printed

by permission of the Estate of Alan Turing.

1 It would take us too far from our main purpose to give the proof of this rule: the reader should have

little diYculty in proving it by making use of the fact that an odd number of interchanges can never bring a

set of objects back to the position it started from.

from the position

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

10 1 4 5

9 2 6 8

11 3 15

13 14 127

One may, according to the modiWed rules, Wrst get the empty square into the

correct position by moving the squares 15 and 12, and then get the squares 1, 2,

3, . . . successively into their correct positions by the interchanges (1, 10), (2, 10),

(3, 4), (4, 5), (5, 9), (6, 10), (7, 10), (9, 11), (10, 11), (11, 15). The squares 8, 12,

13, 14, 15 are found to be already in their correct positions when their turns are

reached. Since the number of interchanges required is even, this transformation

is possible by sliding.2 If one were required after this to interchange say square 14

and 15 it could not be done.

This explanation of the theory of the puzzle can be regarded as entirely satisfac-

tory. It gives one a simple rule for determining for any two positions whether one

can get from one to the other or not. That the rule is so satisfactory depends very

largely on the fact that it does not take very long to apply. No mathematical

method can be useful for any problem if it involves much calculation. It is

nevertheless sometimes interesting to consider whether something is possible at

all or not, without worrying whether, in case it is possible, the amount of labour or

calculation is economically prohibitive. These investigations that are not con-

cerned with the amount of work involved are in some ways easier to carry out,

and they certainly have a greater aesthetic appeal. The results are not altogether

without value, for if one has proved that there is no method of doing something it

follows a fortiori that there is no practicable method. On the other hand, if one

method has been proved to exist by which the decision can be made, it gives some

encouragement to anyone who wishes to Wnd a workable method.

From this point of view, in which one is only interested in the question, ‘Is

there a systematic way of deciding whether puzzles of this kind are solvable?’, the

rules which have been described for the sliding-squares puzzle are much more

special and detailed than is really necessary. It would be quite enough to say:

‘Certainly one can Wnd out whether one position can be reached from another by

2 It can in fact be done by sliding successively the squares numbered 7, 14, 13, 11, 9, 10, 1, 2, 3, 7, 15, 8, 5,

4, 6, 3, 10, 1, 2, 6, 3, 10, 6, 2, 1, 6, 7, 15, 8, 5, 10, 8, 5, 10, 8, 7, 6, 9, 15, 5, 10, 8, 7, 6, 5, 15, 9, 5, 6, 7, 8, 12, 14,

13, 15, 10, 13, 15, 11, 9, 10, 11, 15, 13, 12, 14, 13, 15, 9, 10, 11, 12, 14, 13, 15, 14, 13, 15, 14, 13, 12, 11, 10, 9,

13, 14, 15, 12, 11, 10, 9, 13, 14, 15.

Solvable and Unsolvable Problems | 583

a systematic procedure. There are only a Wnite number of positions in which the

numbered squares can be arranged (viz. 20922789888000) and only a Wnite

number (2, 3, or 4) of moves in each position. By making a list of all the

positions and working through all the moves, one can divide the positions into

classes, such that sliding the squares allows one to get to any position which is in

the same class as the one started from. By looking up which classes the two

positions belong to one can tell whether one can get from one to the other

or not.’ This is all, of course, perfectly true, but one would hardly Wnd such

remarks helpful if they were made in reply to a request for an explanation of

how the puzzle should be done. In fact they are so obvious that under such

circumstances one might Wnd them somehow rather insulting. But the fact of the

matter is, that if one is interested in the question as put, ‘Can one tell by a

systematic method in which cases the puzzle is solvable?’, this answer is entirely

appropriate, because one wants to know if there is a systematic method, rather

than to know of a good one.

The same kind of argument will apply for any puzzle where one is allowed to

move certain ‘pieces’ around in a speciWed manner, provided that the total

number of essentially diVerent positions which the pieces can take up is Wnite.

A slight variation on the argument is necessary in general to allow for the fact

that in many puzzles some moves are allowed which one is not permitted to

reverse. But one can still make a list of the positions, and list against these Wrst

the positions which can be reached from them in one move. One then adds the

positions which are reached by two moves and so on until an increase in the

number of moves does not give rise to any further entries. For instance, we can

say at once that there is a method of deciding whether a patience can be got out

with a given order of the cards in the pack: it is to be understood that there is

only a Wnite number of places in which a card is ever to be placed on the table. It

may be argued that one is permitted to put the cards down in a manner which is

not perfectly regular, but one can still say that there is only a Wnite number of

‘essentially diVerent’ positions. A more interesting example is provided by those

puzzles made (apparently at least) of two or more pieces of very thick twisted

wire which one is required to separate. It is understood that one is not allowed to

bend the wires at all, and when one makes the right movement there is always

plenty of room to get the pieces apart without them ever touching, if one wishes

to do so. One may describe the positions of the pieces by saying where some

three deWnite points of each piece are. Because of the spare space it is not

necessary to give these positions quite exactly. It would be enough to give

them to, say, a tenth of a millimetre. One does not need to take any notice of

movements of the puzzle as a whole: in fact one could suppose one of the pieces

quite Wxed. The second piece can be supposed to be not very far away, for, if it is,

the puzzle is already solved. These considerations enable us to reduce the number

of ‘essentially diVerent’ positions to a Wnite number, probably a few hundred

584 | Alan Turing

millions, and the usual argument will then apply. There are some further compli-

cations, which we will not consider in detail, if we do not know how much

clearance to allow for. It is necessary to repeat the process again and again

allowing successively smaller and smaller clearances. Eventually one will Wnd

that either it can be solved, allowing a small clearance margin, or else it cannot be

solved even allowing a small margin of ‘cheating’ (i.e. of ‘forcing’, or having the

pieces slightly overlapping in space). It will, of course, be understood that this

process of trying out the possible positions is not to be done with the physical

puzzle itself, but on paper, with mathematical descriptions of the positions, and

mathematical criteria for deciding whether in a given position the pieces overlap,

etc.

These puzzles where one is asked to separate rigid bodies are in a way like the

‘puzzle’ of trying to undo a tangle, or more generally of trying to turn one knot

into another without cutting the string. The diVerence is that one is allowed to

bend the string, but not the wire forming the rigid bodies. In either case, if

one wants to treat the problem seriously and systematically one has to replace

the physical puzzle by a mathematical equivalent. The knot puzzle lends itself

quite conveniently to this. A knot is just a closed curve in three dimensions

nowhere crossing itself; but, for the purpose we are interested in, any knot can

be given accurately enough as a series of segments in the directions of the three

coordinate axes. Thus, for instance, the trefoil knot (Figure 1a) may be regarded

as consisting of a number of segments joining the points given, in the usual (x, y,

z) system of coordinates, as (1, 1, 1), (4, 1, 1,), (4, 2, 1), (4, 2, �1), (2, 2, �1), (2,
2, 2), (2, 0, 2), (3, 0, 2), (3, 0, 0), (3, 3, 0), (1, 3, 0), (1, 3, 1), and returning again

with a twelfth segment to the starting point (1, 1, 1).3 This representation of the

knot is shown in perspective in Figure 1b. There is no special virtue in the

representation which has been chosen. If it is desired to follow the original curve

more closely a greater number of segments must be used. Now let a and d

represent unit steps in the positive and negative X-directions respectively, b and e

in the Y-directions, and c and f in the Z-directions: then this knot may be

described as aaabffddccceeaffbbbddcee.4 One can then, if one wishes, deal

entirely with such sequences of letters. In order that such a sequence

should represent a knot it is necessary and suYcient that the numbers of

a’s and d’s should be equal, and likewise the number of b’s equal to the

number of e’s and the number of c’s equal to the number of f ’s, and it must

not be possible to obtain another sequence of letters with these properties

by omitting a number of consecutive letters at the beginning

3 Editor’s note. In place of this sentence Turing’s draft has: ‘Thus for instance the trefoil knot may be

regarded as consisting of a number of segments joining the points (0, 0, 0), (0, 2, 0), (1, 2, 0), (1, 2, 2),

(1, �1, 2), (1, �1, 1), (�1, �1, 1), (�1, 1, 1), (2, 1, 1), (2, 0, 1), (2, 0, 3), (0, 0, 3), (0, 0, 0).’
4 Editor’s note. Turing’s draft has ‘bbacceeefddbbaaaeccddfff ’.

Solvable and Unsolvable Problems | 585

(a)

(b)

Y

Z

(1,3,1)

(1,3,0) dd (3,3,0)

bbb
(4,2,1)

ff

(4,2,−1)
b

(4,1,1)

X
(3,0,0)

(2,0,2)
ff

(3,0,2)
aaa

a

(1,1,1)

ee

ccc

ee
dd

(2,2,−1)

(2,2,2)

c3

2

1

1
1 2 3 4 5

2

3

4

O

Figure 1. (a) The trefoil knot (b) a possible representation of this knot as a number of

segments joining points.

or the end or both. One can turn a knot into an equivalent one by operations of

the following kinds—

(i) One may move a letter from one end of the row to the other.

(ii) One may interchange two consecutive letters provided this still gives a

knot.

(iii) Onemay introduce a letter a in one place in the row, and d somewhere else,

or b and e, or c and f, or take such pairs out, provided it still gives a knot.

(iv) One may replace a everywhere by aa and d by dd or replace each b and e

by bb and ee or each c and f by cc and V. One may also reverse any such

operation.

—and these are all the moves that are necessary.

586 | Alan Turing

It is also possible to give a similar symbolic equivalent for the problem of

separating rigid bodies, but it is less straightforward than in the case of knots.

These knots provide an example of a puzzle where one cannot tell in advance

how many arrangements of pieces may be involved (in this case the pieces

are the letters a, b, c, d, e, f), so that the usual method of determining whether

the puzzle is solvable cannot be applied. Because of rules (iii) and (iv) the lengths

of the sequences describing the knots may become indeWnitely great. No system-

atic method is yet known by which one can tell whether two knots are the same.

Another type of puzzle which we shall Wnd very important is the ‘substitution

puzzle’. In such a puzzle one is supposed to be supplied with a Wnite number of

diVerent kinds of counters, perhaps just black (B) and white (W). Each kind is in

unlimited supply. Initially a number of counters are arranged in a row and one is

asked to transform it into another pattern by substitutions. A Wnite list of the

substitutions allowed is given. Thus, for instance, one might be allowed the

substitutions5

(i) WBW ! B

(ii) BW ! WBBW

and be asked to transform WBW into WBBBW, which could be done as follows

WBW WWBBW WWBWBBW WBBBW
(ii) (ii) (i)

Here the substitutions used are indicated by the numbers below the arrows, and

their eVects by underlinings. On the other hand if one were asked to transform

WBB into BW it could not be done, for there are no admissible steps which

reduce the number of B ’s.

It will be seen that with this puzzle, and with the majority of substitution

puzzles, one cannot set any bound to the number of positions that the original

position might give rise to.

It will have been realized by now that a puzzle can be something rather more

important than just a toy. For instance the task of proving a given mathematical

theorem within an axiomatic system is a very good example of a puzzle.

