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Preface 

After nearly two decades of development, general systems theory has 
sufficiently matured to be taken seriously. Once a new and radical movement 
in science, well motivated but ill defined, it has overcome many obstacles 
and has developed into a more moderate but by now a better defined and 
sophisticated area of human activities. Primarily, it offers scholars, educators, 
engineers, and artists new and harmonious ways of looking at the world. 

So far, various branches of general systems theory have been evolving 
spontaneously and individually, without any significant coordination. It 
seems that a stage of evolution has been reached where some sort of integration 
might be beneficial. It is the major purpose of this book to provide a basis 
for such cooperation, by showing "the state of the ar t"  and by predicting 
future developments. 

To preserve authenticity, I have asked some of the most important 
originators of various aspects of general systems theory to describe their own 
motivations, views, approaches, contributions, and trends in this area. I have 
preserved differences in their terminology and notation. For easier reading, 
I have included a preview to the entire volume, as well as editor's comments 
and glossaries to some of the individual chapters. 

The book contains four major parts: 

• Part I includes some information about the history and basic aspects of 
general systems theory such as the system isomorphism, the problem of 
system complexity, and the role of computers.

• Part II  discusses some important contemporary system problems. These 
are, essentially, problems brought from the social sciences.

• Part III describes the Mesarovic and Wymore theories, as well as my 
own approach, outlined by Robert A. Orchard in Chapter 7. 

• Part IV contains studies of some aspects of formal systems theories. 
Included are the role of topological concepts, metamathematical aspects, 
problems of computability, and a discussion of some new or modified 
mathematical concepts important to general systems theory.

Although Parts I and II are relatively easy to read and do not require 
much mathematical knowledge, Part III is mathematically oriented, especially 
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vi Preface 

Chapters 8 and 9. But the most difficult may prove to be some sections of  
Part IV. 

The book was prepared with the intent to make it suitable as a textbook 
for graduate or upper-division courses or seminars in general systems theory. 
For that reason, individual chapters are supplemented by problems and 
comments in which I specify the necessary preliminaries. 

It appears that the book contains enough material for a two-semester 
course. Chapters 1-6 and Sections 7.1-7.8, 8.1, 9.1, and 11.1, together with 
the Preview and the Epilogue, might form a good basis for the first semester. 
The remaining sections, which are more mathematically oriented, seem more 
suitable for the second semester. Various subsets of the book can be used 
for a seminar work. 

Since the book is a survey of  present trends in general systems theory, 
I believe that it will be helpful not only as a text but also as a basis for 
planning general systems theory curricula and, as already mentioned, as a 
medium for initiating cooperation in this exciting young field. 

I thank all the authors who contributed to this volume. It was a great 
pleasure and a privilege to serve as their editor. My thanks also go to the 
School of Advanced Technology, State University of New York at Bing-
hamton, which provided me with the best possible environment for my 
editorial work. In particular, I am deeply indebted to my colleagues, 
Professor Joseph V. Cornacchio and Mr. Sirajul Islam, for their very 
valuable comments, and to Miss Lucy Gabriel for the many hours she spent 
in helping me with the editorial work of the whole volume. 

Binghamton, New York 
September I 971 

GEORGE J .  KLIR 
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Preview
The Polyphonic General Systems Theory

GEORGE J. KLIR

School of Advanced Technology
,
State University of New York at Binghamton

General systems theory in the broadest sense refers to a collection of general

concepts, principles, tools, problems, methods, and techniques associated

with systems. Although the name “system” may have different meanings

under different circumstances and for different people, it ordinarily stands

for an arrangement of certain components so interrelated as to form a whole.

Diverse types of components and their interrelations represent different

systems.

Although the notion of system is an old one, as pointed out by Ludwig von

Bertalanffy in Chapter 1, the concept of a general system and the idea of

general systems theory are relatively new. They were suggested by von Bertal-

anffy just before World War II, but were given publicity only after the

Society for the Advancement of General Systems Theory (later called the

Society for General Systems Research) was formed in 1954.

A need for a better understanding of biological, psychological, and social

phenomena initiated an interest in the study of systems with strong (non-

negligible) interactions between their components, as well as between each

system and its environment. This new area of study contrasted with the

“ classical ” (Newtonian ) method in science, which regarded an object of

scientific investigation as a collection of isolated parts and tried to derive the

properties of the whole object directly from the properties of its parts without

considering possible interactions between the parts.

A new scientific approach, often referred to as the systems approach
,
was

thus suggested in the 1930’s as superior to the classical approach in some

disciplines of science, primarily in biology, psychology (psychiatry), and the

social sciences. Since then, more and more evidence has been found that

certain properties of systems do not depend on the specific nature of the

individual system, that is, they are valid for systems of different natures as

far as the traditional classification of science (physical, biological, social,) is

concerned.
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Some of these properties were first understood as various kinds of simple

system similarities (e.g., geometric, kinematic, thermodynamic). Two systems

were considered similar if both the variables of one system were of the same

physical nature as those of the other, and the values of these variables were

proportional at corresponding times. Later, the meaning of similarity was

generalized to include systems whose variables were of different physical

natures. This kind of similarity, now usually referred to as the analogy

between systems, is based on a similarity in the algebraic or differential

equations describing the systems involved. For instance, certain electric

circuits are considered analogous to certain mechanical, acoustical, thermal,

and other types of systems provided they are described by similar equations.

Various principles of system similarity were finally incorporated in a formal

theory referred to as the theory of similarity or similitude [18, 35]. It then

became possible for a discipline to utilize methods developed elsewhere. For

instance, sophisticated procedures developed for the analysis of complex

electric circuits became directly applicable to mechanical, magnetic, acoustical,

and thermal systems whose methodology was far less advanced. This ulti-

mately led to the creation of a new discipline—the theory of generalized

circuits [6, 38]. Proper understanding of the principles of analogy also stimu-

lated the development, production, and use of analog computers [35].

The generalization of geometric similarity (recognized many centuries

ago) to other types of system similarities, constituted the first step in the

development of the concept of a general system. We can easily verify that the

relation of similarity, in the sense described above, is reflexive ,
symmetric

,

and transitive. As such, it is an ordinary equivalence relation which partitions

all systems of a particular discipline into equivalence classes. Each equivalence

class can then be represented by a single system—a representant of the class.

All results obtained by investigating this representant can be modified, using

only rules of the theory of similarity, to apply to any system belonging to the

same equivalence class.

The generalization of system similarity to system analogy was the second

step in the development of a general system concept. Here, suddenly, several

disciplines were involved. The concept of analogy introduced again an

equivalence relation between systems and thus partitioned systems into

equivalence classes. This time, however, the same equivalence class contained

systems from different disciplines. Consequently, results obtained by investi-

gating certain properties of one system (a representant of the equivalence class)

could be transferred to other disciplines.

The similarity in the forms of algebraic or differential equations is a kind of

mathematical isomorphism. When this is generalized to include any relation,

whether expressible by equations or not, then the concept of a general system

acquires its proper meaning. It is a contentless (mathematical) representant
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(imodel) of a particular equivalence class
,
obtained when an isomorphic

relation (which is always an equivalence relation) is applied to certain traits of

systems.

Thus mathematical isomorphism, which is discussed in detail by Anatol

Rapoport in Chapter 2, is crucial to any form of general systems theory. A
study of various aspects of isomorphism, its modifications, and its generalized

form

—

homomorphism
,
within individual conceptual frameworks, is very

important for developing areas of general systems methodology with clearly

specified applications. Let us note that the homomorphic relation is reflexive

and transitive but not symmetric. This means that a similarity based on a

homomorphic relation between systems classifies but not partitions them.

Nevertheless, some problems concerning all systems in a class can be solved

in terms of its representant—a homomorphic model.

Strictly speaking, general systems theory (in the widest usage of this term)

is not a theory in the formal sense (an axiomatic theory), although it embodies

some formal theories—the theory of finite-state (sequential) machines

(automata) [1, 7, 14, 15, 20, 34, 45], the theory of probabilistic (stochastic)

machines (automata) [2, 7, 33, 45], the mathematical theory of formal

languages [1, 7, 16, 21], the theory of Turing machines (Chapter 11), the

Mesarovic theory (Chapter 8), the Wymore theory (Chapter 9), and others.

In addition to these formal theories, general systems theory is often considered

to contain various concepts, hypotheses, methodological principles, computer

techniques, and other particulars which do not belong to any formal theory.

At present, there is a general trend to formalize so as to diminish conceptual

confusion. As a rule, however, the process of formalization narrows the origin-

al semantic meaning of the entities concerned. It is this “poverty of fully

formalized concepts,” in the words of my friend Eugene Kindler, which is a

grave disadvantage of the formalization in its present form despite its many
advantages. This is a problem to which Preston C. Hammer addresses

himself in his criticism of the common interpretation of some very basic

concepts in mathematics (Chapter 12).

One way of encompassing various facets of “semantically rich” concepts,

associated with systems in their formalized forms based on available mathe-

matical tools, consists in developing several formal theories of systems, each

of which reflects certain aspects of reality. These theories, though mutually

different, are not necessarily disjoint. Together, they offer far richer coverage

of the semantic content of various system concepts than each of them could

provide individually. This is, essentially, the approach that has been followed

so far.

Another way consists in preserving as much of the semantic content as

possible in the process of formalization. Clearly, such a way is heavily

dependent on new developments in mathematics. Involved are both a
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modification (extension, generalization) of existing mathematical concepts, as

discussed by Hammer in Chapter 12, and a creation of new mathematical

concepts, principles, and tools. A good example of such a new mathematical

concept is. the Zadeh idea offuzzy sets [10, 17, 43, 44]. The need for a modi-

fication and an extension of existing mathematical concepts is recognized

increasingly and represents an important trend in general systems theory at

large.

Although a reform in mathematics would make this discipline a more
adequate tool for the formalization of general systems theory, there would be

no hope of significant improvement if we did not have powerful computers

equipped with sophisticated programming facilities. The role of computers in

general systems theory, which is well described by Gerald M. Weinberg in

Chapter 4, can hardly be overestimated. For system theorists the computer is

a tool as basic and essential as the microscope is for biologists. Either of these

tools enhances enormously the ability of the human being in a particular area.

Unfortunately, our present computers can be compared with the microscopes

used by Robert Koch; computers comparable to the electron microscope

are far in the future.

Although computers help tremendously in solving various problems

concerning complex systems, there is a definite limit to the practically

manageable complexity of systems . This limit moves toward increasing com-
plexity of systems in proportion to improvements of existing computer

facilities and methods. Nevertheless, as pointed out by Bremermann [9],

there is a theoretical upper bound to manageable complexity.

By simple physical considerations based on quantum theory, Bremermann
makes the following conjecture [9]: “No data processing system, whether
artificial or living, can process more than 2 x 10

47
bits per second per gram

of its mass.” Then he calculates the total number of bits processed by a

hypothetical computer the size of the Earth within a time period equal to the

estimated age of the Earth. Since the mass and the age of the Earth are esti-

mated to be less than 6 x 10
27 grams and 10

10
years, respectively, and each

year contains approximately n x 10
7
seconds, this imaginary computer cannot

process more than 10
93

bits.

The Bremermann limit seems at first sight rather discouraging for general

systems theorists even though it is quite conservative (less conservative

assumptions would lead to a smaller number than 10
93

). Indeed, many prob-

lems dealing with medium-size systems fall far beyond the Bremermann limit

in their computational complexity. For instance, let us consider the problem of

implementing, by a single type of universal element (module), a given function

which maps a set of n logic (two-valued) input variables, with values of 0 and

1, to a set of n logic output variables. Assume that the module has m input

logic variables and one output logic variable. Assume further that our objec-
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tive is a design with the smallest possible number of copies of the module. This

is a very practical problem in the area of computer design.

In the general case, none of the output variables is equal either to a constant

(0 or 1) or to an input variable. Then we can proceed as follows. One copy of

the model is identified with each of the output variables of the given mapping.

The input variables of each of these copies are functions of the input variables

of the designed system. These functions must satisfy a decomposition of the

respective output function of the designed system with regard to the function

represented by the module. The decomposition, which is an ambiguous

operation, can be expressed by a Boolean equation with m dependent variables

(inputs of the module) and n independent variables (inputs of the designed

system). All functions acceptable to the inputs of the module can be deter-

mined by solving the Boolean equation. We want to select a function which

enables us to implement the given mapping with the smallest possible number

of modules. It can easily be found [25, 29] that the maximum number of

solutions is

(2
m
)
2 " = 2

m ' 2n
.

Since we have to solve one Boolean equation for each one of n outputs, we

can express the maximum number N of functions satisfying the decomposition

by the formula

N = n * 2
m • 2n

.

It is well known that universal logic modules exist only for m> 2. Let us

consider the most favorable case, m = 2, for which

N=n- 2
2n+1

.

When evaluating this formula for several values of n, we obtain the following

table

:

n 1 2 3 4 5 6

N 16 512 2 x 10
5

1.7 x 10
10

9.2 x 10
19 2 x 10

39

n OO
r-

9 10

N
|

8.1 X 10
77

10
155

1.6 x 10
309

3.2 x 10
617

We see that the maximum number N of solutions of the Boolean equations is

beyond the Bremermann limit for n > 8. Now, assuming that the actual

number of solutions is only a small portion, say one millionth, of the maximum
number, we still get

8 x 10
154" 6 = 8 x 10

148
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for n = 8, which is again beyond the Bremermann limit. Let us note that, if we

used more than one type of module or a module with more than two inputs,

the number of possibilities would become even larger.

Thus the problem of implementing a given mapping from eight logic

variables to eight other logic variables by the smallest possible number of

copies of a given set of modules is, regardless of the modules used, practically

unsolvable, though it is certainly solvable theoretically (in terms of the theory

of computability summarized by Lars Lofgren in Chapter 11). Still, this type

of problem is of considerable importance to computer designers.

In order to solve problems like the one suggested, we must reduce our

requirements. For instance, we do not require that the implementation

contain the smallest possible number of modules, we select modules with

certain convenient properties, and we make other concessions. Generally,

we try to simplify the problem sufficiently so that it becomes practically

solvable with the aid of computers.

Our example was taken from engineering. However, similar difficulties

arise in science, and again we are forced to simplify in order to manage our

conceptual systems. The simplification is more acceptable in some scientific

disciplines than in others. For instance, as pointed out by Gerald M. Weinberg

in Chapter 4, superimposition of pairwise interactions works fairly well in

mechanics, but it is unthinkable in biology, psychology, or the social sciences.

The so-called systems approach has been developed in science for the

purpose of considering all possible interactions of the elements of a system

when the behavior of the system is to be derived. This contrasts with the

“classical” approach, which investigated individual interactions isolated

from each other and then simply superimposed one upon the other. As

pointed out by W. Ross Ashby in Chapter 3 and elsewhere [5], the systems

approach, though highly desirable, often leads to problems that are practically

unsolvable. In such cases, simplification is necessary. This means excluding

some of the interactions, which leads in turn to the study of the amount of

interaction between the elements of a system. Ashby has been involved in this

study for some time, and his views are expressed in Chapter 3.

Hence an important trend in general systems theory consists in developing

methods that enable us to construct conceptual systems where interactions

between the elements are sufficiently but not completely incorporated. It is

hard to disagree with Ashby when he says, “ The future of system theory seems

to lie in the study of systems that are sufficiently connected to be real systems

yet by no means totally connected.” Weinberg goes even further in Chapter 4

when he talks about the science of simplification and relates it very strongly

to general systems theory. Some aspects of this “science of simplification”

appear to be treated in the recently evolved constraint theory [13].

Several approaches to the formalization of general systems theory have been
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developing within the last decade or so. Each of them was initiated with a

certain purpose in mind and has been built on the basis of a chosen conceptual

framework. Three approaches are outlined in this volume: the axiomatic

theory known as the Mesarovic approach (Chapter 8) ;
the Wymore approach

,

which he himself calls “a wattled theory of systems” (Chapter 9); and my
own approach, described by Robert A. Orchard (Chapter 7).

The Mesarovic approach can be characterized as a highly abstract axiomatic

theory. It is built hierarchically from the highest point of abstraction, at

which general systems are understood as arbitrary relations, each one defined

on a collection of some abstract sets. More axioms are added when systems

with more specific properties are studied.

Mesarovic uses two ways of specifying behaviors of general systems whose

variables are classified as inputs and outputs

:

(i) Input-output (terminal,
causal) specification

,
in which the behavior is

explicitly specified as a binary relation defined on a Cartesian product of two

disjoint families of abstract sets.

(ii) Goal-seeking (teleological,
decision-making) specification

,
in which the

same binary relation as introduced in (i) is described implicitly in terms of a

goal-seeking process.

Although more specific aspects of the Mesarovic approach are outlined in

Chapter 8, two of its distinguished features should be stressed here:

1. A strong involvement in the elaboration of the theory of general

hierarchical systems
,
where the goal-seeking description of behavior plays an

important role [32, 40]. The importance of studying hierarchical systems can

be properly appreciated after reading Chapter 5.

2. An applicability to metamathematical problems associated with the

consistency and completeness of axiomatic theories [31].

The Wymore “ wattled theory ofsystems" ’ to use its originator’s own words,

“has been developed to subsume both the theory of discrete automata and

continuous systems defined by differential equations.” Wymore’s definition

of system is based essentially on a state-transition structure. As such, it is

quite similar to various definitions of finite-state machines (Moore or Mealy

machines, fcth-order finite automata), but extends the latter to continuous

functions requiring neither a finite number of states nor a finite number of

stimuli. The theory is applicable, therefore, to hybrid systems, which contain

both continuous and discrete variables, as well as to systems defined on
infinite sets. For instance, various Turing machines (Chapter 11), whose tapes

are potentially infinite in both directions, can easily be described in terms of

the Wymore theory.

In addition to his definition of a system, Wymore formalizes the notion of a

coupling of these systems. This extends the theory to collections of coupled
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systems and makes the problems of analysis and synthesis meaningful.

Finally, he uses the concept of system homomorphism (or isomorphism as a

special case) to formalize the principle of modeling and simulation. He
requires the model to exhibit the same input-output performance as the

original.

Wymore has intentionally developed his conceptual framework inde-

pendently of any specific form of mathematical representation. This has

allowed him enough freedom to choose a suitable representation for a given

purpose. For example, a real-number representation of a finite-state machine

[22] is preferable to an integer representation if the machine is coupled with a

continuous system or simulated on an analog computer.

My own approach to general systems theory, as introduced in my book [25],

is described and further developed by Robert A. Orchard in Chapter 7.

Whereas both the Mesarovic and Wymore approaches are of a deductive

nature, mine might be called inductive. Rather than defining the concept of a

system axiomatically, as Mesarovic and Wymore do, I identify system traits

before I define a system as such. The identification is based on our intuitive

feeling for systems and system-type problems in various disciplines (natural

sciences, social sciences, engineering, mathematics, the arts). Those traits

are compiled which are independent of a specific nature of variables involved

(behavior, states, transitions, elements, couplings, resolution level, etc.).

The compiled traits are then classified and formalized. Restricting ourselves to

traits that satisfy certain natural requirements (primary traits), we arrive at

five basic definitions of systems. Each of the basic definitions can be supple-

mented by additional traits, or several of them can be used together to

define a system.

My approach thus leads to a spectrum of system definitions, each of which

is associated with a particular class of system-type problems. Primary traits

are those given in the problem; secondary traits are those which are to be

found. All the sets of secondary traits which are correct solutions of a problem

represent an equivalence class with regard to that problem. Similarly, all the

system-type problems which use the same definition of system and require

various secondary traits of the system to be determined create an equivalence

class. Hence the definitions of systems classify system-type problems and so

establish a broad basis for a general systems methodology.

According to the conceptual framework introduced in [25], the system

changes if any of the primary traits participating in its definition changes.

Orchard suggests and formalizes in Chapter 7 an extension in which a

time sequence ofsystems is considered as one system under consideration. This

extension, which Orchard calls the sixth basic system definition, allows the

study of all kinds of evolutionary processes (self-organization, self-reproduc-

tion, etc.). Orchard’s contribution not only is a significant addition to my
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approach but also represents an important trend in the whole general systems

theory.

Since the individual approaches to general systems theory are far from
being well elaborated and no efforts have been made to compare them in all

details, it is impossible to predict whether they will merge into a single theory

(the union of all of them) or will remain separate because of essential differ-

ences. In any case, both the deductive and the inductive methods should

participate in the development of the theory.

The Mesarovic theory is the oldest of the three approaches described and, as

such, is also more highly developed than the other two. Mesarovic and
Eckman initiated the theory at the beginning of the 1960’s [12]. The principal

educational and research center for this approach is in Cleveland, Ohio
(Systems Research Center, Case Western Reserve University).

With no previous related publications, Wymore presented the entire

conceptual framework of his theory in his book [41], published in 1967.

The development of the theory has been motivated principally by the needs of

systems engineering in the broadest sense (including the engineering of social

systems). Unfortunately, there has not been enough time to elaborate the

methodology associated with the approach. In particular, very little has been
done in regard to system synthesis, which is of primary importance in engin-

eering. Most of the work on the theory is done in Tucson, Arizona (Depart-

ment of Systems Engineering, University of Arizona).

Some ideas proposed by a group using the pseudonym K. Vasspeg [39],

in which I had participated for several years, some concepts introduced by
Svoboda [36, 37], and my earlier work in cybernetics [24] contributed in

developing the conceptual framework of my approach. As the conceptual

framework is so new, there has not been enough time to develop a well-

organized methodology. Except for some minor studies [27, 28], most of the

effort has been spent in applying the conceptual framework to systems with

two-valued variables (logic or switching circuits) [26, 29]. At present, the

educational and research center for this approach is in Binghamton, New
York (School of Advanced Technology, State University of New York at

Binghamton).

Although the Mesarovic theory is more highly developed than the other

two, none of them is satisfactorily developed from the methodological point

of view. For instance, little has been done in general systems synthesis, and
even less in the modification of individual conceptual frameworks to fuzzy

sets [17, 33, 34]. Although methods solving some portions of various problems
concerning general systems have been programmed for computers elsewhere,

no serious effort has been made to integrate them. Neither Mesarovic nor
Wymore has incorporated the investigation of probabilistic (stochastic)

systems in his theory.
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All these present deficiencies in individual approaches to general systems

theory suggest the following trends:

1. A comparison of individual general systems theories and a unification

wherever possible. Even if we manage in the future to unify the formal
theories of general systems, it seems reasonable to preserve both the de-

ductive and the inductive ways of presenting them.

2. An elaboration of a well-organized methodology of general systems,

either based on a unified theory, or developed within individual conceptual

frameworks if the unification fails. The methodology should cover probabilistic

and fuzzy systems as well as deterministic ones, It should incorporate not only
classical system-type problems in the natural sciences or classical engineering

(electrical, mechanical, etc,), but also new problems which arise in the social

and life sciences or in social engineering, as described by John H. Milsum in

Chapter 5 and Walter Buckley in Chapter 6.

3. A development of a large-scale interactive and adaptive aggregate of

computer hardware and software for work oriented to general systems in the

sense described by Orchard in Chapter 7.

An investigation of the general properties of the various system theories is

recognized as an important trend. This investigation, which includes different

aspects, is directed essentially to the creation of a metatheory applicable to

individual general systems theories. As such, it may have a great impact on the

unification of existing theories of general systems.

In Chapter 11, Lars Lofgren addresses himself to various metatheoretical

aspects of formal general systems theories. He demonstrates the importance
of formal theories in general, and of formal system theories in particular.

Pursuing this argument, he uses mathematical logic and the theory of com-
putability. Questions concerning the explicatory and predictive power of a

theory, its communicability, its syntactic information, and the problem of

reducing one theory to another are among those which Lofgren expounds in

considerable depth and exactitude in Chapter 11. He also investigates various

problems associated with a formalization of some highly sophisticated types

of systems, such as learning, evolutionary, or reproductive systems.

Lofgren is a strong advocate of formalization in general systems theory.

Following his argument, one can hardly disagree with his thesis: “ Everything

that can be effectively explained can be formalized.” Then his belief that

“the problem of agreement on a suitable logical basis for a group of scientists

is far less of a problem for them than to interact at all without formalizing

their ideas ” seems to be fully justified.

The work by Joseph Y. Cornacchio, as summarized in Chapter 10, has also

a metatheoretical flavor, though limited to a particular aspect—topological
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structures of abstract models of general systems. He has been motivated by

two considerations:

1 . The need for topological structures in the abstract formulation of general

systems models.

2. The exploration of relationships between the extended topological

concepts introduced by Hammer [19] and mathematical models in general

systems theory.

Cornacchio demonstrates that a topological structure is a fundamental

trait of a broad class of specific systems, including those in such diverse

disciplines as engineering, computer science, and the social, behavioral, or

natural sciences. In the examples presented from these areas, the topological

structure involved is that of the classical topological space, which is based on

the fundamental concept of neighborhood. An example of the introduction

of such a structure in the model of continuous functional systems is discussed

in detail. Cornacchio then demonstrates, by rigorous methods, a fundamental

relationship between the closure spaces introduced by Hammer and the set-

theoretic structure characterizing the Wymore model of a general system.

However, as he points out, more work is required before the usefulness of such

generalized structures in formally representing the intuitive notions of

approximation and continuity—notions which originally motivated the need

for a topological structure—can be assessed. Another question is raised

concerning the role of generalized topological structure in arbitrary general

systems models. Apparently, the strongest case for the introduction of such

generalized structures is that of the finite systems in mathematics. Hammer
[19] (and other references in Chapter 12) gives a detailed argument for the

latter case.

Cornacchio’ s work has evolved from graduate seminars on the mathematical

aspects of general systems theory, held at the School ofAdvanced Technology,

State University ofNew York at Binghamton. It is included, with other topics,

in a set of class notes entitled General Systems Theory: Mathematics
,
Models

,

and Methods.

The developments of various general systems theories, as well as the

metatheory, seem likely to converge to a general systems profession. The

latter will be involved in developing sophisticated methods, supported by

powerful computing facilities, to solve system-type problems irrespective

of the disciplines involved. The general systems profession will provide

services to other professions. As such, it will have to be adaptive to the needs

arising from individual areas of human activities.

It seems reasonable to expect that the general systems profession will

develop into several specific areas, such as systems engineering, systems

science, systems art, systems philosophy, systems methodology, and systems
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education. Both research and education will contribute to its development.

It is hard to assert which of them will contribute more. As far as research is

concerned, I' have already mentioned some important trends. Without any

doubt, a proper treatment of system complexity as a parameter is of primary

importance. We will probably search for new and unorthodox forms for

representing systems. For instance, the power of natural languages to express

complex relationships in simple forms, which are fully satisfactory in many
cases, seems to be promising. Unfortunately, little has been done in the data

processing of natural languages.

As far as the impact of education on the development of the general systems

profession is concerned, two aspects should be mentioned:

1 . A need for training a sufficient number of system specialists to extend and
accelerate basic research in the methodology of general systems. The isolated

courses in general systems theory which hay© been offered so far arc no longer

sufficient. They should be extended into organized curricula, based on a

conceptional framework (hopefully unified), and including courses on
sophisticated mathematical tools, computer programming, principles of

modeling, simulation techniques, operations research, principles of measure-

ments, automata theory, theory of languages, and other pertinent aspects.

2. A need for familiarizing specialists in various disciplines with funda-

mental concepts and simple principles of general systems, to make them able to

communicate with systems specialists and with people from other disciplines.

Scientific and engineering disciplines, as well as humanities and the arts, should

be included. It is an excellent experience to have in the same class students

educated in various disciplines. They are first introduced to some concepts

and principles of general systems. Each of them then presents a demonstration

of the interpretations of the general systems concepts and principles to his

special discipline. It is not expected that students taking such a course, or a

sequence of such courses, will become system specialists. On the other hand,

they should be able to distinguish problems which can be solved within general

systems methodology from those which must be solved within a particular

discipline. They should also be able to formulate properly their problems for

system specialists, and to interpret correctly the results obtained from the

latter. In addition, through the seminar talks, they learn about the peculiarities

of other disciplines. Generally, after such a course (or sequence of courses)

students are better prepared for interdisciplinary teamwork, even though

each remains essentially specialized in his original discipline.

People involved in general systems theory are usually referred to as

generalists
,
while those working in a classical discipline are called specialists.

However, if one works solely in general systems theory, he then becomes a

general systems specialist. He specializes in generalizations. Let us call him a

system theorist or a specialized generalist.
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For the last several years, an increasing amount of cooperation has been

demanded of general systems theory from such areas as biology, psychology,

health care, economics, management, and political science. On account of this,

a danger arises : the system theorist may try to solve any problem presented to

him by the specialist. It is very possible that the system theorist may find a

solution that will not lend itself (prove helpful) to the problem proper. In such

a case the theorist has not only hindered the specialist in his search for a

solution but has, in addition, done a disservice to the entire general systems

profession.

My assertion is that the fixed idea of powerful systems theorists, who can

solve almost all problems for almost all disciplines, should be recognized as a

myth and treated accordingly. A system theorist specializes in a study of the

general principles of systems, and a few hours, days, or even weeks of con-

centrating on another discipline can give him only a very naive understanding

of its peculiarities, needs, and problems. He cannot spend several years of

study on each discipline in regard to which his advice is sought. If he claims

that he is able to solve problems in various disciplines because of his know-

ledge of general principles, then he is either naive or dishonest.

A system theorist cannot master the various disciplines in which he will work

sufficiently to enable him to solve all the specialized problems that may arise.

But a specialist in, say, health care can easily grasp the foundations of general

systems theory in a relatively short time. He would then be called a generalized

specialist.

It is my belief that the generalized specialist is the person who will increas-

ingly be in demand. We can characterize him as follows. He is essentially

specialized in a discipline; at the same time, he is familiar, to a reasonable

depth, with basic concepts, principles, and methods of general systems. In

addition, he is aware of the capabilities and limitations of contemporary

computers, is able to use these machines, and has some proficiency in com-

puter programming. Even though he is not expected to solve complex

system-type problems, he is able to communicate them properly to system

theorists.

A peculiar facet of general systems theory is its terminology . Although

it aspires to be the language for interdisciplinary communication, system

terminology is a loose collection of languages used by various individuals or

groups. It is unfortunate that, while different names are frequently used for

identical concepts, different concepts are often denoted by an identical name.

Such ambiguity is a source of considerable confusion and misunderstanding.

This mishmash of terms casts doubts on the general systems theory as a

whole.

Clearly, an attempt to unify the terminology should be of the highest

priority. The task is not easy. It would require that a list of basic concepts of

general systems theory be prepared and that each concept in this list be
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identified with any associate names used by various system theorists. Then,

an attempt should be made to select one term for each concept. This selection

ought to be based on general agreement among the people involved. Under no
circumstances should one set of terms be considered as superior to other sets.

The comparison of individual conceptual frameworks used in individual

approaches to general systems theory appears to be very difficult. A meta-

theory must be used to decide whether one concept is identical to, is different

from, or is a proper subset of a concept drawn from another theory. When
two theories are built axiomatically, the comparison may be considered

as a sophisticated formal exercise in the metatheory. However, when induc-

tively built theories are considered, additional difficulties, primarily of a

semantic nature
7
may arise. In such cases personal contact between persons

representing different approaches is almost a necessity if any progress in

unifying the terminology is to be made. A series of well-organized workshops,

devoted to comparison of conceptual frameworks and unification of the

terminology of general systems theory, may prove helpful.

This book does not escape the terminological “jungle” characterizing

general systems theory. As a collection of contributions representing different

views on general systems theory, it reflects the existing terminological

differences. In the following paragraphs, I attempt to point out some of these

differences. I use my own concepts and terms described in Chapter 7 and in

[25] as comparison references, The comparison should be considered only as a

first approximation intended to provide the reader with some guidance.

Although I distinguish the concept of object (a part of reality subject to

investigation) from the concept of system (some precisely defined properties

of the object), the term system is used by some (von Bertalanffy, Weinberg,

Milsum) for both of these concepts. Von Bertalanffy uses the terms real

system and conceptual system for my concepts of object and system, re-

spectively. Weinberg frequently uses the term model of a system rather than

system when he wants to distinguish an object from a system. In my termin-

ology, I use the term model not as an approximation of an object but rather

as a relation of similarity between two systems.

Ashby’s real machine [3] has the same meaning as my concept of object.

In addition, his concept of a variable (or a variable quantity) is the same as

mine. He is in complete agreement with my view when he says that “every

real ‘machine’ embodies no less than an infinite number of variables, all but

a few of which must of necessity be ignored ” [3]. He then defines a system by a

set of variables selected “from those available on the real ‘machine’.”

This is consistent with one of my basic definitions of the system (the definition

by a collection of variables and a space-time resolution level).

Zadeh uses the term object for “ a set of variables together with a set of

relations between them” [42, 45], which, in my terminology, is quite close to
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(but not identical with) the concept of behavior. However, he occasionally

uses the term physical object in the same sense in which I use object.

In formal theories of general systems (Mesarovic, Wymore), the concept of

object has no meaning. However, the term object is used in a different sense.

For instance, Mesarovic employs it as a synonym for an abstract set partici-

pating in a relation or, in a special case, a set of values of a variable

(a resolution level in my terminology).

My concept of system activity is used under different names in different

approaches to general systems theory. For instance, Ashby, Mesarovic,

Weinberg, and Zadeh use, respectively, the terms a line of behavior ,
a general

time system
,
a chronological graph

,
and a class of time functions.

The concept of behavior in the sense in which I use it (a time-invariant

relation between certain kinds of variables) was suggested by Svoboda for

discrete systems [36, 37]. This concept, which plays an important role in my
conceptual framework, is not directly employed in any of the other approaches.

Although it is included in the Mesarovic concept of a general system (a

relation defined on a collection of abstract sets), it has not been developed

within the theory itself.

The concept to which I refer as the state-transition structure can be found,

with certain modification, in almost every approach to general systems theory.

One modification is the state-determined system introduced by Ashby [3, 4].

It is used also by Weinberg (Chapter 4) and Zadeh [40, 45], as well as in the

theory of finite automata (or finite-state machines) [7, 14,15] and other system

theories [23, 45]. Another modification is represented by the Wymore definition

of a system.

The concept ofprogram (an initial state and a set of time instances imposed

on the state-transition structure) corresponds to the Mesarovic abstract

dynamical system. Clearly, it is meaningful in the case of the state-determined

system, the Wymore system, and other forms in which the state-transition

structure is involved.

Let us now address ourselves to the question: What is new in general

systems theory ? With the variety of views on general systems theory, we
should expect a variety of answers. General systems theory is considered as a

formal theory (Mesarovic, Wymore), a methodology (Ashby, Klir), a way of

thinking (Bertalanffy, Churchman [11]), a way of looking at the world (Wein-

berg), a searchfor an optimal simplification (Ashby, Weinberg), an educational

tool (Boulding [8], Klir, Weinberg), a metalanguage (Lofgren), or, prospec-

tively, a profession (Klir). Each of these views and possibly others not men-

tioned here contain points that are new. This fact makes the answer to our

question rather complex. To summarize, we may say that general systems

theory in the broadest sense has generated innovations in the following

manner

:
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1. A new way of looking at the world has evolved in which individual

phenomena are viewed as interrelated rather than isolated, and complexity

has become a subject of interest.

2. Certain concepts
,
principles

,
and methods have been shown not to depend

on the specific nature of the phenomena involved. These can be applied,

without any modification, in quite diverse areas of science, engineering,

humanities, and the arts, thus introducing links between classical disciplines

and allowing the concepts, ideas, principles, models, and methods developed

in different disciplines to be shared.

3. New possibilities (principles, paradigms, methods) for special disciplines

have been discovered by making investigations on the general level.

I have tried to outline the basic trends in general systems theory as I see

them at this time. The reader is now invited to turn to the individual authors

to enjoy the many facets of this theory and its trends.
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1.1. HISTORICAL PRELUDE

In order to evaluate the modern “systems approach,” it is advisable to

look at the systems idea not as an ephemeral fashion or recent technique, but

in the context of the history of ideas. (For an introduction and a survey of the

field see [15], with an extensive bibliography and Suggestions for Further

Reading in the various topics of general systems theory.)

In a certain sense it can be said that the notion of system is as old as

European philosophy. If we try to define the central motif in the birth of

philosophical-scientific thinking with the Ionian pre-Socratics of the sixth

century b.c., one way to spell it out would be as follows. Man in early culture,

and even primitives of today, experience themselves as being “thrown”

into a hostile world, governed by chaotic and incomprehensible demonic

forces which, at best, may be propitiated or influenced by way of magical

practices. Philosophy and its descendant, science, was born when the early

Greeks learned to consider or find, in the experienced world, an order or

kosmos which was intelligible and hence controllable by thought and rational

action.

One formulation of this cosmic order was the Aristotelian world view with

its holistic and telelogical notions. Aristotle’s statement, “The whole is more

than the sum of its parts,” is a definition of the basic system problem which is

21
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still valid. Aristotelian teleology was eliminated in the later development of

Western science, but the problems contained in it, such as the order and

goal-directedness of living systems, were negated and by-passed rather than

solved. Hence the basic system problem is still not obsolete.

A more detailed investigation would enumerate a long array of thinkers

who, in one way or another, contributed notions to what nowadays we call

systems theory. If we speak of hierarchic order, we use a term introduced by

the Christian mystic, Dionysius the Aeropagite, although he was speculating

about the choirs of angels and the organism of the Church. Nicholas of Cusa

[5], that profound thinker of the fifteenth century, linking Medieval mysticism

with the first beginnings of modern science, introduced the notion of the

coincidcntia oppositorum ,
the opposition or indeed fight among the parts

within a whole which nevertheless forms a unity of higher order. Leibniz’s

hierarchy of monads looks quite like that of modern systems; his mathesis

universalis presages an expanded mathematics which is not limited to quanti-

tative or numerical expressions and is able to formalize all conceptual thinking.

Hegel and Marx emphasized the dialectic structure of thought and of the

universe it produces ! the deep insight that no proposition can exhaust reality

but only approaches its coincidence of opposites by the dialectic process of

thesis, antithesis, and synthesis. Gustav Fechner, known as the author of

the psychophysical law, elaborated, in the way of the nature philosophers

of the nineteenth century, supraindividual organizations of higher order

than the usual objects of observation—for example, life communities and the

entire earth, thus romantically anticipating the ecosystems of modern par-

lance. Incidentally, the present writer wrote a doctoral thesis on this topic in

1925.

Even such a rapid and superficial survey as the preceding one tends to show

that the problems with which we are nowadays concerned under the term

“system” were not “born yesterday” out of current questions of mathe-

matics, science, and technology. Rather, they are a contemporary expression

of perennial problems which have been recognized for centuries and discussed

in the language available at the time.

One way to circumscribe the Scientific Revolution of the sixteenth-

seventeenth centuries is to say that it replaced the descriptive-metaphysical

conception of the universe epitomized in Aristotle’s doctrine by the mathe-

matical-positivistic or Galilean conception. That is, the vision of the world as a

teleological cosmos was replaced by the description of events in causal,

mathematical laws.

We say “replaced,” not “eliminated,” for the Aristotelian dictum of the

whole that is more than its parts still remained. We must strongly emphasize

that order or organization of a whole or system, transcending its parts when

these are considered in isolation, is nothing metaphysical, not an anthropo-
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morphic supersitition or a philosophical speculation; it is a fact of observa-

tion encountered whenever we look at a living organism, a social group, or

even an atom.

Science, however, was not well prepared to deal with this problem. The

second maxim of Descartes’ Discours de la Methode was “to break down
every problem into as many separate simple elements as might be possible.”

This, similarly formulated by Galileo as the “resolutive” method, was the

conceptual “paradigm” [35] of science from its foundation to modern

laboratory work: that is, to resolve and reduce complex phenomena into

elementary parts and processes.

This method worked admirably well insofar as observed events were apt to

be split into isolable causal chains, that is, relations between two or a few

variables. It was at the root of the enormous success of physics and the

consequent technology. But questions of many-variable problems always

remained. This was the case even in the three-body problem of mechanics;

the situation was aggravated when the organization of the living organism

or even of the atom, beyond the simplest proton-electron system of hydrogen,

was concerned.

Two principal ideas were advanced in order to deal with the problem

of order or organization. One was the comparison with man-made machines

;

the other was to conceive of order as a product of chance. The first was

epitomized by Descartes’ bete machine
,
later expanded to the homme machine

of Lamettrie. The other is expressed by the Darwinian idea of natural selec-

tion. Again, both ideas were highly successful. The theory of the living organism

as a machine in its various disguises—from a mechanical machine or clock-

work in the early explanations of the iatrophysicists of the seventeenth

century, to later conceptions of the organism as a caloric, chemodynamic,

cellular, and cybernetic machine [13]—provided explanations of biological

phenomena from the gross level of the physiology of organs down to the

submicroscopic structures and enzymatic processes in the cell. Similarly,

organismic order as a product of random events embraced an enormous

number of facts under the title of “ synthetic theory of evolution” including

molecular genetics and biology.

Notwithstanding the singular success achieved in the explanation of ever

more and finer life processes, basic questions remained unanswered. Des-

cartes’ “ animal machine ” was a fair enough principle to explain the admirable

order of processes found in the living organism. But then, according to

Descartes, the “ machine ” had God for its creator. The evolution of machines

by events at random rather appears to be self-contradictory. Wristwatches or

nylon stockings are not as a rule found in nature as products of chance

processes, and certainly the mitochondrial “machines” of enzymatic organ-

ization in even the simplest cell or nucleoprotein molecules are incomparably
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more complex than a watch or the simple polymers which form synthetic

fibers. “Survival of the fittest” (or “differential reproduction” in modern

terminology) seems to lead to a circuitous argument. Self-maintaining systems

must exist before they can enter into competition which leaves systems with

higher selective value or differential reproduction predominant. That self-

maintenance, however, is the explicandum; it is not provided by the ordinary

laws of physics. Rather, the second law of thermodynamics prescribes that

ordered systems in which irreversible processes take place tend toward most

probable states and hence toward destruction of existing order and ultimate

decay [16].

Thus neovitalistic currents, represented by Driesch, Bergson, and others,

reappeared around the turn of the present century, advancing quite legitimate

arguments which were based essentially on the limits of possible regulations

in a “ machine,
77
of evolution by random events, and on the goal-directedness

of action. They were able, however, to refer only to the old Aristotelian

“ entelechy 77 under new names and descriptions, that is, a supernatural

organizing principle or “ factor.”

Thus the “fight on the concept of organism in the first decades of the

twentieth century,” as Woodger [56] nicely put it
7
indicated increasing doubts

regarding the “paradigm” of classical science, that is, the explanation of

complex phenomena in terms of isolable elements. This was expressed in the

question of “organization” found in every living system; in the question

whether “random mutations cum natural selection provide all the answers to

the phenomena of evolution” [32] and thus of the organization of living

things; and in the question of goal-directedness, which may be denied but

in some way or other still raises its ugly head.

These problems were in no way limited to biology. Psychology, in gestalt

theory, similarly and even earlier posed the question that psychological wholes

(e.g., perceived gestalten
)
are not resolvable into elementary units such as

punctual sensations and excitations in the retina. At the same time sociology

[49, 50] came to the conclusion that physicalistic theories, modeled according

to the Newtonian paradigm or the like, were unsatisfactory. Even the atom

appeared as a minute “ organism ” to Whitehead.

1.2. FOUNDATIONS OF GENERAL SYSTEMS THEORY

In the late 1920’s von Bertalanffy wrote:

Since the fundamental character of the living thing is its organization, the custom-

ary investigation of the single parts and processes cannot provide a complete

explanation of the vital phenomena. This investigation gives us no information
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about the coordination of parts and processes. Thus the chief task of biology must

be to discover the laws of biological systems (at all levels of organization). We believe

that the attempts to find a foundation for theoretical biology point at a fundamental

change in the world picture. This view, considered as a method of investigation, we

shall call
4 4

organismic biology ” and, as an attempt at an explanation,
44
the system

theory of the organism ” [7, pp. 64 ff., 190, 46, condensed].

Recognized
44
as something new in biological literature” [43], the organis-

mic program became widely accepted. This was the germ of what later became

known as general systems theory. If the term
44
organism” in the above

statements is replaced by other
44
organized entities,” such as social groups,

personality, or techonological devices, this is the program of systems theory.

The Aristotelian dictum of the whole being more than its parts, which was

neglected by the mechanistic conception, on the one hand, and which led to a

vitalistic demonology, on the other, has a simple and even trivial answer

—

trivial, that is, in principle, but posing innumerable problems in its elaboration

:

The properties and modes of action of higher levels are not explicable by the

summation of the properties and modes of action of their components taken in

isolation. If, however, we know the ensemble of the components and the relations

existing between them
,
then the higher levels are derivable from the components

[10, p. 148].

Many (including recent) discussions of the Aristotelian paradox and of

reductionism have added nothing to these statements: in order to understand

an organized whole we must know both the parts and the relations between

them.

This, however, defines the trouble. For
44 normal” science in Thomas

Kuhn’s sense, that is, science as conventionally practiced, was little adapted

to deal with
44
relations” in systems. As Weaver [51] said in a well-known

statement, classical science was concerned with one-way causality or relations

between two variables, such as the attraction of the sun and a planet, but

even the three-body problem of mechanics (and the corresponding problems

in atomic physics) permits no closed solution by analytical methods of classical

mechanics. Also, there were descriptions of “unorganized complexity” in

terms of statistics whose paradigm is the second law of thermodynamics.

However, increasing with the progress of observation and experiment, there

loomed the problem of “organized complexity,” that is, of interrelations

between many but not infinitely many components.

Here is the reason why, even though the problems of
44
system” were

ancient and had been known for many centuries, they remained
44
philo-

sophical ” and did not become a
44
science.” This was so because mathematical

techniques were lacking and the problems required a new epistemology; the

whole force of
44
classical ” science and its success over the centuries militated
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against any change in the fundamental paradigm of one-way causality and

resolution into elementary units.

The quest for a new “ gestalt mathematics ” was repeatedly raised a con-

siderable time ago, in which not the notion of quantity but rather that of

relations, that is, of form and order, would be fundamental [10, p. 1 59f. ].

However, this demand became realizable only with new developments.

The notion of general systems theory was first formulated by von Bert-

alanffy, orally in the 1930’s and in various publications after World War II:

There exist models, principles and laws that apply to generalized systems or their

subclasses irrespective of their particular kind, the nature of the component elements,

and the relations or “forces” between them. We postulate a new discipline called

General System Theory. General System Theory is a logico-mathematical field

whose task is the formulation and derivation of those general principles that are

applicable to “ systems ” in general. In this way, exact formulations of terms such

as wholeness and sum, differentiation, progressive mechanization, centralization,

hierarchial order, finality and equifinality, etc., become possible, terms which occur

in all sciences dealing with “systems 77 and imply their logical homology (von

Bertalanffy, 1947, 1955; reprinted in [15, pp. 32, 253].

The proposal of general systems theory had precursors as well as inde-

pendent simultaneous promoters. Kohler came near to generalizing gestalt

theory into general systems theory [33]. Although Lotka did not use the term

“general system theory,” his discussion of systems of simultaneous differential

equations [39] remained basic for subsequent “ dynamical ” system theory.

Volterra’s equations [21], originally developed for the competition of species,

are applicable to generalized kinetics and dynamics. Ashby, in his early

work [1], independently used the same system equations as von Bertalanffy

employed, although deriving different consequences.

Yon Bertalanffy outlined “dynamical” system theory (see Section 1.3(a)),

and gave mathematical descriptions of system properties (such as wholeness,

sum, growth, competition, allometry, mechanization, centralization, finality,

and equifinality), derived from the system description by simultaneous

differential equations. Being a practicing biologist, he was particularly

interested in developing the theory of “open systems,” that is, systems

exchanging matter with environment as every “living” system does. Such

theory did not then exist in physical chemistry. The theory of open systems

stands in manifold relationships with chemical kinetics in its biological,

theoretical, and technological aspects, and with the thermodynamics of

irreversible processes, and provides explanations for many special problems in

biochemistry, physiology, general biology, and related areas. It is correct to

say that, apart from control theory and the application of feedback models,

the theory of Fliessgleichgewicht and open systems [8, 12] is the part of



The History and Status of General Systems Theory 27

general systems theory most widely applied in physical chemistry, biophysics,

simulation of biological processes, physiology, pharmacodynamics, and so

forth [15]. The forecast also proved to be correct that the basic areas of physio-

ology, that is, metabolism, excitation, and morphogenesis (more specifically,

the theory of regulation, cell permeability, growth, sensory excitation, elec-

trical stimulation, center function, etc.), would “fuse into an integrated

theoretical field under the guidance of the concept of open system” [6,

Vol. II, pp. 49 ff.
;
also 15, p. 137 f.].

The intuitive choice of the open system as a general system model was a

correct one. Not only from the physical viewpoint is the “open system” the

more general case (because closed systems can always be obtained from open

ones by equating transport variables to zero); it also is the general case mathe-

matically because the system of simultaneous differential equations (equations

of motion) used for description in dynamical system theory is the general form

from which the description of closed systems derives by the introduction of ad-

ditional constraints (e.g., conservation of mass in a closed chemical system)

(cf. [46], p. 80 f.).

At first the project was considered to be fantastic. A well-known ecologist,

for example, was “hushed into awed silence” by the preposterous claim that

general system theory constituted a new realm of science [24], not foreseeing

that it would become a legitimate field and the subject of university in-

struction within some 15 years.

Many objections were raised against its feasibility and legitimacy [17].

It was not understood then that the exploration of the properties, models, and

laws of “systems” is not a hunt for superficial analogies, but rather poses

basic and difficult problems which are partly still unsolved [10, p. 200 f.].

According to the program, “ system laws ” manifest themselves as analogies

or “logical homologies” of laws that are formally identical but pertain to

quite different phenomena or even appear in different disciplines. This was
shown by von Bertalanffy in examples which were chosen as intentionally

simple illustrations, but the same principle applies to more sophisticated

cases, such as the following:

It is a striking fact that biological systems as diverse as the central nervous system,

and the biochemical regulatory network in cells should be strictly analogous ....

It is all the more remarkable when it is realized that this particular analogy between

different systems at different levels of biological organization is but one member of

a large class of such analogies [45].

It appeared that a number of researchers, working independently and in

different fields, had arrived at similar conclusions. For example, Boulding

wrote to the present author

:
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I seem to have come to much the same conclusions as you have reached, though

approaching it from the direction of economics and the social sciences rather than

from biology—that there is a body of what I have been calling “general empirical

theory,” or “general system theory” in your excellent terminology, which is of

wide applicability in many different disciplines [15, p. 14; cf. 18].

This spreading interest led to the foundation of the Society for General

Systems Research (initially named the Society for the Advancement of

General System Theory), an affiliate of the American Association for the

Advancement of Science. The formation of numerous local groups, the task

group on “General Systems Theory and Psychiatry” in the American

Psychiatric Association, and many similar working groups, both in the

United States and in Europe, followed, as well as various meetings and

publications. The program of the Society formulated in 1954 may be quoted

because it remains valid as a research program in general systems theory:

Major functions are to: (1) investigate the isomorphy of concepts, laws, and

models in various fields, and to help in useful transfers from one field to another;

(2) encourage the development of adequate theoretical models in the fields which

lack them; (3) minimize the duplication of theoretical effort in different fields; (4)

promote the unity of science through improving communication among specialists.

In the meantime a different development had taken place. Starting from the

development of self-directing missiles, automation and computer technology,

and inspired by Wiener’s work, the cybernetic movement became ever more

influential. Although the starting point (technology versus basic science,

especially biology) and the basic model (feedback circuit versus dynamic

system of interactions) were different, there was a communality of interest in

problems of organization and teleological behavior. Cybernetics too chal-

lenged the “mechanistic” conception that the universe was based on the

“operation of anonymous particles at random” and emphasized “the

search for new approaches, for new and more comprehensive concepts, and

for methods capable of dealing with the large wholes of organisms and

personalities” [25]. Although it is incorrect to describe modern systems

theory as “springing out of the last war effort” [19]—in fact, it had roots

quite different from military hardware and related technological develop-

ments—cybernetics and related approaches were independent developments

which showed many parallelisms with general system theory.

1.3. TRENDS IN GENERAL SYSTEMS THEORY

This brief historical survey cannot attempt to review the many recent

developments in general systems theory and the systems approach. For a

critical discussion of the various approaches see [30, pp. 97 ff.], and [27,

Book II].
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With the increasing expansion of systems thinking and studies, the defini-

tion of general systems theory came under renewed scrutiny. Some indication

as to its meaning and scope may therefore be pertinent. The term “ general

system theory,” was introduced by the present author, deliberately, in a

catholic sense. One may, of course, limit it to its “technical” meaning in

the sense of mathematical theory (as is frequently done), but this appears

unadvisable because there are many “ system ” problems asking for “ theory
”

which is not presently available in mathematical terms. So the name “general

systems theory ” may be used broadly, in a way similar to our speaking of the

“theory of evolution,” which comprises about everything ranging from

fossil digging and anatomy to the mathematical theory of selection; or

“ behavior theory,” which extends from bird watching to sophisticated neuro-

physiological theories. It is the introduction of a new paradigm that matters.

(a) Systems science; mathematical systems theory . Broadly speaking,

three main aspects can be indicated which are not separable in content but are

distinguishable in intention. The first may be circumscribed as systems

science
,
that is, scientific exploration and theory of “ systems ” in the various

sciences (e.g., physics, biology, psychology, social sciences), and general

systems theory as the doctrine of principles applying to all (or defined sub-

classes of) systems.