It would be helpful if one had some kind of ‘normal form’ or ‘standard form’

for describing puzzles. There is, in fact, quite a reasonably simple one which I

5 Editor’s note. Turing’s draft has: ‘Thus for instance one might be allowed the substitutions

WBW! B

BWWW!WB

BWB!WWWB

WWB!W

and be asked to transform WBWWBWBBB into WBB, and this one could do Wrst by substituting W for

WWB and getting WBWBBBB and then successively WWWWBBBB, WWBBB, WBB.’

Solvable and Unsolvable Problems | 587

shall attempt to describe. It will be necessary for reasons of space to take a good

deal for granted, but this need not obscure the main ideas. First of all we may

suppose that the puzzle is somehow reduced to a mathematical form in the sort

of way that was used in the case of the knots. The position6 of the puzzle may be

described, as was done in that case, by sequences of symbols in a row. There is

usually very little diYculty in reducing other arrangements of symbols (e.g. the

squares in the sliding squares puzzle) to this form. The question which remains

to be answered is, ‘What sort of rules should one be allowed to have for

rearranging the symbols or counters?’ In order to answer this one needs to

think about what kinds of processes ever do occur in such rules, and, in order

to reduce their number, to break them up into simpler processes. Typical of such

processes are counting, copying, comparing, substituting. When one is doing

such processes, it is necessary, especially if there are many symbols involved, and

if one wishes to avoid carrying too much information in one’s head, either to

make a number of jottings elsewhere or to use a number of marker objects as well

as the pieces of the puzzle itself. For instance, if one were making a copy of a row

of counters concerned in the puzzle it would be as well to have a marker which

divided the pieces which have been copied from those which have not and

another showing the end of the portion to be copied. Now there is no reason

why the rules of the puzzle itself should not be expressed in such a way as to take

account of these markers. If one does express the rules in this way they can be

made to be just substitutions. This means to say that the normal form for puzzles

is the substitution type of puzzle. More deWnitely we can say:

Given any puzzle we can Wnd a corresponding substitution puzzle which is

equivalent to it in the sense that given a solution of the one we can easily use it to

Wnd a solution of the other. If the original puzzle is concerned with rows of pieces of a

Wnite number of diVerent kinds, then the substitutions may be applied as an

alternative set of rules to the pieces of the original puzzle. A transformation can

be carried out by the rules of the original puzzle if and only if it can be carried out by

the substitutions and leads to a Wnal position from which all marker symbols have

disappeared.

This statement is still somewhat lacking in deWniteness, and will remain so. I

do not propose, for instance, to enter here into the question as to what I mean by

the word ‘easily’. The statement is moreover one which one does not attempt to

prove. Propaganda is more appropriate to it than proof, for its status is some-

thing between a theorem and a deWnition. In so far as we know a priori what is a

puzzle and what is not, the statement is a theorem. In so far as we do not know

what puzzles are, the statement is a deWnition which tells us something about

what they are. One can of course deWne a puzzle by some phrase beginning, for

instance, ‘A set of deWnite rules . . .’, but this just throws us back on the deWnition

6 Editor’s note. Turing’s draft has ‘positions’.

588 | Alan Turing

of ‘deWnite rules’. Equally one can reduce it to the deWnition of ‘computable

function’ or ‘systematic procedure’. A deWnition of any one of these would deWne

all the rest. Since 1935 a number of deWnitions have been given, explaining in

detail the meaning of one or other of these terms, and these have all been proved

equivalent to one another and also equivalent to the above statement. In eVect

there is no opposition to the view that every puzzle is equivalent to a substitution

puzzle.7

After these preliminaries let us think again about puzzles as a whole. First let

us recapitulate. There are a number of questions to which a puzzle may give rise.

When given a particular task one may ask quite simply

(a) Can this be done?

Such a straightforward question admits only the straightforward answers, ‘Yes’

or ‘No’, or perhaps ‘I don’t know’. In the case that the answer is ‘Yes’ the answerer

need only have done the puzzle himself beforehand to be sure. If the answer is to

be ‘No’, some rather more subtle kind of argument, more or less mathematical, is

necessary. For instance, in the case of the sliding squares one can state that the

impossible cases are impossible because of the mathematical fact that an odd

number of simple interchanges of a number of objects can never bring one back

to where one started. One may also be asked

(b) What is the best way of doing this?

Such a question does not admit of a straightforward answer. It depends partly

on individual diVerences in people’s ideas as to what they Wnd easy. If it is put in

the form, ‘What is the solution which involves the smallest number of steps?’, we

again have a straightforward question, but now it is one which is somehow

of remarkably little interest. In any particular case where the answer to (a) is

‘Yes’ one can Wnd the smallest possible number of steps by a tedious and

usually impracticable process of enumeration, but the result hardly justiWes the

labour.

When one has been asked a number of times whether a number of diVerent

puzzles of similar nature can be solved one is naturally led to ask oneself

(c) Is there a systematic procedure8 by which I can answer these questions, for

puzzles of this type?

If one were feeling rather more ambitious one might even ask

(d) Is there a systematic procedure8 by which one can tell whether a puzzle is

solvable?

I hope to show that the answer to this last question is ‘No’.

There are in fact certain types of puzzle for which the answer to (c) is ‘No’.

7 Editor’s note. At this point Turing’s draft contains the following: ‘Some of these other deWnitions will be

found in Refs (1), (3), (11), (13), and (16) vol II. Some equivalence theorems are proved in (4) and (14), and

some propaganda on the matter will be found in (13). A very satisfactory account of all these problems will

be found in (5).’ Tantalizingly, the list of references is omitted.

8 Editor’s note. Turing’s draft has ‘systematic method’.

Solvable and Unsolvable Problems | 589

Before we can consider this question properly we shall need to be quite

clear what we mean by a ‘systematic procedure’8 for deciding a question.9 But

this need not now give us any particular diYculty. A ‘systematic procedure’

was one of the phrases which we mentioned as being equivalent to the idea of

a puzzle, because either could be reduced to the other. If we are now clear as

to what a puzzle is, then we should be equally clear about ‘systematic

procedures’. In fact a systematic procedure is just a puzzle in which there is

never more than one possible move in any of the positions which arise and in which

some signiWcance is attached to the Wnal result.

Now that we have explained the meaning both of the term ‘puzzle’ and

of ‘systematic procedure’, we are in a position to prove the assertion made

in the Wrst paragraph of this article, that there cannot be any systematic pro-

cedure for determining whether a puzzle be solvable or not. The proof does

not really require the detailed deWnition of either of the terms, but only

the relation between them which we have just explained. Any systematic pro-

cedure for deciding whether a puzzle were solvable could certainly be

put in the form of a puzzle, with unambiguous moves (i.e. only one move

from any one position), and having for its starting position a combination

of the rules, the starting position and the Wnal position of the puzzle under

investigation.

The puzzle under investigation is also to be described by its rules and starting

position. Each of these is to be just a row of symbols. As we are only considering

substitution puzzles, the rules need only be a list of all the substitution pairs

appropriately punctuated. One possible form of punctuation would be to separ-

ate the Wrst member of a pair from the second by an arrow, and to separate the

diVerent substitution pairs with colons. In this case the rules

B may be replaced by BC

WBWmay be deleted

would be represented by ‘: B ! BC : WBW ! :’. For the purposes of the argu-

ment which follows, however, these arrows and colons are an embarrassment. We

9 Editor’s note. At this point Turing’s draft contains the following material, which is crossed out. ‘It is a

phrase which, like many others e.g. ‘‘vegetable’’ one understands well enough in the ordinary way. But one

can have diYculties when speaking to greengrocers or microbiologists or when playing ‘‘twenty questions’’.

Are rhubarb and tomatoes vegetables or fruits? Is coal vegetable or mineral? What about coal gas, marrow,

fossilised trees, streptococci, viruses? Has the lettuce I ate at lunch yet become animal? The fact of the matter

is that when one is applying a word, say an adjective, to something deWnite, one chooses the word itself so

that it describes what one wants to describe fairly and squarely. If it doesn’t one had better look for another

word. But if one is playing twenty questions this just can’t be done. The questions are about ‘‘the object’’,

and one doesn’t know what it is. The same sort of diYculty arises about question c) above. An ordinary sort

of acquaintance with the meaning of the phrase ‘‘systematic method’’ won’t do, because one has got to be

able to say quite clearly about any kind of method that might be proposed whether it is allowable or not.

Fortunately a number of satisfactory deWnitions were found in the late thirties, and they have . . .’ [the

fragment ends at this point].

590 | Alan Turing

shall need the rules to be expressed without the use of any symbols which are

barred from appearing in the starting positions. This can be achieved by the

following simple, though slightly artiWcial trick. We Wrst double all the symbols

other than the punctuation symbols, thus ‘: BB ! BBCC : WWBBWW ! :’. We

then replace each arrow by a single symbol, which must be diVerent from those on

either side of it, and each colon by three similar symbols, also chosen to avoid

clashes. This can always be done if we have at least three symbols available, and the

rules above could then be represented as, for instance, ‘CCCBBWBBCC

BBBWWBBWWBWWW ’. Of course according to these conventions a great variety

of diVerent rows of symbols will describe essentially the same puzzle. Quite apart

from the arbitrary choice of the punctuating symbols the substitution pairs can be

given in any order, and the same pair can be repeated again and again.

Now let P(R,S) stand for ‘the puzzle whose rules are described by the row of

symbols R and whose starting position is described by S’. Owing to the special

form in which we have chosen to describe the rules of puzzles, there is no reason

why we should not consider P(R,R) for which the ‘rules’ also serve as starting

position: in fact the success of the argument which follows depends on our doing

so. The argument will also be mainly concerned with puzzles in which there is at

most one possible move in any position; these may be called ‘puzzles with

unambiguous moves’. Such a puzzle may be said to have ‘come out’ if one

reaches either the position B or the position W, and the rules do not permit

any further moves. Clearly if a puzzle has unambiguous moves it cannot both

come out with the end result B and with the end result W.

We now consider the problem of classifying rules R of puzzles into two classes,

I and II, as follows:

Class I is to consist of sets R of rules, which represent puzzles with unambigu-

ous moves, and such that P(R,R) comes out with the end result W.

Class II is to include all other cases, i.e. either P(R,R) does not come out, or

comes out with the end result B, or else R does not represent a puzzle with

unambiguous moves. We may also, if we wish, include in this class sequences of

symbols such as BBBBB which do not represent a set of rules at all.

Now suppose that, contrary to the theorem that we wish to prove, we have a

systematic procedure for deciding whether puzzles come out or not. Then with

the aid of this procedure we shall be able to distinguish rules of class I from those

of class II. There is no diYculty in deciding whether R really represents a set of

rules, and whether they are unambiguous. If there is any diYculty it lies in

Wnding the end result in the cases where the puzzle is known to come out: but

this can be decided by actually working the puzzle through. By a principle which

has already been explained, this systematic procedure for distinguishing the two

classes can itself be put into the form of a substitution puzzle (with rules K, say).

When applying these rules K, the rules R of the puzzle under investigation form

the starting position, and the end result of the puzzle gives the result of the test.