Entities of an essentially new sort are entering the sphere of scientific

thought. Classical science in its various disciplines, such as chemistry,

biology, psychology, or the social sciences, tried to isolate the elements of the

observed universes—chemical compounds and enzymes, cells, elementary

sensations, freely competing individuals, or whatever else may be the case

—

in the expectation that by putting them together again, conceptually or

experimentally, the whole or system—cell, mind, society—would result and

would be intelligible. We have learned, however, that for an understand-

ing not only the elements but their interrelations as well are required—say,

the interplay of enzymes in a cell, the interactions of many conscious and

unconscious processes in the personality, the structure and dynamics of social

systems, and so forth. Such problems appear even in physics, for example,

in the interaction of many generalized “forces” and “fluxes” (irreversible

thermodynamics; cf. Onsager reciprocal relations), or in the development of

nuclear physics, which “requires much experimental work, as well as the

development of additional powerful methods for the handling of systems with

many, but not infinitely many, particles” [23]. This requires, first, the

exploration of the many systems in our observed universe in their own right

and specificities. Second, it turns out that there are general aspects, corre-

spondences, and isomorphisms common to “ systems.” This is the domain of

general systems theory. Indeed, such parallelisms or isomorphisms appear

(sometimes surprisingly) in otherwise totally different “systems.”
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General systems theory, then, consists of the scientific exploration of

“wholes” and “wholeness” which, not so long ago, were considered to be

metaphysical notions transcending the boundaries of science. Novel con-

cepts, models, and mathematical fields have developed to deal with them.

At the same time, the interdisciplinary nature of concepts, models, and prin-

ciples applying to “systems” provides a possible approach toward the

unification of science.

The goal obviously is to develop general systems theory in mathematical

terms (a “ logico-mathematical field,” as this author wrote in the early state-

ment cited in Section 1 .2) because mathematics is the exact language permitting

rigorous deductions and confirmation (or refusal) of theory. Mathematical

systems theory has become an extensive and rapidly growing field. “ System ”

being a new “paradigm” (in the sense of Thomas Kuhn), contrasting to the

predominant, elementalistic approach and conceptions, it is not surprising

that a variety of approaches have developed, differing in emphasis, focus of

interest, mathematical techniques, and other respects. These elucidate different

aspects, properties and principles of what is comprised under the term

“ system,” and thus serve different purposes of theoretical or practical nature.

The fact that “ system theories ” by various authors look rather different is,

therefore, not an embarrassment or the result of confusion, but rather a

healthy development in a new and growing field, and indicates presumably

necessary and complementary aspects of the problem. The existence of

different descriptions is nothing extraordinary and is often encountered in

mathematics and science, from the geometrical or analytical description of a

curve to the equivalence of classical thermodynamics and statistical mechanics

to that of wave mechanics and particle physics. Different and partly opposing

approaches should, however, tend toward further integration, in the sense

that one is a special case within another, or that they can be shown to

be equivalent or complementary. Such developments are, in fact, taking

place.

System-theoretical approaches include general system theory (in the nar-

rower sense), cybernetics, theory of automata, control theory, information

theory, set, graph and network theory, relational mathematics, game and

decision theory, computerization and simulation, and so forth. The somewhat

loose term “approaches” is used deliberately because the list contains rather

different things, for example, models (such as those of open system, feedback,

logical automaton), mathematical techniques (e.g., theory of differential

equations, computer methods, set, graph theory), and newly formed concepts

or parameters (information, rational game, decision, etc.). These approaches

concur, however, in that, in one way or the other, they relate to “system

problems,” that is, problems of interrelations within a superordinate “ whole.”

Of course, these are not isolated but frequently overlap, and the same problem
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can be treated mathematically in different ways. Certain typical ways of

describing “systems” can be indicated; their elaboration is due, on the one

hand, to theoretical problems of “systems” as such and in relation to other

disciplines, and, on the other hand, to problems of the technology of control

and communication.

No mathematical development or comprehensive review can be given here.

The following remarks, however, may convey some intuitive understand-

ing of the various approaches and the way in which they relate to each

other.

It is generally agreed that “ system” is a model of general nature, that is, a

conceptual analog of certain rather universal traits of observed entities. The

use of models or analog constructs is the general procedure of science (and

even of everyday cognition), as it is also the principle of analog simulation

by computer. The difference from conventional disciplines is not essential but

lies rather in the degree of generality (or abstraction) :
“ system ” refers to very

general characteristics partaken by a large class of entities conventionally

treated in different disciplines. Hence the interdisciplinary nature of general

systems theory
;
at the same time, its statements pertain to formal or structural

commonalities abstracting from the “nature of elements and forces in the

system” with which the special sciences (and explanations in these) are

concerned. In other words, system-theoretical arguments pertain to, and have

predictive value, inasmuch as such general structures are concerned. Such

“explanation in principle” may have considerable predictive value; for

specific explanation, introduction of the special system conditions is naturally

required.

A system may be defined as a set of elements standing in interrelation

among themselves and with the environment. This can be expressed mathe-

matically in different ways. Several typical ways of system description can be

indicated.

One approach or group of investigations may, somewhat loosely, be

circumscribed as axiomatic
,
inasmuch as the focus of interest is a rigorous

definition of system and the derivation, by modern methods of mathematics

and logic, of its implications. Among other examples are the system descrip-

tions by Mesarovic [41], Maccia and Maccia [40], Beier and Laue [4] (set

theory), Ashby [2] (state-determined systems), and Klir [30] (UC = set of all

couplings between the elements and the elements and environment; ST = set

of all states and all transitions between states).

Dynamical system theory is concerned with the changes of systems in time.

There are two principal ways of description: internal and external [47].

Internal description or “classical” system theory (foundations in [9], [11],

and [15, pp. 54 ff.]; comprehensive presentation in [46]; an excellent intro-

duction into dynamical system theory and the theory of open systems,
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following the line of the present author, in [3]) defines a system by a set of n

measures, called state variables. Analytically, their change in time is typically

expressed by a set of n simultaneous, first-order differential equations

:

d
-^=muQi,.-.,Qn). (u)

These are called dynamical equations or equations of motion. The set of

differential equations permits a formal expression of system properties, such

as wholeness and sum, stability, mechanization, growth, competition, final and
equifinal behavior and others [9, 11, 15]. The behavior of the system is de-

scribed by the theory of differential equations (ordinary, first-order, if the

definition of the system by Eq. 1.1 is accepted), which is a well-known and
highly developed field of mathematics. However, as was mentioned previously,

system considerations pose quite definite problems. For example, the theory of

stability has developed only recently in conjunction with problems of control

(and system): the Liapunov (f 1918) functions date from 1892 (in Russian;

1907 in French), but their significance was recognized only recently, especially

through the work of mathematicians of the U.S.S.R.

Geometrically, the change of the system is expressed by the trajectories

that the state variables traverse in the state space, that is, the ^-dimensional

space of possible location of these variables. Three types of behavior may be

distinguished and defined as follows:

1. A trajectory is called asymptotically stable if all trajectories sufficiently

close to it at t = tQ approach it asymptotically when t -+ oo.

2. A trajectory is called neutrally stable if all trajectories sufficiently close to

it at t = 0 remain close to it for all later time but do not necessarily approach

it asymptotically.

3. A trajectory is called unstable if the trajectories close to it at t = 0

do not remain close to it as t oo.

These correspond to solutions approaching a time-independent state

(equilibrium, steady state), periodic solutions, and divergent solutions,

respectively.

A time-independent state,

/i(0i,G2,.--,a,) = o, (i.2)

can be considered as a trajectory degenerated into a single point. Then,

readily visualizable in two-dimensional projection, the trajectories may
converge toward a stable node represented by the equilibrium point, may
approach it as a stable focus in damped oscillations, or may cycle around it in

undamped oscillations (stable solutions). Or else, they may diverge from an
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unstable node, wander away from an unstable focus in oscillations, or from

a saddle point (unstable solutions).

A central notion of dynamical theory is that of stability
,
that is, the response

of a system to perturbation. The concept of stability originates in mechanics

(a rigid body is in stable equilibrium if it returns to its original position after

sufficiently small displacement; a motion is stable if insensitive to small

perturbations), and is generalized to the “motions” of state variables of a

system. This question is related to that of the existence of equilibrium states.

Stability can be analyzed, therefore, by explicit solution of the differential

equations describing the system (so-called indirect method, based essen-

tially on discussion of the eigenwerte of Eq. 1.1). In the case of nonlinear

systems, these equations have to be linearized by development into Taylor

series and retention of the first term. Linearization, however, pertains only to

stability in the vicinity of equilibrium. But stability arguments without actual

solution of the differential equations (direct method) and for nonlinear systems

are possible by introduction of so-called Liapunov functions
;

these are

essentially generalized energy functions, the sign of which indicates whether

or not an equilibrium is asymptotically stable [28, 36].

Here the relation of dynamical system theory to control theory becomes

apparent; control means essentially that a system which is not asymptotically

stable is made so by incorporating a controller, counteracting the motion of

the system away from the stable state. For this reason the theory of stability

in internal description or dynamical system theory converges with the theory

of (linear) control or feedback systems in external description (see below;

cf. [48]).

Description by ordinary differential equations (Eq. 1.1) abstracts from

variations of the state variables in space which would be expressed by partial

differential equations. Such field equations are, however, more difficult to

handle. Ways of overcoming this difficulty are to assume complete “ stirring,”

so that distribution is homogeneous within the volume considered; or to

assume the existence of compartments to which homogeneous distribution

applies, and which are connected by suitable interactions (compartment

theory) [44].

In external description
,
the system is considered as a “black box”; its

relations to the environment and other systems are presented graphically in

block and flow diagrams. The system description is given in terms of inputs

and outputs (Klemmenverhalten in German terminology); its general form

are transfer functions relating input and output. Typically, these are assumed

to be linear and are represented by discrete sets of values (cf. yes-no decisions

in information theory, Turing machine). This is the language of control

technology; external description, typically, is given in terms of communication

(exchange of information between system and environment and within the
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system) and control of the system’s function with respect to environment

(feedback), to use Wiener’s definition of cybernetics.

As mentioned, internal and external descriptions largely coincide with

descriptions by continuous or discrete functions. These are two “languages

”

adapted to their respective purposes. Empirically, there is” an obvious contrast

between regulations due to the free interplay of forces within a dynamical

system, and regulations due to constraints imposed by structural feedback

mechanisms [15], for example, the “dynamic” regulations in a chemical

system or in the network of reactions in a cell on the one hand, and control by

mechanisms such as a thermostat or homeostatic nervous circuit on the

other. Formally, however, the two “languages” are related and in certain

cases demonstrably translatable. For example, an input-output function can

(under certain conditions) be developed as a linear nth-order differential

equation, and the terms of the latter can be considered as (formal) “state

variables”; while their physical meaning remains indefinite, formal

“translation” from one language into the other is possible.

In certain cases—for example, the two-factor theory of nerve excitation (in

terms of “excitatory and inhibitory factors” or “substances”) and network

theory (McCulloch nets of “neurons”)—description in dynamical system

theory by continuous functions and description in automata theory by digital

analogs can be shown to be equivalent [45]. Similarly predator-prey systems,

usually described dynamically by Volterra equations, can also be expressed

in terms of cybernetic feedback circuits [55]. These are two-variable systems.

Whether a similar “ translation ” can be effectuated in many-variables systems

remains (in the present writer’s opinion) to be seen.

Internal description is essentially “structural,” that is, it tries to describe

the systems
7

behavior in terms of state variables and their interdependence.

External description is “functional”; the system’s behavior is described in

terms of its interaction with the environment.

As this sketchy survey shows, considerable progress has been made in

mathematical systems theory since the program was enunciated and in-

augurated some 25 years ago. A variety of approaches, which, however, are

connected with each other, have been developed.

Today mathematical system theory is a rapidly growing field, but it is

natural that basic problems, such as those of hierarchical order [53], are

approached only slowly and presumably will need novel ideas and theories.

“Verbal” descriptions and models (e.g., [20], [31], [42], [52]) are not expend-

able. Problems must be intuitively “seen” and recognized before they can

be formalized mathematically. Otherwise, mathematical formalism may
impede rather than expedite the exploration of very “ real ” problems.

A strong system-theoretical movement has developed in psychiatry,

largely through the efforts of Gray [26]. The same is true of the behavioral
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sciences [20] and also of certain areas in which such a development was quite

unexpected, at least by the present writer—for example, theoretical geo-

graphy [29]. Sociology was stated as being essentially “a science of social

systems ” [14]; not foreseen was, for instance, the close parallelism of general

system theory with French structuralism (e.g., Piaget, Levy-Strauss
;
cf. [37])

and the influence exerted on American functionalism in sociology ([22]: see

especially pp. 2, 96, 141).

(,b) Systems technology. The second realm of general systems theory is

systems technology
,
that is, the problems arising in modern technology and

society, including both “hardware” (control technology, automation,

computerization, etc.) and “ software ” (application of system concepts and

theory in social, ecological, economical, etc., problems). We can only allude

to the vast realm of techniques, models, mathematical approaches, and so

forth, summarized as systems engineering or under similar denominations, in

order to place it into the perspective of the present study.

Modern technology and society have become so complex that the traditional

branches of technology are no longer sufficient; approaches of a holistic or

systems, and generalist and interdisciplinary, nature became necessary. This is

true in many ways. Modern engineering includes fields such as circuit theory,

cybernetics as the study of “communication and control” (Wiener [54]),

and computer techniques for handling “ systems ” of a complexity unamenable

to classical methods of mathematics. Systems of many levels ask for scientific

control: ecosystems, the disturbance of which results in pressing problems

like pollution; formal organizations like bureaucracies, educational insti-

tutions, or armies; socioeconomic systems, with their grave problems of

international relations, politics, and deterrence. Irrespective of the questions

of how far scientific understanding (contrasted to the admission of irration-

ality of cultural and historical events) is possible, and to what extent scientific

control is feasible or even desirable, there can be no dispute that these are

essentially “system” problems, that is, problems involving interrelations of a

great number of “variables.” The same applies to narrower objectives in

industry, commerce, and armament.

The technological demands have led to novel conceptions and disciplines,

some displaying great originality and introducing new basic notions such as

control and information theory, game, decision theory, the theory of

circuits, of queuing and others. Again it transpired that concepts and models

(such as feedback, information, control, stability, circuits) which originated in

certain specified fields of technology have a much broader significance, are of

an interdisciplinary nature, and are independent of their special realizations,

as exemplified by isomorphic feedback models in mechanical, hydrodynamic,

electrical, biological and other systems. Similarly, developments originating in
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pure and in applied science converge, as in dynamical system theory and

control theory. Again, there is a spectrum ranging from highly sophisticated

mathematical theory to computer simulation to more or less informal

discussion of system problems.

(c) Systems philosophy. Third, there is the realm of systems philosophy

[38], that is, the reorientation of thought and world view following the

introduction of “ system ” as a new scientific paradigm (in contrast to the

analytic, mechanistic, linear-causal paradigm of classical science). Like every

scientific theory of broader scope, general systems theory has its “meta-

scientific” or philosophical aspects. The concept of “system” constitutes a

new “paradigm,” in Thomas Kuhn’s phrase, or a new “philosophy of

nature,” in the present writer’s [14] words, contrasting the “blind laws of

nature” of the mechanistic world view and the world process as a Shake-

spearean tale told by an idiot, with an organismic outlook of the “ world as a

great organization.”

First, we must find out the “nature of the beast”: what is meant by
“ system,” and how systems are realized at the various levels of the world of

observation. This is systems ontology.

What is to be defined and described as system is not a question with an

obvious or trivial answer. It will be readily agreed that a galaxy, a dog, a cell,

and an atom are “ systems.” But in what sense and what respects can we speak

of an animal or a human society, personality, language, mathematics, and so

forth as “ systems ” ?

We may first distinguish realsystems ,
that is, entities perceived in or inferred

from observation and existing independently of an observer. On the other

hand, there are conceptual systems
, such as logic or mathematics, which

essentially are symbolic constructs (but also including, e.g., music); with

abstracted systems (science) [42] as a subclass, that is, conceptual systems

corresponding with reality. However, the distinction is by no means as sharp

as it would appear.

Apart from philosophical interpretation (which would take us into the

question of metaphysical realism, idealism, phenomenalism, etc.) we would

consider as “objects” (which partly are “real systems”) entities given by

perception because they are discrete in space and time. We do not doubt

that a pebble, a table, an automobile, an animal, or a star (and in a somewhat

different sense an atom, a molecule, and a planetary system) are “real” and

existent independently of observation. Perception, however, is not a reliable

guide. Following it, we “ see ” the sun revolving around the earth, and certainly

do not see that a solid piece of matter like a stone “really” is mostly empty

space with minute centers of energy dispersed in astronomical distances. The

spatial boundaries of even what appears to be an obvious object or “thing”
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actually are indistinct. From a crystal consisting of molecules, valences stick

out, as it were, into the surrounding space; the spatial boundaries of a cell or

an organism are equally vague because it maintains itself in a flow of molecules

entering and leaving, and it is difficult to tell just what belongs to the “living

system” and what does not. Ultimately all boundaries are dynamic rather

than spatial.

Hence an object (and in particular a system) is definable only by its cohesion

in a broad sense, that is, the interactions of the component elements. In this

sense an ecosystem or social system is just as “real” as an individual plant,

animal, or human being, and indeed problems like pollution as a disturbance

of the ecosystem, or social problems strikingly demonstrate their “reality.”

Interactions (or, more generally, interrelations), however, are never directly

seen or perceived
;
they are conceptual constructs. The same is true even of the

objects of our everyday world, which by no means are simply “given” as

sense data or simple perceptions but also are constructs based on innate or

learned categories, the concordance of different senses, previous experience,

learning processes, naming (i.e. symbolic processes), etc. all of which largely

determine what we actually “see” or perceive [cf. 34]. Thus the distinction

between “ real ” objects and systems as given in observation and “ conceptual
”

constructs and systems cannot be drawn in any common-sense way.

These are profound problems which can only be indicated in this context.

The question for general systems theory is what statements can be made

regarding material systems, informational systems, conceptual systems,

and other types—questions which are far from being satisfactorily answered

at the present time.

This leads to systems epistemology. As is apparent from the preceding,

this is profoundly different from the epistemology of logical positivism or

empiricism, even though it shares the same scientific attitude. The epistemology

(and metaphysics) of logical positivism was determined by the ideas of physic-

alism, atomism, and the “camera theory” of knowledge. These, in view of

present-day knowledge, are obsolete. As against physicalism and reduction-

ism, the problems and modes of thought occurring in the biological, behavior-

al and social sciences require equal consideration, and simple “reduction”

to the elementary particles and conventional laws of physics does not appear

feasible. Compared to the analytical procedure of classical science, with

resolution into component elements and one-way or linear causality as the

basic category, the investigation of organized wholes of many variables

requires new categories of interaction, transaction, organization, teleology,

and so forth, with many problems arising for epistemology, mathematical

models and techniques. Furthermore, perception is not a reflection of

“real things” (whatever their metaphysical status), and knowledge not a

simple approximation to “truth” or “reality.” It is an interaction between
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knower and known, and thus dependent on a multiplicity of factors of a

biological, psychological, cultural, and linguistic nature. Physics itself

teaches that there are no ultimate entities like corpuscles or waves existing

independently of the observer. This leads to a “perspective” philosophy in

which physics, although its achievements in its own and related fields are fully

acknowledged, is not a monopolitistic way of knowledge. As opposed to

reductionism and theories declaring that reality is “nothing but” (a heap of

physical particles, genes, reflexes, drives, or whatever the case may be), we see

science as one of the “perspectives” that man, with his biological, cultural,

and linguistic endowment and bondage, has created to deal with the universe

into which he is “ thrown,” or rather to which he is adapted owing to evolution

and history.

The third part of systems philosophy is concerned with the relations of man
and his world, or what is termed values in philosophical parlance. If reality

is a hierarchy of organized wholes, the image of man will be different from

what it is in a world of physical particles governed by chance events as the

ultimate and only “true” reality. Rather, the world of symbols, values, social

entities and cultures is something very “real”; and its embeddedness in a

cosmic order of hierarchies tends to bridge the gulf between C. P. Snow’s

“two cultures” of science and the humanities, technology and history,

natural and social sciences, or in whatever way the antithesis is formulated.

This humanistic concern of general systems theory, as this writer under-

stands it, marks a difference to mechanistically oriented system theorists

speaking solely in terms of mathematics, feedback, and technology and so

giving rise to the fear that systems theory is indeed the ultimate step toward

the mechanization and devaluation of man and toward technocratic

society, While understanding and emphasizing the role of mathematics and

of pure and applied science, this writer does not see that the humanistic

aspects can be evaded unless general systems theory is limited to a restricted

and fractional vision.

Thus there is indeed a great and perhaps puzzling multiplicity of approaches

and trends in general systems theory. This is understandably uncomfortable to

him who wants a neat formalism, to the textbook writer and the dogmatist.

It is, however, quite natural in the history of ideas and of science, and

particularly in the beginning of a new development. Different models and

theories may be apt to render different aspects and so are complementary.

On the other hand, future developments will undoubtedly lead to further

unification.

General systems theory is, as emphasized, a model of certain general aspects

of reality. But it is also a way of seeing things which were previously over-

looked or bypassed, and in this sense is a methodological maxim. And like

every scientific theory of broader compass, it is connected with, and tries to

give its answer to perennial problems of philosophy.
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PROBLEMS

1.1. What is internal and external system description?

1.2. Enumerate the main steps in the history of the systems idea.

1.3. What do you understand by “classical” system theory?

1.4. Define “system.”

1.5. Define the concept and function of “model” in science.

1.6. Define the concept of “emergence” in terms of systems theory.

1.7. Discuss mechanism and vitalism in biology, and indicate similar con-

ceptions in other sciences.

1.8. Compare gestalt theory, structuralism, and functionalism.

1.9. What is the relation between cybernetics and systems theory?

1.10. Define real and conceptual systems, and discuss their relationship.

1.11. Indicate the relations between the systems idea and dialectical material-

ism.

1.12. What is the importance of “open system” in biology and in general

systems theory ?
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2.1. INTRODUCTION

The dichotomies analytic-synthetic, atomistic-holistic, local-global, and

differential-integral all have related meanings. The first term of each dichotomy

refers to detail, analysis, investigation of parts or of local conditions; the

second term, to the perception of wholes, gestalten
,
and configurations. In

the context of mathematics, the nature of the dichotomy is clearest. Thus the

fundamental concept of the differential calculus is the derivative
,
defined at

a point
;
the integral calculus introduces the concept of the integral

,
essentially

a summation. The differential calculus is analytic; the integral calculus,

synthetic.

Classical science branched off from philosophy by adopting primarily

analytic methods of investigation. Galilean mechanics put instantaneous

velocity at the center of attention, and Newtonian mechanics began with

associating an instantaneous force with the derivative of instantaneous

velocity. This formulation deliberately turned away from earlier holistic or

teleological conceptions of motion, according to which motion was thought

to be determined by the “nature” of the moving body or by the tendency of

bodies to' achieve a “ natural ” final position. For instance, ancient astronomy

assumed circular motion of planets as a reflection of their perfect or divine

nature. Medieval physics explained the falling of stones by their “striving”

to get as close as possible to their “natural” position at the center of the

earth, and the rise of smokes by a similar striving to reach their proper abode

in the realm of fire beyond the stars. In contrast, Galilean and Newtonian

mechanics explained motion by analyzing forces acting at particular points

at particular times.

The analytical point of view spread from the physical to the biological

sciences. In physiology, explanations came to be formulated in terms of

“efficient” rather than “final” (teleological) causes, to use the traditional

Aristotelian distinction. That is to say, the question “Why does this organ

act as it does?” came to mean a demand for an answer in terms of chains

of physicochemical events rather than in terms of the “purpose” served by

the organ.

In short, scientific investigation became sharper, narrower, more “local,”

concentrated more on specific events than on global, holistic, all-encompassing

images of “meaning” and “purpose.” With increased concentration came

the fragmentation of science into ever-multiplying disciplines, each with its

own inbred vocabulary, methods, and foci of interest. A reaction against

this trend was already discernible in the warning uttered by Alfred North

Whitehead: Science, he wrote, is living off the capital accumulated in the

seventeenth century, and the capital is nearing extinction.
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It was, however, easier to point to the danger than to indicate a way out

of the impasse. A return to the language and concepts of prescientific natural

philosophy would be futile. It seems to be the fate of philosophy to become
obsolete as soon as science steps in to formulate speculations as concrete

hypotheses subject to rigorous methods of investigation. If synthetic, holistic

ideas were to be reintroduced into science, they would have to be couched in

a language as disciplined as that of analytic science. Certain formulations of

general systems theory are attempts to achieve this goal. The present chapter

is concerned with these trends.

2.2. THEORY IN THE STRICT AND IN THE BROAD SENSE

Strictly speaking, general systems theory is not a “theory” in the sense

that most scientific theories are theories. A scientific theory embodies a certain

content area, a class of events, say, the motions of heavenly bodies or the

phenomena associated with the propagation of light or sound, or those

manifested in the working of a nervous system or the fluctuations of market
prices. A scientific theory seeks to establish connections among events, ideally

to discover necessary and sufficient conditions for the occurrence of a class

of events, expressed in the paradigm of a scientific assertion: “if so, . . . then

so.” In the most mature sciences, this paradigm is mathematicized. The con-

nections are stated in mathematical equations, relating variable quantities

to each other. In an equation, the “if” part is the assignment of values to

independent variables; the “then” part is the resulting assignment of corres-

ponding values to dependent variables. Each assignment is a particular “ if so,

. . . then so ” assertion. Hence, the equation represents potentially an infinity

of such assertions.

A theory can be understood, however, in a sense broader than that described

above. Before a theory is in a position to make “ if so, .

.

. then so ” assertions,

the variables about which the assertions are to be made must be sought out

and defined. The search for the variables and for appropriate definitions

can also be regarded as a theoretical investigation. In this broader sense, a

theory may be no more than a scheme of classifications and definitions.

(A definition is, of course, prerequisite to classification). In this broader

sense, general systems theory can, perhaps, be considered a theory, since it

does undertake the task, first of all, of defining “a system” and then of

classifying systems according to certain criteria.

It stands to reason that all definitions and classifications are, a priori,

arbitrary. That is to say, a definition is not a proposition to which a truth

value can be assigned. A definition is no more and no less than an agreement

to use a word or a phrase in a certain way. The only criterion of adequacy
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applicable to a definition concerns the possibility of deciding whether some-

thing does or does not belong to the class defined. The same applies to a

classification or a taxonomy which is a consequence of definitions.

Nevertheless, if we insist that a taxonomy is not the goal of a theory but

is only a prerequisite for pursuing a theoretical goal, that is, if we keep the

narrower meaning of a theory in mind (that of generating “ if so, . .

.

then so
”

statements), then we cannot view definitions and classifications as arbitrary.

Good classifications are those that are likely to produce concepts from which

a far-reaching theory (in the strict sense of the word) can be constructed. A
poor classification is one that has no such far-reaching implications.

For example, there is no a priori reason why bodies should not be classified

by their shapes or ordered in magnitude by their volumes (extension in space),

as was done by Descartes in developing his theory of motion. But from the

point of view of a theory of motion, Descartes’ classification scheme proved

to be sterile, whereas a magnitude ordering of bodies according to their masses

proved immensely fruitful.

Again, there is no a priori reason against classifying animals into large

and small, dangerous and harmless, or edible and inedible. Indeed, such

classifications have served specific practical purposes. None of them, however,

has led to a theory of evolution, whereas the taxonomies undertaken by

biologists, based on more fundamental features (which they somehow per-

ceived to be relevant), had this outcome. That the theory of evolution is a

theory in the strict sense, involving predictive assertions, should not be

obscured by the fact that it concerns predominantly past events. It none the

less involves predictions, for instance, to the effect that fossils of animals of

a certain type will be found in rocks of a certain age. And, of course, genetics,

which is tightly interlaced with the theory of evolution, contains assertions

involving (statistical) predictions.