Solvable and Unsolvable Problems | 591

Since the procedure always gives an answer, the puzzle P(K,R) always comes

out. The puzzle Kmight be made to announce its results in a variety of ways, and

we may be permitted to suppose that the end result is B for rules R of class I,

and W for rules of class II. The opposite choice would be equally possible, and

would hold for a slightly diVerent set of rules K 0, which however we do not

choose to favour with our attention. The puzzle with rules K may without

diYculty be made to have unambiguous moves. Its essential properties are

therefore:

K has unambiguous moves.

P(K,R) always comes out whatever R.

If R is in class I, then P(K,R) has end result B.

If R is in class II, then P(K,R) has end result W.

These properties are however inconsistent with the deWnitions of the two classes.

If we ask ourselves which class K belongs to, we Wnd that neither will do. The

puzzle P(K,K) is bound to come out, but the properties of K tell us that we must

get end result B if K is in class I andW if it is in class II, whereas the deWnitions of

the classes tell us that the end results must be the other way round. The

assumption that there was a systematic procedure for telling whether puzzles

come out has thus been reduced to an absurdity.

Thus in connexion with question (c) above we can say that there are some

types of puzzle for which no systematic method of deciding the question exists.

This is often expressed in the form, ‘There is no decision procedure for this type of

puzzle’, or again, ‘The decision problem for this type of puzzle is unsolvable’, and

so one comes to speak (as in the title of this article) about ‘unsolvable problems’

meaning in eVect puzzles for which there is no decision procedure. This is the

technical meaning which the words are now given by mathematical logicians. It

would seem more natural to use the phrase ‘unsolvable problem’ to mean just an

unsolvable puzzle, as for example ‘to transform 1, 2, 3 into 2, 1, 3 by cyclic

permutation of the symbols’, but this is not the meaning it now has. However, to

minimize confusion I shall here always speak of ‘unsolvable decision problems’,

rather than just ‘unsolvable problems’, and also speak of puzzles rather than

problems where it is puzzles and not decision problems that are concerned.

It should be noticed that a decision problem only arises when one has an

inWnity of questions to ask. If you ask, ‘Is this apple good to eat?’, or ‘Is this

number prime?’, or ‘Is this puzzle solvable?’ the question can be settled with a

single ‘Yes’ or ‘No’. A Wnite number of answers will deal with a question about a

Wnite number of objects, such as the apples in a basket. When the number is

inWnite, or in some way not yet completed concerning say all the apples one may

ever be oVered, or all whole numbers or puzzles, a list of answers will not suYce.

Some kind of rule or systematic procedure must be given. Even if the number

concerned is Wnite one may still prefer to have a rule rather than a list: it may be

592 | Alan Turing

easier to remember. But there certainly cannot be an unsolvable decision prob-

lem in such cases, because of the possibility of using Wnite list.

Regarding decision problems as being concerned with classes of puzzles, we see

that if we have a decision method for one class it will apply also for any subclass.

Likewise, if we have proved that there is no decision procedure for the subclass, it

follows that there is none for the whole class. The most interesting and valuable

results about unsolvable decision problems concern the smaller classes of puzzle.

Another point which is worth noticing is quite well illustrated by the puzzle

which we considered Wrst of all in which the pieces were sliding squares. If one

wants to know whether the puzzle is solvable with a given starting position, one

can try moving the pieces about in the hope of reaching the required end-

position. If one succeeds, then one will have solved the puzzle and consequently

will be able to answer the question, ‘Is it solvable?’ In the case that the puzzle is

solvable one will eventually come on the right set of moves. If one has also a

procedure by which, if the puzzle is unsolvable, one would eventually establish

the fact that it was so, then one would have a solution of the decision problem for

the puzzle. For it is only necessary to apply both processes, a bit of one alternat-

ing with a bit of the other, in order eventually to reach a conclusion by one or the

other. Actually, in the case of the sliding squares problem, we have got such a

procedure, for we know that if, by sliding, one ever reaches the required Wnal

position, with squares 14 and 15 interchanged, then the puzzle is impossible.

It is clear then that the diYculty in Wnding decision procedures for types of

puzzle lies in establishing that the puzzle is unsolvable in those cases where it is

unsolvable. This, as was mentioned on page [589], requires some sort of math-

ematical argument. This suggests that we might try expressing the statement that

the puzzle comes out in a mathematical form and then try and prove it by some

systematic process. There is no particular diYculty in the Wrst part of this

project, the mathematical expression of the statement about the puzzle. But

the second half of the project is bound to fail, because by a famous theorem of

Gödel no systematic method of proving mathematical theorems is suYciently

complete to settle every mathematical question, yes or no. In any case we are now

in a position to give an independent proof of this. If there were such a systematic

method of proving mathematical theorems we could apply it to our puzzles and

for each one eventually either prove that it was solvable or unsolvable; this would

provide a systematic method of determining whether the puzzle was solvable or

not, contrary to what we have already proved.

This result about the decision problem for puzzles, or, more accurately

speaking, a number of others very similar to it, was proved in 1936–7. Since

then a considerable number of further decision problems have been shown to be

unsolvable. They are all proved to be unsolvable by showing that if they were

solvable one could use the solution to provide a solution of the original one.

They could all without diYculty be reduced to the same unsolvable problem. A

Solvable and Unsolvable Problems | 593

number of these results are mentioned very shortly below. No attempt is made to

explain the technical terms used, as most readers will be familiar with some of

them, and the space required for the explanation would be quite out of propor-

tion to its usefulness in this context.

(1) It is not possible to solve the decision problem even for substitution

processes applied to rows of black and white counters only.

(2) There are certain particular puzzles for which there is no decision proced-

ure, the rules being Wxed and the only variable element being the starting

position.

(3) There is no procedure for deciding whether a given set of axioms leads to

a contradiction or not.

(4) The ‘word problem in semi-groups with cancellation’ is not solvable.

(5) It has recently been announced from Russia that the ‘word problem in

groups’ is not solvable. This is a decision problem not unlike the ‘word

problem in semi-groups’, but very much more important, having applica-

tions in topology: attempts were being made to solve this decision prob-

lem before any such problems had been proved unsolvable. No adequately

complete proof is yet available, but if it is correct this is a considerable step

forward.

(6) There is a set of 102 matrices of order 4, with integral coeYcients such

that there is no decision method for determining whether another given

matrix is or is not expressible as a product of matrices from the given set.

These are, of course, only a selection from the results. Although quite a

number of decision problems are now known to be unsolvable, we are still

very far from being in a position to say of a given decision problem, whether

it is solvable or not. Indeed, we shall never be quite in that position, for

the question whether a given decision problem is solvable is itself one of the

undecidable decision problems. The results which have been found are on

the whole ones which have fallen into our laps rather than ones which have

positively been searched for. Considerable eVorts have however been made over

the word problem in groups (see (5) above). Another problem which mathem-

aticians are very anxious to settle is known as ‘the decision problem of the

equivalence of manifolds’. This is something like one of the problems we have

already mentioned, that concerning the twisted wire puzzles. But whereas with

the twisted wire puzzles the pieces are quite rigid, the ‘equivalence of manifolds’

problem concerns pieces which one is allowed to bend, stretch, twist, or com-

press as much as one likes, without ever actually breaking them or making new

junctions or Wlling in holes. Given a number of interlacing pieces of plasticine

one may be asked to transform them in this way into another given form. The

decision problem for this class of problem is the ‘decision problem for the

equivalence of manifolds’. It is probably unsolvable, but has never been proved

594 | Alan Turing

to be so. A similar decision problem which might well be unsolvable is the one

concerning knots which has already been mentioned.

The results which have been described in this article are mainly of a negative

character, setting certain bounds to what we can hope to achieve purely by

reasoning. These, and some other results of mathematical logic may be regarded

as going some way towards a demonstration, within mathematics itself, of the

inadequacy of ‘reason’ unsupported by common sense.

Further reading

Kleene, S. C. Introduction to Metamathematics, Amsterdam, 1952.

Solvable and Unsolvable Problems | 595

This page intentionally left blank

Index

Ackermann, W. 49, 84

ADA 28

Adcock, F. 207, 219

Agnus Dei (2nd bombe) 255

Aiken, H. H. 29, 363

Alexander, C. H. O’D 257, 258, 259, 261, 263,

264, 265, 340, 345

Alexander, S. 368

Alexandria ‘Y’ (intercept) station 274

all inclusive (logic formula) 179V

Allanson, J. T. 360

a-machine 60, 156; see also choice machine

analogy 492, 498–9

Analytical Engine 28–30, 363, 446, 455, 482

Andreae, J. H. 385

Apple Macintosh 366

Aquinas, St Thomas 450

ARPANET 92

ArtiWcial Intelligence

bacteriophage and 516

discussion concerning 494–506

draughts (checkers) and 356–8, 514

genetic algorithms and 430–1, 513–14, 565,

575

history of 1, 2, 3, 353–60, 401–32, 469–70,

487–506, 562–6

intelligence as emotional concept 431,

491–2, 500, 501

origin of term 353

situated 439

Turing pioneers 2, 3, 353–9, 374–6, 392–4,

401–9, 410–32, 433–9, 441–63, 465–71,

472–5, 476–8, 480, 482–6, 487–92, 494–5,

563–4, 565, 566–7, 569–75

see also brain, chess, connectionism, expert

system, heuristic, learning, Mathematical

Objection, mechanical theorem proving,

neural simulation, neuron-like

computation, thinking machine, Turing

test, search

ArtiWcial Life

AI and 439, 508

computer simulation and 507, 508, 510,

560–1

genetic algorithms and 513–14

history of 507–17

meaning of term 507

self-reproduction and 515–16

Turing pioneers 1, 3, 401, 405, 508–14, 517,

519–61

von Neumann and 22, 513, 514–17

see also connectionism, Fibonacci number,

gastrulation, genetic algorithm,

morphogenesis, neural simulation,

neuron-like computation, non-linear

equations, phyllotaxis, reaction-diVusion

model, ring of cells or tissue

Asperula odorata (woodruV) 556, 557

atomic bomb 22

A-type unorganized machine 417, 418, 427,

429

Automatic Computing Engine (ACE)

ACE Test Assembly 367, 398–400

AI and 356, 374–5, 392–4

as example of discrete controlling

machine 412

as example of universal practical computing

machine 415

Big ACE 368–9, 377

chess and 393

compared with trained P-type 428, 432

derivatives of 368–71

description of 365–6, 383–8

draughts (checkers) and 356

eVorts to build 395–400

letter from Turing to Ross Ashby

about 374–5

memory in 365, 366, 369, 376–7, 380–4

number of operations without

repetition 411

optimum programming and 377

Pilot Model of 16, 92, 365, 367, 368, 369,

377, 397, 399, 400

preparation of problems for 389–91

Automatic Computing Engine (ACE) (cont.):

random element in 391, 478

self-modiWcation and 374–5, 392–3, 419,

462, 470

start-up procedure 390

storage capacity of 382–3, 413

Turing designs 2, 12, 27, 30, 31, 363–7, 369,

376–7, 378–94

universal Turing machine and 16, 378–9,

383

universality and 415–6

Version H (Huskey) 32

Version V (of Turing’s design for) 399

Version VII (of Turing’s design for) 370, 396

see also DEUCE

axiomatic (class or property) 151V; see also

choice machine

Babbage, C. 27–30, 236, 363, 371, 446, 455, 482

Babbage, D. 29

Baer, R. 128

Balme, D. 261

ban (unit) see deciban

Banburismus

as method for reducing bombe time 256,

261–2

Banburies 261, 282

explanation of 281–5, 297, 299

origin of name 261

Turing invents 256, 261–2, 263, 279, 281, 285

use in Hut 8 261–2, 285V, 311–12, 314

Bates, M. A. 565, 568

Baudot-Murray code see teleprinter code

Bayley, D. 374

BBC 465, 476, 487, 493

Bell Telephone Laboratories 363, 393, 562

Bendix Corp. 369

Bernays, P. 48–9, 82, 127, 132, 191

Bernstein, F. 191

Bertrand, G. 234

best-Wrst 563

Beurle, R. L. 360

Bigelow, J. 23

bigram tables (in Naval Enigma) 257, 258–61,

271–3, 280–1, 285–91, 311–12

BINAC 367

Birch, F. 219, 257, 259–60, 267, 279, 287–9, 292

BirkhoV, G. D. 130

Biuro Szyfrów 231V

Bletchley Park

Babbage discussed at 29

establishment and development as

codebreaking centre 217–20

history of AI and 353–5, 563

home of Colossus, Wrst electronic

computer 208–9, 362–3

Turing comes to 1, 205, 217, 220, 257, 279

work on Enigma at 217–31, 232, 234–5,

235–6, 238, 246–64, 265–312, 313–35,

336–40, 341–52, 353–5, 465

work on Fish at 207–9, 262–3, 362–3, 465

see also Government Code and Cypher

School

Block, N. 434, 437

bomba

demise of 233–4, 236, 246

explanation of name 235–7, 291, 314

function of 237–45

history of AI and 354

Poles invent 233, 292

Poles reveal to British and French 234

Stecker and 245–6

bombe

appearance of 246–7, 248, 256, 291–2

Banburismus and 261–2, 285, 287, 311

bomba and 233, 234, 246

designers of 218, 246, 254–5, 263, 292, 327,

329

diagonal board of 254, 255, 323–34

explanation of name 235–7, 291, 314

Wrst installed 253, 292

four-wheel 344 –5

function of 246–53, 291–4, 315–35

history of AI and 353–5, 469

importance of 2, 218, 256–7, 262

numbers of 256–7, 292, 311, 337, 338

simultaneous scanning and 254–5, 319–20,

321, 323, 327, 343– 4

Spider and 255, 320 –31

Stecker and 235, 250 –5, 291, 293, 314V

Turing and 218, 235, 246, 250–5, 314–35

Turing’s feedback method and 254–5, 322–3

US Navy bombes 256–7, 342–5

use against Naval Enigma 218, 253, 285V,

315V

use of cribs with 240, 246, 248–55, 259,

287–8, 291, 293– 4, 307, 315–35, 339, 344

see also Agnus Dei, menu, Victory

598 | Index

Borelli, G. A. 498

Bowden, B. V. 568

brain

analogy and 499

as machine 2, 374, 382, 403, 405, 407,

412–13, 418, 423–4, 425, 429–30, 431–2,

451, 456–7, 459–61, 478, 482, 483, 499,

500–1, 503–5

continuity and 412–13, 456 –7, 459

digital computer as 2, 374, 375, 476 –7, 478,

479, 480, 482–6, 500V

electronic 374, 420, 484

free will and 479, 484

growth of 375, 517

higher parts of 400–1

imitation by computer 463, 456–7, 476, 477,

478, 479, 494–5, 483–5

intellectual search and 401, 430–1

learning and 408–9, 421, 423–4, 438

mechanical 482, 483, 484

of child 424, 429, 432, 438, 460

random element and 424, 478–9

storage capacity of 383, 393, 459, 483, 500–1

Turing machine and 407, 408, 424, 429

Turing test and 477, 479

see also connectionism, human being as

machine, learning, neural simulation,

neuron-like computing

Braithwaite, R. B. 131, 487

British Tabulating Machine Co. 246, 330, 339

Brooks, R. 439

Brouwer, L. E. J. 96

Brunsviga 412, 413, 480

B-type unorganized machine 403–9, 418, 422,

429

universal Turing machine and 407, 422

Burali-Forti paradox 170

Burks, A. W. 24, 27, 32, 513, 514–15

Bush, V. 29

Butler, S. 475

C 12

calculating machine 479–80, 483, 487V, 578,

591–2

Cambridge, University of 1, 15, 17, 27, 125,

127, 131, 133, 205, 219, 265, 355, 377, 400,

446, 487

Mathematical Laboratory 358, 367

see also King’s College, St John’s College

Cantor theory of ordinals 161–70

Carnegie Mellon University 359

central letter (of Enigma crib) 251–5, 317V

Chamberlain, N. 217

Champernowne, D. G. 130, 563–4

Chandler, W. W. 369–70, 396

checkers see draughts

chess

exhaustive search and 503

genetic algorithm and 514, 565, 575

heuristic search and 353–4, 374, 470

history of computer chess 353, 356, 374,

375, 393, 562–6, 569–75

importance in AI 393, 394, 420, 439, 463,

473, 562, 566

learning and 375, 393, 492, 496, 498

Max Newman on 492, 495, 496, 498, 503,

504

Turing test and 431, 442

Turing’s chess programmes 3, 353, 356, 412,

431, 563–4, 565, 570–5

see also Turochamp

child-machine 460–3; cf 424V

choice machine 60, 77, 88

Chomsky, N. 565

Church, A.