2.3. THE TASK OF GENERAL SYSTEMS THEORY

The task of general systems theory can be formulated as follows : to prepare

definitions and hence classifications of systems that are likely to generate

fruitful theories in the narrow sense. There is a connection between this task

and the one mentioned earlier—that of counteracting the increasing frac-

tionation of science. The connection will be seen in the definition of a system

on which most system theorists appear to agree.

The idea underlying all definitions of a system is that of a collection of

entities and sets of relations among them. Superimposed on this idea are

additional criteria, stated with varying degrees of precision (or vagueness),

singled out by people with varying interests. At times, these criteria are



46 Anatol Rapoport 2

suggested not so much by logical considerations as by the kind of thing that

has already been taken as a prototype of a system. A living organism serves

understandably as a prototype of this sort for the biologist, a machine for

the engineer, an automaton or a computer for a cybernetician. The concept

of system becomes somewhat vague when exemplified by a “philosophical

system” or a “system of beliefs.” Indeed, the question is sometimes raised

whether entities that have no material existence can be properly called

systems. Some of these entities, however, have such clearly discernible

structures (well-defined relations among the elements that compose them)

that it seems most natural to extend the concept of system to them. Languages

and mathematical systems are obvious examples.

2.4. MATHEMATICAL SYSTEMS AND ISOMORPHISM

A mathematical system consists of a set of elements (e.g., numbers, points,

vectors, matrices, etc.) and the precisely specified relations among them. In

fact, the elements of a mathematical system are defined exclusively in terms

of the specified relations among them. It is important to recognize that

mathematical operations can also be defined in terms of relations, so that the

concept of “ operation ” is logically redundant. It is introduced in the defini-

tion of a mathematical system in the interests of more vivid conceptualization

or as a consequence of terminological inertia. For instance, the operation of

addition can be represented as a ternary relation: an ordered triple of elements

can be said to be in the given relation if and only if the sum of the first two

equals the third. In symbols:

R(a, b
,
c)^a + b = c. (2.1)

A mathematical system is contentless. For instance, the set of positive

integers closed under the operation of addition applies equally well to camels,

to oranges, and to years.

Two mathematical systems are said to be isomorphic to each other if a

one-to-one correspondence can be established between the elements of one

and those of the other and if all the relations defined on the elements of one

hold also among the corresponding elements of the other. Isomorphism

between two mathematical systems induces a conceptual isomorphism between

the concrete systems they represent. In other words, two concrete systems

can be said to be conceptually isomorphic to each other if both can be repre-

sented by the same mathematical model.

The concept of isomorphism leads to a classification of all systems that

can be represented by mathematical models. The classification of such

systems becomes simply an image of a classification of mathematical models



Mathematical Isomorphism in GST 47

representing them. The logical advantages of such a classification are at once

apparent. For instance, one mathematical system can be seen immediately

as a generalization of another, that is, as including the latter as a special

case. The induced classification of corresponding concrete systems immedi-

ately displays one class as including the other. If the systems are represented

by isomorphic mathematical systems (or by the same model), all the theorems

of the mathematical system are applicable to all consequences derived from

the definition of the concrete systems. It follows that the concept of mathe-

matical isomorphism is a powerful tool for integrating theories of concrete

systems. In this way, the integration goal of general systems theory is served.

A frequently cited example of isomorphism between concrete systems is

that between a harmonic oscillator and an electrical circuit containing an

inductance, a resistance, and a capacitance in series. The mechanical and

electrical systems are illustrated in Figure 2.1.

I
fM

(a)

f (t)

I

Figure 2.1. (a) A mechanical harmonic oscillator. (b) An electric circuit with inductance,

resistance, and capacitance in series.

The position of the mass suspended by a spring is given as a function x{t)

of time by the general solution of the second-order differential equation

:

mx + rx + cx = f(t), (2.2)

where m is the mass of the body, r is a constant denoting the coefficient of

friction in the system, c is the elasticity of the spring, and f(t) represents

an externally impressed, vertically acting force upon the body as a function

of time.

The quantity of charge at any point in the circuit is given as a function of

t by q(t), which is a solution of the differential equation

Lq + Rq + C 1

q =f(t). (2.3)
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where L is the inductance of the circuit, R the resistance, C the capacitance,

and /(f) an externally imposed electromotive force. Clearly, the mathematical

models are isomorphic under the correspondence

x<^>q, m*-+L, r^R, c<-+C~ 1
. (2.4)

The correspondence suggests analogies between position and charge, between

mass and inductance, between friction and electrical resistance, and between

elasticity and capacitance. Although the analogy between friction and resis-

tance is intuitively apparent, the other analogies may not be. However, their

role as corresponding elements in a mathematical isomorphism suggests the

analogies and along with them corresponding conceptualizations. Indeed,

it is easy for an electrical engineer to think of the inverse of capacitance as

an elastic spring that offers a counterforce in proportion to its compression,

interpreted as the accumulation of charge, hence of a potential across the

capacitor.

Actually, all theoretical thinking is analogical. What distinguishes a possibly

justified analogy from a fortuitous one is the relatively far-reaching or super-

ficial nature of the relations that suggest the analogy. Metaphors reflect

analogies; what the king is to his realm, a head is to its body—-hence the

king is “head of state.” This analogy is superficial, and pressing its impli-

cations is not likely to produce a fruitful political theory. But the analogy

“Inductance is to charge what mass is to position,” although not nearly so

immediately comprehensible as the analogies expressed in every-day language,

is incomparably more to' the point.

The language of science is replete with metaphorical extensions of meanings

suggested by mathematical isomorphisms. One speaks of the flux of heat and

of magnetic flux, although “flowing” is far-fetched in the first instance and

even more so in the second. These metaphors, however, reflect a basic mathe-

matical connection among the various meanings of “flux.”

A remarkable metaphor was coined by Mandelbrot [1], namely, the “tem-

perature ” of a language corpus. It has, of course, nothing to do with the

emotional content of the corpus, or with any physical aspect. Mandelbrot

drew on the analogy between statistical and physical entropy, and so was led

to another analogy between physical temperature and an analogous mathe-

matical quantity describing a language corpus.

The connection between information and entropy was noted earlier in

statistical mechanics by Norbert Wiener. Whether the connection is merely a

by-product of mathematical formalism or is a reflection of “ physical reality
”

has been the subject of some controversy. From the point of view of general

systems theory, the controversy is vacuous. If we assume that the subject of

discourse is never “physical reality” per se but rather always our knowledge

or conception of physical reality, we must conclude that any structural des-
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cription of physical reality is the only content of knowledge; hence that any

structural description that reaches “ all the way ” to elements and relations not

further analyzable may be identified with “reality” itself. This conception

actually implies a definition of physical reality.

One could argue that inductance is not physically identical with mass

despite their structurally analogous roles in electrical and mechanical systems.

However, the argument can be supported only by further analysis of induc-

tance and of mass, whereby the distinction between them can presumably be

revealed. That is to say, “inductance” and “mass” are not identical if

further analysis reveals structural differences between them. The philosophical

view which declares knowledge to be knowledge of structure underlies the

trend in general systems theory that puts mathematical isomorphism at the

foundation.

2.5. STATIC AND DYNAMIC THEORIES

The mathematical definition of a system is actually a definition of a mathe-

matical model assumed to be isomorphic to a system abstracted from the one

described. A system consists of elements and relations among them that are

Singled out for attention. In particular, the elements may be variables in terms

of which the behavior of the elements is to be described. The structure

of the system is described as a set of relations among the elements (or the

variables).

If the elements are variables, one defines the state of the system as the

totality of values assumed by the variables at some moment of time. A static

theory assumes that the state remains constant. Then the equations defining

the relations among the variables permit us to deduce the values of some of the

variables when the values of others have been given. A dynamic theory

considers primarily a succession of states. Furthermore, the system is deter-

ministic if knowledge of the values of the relevant variables at a moment of

time permits us to deduce the state of the system at any future or any preceding

moment. The system is probabilistic or stochastic if knowledge of the values

of the variables at a given moment permits us to predict only probability

distributions of these variables at some future moment (or to postdict them for

some past moment). Mathematically speaking, probabilistic systems can be

redefined as deterministic ones if distribution functions instead of numerical

values of variables are taken to be the elements, as, for example, the wave

functions of quantum mechanics.

As a simplest example of a static system, consider a gas enclosed in a volume

in a state of equilibrium. The variables of interest are pressure (constant

throughout the volume, since the gas is in equilibrium), temperature (constant



50 Anatol Rapoport 2

for the same reason), and volume. The three variables are connected by the

equation of state. Thus knowledge of the values of any two of the variables

permits us to deduce the value of the third.

A planetary system is an example of a dynamic system. Here the variables

of interest are the instantaneous positions and velocities of the planets. The
relative positions determine the gravitational forces, and these, given the

masses as parameters, determine the accelerations. Forces, masses, and
accelerations are related through the differential equations governing the be-

havior of the system. If the initial state of the system defined in this manner is

known, successive states can, in principle, be calculated.

The same conception of system applies to the automaton. An automaton
is a system whose behavior at any moment is defined by the totality of values

assumed by a set of variables, some of which are associated with the internal

state of the automaton and others with inputs presented to it. At specified

moments the automaton receives an input from some source. The input, like

the internal state, is specified by the values of a set of variables. The input,

together with the internal state of the automaton, determines an output and
a new state. It should be noted that the “ state ” of the automaton may involve

in its description all previous states, as is the case in an automaton with a

“memory.” A digital computer is a well-known example of an automaton.

The rules governing the changes of state as they depend on both the state and

the input constitute a program. A program, together with a set of inputs,

determines a set of outputs.

2.6. SYSTEMS REPRESENTED BY DIFFERENTIAL EQUATIONS

As has been said, the mathematical models describing various systems sug-

gest a classification of the systems. We shall first discuss some classes of dy-

namic systems.

Consider the class of systems isomorphic to systems of ordinary differential

equations. The latter can be classified by orders, degrees, numbers of dependent

variables, and so forth. The simplest such systems are linear ones with con-

stant coefficients. The prototype is

dx
t

”— = 2, au xj + bi (i = 1,2,..., n;a ijy b t
constants). (2.5)

dt j= i

A system of this sort can be equivalently represented by a single ^th-order

differential equation. The general solution of all such systems is known. It

has certain properties that make systems represented by linear differential

equations with constant coefficients especially accessible to intuitive under-

standing. The deterministic character of such systems is also evident. Given
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a set of initial conditions, that is, initial values of the dependent variables,

x l5 x2 ,
. . • ,

xn ,
the “ world line ” of the vector (x l9 x2 ,

. .
.

,

xn) is thereby

determined, indeed unambiguously, since no two world lines intersect. Next,

the world lines of the components of this vector can be only of certain simple

types. As a function of time, such a world line is represented by a sum of

exponential functions, where the exponents are, in general, complex. These

complex numbers are roots (called eigenvalues) of a certain polynomial de-

termined by the constants of the system. The real parts of these roots constitute

the exponential components of the solutions: they indicate either an unlimited

growth or a steady decline in the magnitude of the variables. The complex

parts are the periodic components: they indicate oscillations of the magni-

tudes. Oscillations with constant amplitudes can occur only in very special

cases, namely, when all the roots of the polynomial are pure imaginary num-

bers. Note that all of these findings are results of mathematical deduction

only, not empirical generalizations.

With these facts in mind, we turn to the classification of systems induced

by the classification of sets of differential equations. We note first that no

planetary system or, in general, any mechanical system in which forces are

nonlinear functions of distances (such as gravitational forces) can be represen-

ted by a linear system of ordinary differential equations. What kind of sys-

tems, then, can be represented by sets of linear ordinary differential equations ?

Obviously, systems in which forces or their analogs are linear functions of

positions. The harmonic oscillator described above is a system of this sort. It

is characterized by the fact that the restoring force of a spring is proportional

to the displacement of the mass from its equilibrium position. Without an

impressed external force, the equation of such a system becomes

x + rx + cx = 0, (2.6)

where, since the unit of mass is arbitrary, we have set m = 1 . By the nature of

“friction” the parameter r must be nonnegative, and by the nature of

“elasticity” the parameter c is positive. The formal solution of this equation

is

x - Aeat + Bebt
, (2.7)

where A and B are fixed by the initial conditions, while a and b are the roots

of y
2 + ry + c — 0. From Eq. 2.6 we see that the types of motion of a particle

representing a harmonic oscillator are rather strictly limited. The oscillation

is essentially a damped one except in the very special case where r = 0. Since

the derivative of both the exponential function and the sinusoidal function

essentially reproduces each of these functions, it follows that the directed

velocity of the particle (or, in the case of the electric circuit, the current)

follows the same type of world line as the position (or the charge).
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Next, we note that the second-order differential equation, Eq. 2.6, is equiv-

alent to a system of two first-order differential equations, namely,

dx

di
= y,

dy—- = — ry — cx.
dt

(2 . 8)

We conclude that the solutions of this system, namely, the functions

x(t), y(t) that satisfy it, must also be damped oscillations (so long as r ^ 0), or

undamped periodic functions in the special case where r = 0.

Now, the system of the general type represented by Eq. 2.5 can be pictured

as a model of a situation quite different physically from either a harmonic

oscillator or an electrical circuit. To see this, let us generalize the second-order

system slightly to obtain a homogeneous system of two first-order linear

differential equations

;

x = ax 4- by,

y = cx -f- dy.

with ad — be # 0.

In words, the rate of change of each variable is influenced in an additive

way by two functions, each proportional, respectively, to the magnitude of

each variable. Suppose that * and y are concentrations of a substance in a

system of chemical reactions. The rate of change of concentration can be

either enhanced or inhibited by the concentrations themselves. For instance,

if in the system of Eq. 2.9 a > 0, x is an autocatalytic agent, while a < 0

reflects the assumption that x disintegrates as a rate proportional to its own
concentration. Similarly, if b > 0, y acts as a catalytic agent for the formation

of x; if y < 0, y inhibits the formation of x. Similar considerations apply to

c and d.

The general solution of the system in Eq. 2.9 is

x = Aent + Ber2
\

(2 . 10)

where A and B are determined by the initial conditions, and ru r2 are the roots

of the characteristic polynomial.

From this solution we can read off directly the behavior of the hypothetical

chemical system represented by the model postulated. In particular, we can

conclude that the concentrations of x and y will not undergo undamped oscil-

lations except in the very special case when a = —d and be < a
2

.

Moreover, if this special case does not obtain, each of the concentrations

must approach either zero or infinity. The latter conclusion is physically
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absurd. It is a consequence of our having failed to introduce a constraint in

the form of the conservation of mass, namely, x 4- y = m, a constant. Further-

more, because mass cannot be negative, we must have x > 0, y > 0. Then the

system will be represented by a single equation

:

x + ax + b{m — x) = (a — b)x + g, (2. 1 1)

where g = bm, x>0.
The derivative vanishes when x = gj(b — a). If 0 < g/(b — a) < m, ab < 0,

the system approaches an equilibrium where x/y = —b/a. Otherwise one or

the other of the substances must eventually disappear. There will be no

oscillations.

It is important to note that in this case the sum of the concentrations is

restrained by the conservation of mass to remain constant. The situation would

be different if our system of differential equations were nonhomogeneous.

Consider the system

dx dy— = ax + by + h, — = cx + dy + k. (2.12)
dt dt

The equilibrium state of such a system, if it exists, is obtained by solving

simultaneously the two linear equations obtained by setting dxjdt and dyjdt

equal to zero. If ad — be
,
the determinant of the system, does not vanish, a

unique equilibrium is determined, in which the concentrations of the sub-

stances do not depend on the initial concentrations. This sort of equilibrium,

called a steady state, is established with the environment of the system. In

this case, the system is open. It has sources and/or sinks represented by the

constant terms.

This purely mathematical result has a bearing on the observation made

many years ago by von Bertalanffy [2] that so-called open systems, in con-

trast to closed systems, exhibit a principle of equifinality ,
that is, a tendency

to achieve a final state relatively independently of initial conditions. In other

words, open systems may tend to “ resist ” perturbations that take them away

from some steady state, that is, may tend to return to the steady state. They

can exhibit homeostasis .

As illustrations, von Bertalanffy cited the growth behavior of certain ani-

mals. When their growth is interrupted, say, by diet deficiencies, they can

often “catch up” when the deficiencies are remedied, as if they strived to

achieve their predestined size regardless of outside intervention. The connec-

tion between these phenomena and the characteristics of “ open systems ” (as

they are called in physics) is admittedly far-fetched, and von Bertalanffy’s

conclusions have a distinct teleological flavor. On the other hand, the mathe-

matical example we have given removes all ambiguity (admittedly in a very
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special case). Here an
“

‘ open system ” is identified with a system of differential

equations that is nonhomogeneous
;
a closed system, with one that is homo-

geneous with a constraint representing the conservation of mass. Equi-

finality is a mathematical consequence in the former but not in the latter.

We note in passing that, if the conservation of mass equation is not im-

posed on a homogeneous system with a nonvanishing determinant (be — ad),

the only equilibrium is the trivial solution x = 0; y = 0. On the other hand, if

the determinant does vanish, there is an infinity of “ equilibria.” The model is

immediately generalizable to any number of variables.

From a still more general point of view, one can examine sets of differential

equations for mathematical properties of their solutions and interpret these

properties in terms of concrete systems that are reasonable realizations of the

mathematical systems. In particular, since the general solution of any set of

linear differential equations is known, we can immediately deduce certain

interesting properties of any system that can be so represented. One such

property is that a system represented by a set of linear differential equations

having constant coefficients with a nonvanishing determinant has at most one

equilibrium state. This is not, in general, true for nonlinear systems. Further-

more, the stability or instability of such equilibria is immediately deducible

from relations among the coefficients. Stability is the tendency of a system to

return to its equilibrium; instability is a tendency to move away from equi-

librium if slightly disturbed.

As already noted, widely different interpretations can be proposed for a

given set of differential equations. An interesting application of the linear

system model was made by Richardson [3] in his theory of arms races.

Assuming that the level of armaments of a rival power provides the stimulus

for increasing one’s own level, and that one’s own level of armaments serves as

an inhibitory factor on further increases, Richardson represented the situation

by a pair of differential equations isomorphic to the systems of Eq. 2.12.

Here x and y can take on both positive and negative values. If positive, they

represent the respective degrees of “ hostility ” of two powers vis-a-vis each

other, reflected, say, in the armament budgets or some similar index; if nega-

tive, they represent the level of good will or cooperation, reflected, say, in

trade volumes.

It turns out that the system is stable, that is, will tend toward an equilibrium,

if ad < be; otherwise the system is unstable. In the latter case, depending on

the initial conditions (say, armament budgets and trade volumes), the system

will reflect either a runaway armament race or, on the contrary, disarmament

and ever-increasing cooperation.

The next class of sets of differential equations deserving attention comprises

differential equations of the second degree. Here the variables on the right
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appear either as squared or multiplied pairwise. Several situations might

be represented by mathematical systems of this sort; the following are ex-

amples.

1 . A system of bimolecular chemical reactions, where the rate of change

of each substance is enhanced or inhibited by the frequency of collisions of

pairs of molecules.

2. A system of social interactions, where the variables represent propor-

tions of individuals, say, holding particular views or exhibiting particular forms

of behavior. The views of an individual may change as he encounters other

individuals holding similar or different views. Therefore the rates of change

of the “concentrations ” of the several views will be proportional to the rates

of such encounters, hence to pairwise products of the “concentrations” of

the various types of individuals.

3. Ecological systems containing predators and prey. As a simple example

of such a system, consider the following pair of differential equations of the

second degree

:

_ = - ax + bxy.

dy

dt
— bxy — cy

2 + my (a, b, c,m> 0).

(2.13)

The biomass of the predators is represented by x; that of their prey, by y.

The predators can increase only through encounters with prey, as represented

by bxy. They must, of course, also meet with members of the opposite sex

of the same species in order to reproduce. However, the net effect of encoun-

ters between members of the same species (among the predators) is assumed

to be negative. This effect is attributed to the “crowdedness factor.”

The biomass of the prey, on the other hand, increases in the absence of

predators at a rate proportional to itself as represented by my. Moreover,

encounters with predators result in a decrease of the biomass of the prey

(since they are eaten). Hence the coefficient of the xy term, representing the

frequency of predator-prey encounters, is negative in the second equation. The

crowdedness factor is represented by — cy
2

.

Such a system has equilibria at x = y = 0 and at x = mb/ib
2 + ac), y =

ma/(b 2 + ac). The first equilibrium is trivial; the second reveals the de-

pendence of the equilibrium on the birth rates, the frequency of encounters,

and the crowdedness factor.

The very simplest nonlinear system of interest is the elementary contagion

equation in one variable

:
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— = ax(b - x).

2

(2.14)

Here x is the fraction of individuals infected in an epidemic, b is the

fraction of susceptible individuals, and a is the constant of proportionality.

The rate of new infections is assumed to be proportional to the frequency of

encounters between infected and uninfected individuals, hence to the product

of their concentrations, x(b — x).

The solution of this equation is the well-known logistic curve, which repre-

sents the growth of the fraction of infected individuals in the population under

the assumptions stated.

2.7. GENERAL SYSTEMS THEORY AND MATHEMATICAL
MODELS

At this point it may appear to the reader that the particular trend of general

systems theory described here is simply that of constructing mathematical

models for a variety of phenomena. There is a difference, however, between

mathematical model building and the general systems approach. The model

builder attempts to construct an adequate mathematical description of a

given phenomenon. To develop a mathematical theory of contagion, the model
builder might begin with the simplest model, the logistic equation derived

from the simplest postulates of random contacts between the infected and the

uninfected. Since few actually observed contagion processes will be adequately

described or predicted by a model so simple, the theoretician might try to

modify it so as to take more factors into account. For instance, he might

make the parameter representing the probability of contagion upon encoun-

ters an explicit function of time, presumably to take account of the waxing

or waning “virulence” of the epidemic. Or he might make this parameter a

function of the time elapsed since infection. Furthermore, he might introduce

a rate of removal of individuals from the population, due either to death or to

recovery with immunity. The whole thrust of the effort would be to improve

the accuracy of the description of the phenomenon under study.

In contrast, the mathematical trend in general systems theory makes the

mathematical system, rather than a concrete system, the point of departure.

Thus the theoretical investigation is an investigation of the mathematical

properties of an abstract system of relations. These properties being common
to all mathematical systems isomorphic to the given one, the conclusions

drawn are expected to apply to all concrete systems of which the mathematical

systems are adequate representations. This program naturally guides the
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system theorist along the lines of least mathematical resistance, and the simp-

ler mathematical systems are investigated first. Attempts are made to fit

concrete systems into the mold of the now-familiar mathematical system.

Inevitably, the perceived success of the attempt is colored by the all-too-

human desire to see one’s enterprise succeed. Nevertheless, the failures are

often too conspicuous to be ignored. Here the advantages of the mathematical

approach become evident. The reasons for the failure can sometimes be in-

ferred from explicit inadequacies of the postulates that characterize the type

of mathematical system, and directions for generalization are indicated. For
instance, the failure of linear systems of differential equations to describe ade-

quately certain systems of interactions can be traced to the absence of multiple

equilibria in linear systems, suggesting the investigation of the next level of

complexity, systems of the second degree. The refusal of the general second-

degree system to yield to general methods of solution suggests the investiga-

tion of special cases, bringing to attention systems of interactions where such

special cases may be relevant. In particular, the system of second-degree

differential equations becomes manageable in the special case in which the

dependent variables in the derivative is a factor of all the second-degree terms

on the right:

uX •
n

-7 = Z aj Xj + b
i

(i = 1,2, (2.15)
at j= 1

The assumption is reasonable in an ecological setting, for it asserts that the

rate of increase of a particular population depends (aside from a source or

sink) only on the frequencies of encounter of that population with members
of other populations.

At this point the difference between the general systems approach and

mathematical model building can be pointed out. A particular mathematical

assumption suggests to the general systems theorist contexts far removed

from the particular one examined. For example, the assumption just mention-

ed (that the rate of change in a population is independent of encounters of

pairs of species that do not include it) suggests a connection with an analogous

assumption often made in stochastic learning theory, namely, that the change

in the probability of a particular response alternative is independent of the

relative frequencies of other response alternatives. And this, in turn, suggests

possible connections with an assumption often made in decision theory,

namely, that the preference order among alternative courses of action is not

affected by the introduction or the deletion of outcomes not preferred to any

of the outcomes associated with the alternatives in question. In short, the logi-

cal structure of the assumptions, not their particular interpretation, is of cen-

tral interest to the general system theorist.
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2.8. AN EXAMPLE FROM THERMODYNAMICS

At this point a particular concrete context can serve as an “anchorage”
for generalizing concepts.

The well-known second law of thermodynamics states that in an isolated

system the entropy will tend toward a maximum. For certain types of open
systems, this law can be generalized, namely, the rate of entropy production

tends to a minimum. It can be seen that the isolated system is a special case,

in which the rate of entropy production tends to zero.

Let us exemplify an open system by the electric circuit shown in Figure 2.2.

At the moment the switch is closed, the dissipated power is given by

Ef
= (2 . 16)

As the capacitor becomes charged, the dissipated power tends to

P
00

-Ei
2

Ri + R2

(2.17)

The power dissipated is given as a function of E2 by

(Ei ~ E2 )
2

El
Ri

2 R

2

'

Setting dP/dE2 = 0, we obtain

E2 = Ei

Ri

R
i + Ri

(2.18)

(2.19)

as expected, so that the final state is characterized by the minimum power
production. We have thus exemplified the generalization of the second law

Figure 2.2. Electric circuit, open system.
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for an open system. (The battery on the left of Figure 2.2, being an input to

the system, is assumed to be replenished.)

Next, suppose that R2 is replaced by a generator with an internal resistance

r
p
and a voltage output /iE2 ,

where E2 is now the “command signal.” At

t = 0, E2 = 0 and PQ = E1

2/R
1
as before. After a sufficient lapse of time, the

capacitor may be neglected, so that

Ei~ E2 = iR
1 ,

E2 - fiE2 = ir
p ,

E2 — E1
r
P + ^i(l ~

l
1)

i = Ei
1 - n

+ rp/(l
- fi)

P„ = PR Ei\Ri+rp)
'

+ rJ(l - n)
‘

(2 .20)

It turns out that, if jll lies outside the interval (— yj\ + r
p
/Ru -J\ + r

plR\),

P^ > P0 and the principle of minimizing the rate of entropy production is not

satisfied.

The reason for the discrepancy is clear. We have identified entropy with

P, the number ofjoules per second that are turned into heat. But the feedback

generator is supplying power to the system. There is thus a negative term in the

dissipation of power, namely,

P2 = — [iE2 i2 = -\xE
: (2 .2 ,)

so that

P-Pi Ce-e2)
2

.
^(1-M) 2

,

Ri
+ E2 + Me2 (2 .22)

Differentiating partially with respect to E2 ,
we have

dE .

(P-P2) = 2
E2 ~ Ex (l - fi)

2
1 - /i

+ E2 h fiE2 (2.23)

Thus, if (P — P2 ) is to be minimized, we must set
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obtaining

2

ESP

r
P + ^i0 /0

(2.25)

the value eventually approached.

Now let P
1 be the power supplied to the system from the environment

(not from the feedback generator), and let P2 be the rate at which energy is

being stored in the capacitor. Then

Pi=Eih, Pc = <h + i2)E29 P = P
1
+P2 -PC ,

P-P2 =P1
-Pc . (2.26)

Thus, what is being minimized is the difference between the power supplied

to the system from the outside and the power being stored. Collapsing the

part of the system including the feedback loop as a “negative resistance,”

we can say that the principle of minimizing entropy production is satisfied.

Let us now proceed to a further generalization with generators in parallel,

as shown in Figure 2.3. We introduce feedback loops so that E3 — fiE2 ,

E
5 = vEt . As before, we calculate the dissipated power:

(£, - E2)
2 (E2 - E2 )

2 (E2 - £4 )

2
(£4 - Es)

2

Ri Ri Rz R*
(2.27)

and the power supplied by the generators

:

A = £3 i3 + £5 is

E3~E2 £5 £4

-rT + e’^T (2.28)

Consider the function t// = P — A. If is to be minimized, we must have

8E2 8Ea
(2.29)

Figure 2.3. Generators in parallel.
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which leads to

z 2 — h + h — h > (2.30)

the steady-state conditions. Thus i/q which plays the role of the rate of entropy

production, is minimized in the steady state.

However, if we cross the feedback loops so that E3 = fiE4 and E5 = vE2 ,

and if we set di/z/dE^ = 0, we obtain

E E
— 2j 2 — 2/5 — /i -2 + v —^ = 0. (2.31)k2 k4

But i2 + i5 = 0 must hold in the steady state. Therefore we must have

~^2

r2

vE2
(2.32)

which is satisfied only ifE2 = 0, or if pjv = R2/R4 ,
contrary to the assumption

that the parameters are arbitrary. Clearly, \j/ is not the function to be mini-

mized in the steady-state condition. The question arises, Does a state function

minimized in the steady-state condition exist in this case, and, if so, how is it

to be interpreted in terms of minimizing the rate of entropy production so as

to represent a generalization of the second law [4] ?

We see that the generalization, if such can be found, depends on the topolo-

gy of the circuit. This circumstance raises a general question which, to my
knowledge, is still unanswered in general systems theory. How is the second

law of thermodynamics to be generalized for open systems with feedback
loops in an arbitrary topological arrangement? The question is tantalizing

inasmuch as feedback loops suggest that information is somehow fed into the

system, or that the system obtains
44
information about itself” and so leads

to a relation between information and entropy, already noted from the

mathematical isomorphism connecting the two concepts.

2.9. STATIC THEORIES

The comparatively recent extensions of mathematical analysis to areas

beyond its traditional scope, specifically to the analysis of biological and social

systems, have provided ample illustrations of the potential of the mathe-
matical general systems approach. In this connection it is important to point
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out that static theories play a more important part in biological and social

sciences than in the physical sciences. There are two reasons for this, one

fairly obvious, the other more subtle. The obvious reason is that dynamic

theories (those which explain or predict the changes that systems undergo in

time) are, on the whole, more difficult to construct than static theories con-

cerned primarily with the structure rather than with the behavior of systems.

For this reason it could be said that the social sciences have not reached the

maturity associated with the construction of dynamic system models. In

physics, too, statics antedated dynamics both in mechanics and in theories

of electricity and magnetism. Curiously, classical “thermodynamics” is

actually a misnomer, the discipline having been concerned primarily with

equilibrium states. Nonequilibrium, that is, truly dynamic thermodynamics,

is still a quite young branch of physics, as is indicated by its many still un-

solved problems.

In biology, too, “statics” (e.g., taxonomy and anatomy) antedate their

dynamic counterparts, the theory of evolution and physiology. In the social

sciences, as has been said, dynamic theories are still in a nascent state.

The other reason why static theories are of greater importance in biology

and especially in the social sciences than in the physical sciences is that the

static theories in the former are “richer” than those in the latter sciences.

Classification and taxonomy play relatively insignificant parts in physics, a

science concerned largely with laws governing the behavior of all matter.

Classification plays a more important role in chemistry. However, since the

discovery of a finite number of elements as the building blocks of all sub-

stances, chemical taxonomy presents few difficulties. Methods of classification

become of greater importance in biology, where the fundamental concepts,

like organism, adaptation, and natural selection, require complex acts of

recognition . Finally, these methods become of primary importance in social

science, where a set of fundamental concepts to serve as the building blocks of

a unified theory is very far from a reality. The distillation of such concepts is

the goal of primarily static theories.

The primary question of a static theory, “What shall be singled out for

attention?”, is preliminary to questions of how the concepts representing

what has been singled out can be used to describe processes and to derive

“if so, . . . then so ” propositions. Perhaps it is chiefly for this reason that so

much of what goes under the name of “ social science theories ” does not

transcend an elaboration of definitions.

We turn now to “ static ” general systems theory. Two branches of mathe-

matics are particularly suited to its modern development : the theory ofgraphs

and the theory ofgames. In our example of entropy production in an electric

circuit, we have already run into a problem of relating the thermodynamics

of such circuits to the properties of linear graphs.
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2.10. SYSTEMS REPRESENTED BY LINEAR GRAPHS

The theory ofgraphs is a theory of structure par excellence. A linear graph is

a set of points and an unspecified binary relation, R, which either holds or

does not hold between every pair of points in the set. If the relation is symmet-

ric, that is, if xRy if and only if yRx, the graph is an ordinary (zundirected

)

graph . Otherwise the system is defined by a directed graph (or digraph). Any

situation consists, in the last analysis, of a set of elements and a set of rela-

tions among them. A graph having only a single binary relation is consequent-

ly the simplest description of a structure.

A graph can be diagrammatically represented by lines connecting some of

its points. If the graph is directed, the lines are arrows; otherwise, not. A
picture of a graph immediately suggests a communication network or an

organizational chart. Indeed, the basic features of such networks or charts are

frequently represented by diagrams of graphs.

A graph is a topological rather than a geometric structure inasmuch as the

distances between connected points are not part of its definition. Only the

fact that the two points are or are not connected is indicated. These topo-

logical features are at times the most essential ones in the descriptions of

many systems. For instance, it may be of importance to know whether it is

or is not possible to reach points of the graph from other points via inter-

vening connections, regardless of the physical distance that separates the

entities represented by the points. To take another example, a biological

species is sometimes defined as a collection of organisms that can interbreed.

The possibility of interbreeding does not necessarily depend on the possibility

of mating between members of any heterosexual pair. A Chihuahua may not be

able to mate with a Saint Bernard, at least not without artificial insemination.

Yet the genes of Chihuahuas and Saint Bernards can mingle via mating be-

tween members of intervening breeds. Thus the graph showing possible paths

of genes of dog species is probably a connected graph. An interbreeding pop-

ulation (species) can, perhaps, be defined in terms of a connected graph,

where the links represent possible matings.

Strict mathematical isomorphism can be established between two individual

graphs in the usual way. If to every point of one graph there corresponds

exactly one point of the other (and vice versa), and if the relations between the

corresponding points are preserved, the two graphs are said to be isomorphic.

All graphs isomorphic to each other naturally define a type or a class of graphs.

Thus a systematic taxonomy immediately suggests itself, and with it a taxon-

omy of systems represented by the graphs. Attention is then directed to those

properties of systems that reflect the properties of the types of graphs that

represent them. For example, a type of organization can be defined by the
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type of graph that represents the flow of information in it or the relations of
subordination or superordination. The graph representing the structure of
the system may reveal certain critical features, for instance, a critical commu-
nication link, which, if cut, would disconnect the graph, or an exceptional
“ node ” through which all paths from one part of the graph to another must
pass. Questions about the efficacy of organization or the vulnerability of
communication networks often revolve around the existence of such elements.

A serious limitation in the development of a general theory of graphs is the

size of the graph. As has been said, the classification of graphs that occurs
immediately is that into classes determined by isomorphisms. Roughly
speaking, two graphs are isomorphic to each other if one can be turned into

the other by relabeling the points. Since n points can be labeled in n ! different

ways, the number of graphs defined by their equivalence classes is immensely
reduced. Thus, if n = 10, then 3,628,800 graphs become essentially a single

graph. Still, even this drastic reduction leaves a superastronomical number of
equivalence classes even when n is only moderately large. For instance, when
« = 10, the number of labeled pairs is 55, and so the number of distinct labeled

graphs is 2
55

, which is incomparably larger than 3,628,800. Clearly, a system-
atic study of graphs as mathematical systems must resort to other classi-

fications. The lines of least mathematical resistance suggest singling out some
easily describable classes of graphs, for instance, regular graphs, characterized

by an equal number of links converging at each point. The usefulness of this

approach in general systems theory depends, of course, on the existence of
interesting systems with content to which the model of, say, the regular graph
applies. If such systems are difficult to find, the applicability of the mathe-
matical theory is questionable.

More promising is the generalization of graph theory in the probabilistic

direction. Instead of considering a specific graph with specific properties

(of which, as we have seen, there is an embarrassing multitude), the probabilis-

tic theory puts the “ randomly constructed ” graph at the center of interest.

It examines the probability distributions and the statistical expectations of the

properties of such randomly constructed graphs.

As an example, consider a directed graph constructed in the following man-
ner. There are n points. From each point a given number a of links “grow.”
Each link connects “ at random ” to one of the points of the graph. More
precisely, the probability that a given link connects on a given point is 1/n.

Given this definition of a randomly constructed graph, we can inquire into

several of its properties, probabilistically defined. For example:

1. What is the probability distribution of the “in-degree” of the points of

the graph ? (The in-degree of a point of a directed graph is the number of

links converging on it.)
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2. What is the probability that, from an arbitrarily selected point of the

directed graph constructed in this manner, a path exists to every other point ?

3. If X is the random variable representing the number of points to which

a path exists from an arbitrarily selected point, what is the distribution of XI
What is the expectation of XI

4. What is the probability that a directed random graph constructed in

this manner is connected? What is the distribution of the random variable

Y
,
representing the number of connected components of the graph ?

The same questions can be asked about the ordinary (undirected) graph

formed by “erasing the arrows” on the links of the directed graph.

As an example, we shall examine the expectation of the number (or fraction)

of points to which a directed path exists from an arbitrarily selected point.

Assume that the construction of the graph starts with a single point. Let P
1

be the fraction of points contacted by the a links issuing from this point.

Actually Pt
is a random variable, but we shall be considering only its expecta-

tion. Similarly, let P2 be the fraction of points newly contacted by the links

issuing from the points of the first “remove,” and so on. The recursion for-

mula for the expectations turns out to be [5]

(2.33)

with the initial condition P0 - l/N, where TV is the total number of points.

For large TV, the iteration formula can be approximated by

P(+1 = (1 - Z,)(l -e~° Pt
), (2.34)

where X
t = £'- = 1 Pj.

We seek X^ = y, the expected total fraction of points so contacted. The

expression for y is easily obtained. Rewriting P
t
as X

t
— X

t
_ l9 we have

Xt+i-Xt _
l-X

t

_ e
-a(Xt -X t - i)

(2.35)

-—L±i = (2.36)
1 - X,

v '

e°
x
‘(l - X

t + 1 )
= e°

x‘-'(\ -X
t) (t = 0,1,2,...). (2.37)

Hence

e
aXt

(l — Xt+1 ) = K, a constant. (2.38)

For large N, X0 = l/N ^ 0 and X1 = a/N = 0; hence, K ^ 1.
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Letting t go to infinity, we have

e
a\l - y) = 1,

y = l- (2.39)

which is the sought expression for y.

We note that the graph of y as a function of a consists of two branches, one

of which is y
= 0. Since only nonnegative values of y have physical significance,

the graph of y versus a is the line y = 0 for 0 ^ a fg 1, and thereafter the upper

branch of the curve approaching y
— 1 asymptotically.

The process described can be viewed as a simple contagion model. Beginning

with a single “ infected ” individual, the number of infected individuals grows

as the newly infected come in contact with the non-yet-infected. Clearly, the

model differs from the logistic model in that the period of infectuousness of

each infected individual is limited to the time during which he comes in con-

tact with a individuals. The model is not substantially modified if the number
of individuals with which each infected individual comes in contact is a ran-

dom variable, whose expectation is a. Equation 2.39 gives the expected

fraction of individuals ever infected (implicitly) as a function of a. If a ^ 1,

this expected fraction is zero, strictly speaking—infinitesimal compared with

the total population, assumed to be “infinite.” For a> 1, the fraction is

finite. Specifically, for a = 2, the expected fraction is about 0.8; for a = 3, it is

about 0.95; and so on.

Concrete systems representable by graphs of this sort (modified by biases to

be described below) are common. Consider a sociogram. Each individual in

a population selects a individuals as his friends or in some other specified

manner. If we represent the naming of each individual by an arrow from the

chooser to the chosen, we have a directed graph. Clearly, real sociograms are

not “ randomly constructed graphs,” since friends are not randomly chosen.

However, having derived certain probabilistic features of a randomly con-

structed graph, we can examine the corresponding features of sociograms to

note the ways in which the latter differ from randomly constructed graphs. The
differences may suggest concepts for characterizing biased graphs by the values

of their bias parameters.

A bias in the construction of a graph involves a departure from equi-

probability or from statistical independence. For example, if, in the construc-

tion of the graph described above, the links issuing from each point terminated

on the various points with variable probabilities, this would reflect a “ popular-

ity ” bias: the individuals in the population have unequal probabilities of being

chosen as friends. The bias would reflect itself in the departure of the distri-

bution of in-degree from the Poisson distribution, to which it reduces under

random choices. In fact, it can be shown that, whatever the popularity bias is,

the resulting in-degree distribution must be “flatter” than the Poisson dis-
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tribution. On the other hand, if we introduce a “reciprocity” bias, the dis-

tribution of in-degree should be “sharper” than the Poisson distribution.

(A reciprocity bias is the tendency of individuals chosen as friends to recipro-

cate the choice, hence a departure from statistical independence of choices.)

Another sort of bias that can be introduced into the model is a “ transitivity

bias,” according to which friends of friends are likely to be friends. The effect

of both a reciprocity bias and a transitivity bias should be to depress the

value of y for a given value of a. This can be seen easily in the extreme case.

If all the choices are reciprocated, the population splits into mutually exclusive

cliques, so that the expected number of individuals that can be “ reached ” by a

path of choices from a given individual is no larger than the size of the clique.

Evidence of all three biases has been found in actual sociograms. It is

interesting to note that even a considerable reciprocity bias is not sufficient

to overcome the popularity bias in the sense of making the distribution

of in-degree sharper instead of flatter than the Poisson distribution with the

same number of choices per individual.

Another interesting finding is that the order in which friends are named
(“best friend,” “second best friend,” etc.) is reflected in the way in which

the number of contacted individuals grows with the removes. As expected

(cf. Figure 2.4), it grows more slowly when the graph is constructed by tracing

through the first two friends; more rapidly when tracing through the second

and third friends; and so on.

Let us now consider the probability that a randomly constructed graph is

connected. This problem was attacked by Erdos and Renyi [6], who defined

a random graph in a somewhat different manner. Theirs is an undirected

graph. Associated with n points are \n(n — 1) pairs. Of these, N pairs are

selected (without replacement) at random and joined with links. The proba-

bility that the resulting graph is connected is defined as the ratio of the total

number of connected graphs (with labeled points) to the total number of

(labeled) graphs with n points and N links. Now, if N is kept constant and n

tends to infinity, clearly the probability of being connected tends to zero.

However, if N increases along with n
,
this is not necessarily the case. Indeed,

ifN increases sufficiently rapidly with respect to n
,
the probability of connect-

edness may tend to 1. Erdos and Renyi determined the so-called threshold

function for N(n), that is, if the function has the form

n
N(n) = - loge n + an (a = constant), (2.40)

then the probability of connectedness tends to a finite limit, namely, e~ e
~ 2a

.

The question naturally arises of how the probability is affected if the graph

is biased. For instance, if the points are immersed in a metric space, and if the

probability of joining two points is some function of the distance between
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Number of removes

Figure 2.4. A: tracing through first and second friends; B: tracing through third and

fourth friends; C: tracing through fifth and sixth friends; D tracing through two randomly

selected friends (theoretical.) All observations are averages of 30 tracings beginning with

10 arbitrarily selected individuals.

them, will this bias increase or decrease the probability of connectedness?

Intuition does not provide an immediate answer. We have seen from the

previous example that a kind of distance bias (the tendency to choose friends

of friends and to reciprocate choices) depresses the probability of connected-

ness of a sociogram, since the expected number of individuals to whom
a path exists from a randomly chosen individual becomes smaller thereby.

On the other hand, consider the points of a rectangular grid. Assume that

four links issuing from every point connect with certainty to the four immed-

iately neighboring points. This constitutes a strong distance bias; yet it

ensures that the resulting graph of any size is connected.

The problem of the connectivity probability of a biased graph was attacked

in a very special case by Perkins [7]. His graph has n points and n — 1 links.

Such a graph is connected if and only if it is a tree, that is, has no cycles.

Perkins introduces the simplest sort of distance bias, namely, the n points are

divided into two equal classes. Points of the same class are “near” each

other; those belonging to different classes are “far” from each other. Of the

n — 1 links a certain fraction, 9
,
are used to connect only pairs of points
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within the same class. These are endogamous connections. The remaining

fraction (l —6) of the links connect only pairs of points belonging to different

classes. These are exogamous connections. Clearly, if 9 = 1, the graph cannot

be connected. However, if 6 = 0, that is, if all the connections are exogamous,

the graph can be connected. For a fixed n, the probability of connectedness

may be considered as a function of 6. Perkins has shown that, as 6 increases

from 0 to 1, the probability of connectedness at first decreases, then passes

through a minimum, next increases to a maximum of about 6 — 0.9, and

finally rapidly decreases until it vanishes (as it must) at 0 = 1

.

An analogous result for a graph with an arbitrary number of points and

links and an arbitrary number of classes might shed some light on a long-

standing biological question. Consider a species with certain established

mating patterns. If mating is completely random, the graph, in which points

represent individuals and links represent matings, is a randomly constructed

graph, except, of course, that is is bichromatic : links can be established only

between members of the opposite sex. This restriction should not be confused

with a distance bias imposed on the mating pattern, that is, a preference

for either endogamous or exogamous matings. If the population is divided

into a number of subpopulations, and if only endogamous matings can occur,

clearly the resulting graph cannot be connected. The usual evolutionary

consequence of this is eventual separation of the species into several species

that can no longer interbreed. However, even if mating is random, the result-

ing graph, being a random one, need not be connected.

We can now ask the following question: Is there an “ optimal ” distribution

of endogamous and exogamous matings which maximizes the probability of

connectedness of the graph representing the flow of genes? In other words,

do species subdivided into subspecies with only occasional interbreeding

maximize the probability that a mutation “selected for” in the process of

natural selection will spread throughout the species ? The question concerning

the rate of spread is, of course, a related one. These questions are subsumed

under the presently unsolved problems of general systems theory.

2.11. THEORY OF GAMES—A GENERAL SYSTEMS APPROACH
TO A THEORY OF 66 RATIONAL” CONFLICT

The illuminating power of static (i.e., purely structural) mathematical

models has been demonstrated most clearly in the theory of games. Game
theory is often depicted as a theory of conflict between or among ideally

“rational” actors. Its name derives from games of strategy (chess, bridge,

etc.) cited as models of such conflicts. A mathematical model of a system

always involves singling out some of its features regarded in some way as
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essential and considering the properties or the behavior of such idealized

systems, which are defined only in terms of the features singled out.

The typical game of strategy certainly involves dynamics, inasmuch as it

generally proceeds from move to move and so from situation to situation.

A principal achievement of game theory was the reduction of the dynamics

of these processes to the logico-strategic structure of the game, that is, to a

static description. The concept that effects this reduction of the dynamics of

a game to statics is that of strategy
,
defined roughly as a plan specifying what

a player will do in every possible situation that may arise in the course of the

game. A game with a finite number of players and a finite number of moves

has also a finite number of strategies available to each player. To be sure, this

number is in general superastronomical. However, as long as it is finite, it

allows the game theorist to conceptualize a game as a single, independent

choice of strategy by each of the players. Therefore, if the game has just two

players (a two-person game), it can be represented as a matrix whose rows

and columns represent, respectively, the strategies available to each of the

players and whose entries are the payoffs associated with the resulting out-

come of the game. If there are more than two players, the representation

becomes an 77-dimensional matrix. A matrix is a mathematical object. Certain

properties of game matrices reflect the logico-strategic structures of the games

they represent and so induce a classification of games in accordance with cri-

teria especially relevant to questions considered in the theory of “ rational
”

conflict.

The number of dimensions of the matrix (the number of players) provides

one obvious classification. Here the very important qualitative differences

that distinguish two-person games from games with more than two players

(77-person games) are already revealed in the properties of 77-dimensional pay-

off matrices (n > 2) in a way that does not occur on immediately intuitive

grounds. These differences are revealed in the different roles played by so-

called equilibrium outcomes in constant-sum two-person games and constant-

sum 77-person games. (In a constant-sum game, the sum of the payoffs of the

players is independent of strategy choices.)

For the moment, let us consider the payoff matrix of a two-person constant-

sum game. Such a matrix may or may not have a saddle point, that is, a pay-

off entry to the player choosing rows that is at the same time minimal with

respect to all the entries of the same row and maximal with respect to all the

entries of the same column. It is easily seen that, if there are several such en-

tries, they must all be equal; moreover, they must be so placed in the matrix

that any pair of strategy choices that contain saddle points must intersect

at a saddle point. It is shown in game theory that all games of perfect informa-

tion (i.e., those in which each player’s moves are known to the other players

immediately after they are made) have saddle points.
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From the property of saddle points the game theoreticians draw certain

consequences. First, a “rational player” playing a game with a saddle

point cannot do better than choose a strategy containing a saddle point.

Second, it does not matter which strategy he chooses, as long as it contains

a saddle point. Finally, in a conflict represented by a game of this sort,

secrecy (concealing one’s strategy choice from the opponent) confers no ad-

vantage.

Properties of games without saddle points are quite different. In these games

no “best” strategy can be singled out from among the available ones. The

rational player must resort to a mixed strategy, essentially to letting a random
device choose a strategy for him. Secrecy in the actual choice of strategy is of

essence here, but not in the matter of choosing the “optimal mixture.”

In this way, a classification of two-party conflicts is suggested that may not

have occurred on intuitive grounds. Indeed, games like chess, nim, and tic-

tac-toe are all put into one class, as games with saddle points
;
matching pen-

nies and poker, being games without saddle points, are put into another

class. The “complexity” of the game, as conventionally understood, in terms

of the number of possible situations that can occur has nothing to do with

this classification. As a consequence of game-theoretic analysis, another

“dimension” of complexity appears, namely, the criterion that determines

whether or not a game has a best strategy among the available ones.

When the logico-strategic structure of non-constant-sum games and of

games with more than two players is examined, the concept of “rationality”

must be still further refined and generalized. It turns out that the prescripts

of individual rationality may differ essentially from those of collective ration-

ality, a circumstance that leads to a radical re-examination of the meaning of

the phrase “ rational decision ” and consequently to the raising of important,

sometimes perplexing, psychological issues. These issues come to the fore-

ground in the wake of paradoxes that arise when the concepts of rationality

that are adequate on one level of conflict (e.g., two-person constant-sum

games) are applied on another level (e.g., non-constant-sum and ^-person

games). These paradoxes are revealed in the process of pure logico-strategic

analysis of conflict situations, that is, entirely in the spirit of general systems

theory.

Again we see the fundamental difference between the general systems

approach and the method of mathematical model building. An attempt to

construct a mathematical model of some conflict abstracted from a real-life

situation would lead to attempts to bring the model into agreement with the

observed characteristics of the conflict. These attempts may or may not be

successful. If they are, the problem of generalizing the results still looms.

The abstract mathematical approach singles out an aspect of conflict that is,

to begin with, conducive to mathematical description. The resulting analysis
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does not, in general, yield results that are applicable to descriptions of real-

life situations, because game-theoretic results are much too abstract. Never-

theless, the theoretical yield of this approach is great. It leads to new concepts

which do not ordinarily emerge from generalizations of observations. Thus, in

presenting the method and content of game theory, it is often necessary to

dispel a prevalent and understandable misconception that game theory is

concerned with the strategic analysis of specific conflict situations, in particu-

lar, of specific games of strategy. In fact, however, hardly any finding of game
theory is of use in acquiring skill in any game of strategy worth playing, be-

cause any game of sufficient complexity to be of interest is far too complex to

yield to an algorithm designed to find the best strategies. What game theory

does is establish the meaning of “best strategy” when such exists. It raises

and clarifies the question of whether a “best strategy” exists at all in the

various senses in which it can be defined. It says a great deal about the nature

of the conceptual problems involved in logico-strategic analysis.

This sort of clarification characterizes all mathematical research directed

at the investigation of general systems rather than at the solution of specific

problems. For instance, the general theory of differential equations is directed

not so much at finding solutions of differential equations as they present

themselves, as at establishing existence and uniqueness theorems and at

investigating the general nature of solutions of different classes of differential

equations and of sets of differential equations. The results of this sort of

research are an enlargement of the conceptual repertoire, a building up of
“ intellectual capital,” so to say, that may yield rich dividends in later specific

investigations. At this point it is important to note that later specific investiga-

tions to which the theory may direct our attention may be quite different

from those that we might have undertaken, had our conceptual repertoire

not been enlarged by the general theory.

A case in point is the investigation of so-called cooperative games inspired

by the limits imposed on “classical” game theory. By “classical” game
theory we may choose to understand the theory of the two-person constant-

sum game that culminated in von Neumann’s minimax theorem [8]. The

theorem establishes the existence of a “best” strategy available to each of

the two players of a constant-sum game, this strategy being either “pure”

(if the game has a saddle point) or “mixed” otherwise. This best strategy

turns out to be a minimax strategy, one that guarantees a certain minimal

payoff to the player. It also turns out, however, that the application of this

principle in non-constant-sum games does not in general result in the best

outcomes that players can achieve collectively. Introducing the concept of

collective rationality is tantamount to introducing the assumption that

whatever the entire set of n players can achieve by cooperating, regardless

of the conflict of interest that divides them, they will achieve. However, the
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question of how this optimal joint payoff will be apportioned among the

individual players still remains open. In this way, the thrust of game theory

is directed away from the search for optimal strategies for each individual

player and toward the search for principles by which to adjudicate the conflict

of interest among the players who have cooperated to achieve the jointly

optimal goal and are now faced with the problem of dividing the prize.

The shift of focus raises problems that cannot be formulated without

certain assumptions of “equity” or analogous concepts that are irrelevant

in the context of “classical ” game theory. The necessity for introducing such

concepts without abandoning the standards of rigor demanded in mathe-

matical analysis compels the game theorist to face problems inherent in some
areas of philosophy. A case in point is the so-called utilitarian calculus, which

poses the problem of choosing a course of action that leads to “ the greatest

good for the greatest number.” The operational definition of this comfortable

phrase is far from obvious. “The greatest good for the greatest number”
can be easily defined if one assumes a welfare function that assigns a “ social

utility ” to each outcome of a decision. However, this social utility is meaning-

ful only if certain assumptions are made about the nature of “utility”; for

instance, that utility is not only a measurable quantity, but also a transferable

and conservative one. This assumption clearly is not warranted in many
specific situations, and the theoretician is forced to redefine “collectively

optimal decision ” independently of a welfare function. Thereby the problem

of apportionment must also be redefined. For instance, the solution of the

two-person non-constant-sum game proposed by Nash [9] is independent of

a welfare function. It is derived from a set of axioms in which the possibility

of interpersonal comparison of utilities is specifically denied. This denial is

reflected in the requirement that the solution must remain invariant with

respect to independent positive linear transformations of each player’s payoffs,

thus rendering the “sum of the payoffs” mathematically meaningless.