Church–Turing thesis and 44–5, 577

comments on Turing as graduate

student 126

corresponds with Turing 205

founder of Journal of Symbolic Logic

205–6

introduces term ‘Turing machine’ 6

lambda calculus and 44, 52, 88, 126, 147V,

205–7, 211, 214–15, 360

letter from Turing to concerning Post

critique 92, 102

mentioned by Turing in

correspondence 126, 127, 128, 134,

205–6, 207, 211, 213, 214

on eVective calculability 44–5, 59, 125–6,

150

ordinal logics and 125–6, 134, 137, 146, 163,

177, 194, 205, 206

theory of types and 205–6, 213

work on Entscheidungsproblem 45, 48, 49,

52, 59, 99, 125, 126, 207, 410, 450

Church’s thesis 44–5; see also Church–Turing

thesis

Index | 599

Church–Turing thesis

ACE and 378, 383

application of 43, 52, 53, 84–7

arguments in favour of 42–3, 45, 74–9

calculating machines and 479–80, 482–3,

578

chess and 567–8, 570

Church and 44–5, 577

converse of 43

Gödel and 45, 48, 581

statement of 40–5, 58, 74, 414, 567, 570,

576, 577

status of 42–3, 414, 568, 570, 577–8, 588–9,

590

Churchill, W. L. S. 262, 336–40, 342

CILLI 315

Clark, W. A. 360, 405–6

Clarke, J. 255, 258, 259, 330

class-subclass rule 462

Clayden, D. O. 31, 367, 368, 385

closure (‘chain’ in crib) 250V, 317V, 330

Cog (robot) 439

Colby, K. 489

Colebrook, F. M. 369, 400

Colossus 8, 208–9, 263, 362–3, 370, 373, 396,

480

colour (in Enigma) 227, 292

Commonwealth ScientiWc and Industrial

Research Organisation (CSIRO) 367

computable function

Church–Turing thesis and 44–5, 150–1, 578,

589

computable number and 44, 58

lambda calculus and 151–2, 211

Max Newman on signiWcance of 207

meaning of term 44, 58, 79–80

of integral variable 79–81, 151–2

ordinal logics and 152–4, 158–9, 162, 163,

191

see also computable number, computable

sequence

computable number

as opposed to deWnable number 58,

78–9

Church–Turing thesis and 41, 43, 58, 60

enumerability of 58, 72–4

examples 58, 79–83, 95

extent of 58, 74–9

meaning of term 36, 41, 58–61, 95–6

see also axiomatic, Church–Turing thesis,

computable function, computable

sequence, eVective calculability, eVective

method, general recursive, human

computer, primitive recursive, systematic

method, Turing machine, uncomputable

number, uncomputable sequence

computable sequence

as opposed to deWnable 78–9

Church–Turing thesis and 43

computable function and 79V

continuum hypothesis and 191–2

deWnition of computable number and 61,

95–6

diagonal argument and 34–5, 37–9, 72–4

eVective calculability and 88–90

enumeration of 66–8, 72–4

meaning of term 33, 61

of logical systems 171V

universal machine and 68

see also computable number, uncomputable

sequence

computer, history of

at Bell Telephone Laboratories 363

at Bletchley Park 8, 29, 208–9, 362–3, 373,

396

at Cambridge 17, 355, 358, 367, 377

at Commonwealth ScientiWc and Industrial

Research Organization, Sydney 367

at EMI 370–1

at English Electric Co. 368, 369, 397

at Harvard 29, 363, 364

at IBM 17, 29, 357, 362

at Manchester 2–3, 16, 17, 30, 209, 355,

356 –7, 367, 369, 371–4, 396, 400, 401,

457, 480, 496, 508, 564, 565

at MIT 29, 367

at Moore School and Philadelphia 8, 16, 17,

21–7, 32, 364, 365, 366, 367, 373–4, 376,

380, 408

at National Physical Laboratory 2, 12, 16,

27, 30–2, 92, 209, 356, 363–70, 372–3,

374–7, 378–94, 395–400

at Packard-Bell 370–1

at Post OYce Research Station, Dollis

Hill 208–9, 263, 362–3, 369–70, 373,

395–6, 397, 398

at Princeton Institute for Advanced

Study 16, 21–7, 32, 362, 373–4

600 | Index

at Radar Research and Development

Establishment, Malvern 370

at Telecommunications Research

Establishment, Malvern 208, 209, 373

at US Bureau of Standards 367–8

Babbage and 27–30, 236, 363, 446, 455

Wrst ‘personal’ computer 369

Turing and 1, 2, 6, 9, 12, 15–17, 21–7, 30–1,

55, 58–87, 206, 207, 209, 363, 371, 375,

378–9, 383, 414–5

concept creation 492, 498–9; see also learning

connectionism

early work on 360, 403, 405–6, 507–8

irregular verbs and 402, 429

meaning of term 360, 402

Turing anticipates 356, 403–5, 406–7,

408–9, 416–24, 429–30, 431–2, 510, 517

see also A-type, B-type unorganized

machine, learning, neuron-like

computation

consciousness 451–3, 455, 456, 488, 566–7,

569

constatation 314V, 349V

continuum hypothesis 191–2

convertible see lambda calculus

Coombs, A. W. M. 370, 396

Copernican theory 450

coral (Japanese cipher) 345

Courant, R. 127

crib

all wheel order crib 253, 290, 291

Banburismus and 256

cribbing, art of 294–311

Hut 8 Crib Room 294–5, 304

in early days 278–81, 285V, 294, 297, 306,

311

meaning of term 237

mine-laying and 308

Poles’ use of 278–9

types of 295–311

use with bombe 240, 246, 248–55, 259,

287–8, 291, 293–4, 307, 315–35, 339, 344

use with ‘mini bomba’ 237–8

W/T interception and 274, 275

worked examples 248–50, 295–300, 315V,

347V

see also EINS catalogue, depth

CSIR Mark 1 (CSIRAC) 367

cultural search 430–1

Currier, P. 342

CYC 402

daily key 228V, 421

D’Arcy Thompson, W. 508–9

Dartmouth College 353, 489, 565

Dartmouth Summer Research Project on

ArtiWcial Intelligence 353, 355, 359, 565

Darwin, C. G. 368, 370, 396, 397, 399, 400, 401

Davies, D. W. 21, 92–3, 367, 368, 564

Davis, M. 40, 41

D-Day 209

deciban 283V

decision problem 6, 45V, 143–4, 207, 393–4,

469, 472, 579, 592–5; see also

Entscheidungsproblem, unsolvable

problem

Dedekind, J. W. R. 81

Deep Blue 563, 565–6

degree of unsolvability 99, 143–4

DENDRAL 360

Denniston, A. G. 217, 219, 234, 257, 279, 310,

337, 342–3

depth (in Enigma breaking) 281V, 295–301,

302, 307, 311

Descartes, R. 498

Desch, J. 344

description number

diagonal argument and 34–5, 37–9, 72–4

halting problem and 39

meaning of term 10–12, 67–8, 69

of complete conWguration 69, 89

of oracle machine 142, 156–7

ordinal logics and 184

Post critique and 98V

printing problem and 39, 73–4

satisfactoriness problem and 36–7, 68, 72–4

determinism 416, 447, 466, 475, 477–9, 483,

484–5; see also free will, partially random

machine, prediction, random element

DEUCE 368, 369, 397

diagonal argument 34–5, 37–9, 72–4, 142, 157,

578–9, 591–2

diagonal board (of bombe) 254–5, 323–34

DiVerence Engine 28, 236, 363

diVerential analyser 29, 378, 412, 456–7, 480

discrete state machine

brain and 412–13, 456, 459

characterization of 412, 446–7

Index | 601

discrete state machine (cont.):

compared with continuous

machinery 412–13, 446, 456–7, 459

complete description of behaviour of 413,

447, 448

cryptography and 421

digital computer as 446, 447, 450

Logical Computing Machine as 413

Mathematical Objection and 450–1

numbers of states of 413, 447–8, 453

partially random 416, 477–8

prediction of 447, 448, 455–6, 457, 475, 485,

500

simulation of by digital computer 448

thinking and 455

Turing test and 448, 456–7

universality and 448, 455

discriminant (in Enigma) 230, 273

Dollis Hill see Post OYce Research Station

draughts (in history of AI) 356–8, 514

Driscoll, A. M. 341–3, 345

dual (formula) 154V

Eachus, J. J. 344

Eastcote (bombe outstation) 256

Eckert, J. P. 22, 25–7, 32, 367, 373, 376, 380

Eckert-Mauchly Computer Corp. 17

Eckert-Mauchly Electronic Control Co. 367

Eddington, A. S. 483

Edinburgh, University of 353, 359, 562

EDSAC 17, 358, 367, 377

education see learning

EDVAC 25–7, 364, 365, 366, 373–4, 408

Edward VIII 129–30

eVective calculability

abbreviation of treatment 150–2

Church on 44–5, 59, 125–6, 150

Church–Turing thesis and 44–5

computability and 44–5, 59, 88–90

Gentzen type ordinal logics and 194, 199

see also eVective method

eVective method

Church–Turing thesis and 42, 45, 125–6,

137, 479, 480

duality and 158

meaning of term 42

Newman’s test and 493

ordinal formula and 139, 170

rules of procedure and 171

see also Church–Turing thesis, human

computer, eVective calculability,

systematic method

EINS catalogue 286–7, 290, 291, 311

Einstein, A. 127

Eisenhart, L. 21, 131, 132

Ely, R. B. 344

EMI 370–1

EMI Business Machine 370–1

ENIAC 8, 22–3, 24, 26–7, 32, 364, 373, 376,

411, 412, 413, 480

Enigma

Abwehr Enigma 246, 274

appearance of machine 220, 221, 222, 223,

224, 226

as example of apparently partially random

machine 479

Battle of the Atlantic and 2, 218, 257–61,

262

breaking 231–64, 273–312, 314–35, 336–40,

341–52

design of machine 220–8

diagrams of machine 223, 224, 269

four-wheel 225, 262, 270, 271, 295, 343–5

German Air Force Enigma 220, 229–31,

233, 235, 255, 257, 279, 286, 291, 292, 293,

309, 339, 345

German Army Enigma 220, 229–31, 232,

233, 235, 279, 286, 291, 292, 293, 309, 345

German Naval Enigma 2, 218, 220, 225, 226,

229, 233, 271–312, 338–9, 341–52

German Railway Enigma 322

history of AI and 353–5

indicator system for German Naval

Enigma 257–8, 278–81

Italian Naval Enigma 217, 246

Knox’s early work on Enigma 217, 232

O Bar machine 277

OP-20-G and 341–52

operating procedures for 227–31, 269V

Polish work on Enigma 231–46, 257–8,

277–9, 292

Tunny compared with 207

Turing breaks German Naval Enigma 2,

206, 218, 253, 257–62, 279–82, 285–9,

314V

Turing’s Wrst work on Enigma 217, 277,

279–81, 285–9

US attempts to break 342–5, 347–52

602 | Index

see also Banburismus, Bletchley Park,

bomba, bombe, crib, daily key,

discriminant, Government Code and

Cipher School, Hut 8, indicator,

indicator setting, indicator system, key,

message setting, Ringstellung, Stecker,

turnover, wheel order

English Electric Co. 368, 397

Entscheidungsproblem 6, 43, 45–53, 84–7, 125,

126, 207, 212, 393–4; see also decision

problem, unsolvable problem

Erskine, R. 29

expert system 360, 402

extra-sensory perception 457–8

Farley, B. G. 360, 405

Feferman, S. 140, 141

Feigenbaum, E. A. 360

females (in Enigma indicators) 236, 242, 245

Fermat’s last theorem 141, 155, 191, 472

Ferranti Ltd. 17, 356–7, 564–5

Ferranti Mark I computer 3, 17, 356–7, 374,

437, 483, 496, 503, 508, 510, 517, 552,

564–5; see also Manchester computers

Fibonacci number 508, 509, 517

Fieller, E. C. 399

Fish 207, 263; see also Tunny, Sturgeon,

Thrasher

Fleming, I. 259, 289

Xip-Xop see Jordan Eccles trigger circuit

Flowerdown ‘Y’ (intercept) station 276

Flowers, T. H. 29, 208–9, 362–3, 369–70, 373,

395–6

Xying bomb 275

formally deWnable (l-deWnable) 88V, 149V; see

also lambda calculus

Forrester, J. W. 367

fort (continuation) 230, 278–9

Foss, H. 290

Frankel, S. 22

Freeborn catalogue 282, 299, 311

Freeborn, F. 282, 297, 338–9

Freebornery (Hollerith section at Bletchley

Park) 282, 338–9

free will 445, 449, 477–9, 484–5

French, R. M. 435, 490–1

G15 computer 369

Galilei, Galileo 450, 475

Gandy, R. O. 30, 42, 126, 400, 408, 433

gastrulation 509, 517, 519, 525, 558–60

Gauss, J. C. F. 411

General Problem Solver 359–60

general recursive function 150V, 198V

generalized recursion theory 143–4

generate-and-test 354

genetic algorithm (GA) 401, 430–1, 460, 463,

513–14, 565, 575

genetical search 430–1; see also genetic

algorithm

Gentzen, G. 49, 51, 135, 137, 139, 141, 194, 202

GO 473, 474

Gödel argument 468; see also Mathematical

Objection

Gödel, K.

general recursive functions and 150, 153

mentioned by Turing in

correspondence 127, 213, 214

ordinal logics and 1, 126, 136, 137, 138–9,

140, 146, 177, 180, 192

remarks concerning Turing 45, 48, 581

Turing’s inXuence on 45, 48, 581

work on incompleteness 1, 47–8, 59, 84,

126, 136, 138, 139, 140, 146, 160, 173, 189,

410, 411, 450, 467, 472, 580–1, 593

Gödel representation 74, 147V

Gödel’s incompleteness theorems

Hilbert programme and 47–9, 84, 126, 135–9

Mathematical Objection and 410, 411, 450,

467, 472

ordinal logics and 1, 126, 136, 137, 138–9,

140, 141, 146, 160, 178, 180, 189, 192–3,

206, 212, 213, 215

statement of 47–8, 84, 580–1

substitution puzzles and 580–1, 593

see also Gödel

Goldstine, H. H. 22, 24, 25, 27, 32, 364, 515

Good, I. J. 2, 258

Goodwin, E. T. (Charles) 32

Government Code and Cypher School

(GC & CS)

early history of 217–20

history of AI and 353–5, 563

signiWcance of work of 2, 217, 262

Turing joins 1, 205, 217, 220, 257, 279

work on Enigma by 217–31, 232, 234–5,

235–6, 238, 246–64, 265–312, 313–35,

336–40, 341–52, 353–5, 465

Index | 603

Government Code and Cypher School

(GC & CS) (cont.):