Nash’s solution was later extended by Harsanyi [10] to the ^-person game.

In contrast, the solution of the ^-person game proposed by Shapley [11] (the

so-called Shapley value) rests on the assumption that utility is a transferable,

conservative commodity, hence that interpersonal comparison of utilities is

possible.

All these analyses are made in the context of taking into account only the

logico-strategic structure of a conflict of interest, totally abstracted from

empirical content. As such, the analysis reflects the activity of the pure

mathematician. However, as soon as the conclusions are applied to the

classification of “conflicting systems” on the basis of the logico-strategic

structure of the conflicts, with a view to drawing structural analogies between

conflicting systems of similar structure but widely differing empirical content,

one passes into the realm of general systems theory.
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As usual, the principal “payoff” of such analysis is conceptual rather

than pragmatic. For instance, it could be as difficult to apply the results of

72-person game theory to “ conflict resolution ” as to apply the results of classical

game theory to techniques of winning games. What the analysis does is

clarify the essential features of the problems involved in a way that is seldom

possible in concrete situations obscured by the complexities and ambiguities

of their particular aspects.

As a simplest example, we may cite the result, proved in 72-person game

theory, that all three-person constant-sum games fall into just two classes.

In one, including so-called inessential games, no advantage accrues to any

pair of players if they join in a coalition against the third. In the other,

comprising so-called essential games, such advantage does accrue. Moreover,

all the essential games are, in a sense, isomorphic to a single game, which

can be formulated as follows: A unit of utility is to be apportioned among

the three, and any two can appropriate the entire unit. In this way, the notion

of isomorphism reduces what seems to be a large class of problems to a

single problem, effecting a drastic conceptual simplification. Essential games

with more than two players can no longer be subsumed under a single game,

but again the notion of isomorphism suggests equivalence classes, each of

which includes a large number of games with an identical logico-strategic

structure and induces a corresponding taxonomy of “rational” conflicts.

2.12. CONCLUSION

The rewards of general system analysis come typically in the form of new

problems rather than in the form of solutions to old ones. The rewards are

none the less real, since the formulation of new problems usually involves a

sharpening of newly found concepts and a redirection of intellectual energy

to new, sometimes virginal, domains.

Specifically, the trend in general systems theory centered around exploiting

the notion of mathematical isomorphism in the interest of creating a purely

logico-structural, content-free taxonomy of systems has yielded rich intellec-

tual dividends. This approach blends, on the one side, with that of the pure

mathematician and, on the other, with the builder of mathematical models

abstracted from specific content. The central goal of this approach, however,

is that of investigating the consequences of the classification of systems

induced by mathematical isomorphisms. In a way, the method provides the

antidote to the fractionation of science generated by increasing specialization,

and to the “exhaustion of intellectual capital” against which Alfred North

Whitehead warned almost half a century ago.
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PROBLEMS

2 .1 . Consider the pair of differential equations

x = ax + by + h, y = cx + dy + k.

Assign all possible combinations of signs to the parameters, and examine the

resulting system for stability.

Under what conditions does an equilibrium exist?

Under what conditions is the equilibrium in the first quadrant?

2 .2 . Given y
= 1 — e~

ay
,
plot y against a.

2.3. A graph with 5 points and 6 links is constructed as follows. Six of the

10 pairs of points are selected at random and each pair is joined by 1 link.

What is the probability that the resulting graph is connected ?

2 .4 . A graph with 5 points is constructed as follows. A point is selected at

random. Two links issue from it, each of which terminates on any of the 5

points with equal probability. From each of the points so contacted, 2 links

issue again, terminating on any of the 5 points with equal probability. The

process continues until the number of links equals or exceeds 6. What is the

probability that the resulting graph is connected ?

2.5. A directed graph represents a dominance relation if for every pair of

points A, B, either A > B(A dominates B) or B > A but not both. How many
nonisometric graphs of 5 points are there ?

2 .6 . Show that, if a matrix representing a two-person zero-sum game has

several saddle points,

(a) the payoffs at all saddle points are equal

;

(b) if each player chooses a strategy containing a saddle point, then the

outcome is a saddle point.

2 .7 . Show that, if the game is not zero-sum, neither (a) nor (b) in Problem 2.6

is necessarily true.

2 .8 . Partition the directed graphs in Figure 2.5 on the basis of the isomorphic

relation. Determine the one-to-one correspondence between the two point

sets for each pair of isomorphic graphs.

2 .9 . A finite-state (a Mealy) machine is defined as a quintuple M =

(X,
Y

,
Z, /, g), where X is a finite nonempty set of stimuli, Y is a finite non-

empty set of responses, Z is a finite nonempty set of internal states, / is an

output function: y =f(x, z), and g is a transition (or next-state) function:

z' = g(x
,
z). Symbols xelje Y, z e Z, and z' eZ represent, respectively,

the present stimulus, response, internal state, and next internal state. Specify

the conditions under which machine M
1 = (Xl9 Yl9 Zl9fu g t ) is isomorphic

to machine M2 = (X2 ,
Y2 ,

Z2 ,/2 , g2).



V,

Figure 2.5. Examples of directed graphs (Problem 2.8).
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3.1. “MODERN” SCIENCE

At about the time of World War II, science developed a vast new exten-

sion, of which we see today only the beginning. Until that time the method

of science was essentially to take everything to pieces and to examine each

piece in isolation. A living organism was dissected to organs, these were

studied as collections of cells, and each cell was examined as a collection of

molecules. The endocrine system was studied through the reactions of each

gland, isolated as far as experimental technique allowed. The philosophers of

science tended to exalt this analytic approach as the uniquely “scientific”

method. With the method went such rules as “Vary only one factor at a

time.”

For two hundred years (after Newton) this method yielded such an abun-

dance of discoveries and advances that most workers felt little inclination to

complain; the biologists, however, were uneasy, feeling that something

78
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important was missing. Unfortunately, they had no rigorous language in

which to say what was missing; hence author after author tried to say, “The

whole has something not to be found in a collection of its parts,” but succeeded

only in convincing the already convinced. Then, in the 1930’s, general systems

theory arose, mostly through the work of Ludwig von Bertalanffy, who saw

not only that the study of parts (in “classic” science) must be supplemented

by the study of wholes, but also that there exists a science of wholes, with its

own laws, methods, logic, and mathematics.

Also working in the 1930’s, R. A. Fisher had appreciated how fundamentally

limited was the approach through analysis, taking one variable at a time.

Being compelled (professionally) to work with agricultural soils, he was

forced to insist, first, that the method of studying all the variables, one at a

time, would exhaust many lifetimes, and, second, that the method of examin-

ing the parts individually was fundamentally incapable of giving information

about the interactions between the variables.

Thus arose one of the basic contributions to the modern epistemology of

“the system.” It was based, it should be noted, not on the results of field

experiments but on getting clear, before an experiment was started
,
what

could give information about what. Fisher insisted, for instance, that a series

of plots all given nitrogenous fertilizer, together with a series all given

phosphates, could not provide information about what would happen if

the two were given together. (In soil, nonadditivity is so common and gross

that one must expect and prepare for it.) He defined “ interaction” so clearly,

and showed so well how to measure it, that by the time of World War II it

had become a routine ingredient in the analysis of variance.

The third major component of the modern epistemology of systems was

also developing at that time. The biologists had long been aware of the impor-

tance of two-way causation, when A affects what happens at B
,
and B affects

what happens at A. The basic relation of organism to environment shows just

this circularity. But the biologists had insufficient mathematical or logical

techniques for handling such a conceptually difficult process, and attempts to

treat the matter in plain language usually ended in confusion. Meanwhile,

however, the radio engineers, having discovered the tremendous potentialities

in “reaction” (feeding some of the output back to the input), were also

having great difficulties, for they too found such circular causal chains most

troublesome. Nyquist’s theorem [1], however, provided the basis for a

breakthrough; by World War II powerful techniques were available for

understanding not only how such circular systems behave, but also how a

variable can interact with its own past values, and for handling the problems

involved.

After World War II these separate understandings, and the technical

methods they had engendered, became generally known. They were at once
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seen to have applications far wider than to soil and radio
;
the modern science

of systems had arrived. The development of the large, general-purpose com-

puter, coming at the same time, reinforced the change, partly by making
systems study practical, and partly by encouraging everyone to think about

systems as changing by small discrete steps, a method that makes many of

these matters much easier conceptually.

Today, science is developing along lines not included in the “classic”

form. The classic method, as stated previously, dealt essentially with parts

alone: the difficulties of “interaction” were evaded. Gases were studied in

the “perfect” form (notice the adjective!), in which the molecules were so

far apart that the chance of two colliding was infinitesimal. A ray of light

was regarded as unaffected by the simultaneous transmission of another ray

of light. The force which one electric charge exerted on another was unaffected

by the presence of a third.

Even when classic science seemed to be dealing with a complex interacting

system, its successes were achieved almost entirely with the “linear” type.

An example is the surface of a lake, disturbed by, say, the splashes from a

few thrown pebbles. Now, although the position of each water atom on the

surface depends, as the circles of ripples spread, on all the circles, each set of

circles spreads in its own way, riding over the others as if they were not there.

In other words, the patterns set up by the pebbles do not interact. This

illustrates the essential meaning of the widely used principle of superposition.

“Modern” science, however, is characterized by an uninhibited advance

into the nonlinear. It not merely studies systems with high internal interaction

but also confidently tackles systems in which it is the interactions themselves

that are of interest. To the biologist (such as I am, coming from medicine)

the change is immense. Whereas in the past the only resource for dealing with

biological systems was to try to minimize the interactions between the parts,

thereby often losing the real focus of interest, today nothing but time and

money prevent us from treating real biological systems in all their complexity

and richness.

3.2. INFORMATION IN A SYSTEM

What, then, of the future trend of systems theory ? The subject has greatly

expanded since its inception a generation ago. Today no one can be expert

in all its branches, and I have had to specialize. What has attracted me has

been a growing conviction that one of the key aspects of the subject is the

quantities of information that are involved in the questions and operations

variously considered.
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My interest in this aspect dates from about 1954, when, having made the

Homeostat [2, 3], I tried to advance to an adapting network. Taking 100

double triodes, I arranged each so that it could accept three inputs and give

two outputs, and so that they could be joined freely into a net, either of

planned connections or at random. I spent the next two years in deepening

frustration, as I totally failed to grasp either what the net was doing or what

I, in principle, could get it to do. I ended, however, with a deep conviction

that the major factor in my defeat was that the quantities of communication

(from machine to me as I observed it, or from me to machine as I controlled

it) were impossibly large. The question “ How large ? ” leads to a whole branch

of science (in communication theory) that I am still developing. Since then, all

my experience has confirmed my impression, so I will now outline this trend

in systems theory, as I see it at present.

3.3. SETS AND SYSTEMS

The application of communication theory to these topics has been greatly

facilitated by the gradual realization (perhaps due to our having the digital

computer always in our thoughts) that “machines” and other dynamic

systems may perfectly well be regarded as going in small discrete steps.

Though such variables as position or color may be thought of as naturally

continuous, experience has shown that the application of communication

theory to continuous variables is severely hampered by technical mathe-

matical difficulties—a stimulating challenge to those who like mathematics

for its own sake, but a heavy drag on those who just want to use it as a tool.

When the variables are discrete, however, communication becomes conceptu-

ally very simple, essentially just counting, a branch of combinatorics. Further-

more, in this discrete form the whole theory can be joined to the theory of

sets, especially in the form originally developed by the Bourbaki [4] group,

and so linked to the whole body of rigorous mathematics. As such sets need

not be restricted to real numbers (but might be the meteorologist’s five types

of cloud, or the three types of earned income, or the several strains of the

influenza virus), the biologist is at last free to use the variables that are

meaningful to him [5].

The Bourbaki school has shown abundantly how every complex relation-

ship may be regarded (rigorously) as corresponding to some subset of a

product (Cartesian) space. As a subset, the relationship represents a selection

and thus joins precisely to information theory, which concerns itself largely

with measuring the intensities of selections. In Shannon’s [6] original formula-

tion the product space had two dimensions: x the sender, and y the receiver;
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and any point (x, y) in it would correspond to
44
Message x sent and message

y received.” But Shannon’s methods generalize readily and naturally to n

dimensions [7-12], and I shall use this form here.

3.4. w-VARIABLE INFORMATION

The basic idea of the method is that, with a system of n variables, Xu X2 ,

..., Xn ,
the entropy of each one, H(X

t), can be measured directly on that

variable without reference to the others. Ifwe also know the conjoint behavior

(of the whole, as a vector), we can estimate the entropy of the system,

H(XU X2 , ..., Xn). Then the total transmission between the n variables is

defined by

T(X! : JT2 : . . . :XJ = H(X1 ) + --- + H(Xn)
- H(XU . .

.

,

Xn).

This total transmission, a measure of the departure of the whole from internal

statistical (probabilistic) independence, can then be analyzed quantitatively

in various ways so as to throw light on the various internal relations between

the parts.

In biological systems, the probabilities on which entropy was originally

defined are often difficult to define or even of doubtful existence.
44 The prob-

ability that this starling will emit a call within the next 10 seconds”—how,

operationally, can one decide whether the value should be 0.13 or 0.28?

I have found, however, that one can often advantageously use the rather

different basis of asking to what the entropy (or transmission) would rise if

the extreme should happen, and all the probabilities be equal. The arithmetic

in the two cases is identical, but whereas the first rests on a highly question-

able assumption the second asks a straight question having a straight answer.

We compute, in other words, not the channel capacity but what may be

called the least safe capacity.

The latter quantity, though seldom of interest in engineering and infre-

quently mentioned in that field, is likely to be of considerable and practical

importance in biological cases. An example may make the point clear.

Suppose that a channel is to be able to carry four messages, one of which

is much commoner (94%) than the other three (3, 2, and 1 %). If the messages

occur independently in time, the entropy is 0.415 bit, and a channel of this

capacity will suffice, provided averaging is allowed. But suppose that the

situation is one in which averaging, with its consequent delay, is not tolerable.

Suppose, for instance, that the sender is a lighthousekeeper, some miles out

from port, who has to transmit, as each ship arrives, one of these four

messages:
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Pilot required (probability 0.94)

Customs required ( „ 0.03)

Health inspector required ( ,, 0.02)

Police required ( ,, 0.01)

In such a case the inequalities of the probabilities, though lowering the

entropy, do nothing to help the sender; at every event he must be (equally)

ready for all four, and his least safe capacity is 2.00 bits. Thus, in many
biological cases, this quantity may well be more realistic than the originally

defined capacity.

3.5. INTERACTION AND INFORMATION

This approach enables us to come to grips with the fundamental question:

When an experimenter is trying either to study a system or to control it, how
much will the informational quantities be increased if the system is changed

from one having no interaction between its parts to one having full inter-

action between them ?

What will happen cannot be predicted, for this will depend on the particular

system, but the least safe capacity can be found unambiguously. Suppose

that the system has n variables (any of which may itself be a vector without

disturbing the argument), and suppose also, for simplicity, that each variable

can take k values. (Inequalities of the k's is easily allowed for, but would be

merely distracting here.) Consider first the set of systems with no interactions

between the variables. In this set, the property holding for each variable

(e.g., temperature is between 35 and 37°C) is not conditional on the values

of the other variables. Hence the subset, corresponding to the relation

embodied by the system, is some rectangular subset. (It may be only a single

point if the system is defined very strictly, or a large region if defined broadly.)

The number of such rectangular subsets can easily be reckoned: each variable

can provide 2
k
subsets of its values, and n of such variables provide (2

k
)
n

,

that is, 2
kn

. For the selection, or identification, of one of them, the least

safe capacity required is its logarithm to base 2, that is, kn bits.

When interaction between the parts is allowed without restriction, the

system may embody a relation corresponding to any subset of the space (its

size also depending on its strictness of definition). As the whole space has kn

points, its subsets number 2
(/c

"
}

,
and the selection, or identification, of one of

them now requires (as least safe capacity) kn
bits.

Since k must be 2 or larger, these two quantities, kn and kn
,
become

enormously different when n is large (as is the case in the really interesting

systems theory!) As an example, let k be only 2 and let n = 1000 (small in

comparison with a slum of 10,000 persons, or a computer of 10
6 components,
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or a brain of 10
10

neurons). Without interaction, the least safe capacity

(between experimenter and system) is 2000 bits, an easily manageable quantity.

With interaction between the parts, however, it is 2
1000

,
that is, 10

3O ° bits,

larger by 297 orders of magnitude

!

Clearly we may say that allowing interaction causes an enormous increase

in the magnitude of the least safe capacity. And we can see that, when full

interaction is occurring, when the system is a “whole” in the fullest sense,

no mere doubling or trebling of the resources, or even a multiplying by a

millionfold, is likely to be of any use.

3.6. THE QUANTAL LIMIT

The number lO
300

is likely to be dismissed as fantastic, but I suggest that

we examine it seriously. A useful fixed point, by which we can keep some

sense of proportion, has been given by Bremermann [13]. He has shown that,

because of the fundamental quantal coarseness of matter, nothing made of

matter, whether as computer or brain, can transmit (or process) information

at a rate faster than 10
47

bits per gram per second. Take tons of computer

and centuries of time, and you add only a few units to the exponent; therefore

about 1070 bits is an undoubted bound to the quantities that are physically

achievable.

Again, 10
70

bits is likely to seem, at first glance, enough to satisfy the most

ambitious systemist. A few trials, however, soon show that the number is,

in fact, seriously restrictive when we deal with systems that are of the size

commonly considered today and in which the interaction is really high. Here

is one of many possible examples. Recent work has shown that the retina

does not just send a point-to-point copy of the light-picture to the brain.

Active processes go on in the retinal nerve net, so that what is reported to the

brain about one point is highly conditional on (is a function of) what is

happening at other points. Physiologists working on this “integrative”

aspect no longer ask, “How does this point react to light?” but rather

inquire, “ How does this system (the retina) react?” By how much have they

increased the amount of information that must come to them if they are to

answer the question ? The crudest calculation is sufficient to make the situa-

tion clear. Suppose that the retina has a million cells, each of which (for

simplicity) is either active or inactive. Suppose, again for simplicity, that the

end event is simply whether or not some cell in the cortex fires. To be able

to say, “I now know how this system behaves,” is to be able to say which of

the 21, 000,000
states of the retina lead to firing and which do not. The least

safe capacity requires, without further special conditions, a 1-bit transmission

for each of these states. Thus the physiologist’s first attempt to deal with
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the retina as a whole implies, prima facie ,
an obligation to transmit io

300
’
000

bits, a quantity far beyond the quantal limit.

This example, in no way atypical, shows how the informational demand
can increase explosively when interaction is allowed to enter freely, that is,

when we become a systemist wholeheartedly. Systems theory is essentially a

demand that we treat systems as wholes, composed of related parts, between

which interaction occurs to a major degree. No one supports this demand
more willingly than I do, but the examples given above show that, having

won our battle for the admission of interaction, we must now learn modera-

tion.

But what does “ moderation ” mean here ? The huge numbers have occurred

primarily because we took the cases in which the interaction is extreme:

every variable depended on (or entered into a function with) every other

variable. Although this situation is obviously central in any theory of systems,

and we should know as much about it as possible, it is rare in our terrestrial

systems. A cell in the retina is acted on by some of its neighbors, but not

immediately by every other retinal cell. In a society, not everybody com-

municates with, or is affected directly by, everybody else. In an oil refinery,

not every variable is a direct function of every other variable. Systems theory,

having broken away successfully from the extreme “classic” attempt to

treat the whole as consisting of isolated parts, cannot go to the other extreme,

in which the interactions are total, without exceeding the quantal limit. The
future of systems theory, therefore, seems to lie in the study of systems that

are sufficiently connected to be real systems yet by no means totally connected.

If this thesis is granted, it follows that, as the difficulty (with complex

systems) is essentially quantitative, the further studies must also be essentially

quantitative. In other words, we must get to know more about these “ quan-

tities of information” in complex systems. To me, this is the outstanding

need of general systems theory for the next decade.

What more is there to know? I will now give some examples, mostly of

recent development, to illustrate some of the various lines of research and

development possible.

3.7. INFORMATIONAL REQUIREMENTS FOR COORDINATION

It has been shown [14] that any well-defined coordination (e.g., among
the limbs of a tightrope walker, among the aircraft around an airport, among
the fingers of a pianist) necessarily defines a least safe capacity between the

parts involved. The basic idea is simply that the “coordination” of parts

implies that their behaviors must deviate from statistical (probabilistic)

independence: the deviation then provides the datum from which entropies,

transmissions, and interactions can be computed.
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The numerical quantities obtained may be of interest in many ways, often

not so much for the numbers themselves as for the light they shed on some

more general aspect. Thus one result, due to a suggestion by David Walter,

is a demonstration that the amount of communication required for coordina-

ting a number of parts does not necessarily increase if the number of parts

increases. More parts may, in fact, require less communication. Here is an

example to make the matter clear.

Let us suppose that the parts are vehicles on Jupiter, and that the com-

municational aspect is the dominating technical difficulty. Three sites on

Jupiter are involved, such that one of them will have to be visited by a

vehicle (but which of the three sites is not yet known). When a vehicle goes

to the specified site, any other vehicles available must go to the other sites,

but not two to the same site. (Which vehicle goes to the specified site does

not matter.) The conditions can be met by one, two, or three vehicles: which

number is least demanding in the total quantity of communication ?

When there is only one vehicle, only the site, selected as 1 from 3, has to

be transmitted, and log2 3 (= 1.585 bits) is the least safe capacity. Perhaps

it is clearer (especially in the subsequent cases) to compute the transmission

between S, the site selected, and X, the site visited by the (single) vehicle.

Label the three sites a, b , and c. Only three combinations satisfy the con-

ditions :

O, x> = <a, ay, <b, b>, <c, c>.

Then H(S) = H(X) = MS, X) = Iog2 3 = 1.585 bits and

T(S : X) = 1.585 bits.

When there are three vehicles, the transmission is concerned entirely with

securing the 1 : 1 distribution (for that ensures that the site will be visited).

The combinations that satisfy the conditions are the 18 for each value of S

with a permutation of a
,

Z?, c. Call the vehicles Xl9 X2 ,
X3 . Each, as a variable,

is able to take any of the values a
,
b

,
c. Then H(S) = H(X

x )
= H(X2)

=

H(X 3) = H(6, 6, 6) = log 2 3 = 1.585 bits. H(S, X l9 X2 ,
X3)

= log2 18 = 1

+ 2 log2 3. Hence

T(S : Xx : X2 : X3) = 2.170 bits.

The two extra vehicles have raised the communicational needs by 0.585 bit.

When there are two vehicles, the combinations permitted are these 12:

<a, a , b} <b
,
b

9 a> <c, c, a>

<6?, a, c) <&, b
,
c> <c, c

,
by

< 1a
,
b 9 ay (b

9
a

,
by <c, a, c>

<a, c, ay <Z?, c, by <c, b , c>

O, xl9 x2y



Systems and Their Informational Measures 87

H(S) = H(Xx )
= H(X 2)

= log2 3 = 1.585 bits; H(S, Xu X2)
= log2 12 = 2

+ log 2 3. Hence

T(S :X1 :X 2) = l.nO bits,

less than either of the others. Thus the plausible “ Send the fewest vehicles

since this must imply the lowest communicational demand ” is wrong.

3.8. THE NEED FOR SYMBOLISM

The translation of these abstract ideas into actual practical details (e.g.,

verbal instructions to the drivers of the vehicles, radio signals to their elec-

tronic controls) is part of the general topic of “coding.” In this regard,

another study of coordination has given an interesting sidelight on the need

for symbolic, rather than actual, manipulation of variables.

Consider four variables

—

Xt ,
X2 ,

X 3 ,
X4—each of which may, if un-

restricted, take any of the four values a
,
b, c, d, but which are constrained

so that no two variables take the same value. As H(Xx )
= 2 bits, and

H(XU X2i X 3 ,
X4)

= log2 24, therefore

T(Xt
:X2 :X 3 : X4)

= 3.415 bits.

Such a total may be partitioned in many ways, and each one will correspond

to some method of achieving the coordination. Thus the identity [12]

T(X, :X2 :X 3 : X4) = T(Xt : X 2) + T(X1X2 : X3) + T{X,X2X 3 : X4)

corresponds to the method by which Xi and X2 select their values in relation

to one another while ignoring those of X 3 and X4 ;
then X 3 ,

knowing the

values taken by X1
and X2 ,

selects its value appropriately; and finally X4 ,

knowing the values of the other three, selects its own.

Another way, the one that interests us here, operates through the identity

[
12 ]

T(X x :X2 :X 3 : X4) = T(X t : X2) + T(X 3 : Z4) + T(X,X2 : X 3 X4\

This would correspond to an arrangement in which X1 and X2 mutually

adjust their values (ignoring X 3 and X4), while independently (perhaps

simultaneously) X 3 and X4 make their adjustments (ignoring X1 and X2 ).

The third term requires also an adjustment of the pair (vector) XiX2 to the

pair X 3 X4 ,
while doing nothing to affect the adjustments within each pair.

The actual quantities can readily be found to be (respectively)

3.415 = 0.415 + 0.415 + 2.585,
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stating that the transmission between, say, X1 and X2 need not exceed 0.415

bit if the right code is used. At the first attempts to find a suitable code, all

demanded more. Thus, if X 3 and X4 have chosen b and c, then X1 and X2

apparently have to use the channel

Value of X2

d
^1 a 0 1

a d

Value of Xx

whose use demands 1 bit (per event).

Eventually a coding (i.e., a practical method of acting) is found that

requires only the 0.415 bit, but it has a peculiar requirement: the values of

X
1
and X2 in the channel must come from a different set from those used in

T(X 3 : X4). In other words, X 1 and X2 must be coded into some arbitrary

set (e.g., p , q ,
r, s) that will only later be translated into the actual a, b

,
c, d.

Then X t
and X2 can use the channel

1110
110 1

10 11
0 111

p q r s

Value of X
x

whose capacity is just the 0.415 bit (per event) required. (One is reminded

here of the detailed planning that occurred before the landings in Normandy,

when the provisional plans used such symbolic dates as D-day, D-plus 3,

. .
.

,

with the real value of
46 D ” left conditional on other plans being adjusted

elsewhere.) The partition asserts that the two channels, each of capacity

0.415 bit, must act independently if the whole coordination is to be achieved

with full efficiency. If the two channels try to work with the real, final events,

they will have events in common and cannot be independent. Thus the use

of symbols is a necessity.

y

Value of X2

r

q

P

3.9. INFORMATION AND REGULATORS

Information theory may also come to play a central role in the theory of

control and regulation. This is the hard core of system theory, for here occur

the problems that demand real skill, not mere verbal plausibility. In regard
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to regulation, Conant [15] has proved the fundamental theorem (super-

seding the “law of requisite variety”) that the capacity of any device or

system as a regulator cannot exceed its capacity as a transmitter of informa-

tion. The relation between regulation and transmission was proved by him,

in fact, to be not just possible but fundamental. Here again, information

theory is used not just to make measurements, but also to give a deeper

insight into the nature of the process. Thus Conant has shown that the error-

controlled regulator, often mistakenly thought to be the only type, is funda-

mentally distinct from the cause-controlled regulator and basically inferior

to it (though often technically easier to make).

3.10. INFORMATION REQUIREMENTS OF DESIGN

Even within the design of a single system (when it becomes really complex)

the informational point of view may well provide valuable strategic guidance.

Consider, for instance, the very general case in which a designer is asked to

design a system so that its output is some assigned function of its input.

Usually the request comes in one form (e.g., construct a radar system of

such-and-such sensitivity, costing not more than x dollars), and the designer

translates this form into one on a drawing board, strewn with transistors,

wires, and other components.

The whole situation may then be represented by a diagram like that in

Figure 3.1. It looks familiar enough, but here I wish to focus attention on

channel C, from designer to system, rather than on the more usual channel

from X to Y. Certainly C is a channel (in any sufficiently well-defined case.)

“ Being a good designer ” implies that he embodies a correspondence between

Xi

Xo

Figure 3.1. The design of a system.
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the set of systems demanded of him and the set of drawings on his board.

Briefly, he receives demands and emits drawings. His set of “ messages sent”

is the set of demands that may (professionally) be made on him. His set of

“messages received” is the set of circuits that may appear on his board. In

this process of translation we can identify, conceptually at least, all the usual

features of transmission : entropy, noise, equivocation, error-correcting

methods, and so on. Of special interest will be the channel’s capacity, for

this quantity reflects, for any act of design, how much information processing

by the designer is implied by the translation. (Numerical values for the

probabilities may well be unavailable, but here again the least safe capacity

provides an interesting, perhaps a surprising, insight.)

Such an insight is given if we ask how the capacity required in channel C
is related to the capacity in the channel from X to Y. We may start by noticing

that the diagram in Figure 3.1 is highly misleading in one important aspect,

for it suggests that input and output, X and Y, will enter into the matter

symmetrically. This suggestion is grossly wrong. Channel C has as its set of

“ messages received ” the set of functions from which is selected the final

“ message ” F, when Y equals the required F(X). If the set of “ messages sent
”

(the set of demands that might be made of the designer) is as large, then the

least safe capacity of C is the logarithm of their number. Now the number of

functions, from a domain of d elements to a range of r elements, is r
d

;
and

we see at once that the dependences on d and r are very different. The main

fact here is that, when both d and r are greater than small integers, d is a

far more powerful increaser (of the number of functions, and therefore of

the work to be done) than r.

To be definite, suppose that the designer wishes to set up an air-traffic

control. Information may come in from, say, 1000 variables; suppose

that the instructions go out to as many. Take the simplest case, in which

each variable has only two values. Then d and r are both 2
1000

, and the

number of functions from which the channel C must choose is this number

raised to its own power; then the logarithm gives the required least safe capa-

city, which proves to be approximately lO
300

bits. (Again the quantity has

gone far beyond the quantal limits.)

Next suppose, as an interesting comparison, that the output Y, instead of

having 2
1000

possible values, is simplified to the extreme of having only 2:

by how much does this lessen the designer’s work? We now require the log-

arithm of 2
(21000)

,
which is (approximately) lO

300
,
making practically no

difference. Thus, when a designer attempts to design (i. e., give a particular

form to the function F) a system in which all the parts interact fully, complexity

at the outputs can often be ignored: it is complexity at the inputs of the

system that is to be feared.
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3.11. SUMMARY

These examples may help to justify the thesis of this chapter: that when the

systemist tackles really complex systems, he may find that he is unwittingly

trying to transmit, either through his computer or through his own brain,

quantities of information that are vastly beyond anything physically realiz-

able. At the time of writing, our knowledge of these quantities is cripplingly

insufficient. Hence one trend of major importance in systems theory over the

next decade must be the growing enrichment of our knowledge in this direc-

tion.

PROBLEMS

3.1. A neuron is firing at every 100 msec, almost always, but on 10% of the

occasions it does not fire. If there are no constraints holding from event to

event,

(a) how much information is carried per pulse ?

(b) how much is carried per gap ?

(c) why is each gap carrying more information than each pulse?

3.2. Of three variables, A has two possible values, B has four, and C has eight.

What are the maximal numerical values, in bits, of:

(a) H(B); (b) H(B, C); (c) H(A
,
B, C); (d) HC(A); (e) HB(A ,

C); (f) HAB(C);

(g) T(B : C); (h) T(A
,
B : C); (i) TA(B : C); (j) T(A : B : C); (k) (the

absolute magnitude of) Q(A : B : C) ?

3.3. An array of 1000 lamps presents a “ picture ” by each lamp being either

lit or unlit.

(a) How many “pictures” are possible?

(b) If a “pattern” is some subset of the set of all possible pictures, how

many “patterns” are possible? (Express the number as 10*).

If one pattern is to be selected or specified (from the set of all patterns),

what is the least safe capacity required (in bits per selection of pattern) ?

3.4. Over the n variables, A, B, N, it has been found that

T(A : B : . . . : N) = 0.

What are the main consequences in:

(a) the entropies H\ (b) the transmissions T; (c) the interactions Q1
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3.5. Functions with repeated arguments. Nominally distinct variables may be

forced to become equal (as a copper wire between two points forces the

potentials at these points to be equal). Simplify the following expressions:

(a) H(A, A, B, . . .); (b) Ha(A); (c) Ha(A, B, . . .); (d) T(A : A);

(e) T(A : A : B : .); (f) T(A, B : A, C); (g) Ta(A : B);

(h) Ta(A:B:C:...); (i)Q(A:A:B); (j) Qa(A : B : C : . . .).

3.6. Adjudicate between the two arguments, (a) and (b), given below. They

refer to a simple desk calculator that will take two numbers of 8 digits

(denary) each and put their product into the main register of 16 digits.

(a) There is a loss of information on going from the two factors to the

product, for (e.g.) 12 is given by 3 x 4, 4 x 3, 6 x 2, and others.

(b) There is no loss, for each wheel in one factor, with 10 positions, can

convey log2 10 bits, that is, 3.32 bits. All 8 convey 8 times this, that is,

26.58 bits, and the two input registers make the total 53.15 bits. But the out-

put register has 16 x log2 10, which is the same quantity.

3.7. Draw a 27-celled frequency table to represent three variables, A, B, C,

each of which can take three values. Insert numbers (frequencies) to demon-

strate that it is possible for the case to arise in which T(A : B), T(B : C),

and T(A : C) are all zero, but Q(A : B : C) is not zero.

3.8. What single transmission term T* will make true the identity

H{X) 4- H{Z) = T{X : f) + T(7:Z) + HY(X ,
Z) 4- T* ?

3.9. What single term Y will make true the identity

T(A : B ; C ; D ; E ; F) = T(A : B, C : 2), E, F) + T(B : C)

4- T(D : E) + T(D : F) 4- T(E : F) + Y ?

3.10. What single term Y will make true the identity (in 2n variables)

T(X i
Xn ') = T(X t :...:Xn)

+ YT(Xl,...,Xn :X i
')+Y?

i

3.11. A ballet of 18 persons consists of a principal trio, who dance their

steps, and five other trios who simply copy the movements of the principal

trio. Considering the 18 variables of position, Xu . .
.

,

X18 ,
what can be said

of the highest-order interaction, Q{X
1 : . . . : Xl8)l

3.12. “ Broadcasting ” may be regarded as an operation in which one variable,

A say, forces others (B, C, . .
.

,

N) always to take A’s value. When this is so,

find, in terms of H(A ), the values of:

(a) H(B); (b) H(A, B, , .
. ,
N); (c) T(A : B : . . . : N); (d) Q(A : B : C);

(e) Q(A : B : . . . : N).
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3.13. Prove the identity

T(A : B : : G) = T(A : B) + T(A, B : C) + T(A, B, C : D)

+ ••• + T(A,...,F : G).

3.14. With the set {A, B, . .
.

,

G} — sd, prove the identity

T(A, ...,G:Z)= y T(I : Z) + X Q{I

:

J : Z)
I e IJ e jrf

+ Z Q(I:J:K:Z)+ - +Q(A:...:G:Z).
IJKesf

3.15. Prove the identity

T(AU A 2 : Bu B2) = T(A
x : Bx ) + TAi(A 2 : Bx )

+ TBl (A i • B2 ) + TAlBl (A 2 : J52 ).

3.16. Prove the identity

Q(A : B : C : D) = T(A, B : C, D) - TA(B : D) - TB(A : C)

- TC(A : £) - Td(B : C).

3.17. Prove the identity

Q(A, B : 7 : Z) = Q(A : B : 7: Z) + 0(Z : 7: Z) + 0(5 : 7: Z).

3.18. Prove the identity

Q(A, B, . .
. ,

F, G : Y:Z)=Q(A: Y

:

Z) + QA(B : 7:Z)

+ Oib(C: r:Z) + --- + Qa ... f(G: 7:Z).

3.19. The error-controlled regulator shown in Figure 3.2, a machine with
input, behaves in accordance with the following equations (showing the

next states z' and r' in terms of the previous states z and r and the input or

signal x) :

z' = z + r - x, r' = r — 2z.

x

Figure 3.2. The error-controlled regulator (Problem 3.19).
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The output (value) of z at successive times was:

3

Time: 012 345 6789
z: 1 1 0 -1 2 0 -2 0 0 1

At t = 0, the value of R was 2. Deduce the sequence of values that x must

have taken (ignoring those at the ends), and so demonstrate that the error-

controlled feedback regulator is information conserving.

3.20. The effect, on T and £), of failing to make distinctions. Variable X is

able to take values xu . .
.

,

xk ;
Y can take values yu . .

.

,

ym . The k x m
frequency table has frequencies n tj

for the compound event (x i9 totaling

N
,
and showing transmission T(X : Y). Now let another table be formed

from it, by adding the frequencies for ym _ 1
and ym ,

as would happen if the

observer could not distinguish them. If the new table shows transmission

T(X

:

Y'), if X and the set {ym - l , ym} show transmission T*, and if these

last events have frequency N*, show that

iV*
T(X : YO = T(X : Y) —— T* (Conant [15])

3.21. Similarly show that, if there are three variables with ym _ t
and ym

again merged,

N*
Q(W: X: Y')= Q(W\X : Y) - — Q* (Conant [15])

3.22. It is well known that, if X and Y are statistically (probabilistically)

independent, the transmission T(X : Y) must be zero. Prove the converse.

(Conant [15])

3.23. If the set {A, B, . .
.

,

G} of arguments of Q(A : B : . . . : G) can be parti-

tioned into two sets such that all subsets of one are probabilistically indepen-

dent of all subsets of the other, then Q must be zero. Prove this statement or

provide a counterexample.

3.24. If a set of variables is such that no subset of stf can be increased in

size beyond k variables without including at least one variable that is wholly

independent of the others in the subset, then all interactions Q between

k + 1 or more variables must be zero. Prove this statement or provide a

counterexample.

3.25. Each of the four variables L1? L 2 ,
T 3 ,

and may take any of the

values -2, -1,0, +1, and +2. What is the least safe capacity, as

T(LX : L2 :L 3 :
L4),
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if the values are always to be so coordinated as to maintain

+L2 +L 3 + L 4 = 0?

3.26. A ganglion of 100 nerve cells provides the right-sized stimulus to a

certain muscle when just 15 of the nerve cells fire. ( Which 15 fire may be

varied widely by other factors or conditions.) What is the least safe capacity

within the ganglion that can ensure the restriction always to just some 15?

{Hint: 42.2 bits per event is much too large.)

3.27. An aerial circus team of 12 aircraft goes through maneuvers in which

the planes take all places in a 6 x 6 x 6 “cube” (each “cell” of 1-plane

size), except that (a) no 2 planes must try to occupy the same “cell,” and

(b) no 2 planes may be in the same line in the direction of flight (with 1 plane

in the other’s exhaust stream). What is the least safe capacity (in bits per

maneuver) required by this coordination ?

3.28. A certain centipede walks on rough ground: for safe ambulation its

100 legs must be coordinated. The rule is that the first 10 legs must move so

that always some 5 of them are down and the other 5 up. (The same rule

holds over the second 10, and so on.) The environment is likely to demand,

at various times, all the permissible variations.

Each leg has only the two positions, up and down. Each “ neural module ”

can transmit only 0.1 bit per stride. The nervous system has no other function

and is minimal in size. How many “neural modules” will the histologist

find in each ganglion (of the chain of 10)?

3.29. All 20,000 students on a campus want to go to the same vacation

resort, some one to be chosen from eight possibilities. If communication

between the students costs at least 0.02 cent per bit, what should be budgeted

for the cost of the coordination?

3.30. Six supporters of the football club are proposing to signal secret coded

instructions to the players on the field by each supporter having two cards,

a black (B) and a white (W), and showing, at various times, one of five code

signals

:

BWB WBB WBW BWW WBW
WBW WBB BWB WWB WBW

What is the least safe capacity between the supporters ?

3.31.

A certain species can produce 24 phonemes, by means of a vocal

apparatus of four muscles, each phoneme being produced by the successive

contractions of some three of the four muscles, in a particular order. Thus,

one phoneme is produced by the sequence
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+

+

+

3

4

Muscle
3

1

1 2 3

Time

with muscle 2 contracting first, then 4, and then 1. Let the 12 variables be

represented as X
t

j
,
which has the value 1 if muscle i contracted at time j

(i = 1, 2, 3, 4
;

7

= 1, 2, 3).

(a) How much transmission T(X i

1
: ... : XA \ X 2

\ .. .'. X^ 3
) is the least

safe capacity for this coordination?

(b) Analyze this total, algebraically and numerically, into parts that

distinguish, in some reasonable way, various types of “conduction” and

“ memory.”

3.32. A system of three variables, A, B, C, has “memory” in the sense that

its subsequent values, A\ B\ C', depend on the earlier ones, so that

T(A :B :C :A' :B': C)

is not zero. To what physical effects might the following algebraic forms

correspond

:

(a) T(A : A'); (b) T(A, B
,
C : A'); (c) T(B : A'); (d) T(A' : B' : C');

(e) T(A, B ,
C : A’, B\ C); (f) T(A ,

A' : B, B' : C, C'); (g) Tabc(A' : B' : C')?

3.33. Each fish in a shoal tends to move variously as morsels of food are

taken; hence a shoal tends to disperse, somewhat as molecules diffuse.

Obtain (at least to an order of magnitude) the quantity of communication

that must be used if the shoal is not to disperse.
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EDITOR’S COMMENTS

Although no preliminaries are essentially required for Chapter 4, readers

with a basic knowledge of computers will obtain far more benefit. For this

basic knowledge, the following books are recommended:

Leeds, H. D., and G. M. Weinberg, Computer Programming : Based on the IBM System/360.

New York: McGraw-Hill, 1970.

Hellerman, H., Digital Computer System Principles. New York: McGraw-Hill, 1967.

References [2] and [4] in this chapter, as well as the book

Boulding, K. E., The Image
,
Ann Arbor: University of Michigan Press, 1968.

are recommended as supplementary readings to Chapter 4.

4.1. THE COMPLEXITY OF THE WORLD

It isn’t what we don't know that gives us trouble
,
it's what we know that ain't so. Will

Rogers

Writing about general systems theory is like writing about unicorns. Even

after you eliminate all the people who have never heard of them and all the

98
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people who have heard of them but are not interested in the subject, you have

to contend with the people who do not believe that they exist.

One reason for believing in general systems theory is that it has a history.

There is an organization called the Society for General Systems Research,

which was founded in 1956 by some otherwise very respectable men of science.

Since that time it has acquired many members, most of them also respectable

and most of them probably agreeing that general systems theory exists.

About any more than that, however, there is an astounding lack of agree-

ment.

Disagreement among the members of the Society for General Systems

Research probably begins—but certainly does not end—over the interpreta-

tion of the words “ general systems theory.” There are two major schools,

according to which noun, “systems” or “theory,” the adjective “general”

is taken to modify. With this chapter, a new school comes to the surface, one

in which the adjective applies as well to the audience for whom the theory is

presented.

General systems theory is an attempt to aid the human mind in dealing

with a world which is too complex for that mind. It is true, as Robert Louis

Stevenson once said, that

The world is so full of a number of things,

I’m sure we should all be as happy as kings.

On the other hand, James Thurber, who—in spite of his writing about

unicorns—was much more of a realist than Robert Louis Stevenson, brought

these immortal lines out of the world of children by adding, “And we all

know how happy kings are.” How much we appreciate Thurber’s sentiment

when we are faced with the complexities of living our lives!

Yet in spite of this complexity, we manage to go on living, perhaps with a

bit more happiness than the average king. Moreover, we have managed to

find some spare time along the twisting road of history to build an intellectual

edifice which sparkles as a beacon of simple beauty amidst the fog of everyday

affairs. That edifice is science. General systems theory is seen by some as a

threat to that edifice, a regression to dark ages of mysticism and vitalism.

Before we can dispel these fears, we shall have to consider how the edifice of

science has been constructed, and why it has been so successful in bringing

order to our chaotic world.

4.2. MECHANICS, MECHANISMS, AND COMPUTING MACHINES

In order to understand the successes of science, we can do no better than

to examine physics—and particularly mechanics—for these sciences are often

taken to be ideal models. The beauty of the mechanical model of the world

was well expressed by Deutsch [1], who said that mechanism
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. . . implied the notion of a whole which was completely equal to the sum of its

parts; which could be run in reverse; and which would behave in exactly identical

fashion no matter how often these parts were disassembled and put together again,

and irrespective of the sequence in which the disassembling or reassembling would

take place. It implied consequently that the parts were never significantly modified

by each other, nor by their own past, and that each part once placed in its appropriate

position with its appropriate momentum, would stay exactly there and continue to

fulfill its completely and uniquely determined function.

Yet the beauty of this system is a bit dulled when we realize that mechanical

systems ordinarily have only a handful of identifiable parts—most often two,

but sometimes ten or perhaps even thirty or forty ifthey are highly constrained,

as are the parts of a bridge. For if there are too many parts, we may write

down equations which relate the behaviors of the different parts of the

system, but we cannot solve the equations, even by approximate methods.

High-speed computers have extended the range of mechanical systems whose

equations can be solved (approximately), but only by a relatively small

amount.

If the formal methods of mechanics are so limited, why is mechanics con-

sidered to be a model for the sciences? We must—if we are to have the

answer—consider not the formal methods but the informal ones by which

complex mechanical systems are reduced to simpler ones, for only then can

they be subjected to the working of the formal methods. Consider, for

example, Newton’s achievement in explaining the motions of the bodies in

the solar system. Rapoport [2], in speaking about this problem, pointed out,

“Fortunately for the success of the mechanistic method, the solar system

. . . constituted a special tractable case of several bodies in motion.”

Although Rapoport’s analysis is correct and pertinent as far as it goes, it

does not penetrate deeply enough into the heart of Newton’s success. The

solar system, in the first place, does not consist of “ several bodies in motion.”

We now know that there are thousands upon thousands of celestial bodies

in our solar system plus other matter not in “bodies.” Any analysis of

planetary motions, however, begins by ignoring most of these bodies

because they are “too small” to have a significant effect on the calculations.

Although this seems a natural step—so natural that textbooks on mech-

anics do not ordinarily mention it—it is a step which happens to work only in

very special circumstances. Yet any other circumstances are not consid-

ered proper systems for mechanists to think about.

Consider, for instance, the pineal body, a tiny piece of tissue in the brain.

Can physiologists ignore this in their attempts to understand the behavior

of the human body? Perhaps they can—the question is quite alive—and

perhaps they cannot; but in any case no physiologist would think of arguing

that, because the mass of the pineal body is small with respect to the mass of
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the brain, it can be ignored on that account. The DNA in a living cell is a

miniscule amount of the cell material, if measured according to mass; but

understanding of cellular biology would be impossible without considering

its role. The queen bee in a hive is only one of thousands of bees, and con-

stitutes only a small fraction of the total mass of the hive, but no ethologist

dare ignore her role in hive behavior.

Mechanics, then, is the study of those systems for which the approximations

of mechanics work successfully. It is strictly a matter of empirical evidence,

not of theory, that the human body cannot be understood by considering

only the gravitational attractions between its parts.

But how important is the step of ignoring “small” bodies—the asteroids,

comets, satellites, and other pieces of space flotsam—to the calculation of

planetary orbits ? Consider the equations describing a system with only two
objects. We must describe how each object behaves by itself, which gives us

two equations, or relationships, one for each object. We must consider how
the behavior of each body is related to that of the other, which gives us

another relationship. Finally, we must consider how things will behave if

neither of the bodies is present (the “field” equation), making four relation-

ships in all. In general, if we have n bodies, the number of relationships is 2".

For 10 bodies, this means about 1000 relationships (2
10 = 1024), and for

100,000 bodies, about lO
30,000

. Thus, by “ignoring small masses,” we reduce

the number of relationships from perhaps lO
30,000

to approximately 1000,

for 10 bodies. One thousand equations we might conceivably write down,
even if we could not solve them.

Now, we have just promised to speak to general audiences, and here we
find ourselves talking about solving a system of 1000 equations. But our
readers do not have to know how to solve such a system of equations; they

must understand only how much effort is involved.

Why are we interested in the amount of effort required to solve equations?

In Newton’s day, the impact of mechanics on thought was strong. Many
philosophers believed, with Laplace, that, given precise observations on the

position and velocity of every particle in the universe, one could calculate

the entire future of the universe. They realized, of course, that they would
need a large computing machine. But they lacked even the simplest computers.

How could they possibly put a measure on the required computation?

Only in our lifetime have real computers come into existence, and with

them philosophical thought has undergone a revolution. Anyone who doubts

that there has been a revolution should read the debate on teleology between
Rmenbluth, Wiener, and Bigelow, on the one hand, and Richard Taylor, on
the other. (The four articles of this debate may be found in Part V.A. of

Buckley [3].) Although this debate took place after World War II, Taylor, the

philosopher, was still able to advance arguments which today could be
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refuted by any undergraduate student in computer science. One aspect of this

revolution, of course, was the concern with quantifying computational com-

plexity and power.

Even now the question of quantifying complexity is not a closed one, but

for our arguments we do not need exact measures. Instead, we merely want

to estimate how the amount of computation increases as the size of the

problem increases. Experience has shown that, unless some simplifications

can be made, the amount of computation involved increases at least as fast

as the square of the number of equations. Thus, if we double the number of

equations, we will have to find a computer four times as powerful to solve

them in the same amount of time. Naturally, the time often goes up faster

than this, particularly if some technical difficulty arises, such as a decrease in

the precision of results. For our present arguments, however, we may con-

servatively use the square law of computation to estimate how much more

computing is required for one set of equations than for another.

In practice, then, there is an upper limit to the size of the system of equa-

tions which can be solved. Clearly, K)
30 ’ 000 equations are far beyond that

limit. And in Newton’s day, without computers at all, the practical limit of

computations was well below 1000 second-order differential equations,

especially since Newton had just invented differential equations. Newton

needed all the simplifying assumptions—explicit or implicit—he could get

away with, just as do physiologists and psychologists today. We may note,

in this regard, that old-time physicists now say that the “youngsters” no

longer do “real physics.” because they use the computer to solve large sets

of equations, rather than applying physical “intuition” to reduce the equa-

tions to a form that can be solved with a pencil on the back of the proverbial

envelope.

4.3. THE SIMPLIFICATION OF SCIENCE AND THE SCIENCE
OF SIMPLIFICATION

/ do not know how it is with you, butfor myselfIgenerally give up at the outset. The simplest

problems which come up from day to day seem to me quite unanswerable as soon as I try to get

below the surface. Justice Learned Hand

Thinking about the practical problem of computation, then, can give us a

new point of view about what mechanics is, or what any science is. Practical

computation demands that implicit assumptions be brought out into the

open; hence it is no coincidence that computer programmers are attracted to

a systems theory which devotes itself to studying how people make assump-

tions. An excellent example of the kind of experience that computing people

have relates to another assumption already made in our reduction of the solar

system problem to 1000 equations.
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We have assumed, as one always assumes in mechanics, that only certain

kinds of interactions are important. In this case, the only important inter-

action was gravitational, which meant that each relationship gave only one

equation. How do we know that only gravitational attraction is important

in this system? How do we know that we can ignore magnetic effects, electro-

static forces, light pressure, force of personality, and so forth? One answer

is that this would not be a problem in mechanics if those other forces were

important, but that is merely begging the question. How do we know that it

is a problem in mechanics?

As before, we know that it is a problem in mechanics because when we

try these approximations they give us satisfactory answers—that is, answers

which match observational data. If we had a problem for which they did not

work, it would never make its way into the mechanics textbooks. Our prac-

tical computing example of this quandary is the calculations that were made

of the orbit of the Echo satellite, which was a large, inflated Mylar sphere.

After a few months, it was found that the classical solution of the gravitational

equations was not doing a satisfactory job of predicting Echo’s orbit. After

much perplexing labor, the programmers realized that Echo, because of its

small density, was much larger than any “normal” solar body of the same

mass. Consequently, the pressure of the sun’s light radiating on its surface

could not be implicitly ignored, as it is in all “ ordinary” orbital calculations.

No, mechanics does not tell us which systems are “mechanical.”

And yet, even having reduced—by applying deeply buried assumptions

—

the number of equations to 1000, we still may not be able to say that we have

solved a particular mechanical system. The equations may still prove intract-

able, even for a large computer. We need further simplifications. Newton

supplied an important one in his law of universal gravitation, which stated

that the force of attraction (F) between two (point) masses is given by the

equation

Gm1m2

where m
1

is the mass of the first body, m2 is the mass of the second, r12 is the

distance between them, and G is a universal constant. From the viewpoint of

simplification, this equation says more implicitly than explicitly, for it states

that no other equation is needed. It says, for instance, that the force of

attraction between two bodies is in no way dependent on the presence of a

third body, so that only pairs of bodies need be considered in turn and then

all of their effects may be added up.

A psychologist, for one, would be tickled pink if he could consider only

summed pair interactions. This simplification would mean that, to understand

the behavior of a family of three, he would study the behavior of the father

and mother together, the father and son together, and the mother and son
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together. When all three got together, their behavior could be predicted by

summing their pairwise behaviors. Unfortunately, it is only in mechanics and

a few other sciences that superposition of pairwise interactions can be suc-

cessful.

In the case of the solar system, pairwise superposition reduces 1000 equa-

tions to about 45—that being the number of ways in which 10 things can be

taken in pairs. From a computational point of view, we have reduced the size

of our task by the square of 1000/45—or about 400 times, at least. We might

be willing to stop at this point, although Newton (perhaps because he lacked

the computers that we have) went still further.

As it happens, the solar system has one body (the sun) whose mass is much

larger than any of the other masses—larger, in fact, than the mass of all of

the other bodies together. Because of this dominant mass, the pair equations

not involving the sun’s mass yield forces small enough to be ignored, at

least considering the accuracy of the data Newton was trying to explain.