work on Fish by 207–9, 262–3, 362–3, 465

see also Bletchley Park, Room 40

Grey Walter, W. 508

growth see ArtiWcial Life, morphogenesis

Grundstellung 230, 271, 312V; see also

indicator setting

Hall, P. 131

halting problem 39–40, 41; see also

satisfactoriness problem

Hanslope Park 263

Hardy, G. H. 53, 127, 128

Harper, J. 247

Hartree, D. R. 363, 368, 455, 476, 482

Harvard Automatic Sequence Controlled

Calculator 29, 363, 364

Harvard University 363, 364

Harvie-Watt, Brigadier 337

hat book 308, 310

Hayes, J. G. 31, 400

Heath Robinson (codebreaking machine) 208,

263

Hebb, D. O. 403

Heimsoeth & Rinke Co. 277

Herbert (robot) 439

Herbrand, J. 45, 150, 153

Herivel, J. 335, 354–5

Herivelismus 335

heuristic 353–5, 356, 360, 514, 563, 564; see

also search

Hilbert programme 46–9, 52–3, 84–7, 126,

136–8, 142, 143, 215

Hilbert, D. 46–9, 53, 75, 77, 82, 84, 136, 139,

143, 177; see also Hilbert programme

Hilton, P. 263, 371, 465

Hinsley, F. H. 218, 260, 287

Hiscocks, E. S. 398

Hitler, A. 209, 263, 264

Hodges, A. 263, 435, 436

Holden Agreement 344

Holland, J. 513

Hollerith, H. 29, 31

Hollerith punched card

description of punched card plug-board

equipment 30–1

invention of 31

relation to Babbage’s Analytical Engine 29

use at Bletchley Park 282, 286, 338–9

use in Automatic Computing Engine 31,

365, 388, 390

see also Freebornery

human being as machine 2, 3, 354, 355, 358,

374–5, 382, 394–5, 401, 403, 405, 407,

408, 420, 421, 422, 423–4, 425, 429–30,

431–2, 438–9, 450–1, 456–7, 459–60, 478,

482, 483, 499, 500, 502, 508–9; see also

ArtiWcial Intelligence, brain,

connectionism, consciousness, free will,

human computer, neuron-like

computation, thinking machine

human computer

ACE and 378, 387, 391–2

Analytical Engine and 446

calculating machine and 479–80

characterization of 40

characterization of digital computer

and 444–5, 447, 480

Church–Turing thesis and 41, 479–80

computable number and 41

history of computer and 40–1

systematic method and 42, 43

Turing machine as idealisation of 41, 42, 59,

75–7, 79

Huskey, H. D. 26, 32, 55, 365, 368, 369, 373,

398, 399

Hut 3 293

Hut 4 219, 257, 260

Hut 6 29, 219, 255, 274, 291, 292, 293, 309,

336, 338, 339, 345, 354

Hut 8

Alexander takes over 263

early personnel of 258

Wrst breaks of into wartime traYc 259, 260,

273, 286–7, 289–91, 341

four wheel bombes and 256–7, 345

impact of on Battle of Atlantic 2, 217,

262

indispensability of Turing to 263

letter to Churchill concerning 338–40

loses and regains Shark 344

Mahon’s history of, based on conversations

with Turing 267–312

pinches and 259–61

Turing establishes 258

Turing leaves 262–3

uses Wrst bombes 253, 255, 259

604 | Index

Hydra 511, 519, 556

hydrogen bomb 22

IAS computer 362; see also computer, history

of at Princeton Institute for Advanced

Study

IBM 17, 29, 362

IBM 701 computer 17, 357, 362

Illinois, University of 24

imitation game see Turing test

indeterminacy principle 478, 483

index of experiences 466, 474

indicator

Banburismus and 282V

explanation of 230–1

in Naval Enigma 257–8, 272, 273, 280–1

Narvik Pinch and 258–9, 286

Poles’ method of attacking 240–6, 278, 279

Turing attacks 257–8, 279–81, 285

indicator setting 230V, 354–5; see also

Grundstellung, indicator, indicator system

indicator system

boxing (or throw-on) 273, 277–8

change of 233, 235, 246

for German Naval Enigma 257–8, 259, 261,

271–3, 278–81, 286V, 314

involving daily setting 231, 233

involving enciphering message setting

twice 229–30, 231–3, 240–3, 258

meaning of term 231

induction 453, 454, 462

informality of behaviour 457

ingenuity (in mathematical proof) 135–8, 140,

192–3, 212–13, 215–16

initiative 429–31, 477

Institute for Advanced Study, Princeton 21,

23, 24, 125, 362; see also IAS computer

intellectual search 430–1

interception of Naval Enigma traYc 273–6,

293

Internet 92

intuition (in mathematics) 126, 135–8, 140,

142–3, 192–3, 202, 206, 212–13, 215–16,

579–80

irregular verbs 402, 429

Ismay, H. 336

Jacquard loom 28

James, W. 134

JeVerson, G. 451–2, 455, 487–8, 492

JeVreys sheets 315

Jones, Squadron Leader 292–3

Jordan Eccles trigger circuit 380, 385, 426

Kalmár, L. 43

Kasparov, G. 563

K Book (in Naval Enigma) 271–3, 276, 277,

290, 311, 312

Key (Enigma)

interception of 275

meaning of term 227

Ausserheimische Gewässe 258

Bonito 273, 274

Bounce 273

Dolphin 257, 258, 259, 261, 271, 303, 308,

309, 310, 311, 341–3, 351

Hackle 303

Heimische Gewässe 257, 258, 259, 341

Narwhal 271, 309

Plaice 271, 308, 309, 310

Porpoise 309

Red 230, 335, 354

Shark 271, 272, 286, 295, 309, 343, 344, 345

Sucker 271, 309

Süd 258, 273, 277

Triton 343

Turtle 309

Yellow 235

see also daily key

Keen, H. 218, 246, 263, 292, 329, 333

Keller, H. 461

Kendrick, F. A. 258

Kilburn, T. 209, 371–4, 401, 471

King’s College, Cambridge 1, 131, 134, 214,

219, 264, 487

Kleene, S. C. 43, 44, 45, 88, 92, 102, 126, 127,

150, 153, 163, 211, 450

knots 585–7, 595

Knox, D. 217, 219, 220, 232, 233, 234, 246, 289

lambda calculus 44, 52, 88–90, 126, 139, 147V,

205–6, 211–16, 360

Langton, C. G. 507, 508, 515

Laplace, P. 447

laws of behaviour 457

learning (by machine)

chess and 565, 569, 575

child-machine and 438–9, 460–3

Index | 605

learning (by machine) (cont.):

connectionist 360, 402–3, 405–6, 406–7,

422–3, 424

Darwin on Turing on 400

discussed at Bletchley Park 353

draughts (checkers) and 357–8, 514

education of machinery 421–2, 460–3,

465–6, 473–5, 485, 492, 497, 503

genetic algorithm and 514, 565, 575

in B-type unorganized machines 403–5,

406–7, 422–3, 424

in P-type unorganized machines 425–9

index of experiences and 466, 474

initiative and 430

learning to improve learning methods 492,

497

Lovelace objection and 455, 458–9, 485

Mathematical Objection and 470, 504–5

McCulloch–Pitts and 408–9

NIM and 358

Oettinger and 358–9

pleasure-pain system and 424–5, 432, 461,

466, 474–5

programme-modiWcation and 374–5,

392–3, 419, 462, 470, 492, 496

random element and 463, 466–7, 475

Strachey on 358

training 394, 403, 404V, 424V

Lederberg, J. 360

Lefschetz, S. 127

Lenat, D. 402

LEO 17

Letchworth bombe factory 256; see also British

Tabulating Machine Co.

Letchworth Enigma 246, 318–19, 321, 325

Lewis, J. S. 265

limit system 171V

Lisicki, T. 236

LISP 360

Loebner, H. 488–9

Lofoten Pinch 260, 290, 295

logic formula (in lambda calculus) 158V

Logic Theorist 355, 565

logical computing machine see Turing

machine

London Mathematical Society 5–6, 91, 92,

125, 130, 131, 132, 133, 207, 375

London Science Museum 28, 368

look-ahead 356, 565, 566

Lorenz SZ 40/42 cipher machine 479; see also

Tunny

Los Alamos 22, 507, 510

Lovelace, A. A. 28–9, 455, 458, 480, 482, 485

Lucas, J. R. 468

machine intelligence see ArtiWcial Intelligence

Macrae, N. 25

Mahon, A. P. 229, 258, 259, 260–1, 265–6

Manchester computers

AI and 356–7

‘Baby’ machine 2, 16, 209, 367, 371, 373,

374, 401, 413

EDVAC and 373–4

Ferranti Mark I 3, 17, 356–7, 374, 437, 483,

496, 503, 508, 510, 517, 552, 564–5

Wrst transistorized computer 369

history of computer chess and 356, 564

Manchester Mark I 16–17, 371, 373, 446,

447–8, 457, 479

theorem-proving and 565

Turing and 2–3, 209, 367, 371–4, 401,

564

Manchester University 3, 16–17, 209, 355, 367,

371–4, 400–1, 465, 487, 552, 564

Computing Machine Laboratory 2, 3,

16–17, 209, 356, 357, 367, 371–4, 396,

400–1, 405, 508

Mandelbrot set 510

Mandelbrot, B. 510

Manhattan Project 22

Massachusetts Institute of Technology 359,

367, 405, 439

Mathematical Objection 355, 393–4, 410, 411,

436, 450–1, 467–70, 472–3

Mauchly, J. W. 22, 25–7, 32, 367, 373

McCarthy, J. 359, 360, 436–8

McCulloch, W. S. 403, 407–9

mechanic 471, 473

mechanical theorem proving 206, 215–16,

355, 401–2, 430–1, 564–5; see also

Entscheidungsproblem, expert system,

Logic Theorist, Mathematical Objection,

Newman’s test, ordinal logics, Turing

machine

memory

cathode ray tube 380, 396, 496

delay line 26–7, 365, 366, 369, 376–7, 380–4,

385, 387, 395, 396, 399, 446

606 | Index

drum 366, 369

magnetic core 369

menu (for bombe) 256, 291, 293, 295, 332

Menzies, S. 234

message setting 224, 228V, 247

Meyer, Funkmaat 285

m-function see subroutine

Michie, D. 353, 359, 401, 562, 564

Michigan, University of 513

Milner-Barry, P. S. 336–7, 340

minimax 563, 565

Ministry of Supply 369

Minsky, M. L. 359, 491–2

Moore School of Electrical Engineering 22–3,

25–7, 32, 373, 376; see also University of

Pennsylvania

Moore, H. 505

morphogenesis

brain structure and 517

genes as catalysts in 512, 523

letter from Turing to Young about 517

symmetry-breakers in 513, 519, 524V

Turing’s theory of 3, 508–13, 519–61, 581

see also ArtiWcial Life, non-linear equations,

reaction-diVusion model

Morse code 220, 222, 263, 273, 301

MOSAIC 369–70, 396

Napper, B. 373

Narvik Pinch 259, 286

National Cash Register Corp. 344

National Physical Laboratory 2, 16, 31–2, 55,

92, 103, 209, 355, 356, 363–70, 377, 378,

395–401, 408, 409, 508

Naval Section (at Bletchley Park) 267, 274,

276, 287–9, 290, 293, 295, 304

Nealey, R. W. 358

neural simulation 356, 374–5, 402–9, 418, 420,

423–4, 432; see also connectionism,

neuron-like computation

neuron-like computation 356, 360, 402–9,

416–19, 422–4, 517; see also

connectionism, neural simulation

New York 125, 127, 129

Newell, A. 354, 355, 359, 401, 563, 565

Newman, E. A. 367, 368

Newman, M. H. A.

addresses Royal Society 371–2, 480

arranges for Womersley to meet Turing 364

attacks Tunny by machine 208–9

attracts Turing to Manchester 3, 209, 367,

400

biography and obituaries of Turing

quoted 3, 15, 48, 207, 408, 480

interviewed concerning Turing 15, 206,

207

involvement with ‘On Computable

Numbers’ 15, 206–7

joins GC & CS 205, 207

letter to von Neumann mentioning

Turing 209

mentioned by Turing in

correspondence 130, 133, 207

on chess 492, 495, 496, 498, 503, 504

on universality 207, 371, 480

pioneers electronic computing 1, 2, 16,

208–9, 371–4

radio broadcasts 2, 437–8, 465, 476,

487–506

Turing’s correspondence with 135, 139, 140,

205–6, 211–16, 470

Turing’s inXuence on 1, 2, 16, 205–6, 209,

372, 373

see also Newman’s test, Newmanry

Newmanry (section at Bletchley Park) 208–9,

373

Newman’s test 492–3, 504–5

NIM 358

non-linear equations (in morphogenesis) 510,

544–5, 554, 560–1

Norfolk, C. L. 363

normal form 147, 149V, 577–8, 587V

Noskwith, R. 258, 267

noughts and crosses 420, 570

number-theoretic (theorem or problem) 152V

validity of logical system and 171V

Oettinger, A. G. 358–9

OP-20-G 341–5, 347

Operational Intelligence Centre (OIC) 262

oracle machine (o-machine)

circle-free 142, 157, 468

completeness of ordinal logics and 143,

179–80

degrees of unsolvability and 143–4

description of 141–2, 156–7

diagonal argument and 142, 157

generalized recursion theory and 143–4

Index | 607

oracle machine (o-machine) (cont.):

intuition and 142–3

relative computability and 126, 144

ordinal formula 162V

C-K ordinal formula 163V

representation of ordinals by 162V

ordinal logic

Church and 125

completeness of 139, 140–1, 159–60,

178–91, 206, 213

deWnition of 170

Gentzen type 194–202

Gödel’s theorem and 1, 126, 136, 138–9,

146, 178V, 192–3

Hilbert programme and 126, 136, 138–9,

146, 178V, 192–3

invariance of 180V

proof-Wnding machines and 136, 139–40,

206, 212, 215–16

purpose of 1, 135–8, 146, 192–4

Turing writes to Newman concerning 206,

212–13, 214–16

Turing’s work on supervised by

Church 125–6, 134

see also Church, intuition, oracle machine

Oxford, University of 219, 356

P (logical system) 139, 173V, 177V, 194V

Packard-Bell PB250 370–1

Paired day (in Enigma) 259, 302, 309

Palluth, A. 233

paper machine 412, 416, 429, 431

Parry 489

partially random machine 416, 477–9; see also

random element

Pascal 12

Pearcey, T. 367

Pearl Harbor 343

Penrose, R. 468–9

Péter, R. 43

Philadelphia 32; see also Moore School

phyllotaxis 519, 557, 561

pinch (of Enigma materials) 258–61, 288–9,

291; see also Narvik Pinch, Lofoten Pinch

Pitts, W. 403, 407–9

pleasure-pain system 424–9, 466, 477, 474–5;

see also punishment, P-type unorganized

machine

plug-board (of Enigma) 220V; see also Stecker

plug-board calculators 30–2, 282; see also

Hollerith card, programme-controlled

Polanyi, M. 465, 487

Popplewell, C. 564

Post OYce Research Station (Dollis

Hill) 208–9, 362, 369–70, 395–6, 397, 398

Post, E. L. 91–2, 102, 143–4, 150, 468, 577

preamble (of Enigma message) 230, 275

prediction

in Laplacian universe 447

of brain 477, 478, 483

of continuous machine by discrete-state

machine 456–7

of discrete-state machine 447–8, 455–6, 457,

475, 485, 500

of learning machine 462

quantum mechanics and 478, 483

Price, F. 128–9, 130

Price, R. 128

primitive recursive (function or

relation) 152V, 174V, 188, 200, 202

Princeton University 1, 21, 26, 125, 126, 130,

147, 150, 205, 373; see also Institute for

Advanced Study

Principia Mathematica (logical system) 47–8,

52, 84, 138, 139, 173, 213, 355, 430, 472,

580

printing problem

application to Entscheidungsproblem 52–3,

84–7

characterization of 39, 73–4

continuum hypothesis and 192

for oracle machines 156–7

ordinal logics and 185

Post critique and 98V

satisfactoriness problem and 39, 79

strengthened form of Church-Turing thesis

and 41

Prinz, D. G. 356, 564–5

programme-controlled (opposed to stored-

programme) 8, 22–3, 26, 28, 29–30, 31,

32, 362–3

programming, history of 2, 8, 10V, 24–7, 28,

30–2, 55, 355, 365, 366, 375, 377, 388–92,

395, 399, 445, 460, 511; see also computer,

history of, menu, stored-programme

concept, subroutine, Turing machine,

Turing pioneers computer programming

Prolog 12

608 | Index

Pryce, M. 128, 129, 130, 131, 132

PSILLI 315

P-type unorganized machine 425–9, 466, 492

compared with ACE 428

universal Turing machine and 427–8

see also pleasure-pain system, punishment

punishment (and reward) 425, 426, 427, 428,

432, 461, 466, 474–5; see also learning,

pleasure-pain system, P-type unorganized

machine

Purple (Japanese cipher) 342

Pye Ltd. 254, 320, 321

Pyry 234, 246

Radar Research and Development

Establishment (RRDE) 370

Radiolaria 517, 559

Radley, W. G. 395

Randell, B. 16, 22

random element

brain and 424, 478–9

determinism and 466, 475

evolution and 463, 516

free will and 445, 477–9, 484–5

in ACE 391, 478

in digital computer 391, 445, 466, 475,

477–8

in learning 425, 426, 427, 429, 463, 466–7,

475, 496

in partially random machine 416, 478

in pleasure-pain system 425, 426, 427, 428,

429, 467

in Turing test 458

mathematical problem solving and 470, 505

search and 463, 466, 467, 470

Ratio Club 508

reaction-diVusion model 509, 510–13, 519V

recursion formula 193V

re-encodements (in Enigma) 307–11

Rees, D. 373

Rejewski, M. 229, 231–46

comments about Turing 235

R.H.V. (reserve hand cipher) 307–8, 310, 311

relative computability 126, 143–4

Research Section (at Bletchley Park) 207–8,

220, 262

Riemann hypothesis 155

ring (of cells or continuous tissue) 510–11,

519, 530V

Ringstellung 227V, 270V, 335, 347V, 354–5

Ringstellung cut-out (in bombe) 333, 335,

354–5

RISC 366

robot 392, 420–1, 439, 460–1, 463, 486, 508

rod-position (in Enigma) 238V, 249V, 315V

Room 40 207, 218, 219; see also Government

Code and Cypher School

Rosenblatt, F. 360, 403, 406

Ross Ashby, W. 360, 374–5

Rosser, J. B. 127, 137, 156, 450

Royal Astronomical Society 375

Royal Navy 259–61

Royal Society of London 3, 209, 371, 372

Różycki, J. 232, 236

Russell, B. A. W. 47, 131, 138, 139, 355, 430,

580

saga (in Enigma wheel-breaking) 232, 278

St John’s College, Cambridge 207

Samuel, A. L. 357–8, 514

satisfactoriness problem

characterization of 36–7, 68

diagonal argument and 37–9, 72–4

for oracle machines 142, 156–7

Mathematical Objection and 467–8

Post critique and 98V

printing problem and 39, 73–4, 79

strengthened form of Church–Turing thesis

and 41

Sayers, D. 410

Scarborough ‘Y’ (intercept) station 274–6, 290

Scherbius, A. 220, 277

Scheutz, E. 28

Scheutz, G. 28

Schmidt, H.-T. 231–2

Scholz, H. 131, 133

Scott, D. S. 356

SEAC 367

search (heuristic)

bomba and 354

bombe and 353–5

chess and 353, 563–4, 565, 570V

draughts (checkers) and 356, 514

intellectual activity as 354, 430–1

Mathematical Objection and 469–70

meaning of ‘heuristic’ 354

random element and 463, 466, 467, 470

theorem-proving and 401–2, 430–1

Index | 609

self-reproduction 514–16; see also universal

constructor

sense organs 392, 420–1, 426, 439, 459, 460–1,

463

Shannon, C. E. 22, 393, 436–8, 562

Shaw, J. C. 355, 359, 565

Sherborne School 1

Shockley, W. B. 376

ShoenWeld, J. R. 141, 143

Shopper 359

Simon, H. A. 354, 355, 359, 401, 439, 563, 565

simultaneous scanning (in bombe) 254–5,

319–20, 321, 323, 327, 343–4

Sinclair, H. 219, 234

Sinkov Mission 342

Sinkov, A. 342

sliding squares puzzle 582–4, 588, 589, 593

Slutz, R. J. 368

Smith-Rose, R. L. 398

Soare, R. I. 5

solipsism 452

Spanish Civil War 217, 224

spermatozoon 511, 556

Spider see bombe

standard description

as Wrst programming language 25

halting problem and 39

Mathematical Objection and 470

meaning of term 10–12, 67–8

Post critique and 98–101

printing problem and 39

satisfactoriness problem and 36–7

universal Turing machine and 15, 17–20,

68–72, 105V, 413–14

standardized logic 158V

Stanford University 359, 360

statistical method (against Tunny) 208

Stecker 221, 222, 227V, 270V, 347V

bomba and 245

explanation of 223, 224–6, 227, 270

majority vote gadget and 335, 355

self-steckered 245, 270, 279, 347, 349

stecker hypothesis 253–5, 316V

Stecker Knock Out 286, 316

stecker value of letter 252V, 316V

Turing’s method for discovering using

bombe 235, 250–5, 314V

see also plug-board

Stibitz Relay Computer 363

Stibitz, G. R. 363

stop (in bomba or bombe) 237V, 293, 319,

325, 327, 329–34, 354

stored-programme concept 1, 2, 3, 6, 8, 9, 12,

15–21, 21–7, 29–30, 30–2, 68–72,

105–117, 209, 362–8, 371–4, 375, 378–9,

389, 393

Strachey, C. S. 356–8, 564, 568

Sturgeon 207, 263

subroutine (subsidiary table)

examples of 13–14, 54–7, 63–6, 108–12

explanation of term 12

history of programming and 12, 55, 375

in ACE 12, 389–90

m-functions and 54–7, 63V

universal Turing machine and 69–72,

112–15

substitution cipher 229

substitution puzzle 576–80, 587–92, 594

SWAC 368

systematic method

Church–Turing thesis and 41–5, 568, 576,

577–8, 589

compared with search involving random

element 463, 467

decidability and 47, 592

Entscheidungsproblem and 52–3

Gödel’s theorem and 580–1, 593

halting problem and 39

meaning of term 42, 590

meaning of ‘unsolvable’ and 579, 592

solvability of puzzles and 578, 582, 583–4,

587, 589, 590, 591–2, 593

see also Church–Turing thesis, human

computer, eVective calculability, eVective

method

Tarski, A. 177

Taylor, W. K. 360

Telecommunications Research Establishment

(TRE) 208, 209, 373

teleprinter code 207–8, 263, 273

The ’51 Society 465

thinking machine 2, 356, 358, 420, 434–9,

441–3, 448–52, 454–5, 459, 465, 472, 474,

475, 476–7, 478–9, 482, 485–6, 487, 488,

491, 492–3, 494–5, 498, 500, 501, 502,

504, 505, 566; see also ArtiWcial

Intelligence, brain, child-machine

610 | Index

Thomas, H. A. 397–400

Thrasher 207, 263

Thue problem (after Axel Thue) 99V; see also

substitution puzzle, word problem

Tiltman, J. H. 343

Tootill, G. C. 373–4

totalisator 363

Travis, E. 279, 287, 292, 293, 311, 338, 339

Tunny 207–9, 262–3, 479; see also Lorenz

SZ 40/42

Turing, A. M.

born (1912) 1

educated at Sherborne School and King’s

College, Cambridge 1

elected Fellow of King’s College (1935) 1

while proving Entscheidungsproblem

unsolvable, invents universal Turing

machine and fundamental stored-

programme principle of modern

computer 1, 2, 5–57, 58–87, 206, 207,

209, 363, 371, 375, 378–9, 383, 414–5

discovers and explores the uncomputable 1,

3, 6, 32–53, 72–9, 84–7, 125–44, 146–202,

206, 212–13, 214–16, 355, 393–4, 410, 411,

450–1, 467–70, 472–3, 576–81, 582–95

learns of Church’s work on

Entscheidungsproblem 125, 207

studies at Princeton University

(1936–8) 125–34

writes to Sara Turing from Princeton

(1936–8) 126–34

explores ordinal logics and place of intuition

in mathematics 1, 125–6, 135–44,

146–202, 206, 211–16

returns from US to Fellowship at King’s

(1938) 1, 21, 134

with outbreak of war transfers to

Government Code and Cypher School at

Bletchley Park (1939) 1–2, 205, 217–20,

257, 279

breaks Naval Enigma indicator system and

invents ‘Banburismus’ 1–2, 218, 257–8,

279–81, 256, 261–2, 281, 285

designs bombe 218, 235, 240, 246, 250–5,

263, 314–35

visits exiled Polish codebreakers in

France 235

leads attack on Naval Enigma 2, 218, 253,

257–62, 279–81, 285–9, 314V, 341V

writes to Newman concerning logic

(c.1940) 205–6, 211–16

writes to Churchill (1941) 336–40

advises US codebreakers 341–52

leaves Enigma (1942) 262–4, 288, 312

works on Tunny and invents ‘Turingery’

(1942) 262–3

visits US (Nov 1942–Mar 1943) 263

works on speech encipherment at Hanslope

Park (1943–5) 263

OBE for war work 2, 264

joins National Physical Laboratory and

designs electronic stored-programme

digital computer (1945) 2, 12, 27, 30, 31,

363–4, 364–71, 376–7, 378–94

pioneers computer programming before

hardware in existence (1945–7) 2, 12, 25,

27, 30–2, 55, 356, 365, 366, 372, 375, 377,

378V, 388–92, 395, 563–4

pioneers ArtiWcial Intelligence and cognitive

science 2, 3, 353–9, 374–6, 392–4, 401–9,

410–32, 433–9, 441–63, 465–71, 472–5,

476–8, 480, 482–6, 487–92, 494–5, 563–4,

565, 566–7, 569–75

writes to Ross Ashby concerning computer

and brain 374–5

pioneers computer chess 3, 353, 356, 374,

375, 393, 394, 412, 420, 431, 439, 463, 470,

473, 514, 562–4, 565–6, 569–75

lectures on computer design in London

(1946–7) 2, 355–6, 372–3, 375–7, 378–94

visits computer projects in US

(Jan 1947) 397

proposes electronics section at NPL

(1947) 397–8

spends sabbatical in Cambridge

(1947–8) 400–1

leaves NPL for Manchester University

(1948) 2–3, 209, 367, 400–1

inXuence on computer developments at

Manchester 2–3, 209, 371–4, 401, 564

anticipates connectionism 356, 402–9,

416–24, 429–30, 431–2, 510, 517

invents Turing test 2, 356, 359, 401, 431,

433–9, 441–63, 477, 479, 484, 485, 488,

489–90, 494–5, 496, 503

pioneers ArtiWcial Life with study of

morphogenesis 1, 3, 401, 405, 508–14,

517, 519–61

Index | 611

Turing, A. M. (cont.):

writes to Young concerning morphogenesis

and neuron growth (1951) 517

broadcasts on BBC radio (1951–2) 356, 358,

465–71, 472–5, 476–80, 482–6, 487–93,

494–506

uses computer to explore non-linear systems

empirically 510, 561

dies (1954) 1, 510

Turing degree 144

Turing, E. S. (Sara) 21, 125–34, 471, 476

Turing machine

circle-free 32–3, 34–5, 36, 37V, 60–1, 72–4,

79, 98V, 142–3, 144, 153, 154, 468

circular 32–3, 36, 37, 60–1, 72–4

continuum hypothesis and 191–2

diagonal argument and 34–5, 37–9, 72–4

eVective computability and 88–90, 150

Entscheidungsproblem and 52–3, 84–7

introduction to 6–14, 32–41, 104–5

intuition and 137–8, 139–40, 215–16

learning and 407, 422, 424–30, 438–9, 470

Mathematical Objection and 450–1, 468,

470

oracle machine and 141–3, 144, 156–7

ordinal logics and 137–8, 184–5

provability by 52–3, 72–9, 84–7, 136, 140–1,

193, 206, 215–16, 430–1, 470, 472

Turing’s exposition of 59V, 413–14

see also universal Turing machine

Turing sheets (inEnigmabreaking) 314–15, 316

Turing test

1948 presentation of 401, 431, 433

1950 presentation of 2, 356, 433–6, 441–3,

448–58, 488, 489–90

1951 presentation of 433–4, 477, 479, 484,

485

1952 presentation of 433–4, 488–9, 494–5,

496, 503

consciousness and 451–3, 455, 456, 566–7,

569

imitating brain and 477, 479, 494–5

learning and 460V

Loebner Prize for 488–9

objections to 436–8, 448–58, 490–1

predictions concerning success in 449, 459,

460, 484, 489–90, 495, 566, 569

Shopper and 359

see also thinking machine

Turingery (in Tunny breaking) 263

Turing-reducible 143–4

Turing’s feedback method (in bombe) 254–5,

322–3

turnover (of Enigma wheel) 225–6, 239, 241,

249, 253, 268, 270, 279, 284–5, 315V, 342,

347V

Turochamp 563–4

Tutte, W. T. 208

twiddle (in Enigma breaking) 287, 290, 311

Twinn, P. 217, 258, 260, 286, 287

twisted-wire puzzle 584–5, 594

type fallacy 462

Typex machine 249, 250, 253

U-boat 257, 261, 262, 272, 273–4, 291, 306,

308, 309, 310, 311, 343, 347

U-110 41, 261

U-559 344

Ulam, S. M. 21

uncomputable number 36, 58, 72–4, 79;

see also computable number

uncomputable sequence 33V, 72–4, 79, 83;

see also computable sequence

Unilever Ltd. 399

UNIVAC 17

universal constructor 516

universal Turing machine

ArtiWcial Life and 515–16

B- and P-type machines and 407, 422,

424 –5, 427–8

brain and 407, 424, 429–30, 478

Church-Turing thesis and 41, 43, 479–80

compared with ACE 375, 383, 384

compared with Analytical Engine 29–30,

455

corrections to 91–101, 115–24

history of computer and 1, 2, 6, 9, 12,

15–17, 21–7, 30–1, 55, 206, 207, 209, 363,

371, 375, 378–9, 383, 414–15

introduction to 15–21, 105–15

lambda-deWnability and 44, 88–90

‘paper interference’ and 418–19

Turing’s exposition of 68–72, 383,

413–14

unsolvable problems and 576

see also Entscheidungsproblem, halting

problem, printing problem,

satisfactoriness problem, Turing machine

612 | Index

universality 415–16, 446–8, 455, 480, 482–3,

501, 516, 569–70; see also universal Turing

machine

University of California at San Diego 402

University of Pennsylvania 22, 380; see also

Moore School

unorganized machine 402–9, 416–19, 422–9,

430, 432, 467, 517; see also A-type, B-type,

connectionism, neural simulation,

neuron-like computing, pleasure-pain

system, P-type

unsolvable problem 6, 33, 98V, 576–81,

582–95

meaning of term 144, 579, 592

see also decision problem, degree of

unsolvability, Entscheidungsproblem,

halting problem, printing problem,

satisfactoriness problem, systematic

method, Thue problem

US Army 342, 344

US Bureau of Standards 368

US Navy 256–7, 342, 344

Uttley, A. M. 360, 368–9

Vassar College 129, 132

Victory (1st bombe) 253, 254, 259

von Neumann, J.

as pioneer of ArtiWcial Life 513, 514–17

as pioneer of stored-programme

computer 1, 16, 21–7, 32, 362, 364, 365,

408

letter to Wiener mentioning Turing 23, 515,

516–17

Manchester computer and 373–4

Max Newman writes to 209

mentioned by Turing in

correspondence 127, 134, 213

minimax and 563

on undecidability 53

Turing oVered job as assistant to 21, 134

Turing’s inXuence on 1, 16, 21–2, 23–5,

515–16

W/T (wireless telegraphy) 273–5

Waddington, C. H. 509, 521

Wang, H. 45

Weeks, R. 342

Welchman, W. G. 218, 254, 255, 263, 264, 292,

327, 329, 340

Werft (dockyard cipher) 307–8, 310, 311

Weyl, H. 48, 127, 131

wheel core (in Enigma) 223, 226, 227, 238,

244, 270; see also rod-position

wheel order (in Enigma) 222, 223, 225, 227V,

270V, 315V, 343V, 347V

Whirlwind I computer 367

Whitehead, A. N. 47, 138, 139, 355, 580

Wiener, N. 23, 408, 515, 516

Wilkes, M. V. 367, 476

Wilkinson, J. H. 366, 367, 368, 398, 399

Williams, F. C. 16, 209, 367, 371–4, 401, 471,

476

Wilmslow 1

Wittgenstein, L. 41, 130, 487

Womersley, J. R. 31, 363–4, 375, 395, 398, 399

Woodger, M. 31, 32, 356, 364, 367, 368, 376,

388, 508

word problem 594; see also substitution

puzzle, Thue problem

Wylie, S. 258, 286

Wynn-Williams, C. E. 208

Young, J. Z. 487, 509, 517

Zermelo, E. 194, 213

Zygalski, H. 232

Index | 613

	Contents
	Alan Turing 1912–1954
	Computable Numbers: A Guide
	1. On Computable Numbers, with an Application to the Entscheidungsproblem (1936)
	2. On Computable Numbers: Corrections and Critiques
	3. Systems of Logic Based on Ordinals (1938), including excerpts from Turing’s correspondence, 1936–1938
	4. Letters on Logic to Max Newman (c.1940)

	Enigma
	5. History of Hut 8 to December 1941 (1945), featuring an excerpt from Turing’s ‘Treatise on the Enigma’
	6. Bombe and Spider (1940)
	7. Letter to Winston Churchill (1941)
	8. Memorandum to OP-20-G on Naval Enigma (c.1941)

	Artificial Intelligence
	9. Lecture on the Automatic Computing Engine (1947)
	10. Intelligent Machinery (1948)
	11. Computing Machinery and Intelligence (1950)
	12. Intelligent Machinery, A Heretical Theory (c.1951)
	13. Can Digital Computers Think? (1951)
	14. Can Automatic Calculating Machines Be Said to Think? (1952)

	Artificial Life
	15. The Chemical Basis of Morphogenesis (1952)
	16. Chess (1953)
	17. Solvable and Unsolvable Problems (1954)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Blank Page