(Discrepancies in this assumption led to the discovery of at least one planet

that Newton did not know.) This simplification, which is made possible by

the solar system, rather than by mechanics, reduces the number of equations

to about 10, instead of 45—giving an estimated 20 times reduction in

computation.

But Newton went even further, for he observed that the dominant mass

of the sun enabled him to consider each planet together with the sun as a

separate system from each of the others. Such a separation of a system into

noninteracting subsystems is an extremely important technique known to all

developed sciences—and to systems theorists as well. To understand the

power of such a separation, we need only recall the square law of computation.

If solving a system of n equations takes n 2 units of computation, n separate

single equations taken one at a time will require only n of the same units.

At this point, Newton stopped simplifying and solved the equations

analytically. He had actually made quite a few other simplifications, such as

his consideration of each of the solar bodies as a point mass. In each of these

cases, he and his contemporaries were generally more aware of—and more

concerned about—the simplifying assumptions than are many present-day

physics professors who lecture about Newton’s calculations. Consequently,

students find it hard to understand why Newton’s calculations of planetary

orbits is ranked as one of the highest achievements of the human mind.

But the general systems theorists understands. He understands because it

is his chosen task to understand the simplifying assumptions of a science

—

those assumptions which delimit its field of application and magnify its

power of prediction. He wants to go right to the beginning of the process by

which a scientist forms his models of the world, and to follow that process

just as far as it will help him in suggesting useful models for other sciences.
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And why is the general systems theorist interested in the simplifications

of science—in the science of simplifications? For exactly the same reason as

Newton. The systems theorist knows that the square law of computation puts

a limit on the power of any computing device, and he believes that the human
brain is in some sense a computing device. Thus he knows that, if we are to

survive in this complex world, we shall need all the help we can get. Newton

was a genius, but not because of the superior computational power of his

brain. Newton’s genius was, on the contrary, his ability to simplify, idealize,

and streamline the world so that it became, in some measure, tractable to

the brains of perfectly ordinary men. By studying the methods of simplifica-

tion which have succeeded and failed in the past, the general systems theorist

hopes to make the progress of human knowledge a little less dependent on

genius.

4.4. THE COMPUTER AS INTELLIGENCE AMPLIFIER

This new invention ofprinting has produced various effects of which Your Holiness cannot

be ignorant. If it has restored books and learning
,
it has also been the occasion of those sects

and schisms which daily appear. Men begin to call in question the present faith and tenets of

the Church; the laity read the Scriptures and pray in their vulgar tongue. Were this suffered

the common people might come to believe that there was not so much use of the clergy. If men

were persuaded that they could make their own way to God, and in their ordinary language as

well as Latin, the authority of the Mass would fall, which would be very prejudicious to our

ecclesiastical orders. The mysteries of religion must be kept in the hands of the priests.

Thomas Wolsey

Except for a very few scientists, the mysteries of mathematics are today

kept in the hands of the mathematicians. Mathematical reasoning is especially

often a roadblock to thinkers who wish to pursue what Anatol Rapoport is

fond of calling the “hard sciences,” as opposed to the “easy sciences” of

physics and chemistry. What a shame that the sciences which are hardest tend

to be peopled by workers whose mathematical talents are weakest! But

while we wait for a reform in our educational system to remedy this dis-

crepancy, cannot something be done by the general systems theorists to help

out? One possibility is to teach mathematics to adults, but this task is known

to be well-nigh impossible. Besides, the “soft scientists” who take time out

to learn mathematics usually discover that even the deepest mathematics is

inadequate to their problems—because their science is so hard.

Another approach is to use the digital computer as the “vulgar tongue”

—as a form of what Ashby calls “intelligence amplifier.” This is another

approach of our school of general systems theory. Not only is the computer

our model against which we can study the processes of science, but also it is

for us a conceptual model in its own right which can serve to clarify concepts
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that are used loosely in many different fields. For an extended example of

this kind of approach, we may turn to a simple system which Ashby proposed

as a pedagogic device and see what kinds of insights we can obtain when we

carry the analysis well beyond Ashby’s purposes. By using a very simple

computer implementation of this very simple system, we have been able to

throw light on such diverse and important systems theory concepts as state

spaces, closed versus open systems, stability, regulation, adaption, and particu-

larly the role of the observer in all of these matters. These examples, then,

should not be taken as the final or rigorous words on these subjects, but only

as instances of how explicit algorithmic models can provide the basis for a

kind of thinking of which even social scientists are capable.

State spaces. Imagine a machine which has the ability to store 100 digits,

with each digit ranging from 0 through 9. The state of this system can obvious-

ly be represented by writing down a particular 100-digit decimal number;

thus there are as many possible states as there are 100 digit numbers, or 10
100

states. One of the nice features of this machine as a conceptual device is the

ease with which we have generated a vast number of states.

For identification purposes, we may give each of the digits an index num-

ber, from 1 to 100. Thus the first digit is (symbolically) dx ;
the second, d2 ;

and so forth. The behavior of the machine is determined by choosing two of

its digits—say, d
{
and dj—multiplying them together, taking the last digit

of the product, and using it to replace dj . Thus, if the two digits chosen are

numbers 28 and 35, as shown in Figure 4.1, d2

8

= 3, dd5 = 7, 3 times 7 equals

21, and the low-order digit is 1; hence d35 takes on the value 1. The new

state then differs from the previous one in just this single position, d35 . As

soon as a new pair of digits is chosen, however, the state is changed again.

(In Figure 4.1 the chosen digits are 38 and 30, yielding the new state as

shown.) Thus, given enough time, the state of the system may differ from the

starting state in any number of positions.

The pair of index numbers which select the two digits to be multiplied may

be thought of as the inputs to the system. Given any initial state and any

sequence of input pairs, we can determine precisely what the final state will

be. Thus, although the system itself is not a state-determined system—since

it is not closed—its behavior is perfectly determined once its initial state and

input sequence are known. Because of this property, we can easily simulate

this system on a digital computer, that is, we can make the computer behave

as if it were this system. The computer stores 100 digits which record the

current state of the system, and the computer program causes successive

pairs of input numbers to be brought into the machine and used as indices to

update the state of the system.
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Figure 4.1. The structure of a simple machine.

Figure 4.2 shows a detailed output from a computer program which

simulates this system for teaching purposes. Notice that the number of digits

has in this case been limited to 40, using a parameter in the program which

permits examination of the effect of state-space size on behavior. Using this

detailed mode, the student can study the behavior of the system with as much
care as he likes, until he fully understands its workings. Eventually, however,

he comes to realize that this much detail is too much detail, and he begins to

explore various points of view—various representations—which simplify the

state space of the system. He has learned about kinematic graphs as repre-

sentations of small discrete systems, but for 10
lo ° states it is impossible for

him to use this approach. He is thus prepared for the following types of

arguments.

Consider first the state description, the set of 100 digits. If we had a much
simpler system with only 2 digits, we could represent each state by a pair of

numbers. On a plane, or two-dimensional surface, every point can be specified

uniquely by a pair of numbers—in fact, that is what we mean by a two-

dimensional surface. There is, of course, an infinity of ways of numbering the

points in a plane. We can specify the location of a house in a city by giving



I J |

< STATE >
I

5955365408135661806513766175920539182950
15 39 a 4

5955365408195661806513766175920539182900
15 20 A 4

5955365408195661806013766175920539182900
6 11 A 4

5955365408695661806013766175920539182900
21 24 a 4

5955365408695661806013766175920539182900
35 13 4 a

5955365408695661806013766175920539182900
39 1 4- A

0955365408695661806013766175920539182900
3 5 9 4 A

0955365408695661806013766175920539182900
37 11 + A

0955365408295661806013766175920539182900
39 10 I a

0955365400295661806013766175920539182900
3 7 5 4- a

0955665400295661806013766175920539182900
15 21 A 4

0955665400295661806063766175920539182900
1 17 A 4

0955665400295661006063766175920539182900
14 12 4 a

0955665400245661006063766175920539182900
24 34 A 4

0955665400245661006063766175920534182900
38 38 4

0955665400245661006063766175920534182100
35 5 4 A

0955665400245661006063766175920534182100
37 21 4 a

0955665400245661006023766175920534182100
35 6 4 A

0955665400245661006023766175920534182100
6 26 a 4

0955665400245661006023766675920534182100
6 29 A 4

0955665400245661006023766675420534182100

Figure 4.2. Sample output from computer simulation showing inputs and states for 20

cycles.

108
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the house number and the street or by giving the two cross streets. Either

system will do, but we can choose a standard one by common agreement. In

a similar way, we could set up a correspondence between the points on a

plane and the states of a two-variable system. If there are very many sub-

states for each dimension, some orderly arrangement of the kinematic graph

may appear to yield a continuous line for the behavior of the system. We
must remember, however, that, since the assignment of states to points is

quite arbitrary, the appearance of continuity may be entirely fortuitous.

There is no a priori reason why the behavior of a system should be repre-

sented by a continuous line in this manner.

In the case where the substates do indeed range continuously through

their possible values, the line representing the behavior of the system—the

passage from state to state—will be a continuous one. This representation

may be imagined to be a continuous form of the kinematic graph, with the

arrows from state to state being infinitesimally small. In the case of our

simple system, however, the substates would merely be 10 discrete points, or

100 points in all for a two-digit version. The lines of behavior would not be

continuous at all, but would jump back and forth to represent the discrete

changes in digit values. Thus we see that the representation of a system’s

behavior by a continuous line in this manner is strictly a special case, albeit

an extremely important one for mathematicians.

Just as we can represent a two-variable system’s behavior by a line in two-

dimensional space, the behavior of a three-variable system can be represented

by a line in three dimensions. Beyond three dimensions we cannot go with

actual lines; but since we use this method of representation to help us think

about systems, we can imagine such diagrams drawn in more than three

dimensions, even if we cannot visualize them. An n-dimensional space, in

which each “point” represents a state of a system, is called a state space of

the system; and any smaller space which represents some subset of the vari-

ables is termed a subspace or projection.

Thus, if some of the variables do not change, or are not important, at a

particular time, the signficant part of the behavior of the system can be repre-

sented in a subspace of the total state space of the system. For instance,

we may represent the behavior of an airplane by a projection of its three-

dimensional flight path onto a two-dimensional map of the surface of the

earth. The route we describe in this way can be thought of as the path of the

shadow of the airplane with the sun directly overhead, hence the use of the

term “projection” for such a description. Naturally, many different flight

paths will have the same shadow, or projection, so that some information

about the flight—namely, the altitude—is lost in this representation. But

projection is a useful representation in cases where the altitude is of no
interest.
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The state-space concept has the further advantage that we can expand a

state space if we wish to expand our viewpoint of the system to include new
variables. We merely add one new dimension for each new variable. Now the

original state space becomes a projection of the expanded one, so that all our

previous observations retain a meaningful interpretation.

One reason why we might wish to expand our view of a system is that the

line of behavior of a continuous “closed” system crosses itself in our state

space. Since we would like to have a state-determined system, as nearly as

as we can, we would not like to have such crossings, for a crossing represents

two different paths emanating from the same point, or two different successors

to the same state. A continuous system whose line of behavior intersects itself

cannot, therefore, be state determined. In a projection, on the other hand,

crossings do not imply a lack of state determinedness. An airplane spiraling

down for a landing may never return to the same spot in the air, but its shadow
may cross and recross itself. Thus, the line of behavior in one representation

may suggest to us that there are additional important dimensions to the state

description.

To represent our 100-digit system directly would require a 100-dimensional

state space. We may reduce the complexity of this representation in a number
of ways, including a projection onto some subspace, which in this case would

mean singling out a few of the digit positions for special attention. (We did

this implicitly in Figure 4.1.) Although such a projection reduces the amount
of information that we have to consider, it also tends to make the behavior

quite mysterious, whenever digits outside the projection are involved. Many
other transformations of our point of view suggest themselves. For instance,

we might divide up the digits into batches and characterize each batch by the

sum of the digits in it. To get a two-dimensional system, we might divide the

system into two parts of 50 digits each. Figure 4.3 shows a typical trajectory

of the system through this state space.

Chronological graphs. Although the state space is a useful concept for

talking about systems, it does not meet our needs for representing the

behavior of systems whose descriptions have more than a tiny number of

variables. The use of projections can help us in handling these larger systems,

but the state-space representation has a further disadvantage which is inde-

pendent of the number of variables. Although time is often of central impor-

tance, the line of behavior in state space does not show us how fast the

system is moving from state to state. To extend a previous example, the map
of air routes does not distinguish between jets and propeller planes which

travel the same routes.

One way of representing rates of behavior is to add another dimension to

any state space—the dimension of time. Because time—for all systems—moves
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Figure 4.3. Trajectory through left-right state space.

on in one direction at a rate of 1 second per second, it has a way of unraveling

twisted lines of behavior. More precisely, if time is one of the state variables,

the system can never be in the same state twice, since time moves in one

direction only. Thus lines of behavior in the time-expanded state space

can never cross. Cyclic behaviors, for instance, are no longer represented by

the same states being traversed repeatedly, but are represented by similar

states being traversed at different times.

Adding the time dimension not only solves the problem of representing

rates of behavior, but also enables us to use a simple technique for representing

mutivariable systems. If we take a projection of the state space into two
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dimensions, one of which is time, we get what is called a chronological graph

of the other dimension. This chronological graph is the trace of one of the

system’s variables as it changes through time. Consequently, by using one

graph for each variable, we can represent the total behavior of the system

from a particular point of view. Figure 4.4 shows the two chronological

graphs necessary to represent the behavior shown in Figure 4.3.

Chronological graphs are familiar to us in many forms, for they are the

most effective practical way of reducing complex behavior to tractable repre-

sentation. The electroencephalograph (EEG) is a chronological graph of the
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electrical potential at a particular point in the brain of a living animal. A
series of EEGs taken at different points in the brain gives us a more complete
representation of this complex system than any single one provides, but we
may still examine the individual EEGs with profit. Business indicators are

often presented in terms of chronological graphs—stock market index, levels

of retail inventories, wholesale price index, gross national product, and so

forth—which managements use to obtain a more comprehensive picture of
the economic system which is the environment of their enterprises. In turn,

each business itself may be pictured by its management largely through
chronological graphs of sales, inventories, production, and costs. To under-

stand the complex system which generates our weather, we use chronological

graphs of wind velocity, temperature, barometric pressure, and tides. The list

could be expanded endlessly.

Like any other representation, chronological graphs embody certain dis-

tortions. For instance, we may represent different systems variables on differ-

ent time scales—because they have widely varying rates of change—and then

overlook the relationship among some of the variables. Even if the time

scales are the same, however, the chronological graph forces us to separate

the representations of the different variables. In doing so, it may mislead us

into unjustified feelings about the independence of these variables.

Points of view. A set of variables is said to be independent if the behavior

of any one cannot be predicted in any manner from the behavior of any other

or the behavior of all of the others. To be independent, then, a variable would
have to represent a closed subsystem, so that truly independent variables do
not exist. Nevertheless, systems theorists always strive for the ideal of inde-

pendence in choosing their representations for systems, for independent vari-

ables may be studied singly without loss of precision. Where there are depen-

dencies, on the other hand, it may not be necessary to study all variables in

order to reach a certain degree of precision in prediction. From a system such

as the animal brain, thousands of different EEGs may be taken. In striving

for a workable viewpoint of the brain, we should like to eliminate all but a

few of these, from which the others, if necessary, could be inferred.

On the other hand, in reducing the number of variables we may be throwing
away information which we cannot reconstruct from the variables we retain.

The choice of system variables must always be a compromise between the

convenience of independence and the necessity for completeness. Take our
simple system as a sample. Our first view is certainly complete—we defined

it that way—but it is difficult to use for extracting any patterns of behavior.

Our division of the system into two halves and summing the digits of the

halves reduced the complexity of the system and permitted us to see a certain

trend in its behavior. On the other hand, we may have thrown away too much
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in this transformation. Whether we did or not depends, ultimately, on what

we want to know about the system.

Many other views might have been chosen. As a final illustration, suppose

that we had decided on a set of ten variables, each variable being the number

of a particular digit found in the state of the system. For instance, in the

initial state of Figure 4.2 there are four zeros, five l’s, two 2’s, three 3’s, one 4,

nine 5’s, six 6’s, two 7’s, three 8’s, and five 9’s. This state would be repre-

sented as

(4, 5, 2, 3, 1, 9, 6, 2, 3, 5)

With this viewpoint, a rather different picture of system behavior emerges.

Although we cannot represent the ten-dimensional state space, we can repre-

sent the entire view as a series of ten chronological graphs, as shown in Figure

4.5. Actually, these ten variables do not form an independent set, for we

observe that once nine of them have been determined the tenth is determined

uniquely.

If we had not synthesized this viewpoint, but rather had derived it from

some higher-level observations of the systems, we would have discovered the

nonindependence of the variables and made it into an inductive law of be-

havior for this system. We might have noticed that whatever else they tended

to do, as one variable went up, the others went down. Eventually, we might

have given the law a precise form, the form of a conservation law

;

The sum of the variables of this system is a constant (100).

If we are inclined to put names to things, as some scientists are wont to do,

we might call our variables a measure of “endigitry.” Then the law could be

stated in more elegant form

:

Endigitry can neither be created nor destroyed.

Note well, however, that this law was discovered by choosing a particular

way of looking at the system. The law did not even exist in our other repre-

sentations; and though it might have been derived from the detailed view of

the system shown in Figure 4.2, the “ experimenter” would not need to know

that much detail to discover it.

Other representations might yield other “laws.” For instance, if the system

had been reduced to two variables, by counting the even digits and the odd

digits the experimenter could discover the law

:

Evenness can never decrease.

This law is also available in our ten-variable representation, but it is not as

easy to discover, for the experimenter must learn which state variables repre-

sent “evenness.” When he finally discovers that variables 1, 3, 5, 7, and 9
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should be added together, he will probably publish a paper and establish a

world-wide reputation.

In effect, much of the progress of science comes in just this way—by
learning which ways of looking at things yield invariant laws. Thus the laws

of science can be thought of as a short description of the world, or else as

prescription for how to look at the world. We really have no way of knowing

for sure whether the law is about the world or about our way of looking at it.

4.5. STABILITY AND INVARIANCE

Nothing is permanent except change. Heraclitus

The chronological graphs of Figure 4.5 show how the system behaves

from a particular point of view, with a particular time scale and a particular

sequence of inputs, and starting from a particular state. If the system were

closed and state determined, the only way in which we could see different

behaviors would be by coming upon the system when it was in a different

state from one we had previously observed. Since a behavior of a closed,

state-determined system is a single line in its state space, the only way to see

different behaviors for such a system is by looking at different segments of

that line.

But our simple system is an open system
,
not a closed one. Instead of its

state at any instant being governed by the relationship

St+1 = F(S
t),

it is governed by the more complex relationship

St+l = (Sti It).

In words, the state at time t + 1 is a function of the state at time t and the

input (/) at time t. Therefore what we see will depend on the input sequence

which happens to be going on during our period of observation. We might,

then, expect to see many different behaviors from the same system.

Behavior. A confusion about the term “ behavior ” exists in common speech

and is carried over into some writing about systems theory. The confusion

arises because “behavior” is used in two senses—for a particular action and

for a set of actions which in some way characterizes the system under dis-

cussion.

For example, when Father interrupts Johnny’s activites of finger painting

on the living room wall and says, “ I don’t like your behavior, young man,”

he is using the word in its first—more specific—meaning. When Johnny’s

teacher gives him an F in Behavior, she is using the second point of view.
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Figure 4.5. Chronological graphs of counts of digits.

Nevertheless, the method whereby she represents a collection of individual

behaviors by a single evaluation of Behavior is worth considering. Suppose

that Johnny is an ideal pupil all semester (meaning that he does not cause

any trouble for the teachers), but on the last day of school he sets fire to the

library. He will get an F in Behavior.

In American society, we often characterize Behavior according to a single

instance of behavior. In common speech, for example, we apply the name

“liar” to anyone who tells a single lie; but we do not even have a word for
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someone who invariably tells the truth. A multitude of other words—all

carrying the implication of badness—are also applied for only a single act of

the Behavior denoted: murderer, embezzler, loser, cheater, adulterer, and so

on. In a way, the existence and use of such words indicate a peculiar value-

orientation of our society, one which is often cruel and inappropriate, but

one which, in systems design, has a special meaning. What would we think

of an engineer who had just designed a bridge which was “ safe” because “it

won’t fall down more than once in five years”?

In other words, whatever else may interest us in the Behavior of a system,

we usually want to know about the chances of its ever displaying a previously

unobserved and sufficiently disastrous behavior. No doubt we could build

bridges for a fraction of the current cost if we were willing to let them fall

down every few years, but usually a major share of the cost of a system is

devoted to making the chances of such catastrophe sufficiently low.

Because of our fear of the unexpected, we usually observe a system for a

period of time before we are willing to make statements about its complete

repertoire of behaviors. The time we take to make these observations depends

on a number of things, but particularly on our expectations, which are based

on experience with similar systems. If we were to receive a box in the mail

which emitted a loud, ticking sound, we might suspect, no matter how long

we observed the ticking, that some unique form ofbehavior would be displayed

at any moment. If the box contained a bomb, no amount of observation of its

behavior would suffice to tell us when and whether it would explode, for

that is precisely the idea behind a time bomb—namely, that its recipient have

no idea of its capability for discontinuous behavior.

We are not, in life, constrained to passive observation of the behavior of

systems. Although we cannot tell whether a ticking package contains a time

bomb, we can behave in such a way that the odious consequences of it being

a bomb are removed or diminished. We could, to name one possibility,

immerse the package in a pail of water. This action works because a bomb
is to some extent an open system; it can exhibit one of several behaviors,

depending on its environment.

It is paradoxical that the openess of systems both prevents us from predicting

their behavior with certainty and permits us to impose a degree of certainty

on their behavior. We can better understand this paradox when we realize

that there are two possible reasons for an open system displaying different

behaviors—its initial state and its input sequence. Let us look once again to

our simple system to illustrate the difference.

Effect of the initial state . Consider first the effect of initial state. Given a

random input and almost any starting state, the behavior of the system will

be much like that shown in Figure 4.5. Figure 4.6 indicates how the system
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Figure 4.6. Chronological graph of counts of digits.

behaves with an entirely different starting state and input sequence, and is

hardly distinguishable from Figure 4.5. In the end, when the system reaches

the state (100, 0, 0, 0, 0, 0, 0, 0, 0, 0), it would no lo nger be possible to say

in which of the two states the system has started.

This property of a system, which makes it likely to reach the same final

state almost regardless of the initial state and input sequence, is called

equifinality and is exhibited by many systems. Notice, though, that we said

“ almost regardless,” for we can certainly prevent the system from reaching

the equifinal state by starting it, say, in the state (0, 50, 0, 0, 0, 0, 50, 0, 0, 0).

In that case, it will be driven by random inputs to the state (0, 0, 0, 0, 0, 0,

100, 0, 0, 0), as shown in Figure 4.7, not to (100, 0, 0, 0, 0, 0, 0, 0, 0, 0). For

another case, consider what happens if we start the system in such a state as

(0, 20, 0, 20, 0, 20, 0, 20, 0, 20). This behavior, leading with equifinality to

the state (0, 0, 0, 0, 0, 100, 0 ,0, 0, 0), is shown in the chronological graphs

of Figure 4.8.

If we study our system for a while, we can ascertain that there is one other

equifinal state, (0, 100, 0, 0, 0, 0, 0, 0, 0, 0), which can be reached from the

state (0, 99, 0, 0, 0, 0, 0, 0, 0, 1) by just the right pair of inputs (both specifying

the single 9). This state will be reached eventually with random input to any

starting state which contains no even numbers or 5’s. In summary, then, we

have four different equifinal states, which we can present in the following

table

:



120 Gerald M. Weinberg 4

Symbol Equifinal State Class of Starting States

SO (100, 0, 0, 0, 0, 0, 0, 0, 0, 0) Any state with one or more zeros

Any state with one or more 5’s

and one or more even numbers

SI (0, 100, 0, 0, 0, 0, 0, 0, 0, 0) Any state with no even number

or 5’s

S5 (0, 0, 0, 0, 0, 100, 0, 0, 0, 0) Any state with no even number

and at least one 5

S6 (0, 0, 0, 0, 0, 0, 100, 0, 0, 0) Any state with no zeros, no 5’s, and

and at least one even number

The mathematical trained reader will notice that, by defining the relation

“leads to the same equifinal state as,” we can partition all of the states of the

simple system into four equivalence classes, which we can name after the

equifinal state in each; SO, SI, S5, and S6. Thus, the set of all behaviors of

the system breaks down into four different classes of behavior; if we wish,

we can imagine the state space of the system as being partitioned into four

regions, none of which can be reached from any of the others.

What is the chance ofthe system initially being in each ofthese four regions ?

That we cannot say, for we have not specified how the initial state is chosen.
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If it were chosen at random, then the probability would be about 0.9999999999

that it would be in region SO, about 10“ 10
of its being in region S6, about

10
“ 30

in S5, and about 10“ 40
in SO. Thus, if the initial states were chosen at

random, we should be unlikely ever to see any state outside of SO, and we
should be content to say that SO was the state space of the system. If, how-

ever, the starting state is not chosen at random, we might see any of the

regions, and our picture of the system would be quite different. Such is the

possible influence of the initial state of the system.

Effect of the input sequence . To study the influence of the input sequence on

the behavior displayed by the system, let us for the moment restrict our

attention to the region SO, where random input will eventually drive each of

the digits to zero. Without asking the embarrassing question of exactly what

we mean by “ random input,” let us consider what sorts of behavior might

be exhibited if the input were not random in some obvious ways. For the first

case, suppose that the input is constrained so that the second number of the

pair is always the same number, while the first remains random. In this case,

only one of the digits can ever change; hence the various states through

which the system passes can never be very far from the initial state—far,

that is, in the sense that none of the ten variables can change by more than

plus or minus 1 from its initial value. Starting from the state of Figure 4.5,

the system under this input would never reach SO, even though it is in that

region of the state space.
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Other nonrandom inputs, though not as drastic as our first case, would

also prevent the system from reaching SO. For instance, in one of the computer

simulations, the mechanism used for generating a sequence of “random”
inputs happened to exclude certain numbers from ever appearing as j. The

digits in those cells were never changed, so that SO could be approached, but

not quite attained. Indeed, it was the failure of the system to reach SO that

revealed the nonrandomness of the mechanism.

Much more subtle nonrandomness can have a similar effect, by prohibiting

either certain points in the input state space or certain sequences. Another

experience with an attempted computer simulation of the environment yielded

a sequence which, though it permitted all 100 cell numbers in either position,

did not yield all possible pairs of input numbers. As it happened in this case,

the numbers 12, 13, 37, 82, and 94 never appeared as the second number of a

pair unless one of the others was the first number. In one random starting

state, cell 13 had a 5 and one of the others had an even number, so all five

eventually went to zero; and similar behaviors were exhibited for several

other starting states. Eventually, however, one starting state was generated

in which none of the five cells contained either a zero or a 5. After a very long

simulation, of course, they remained nonzero, much to the surprise of the

experimenters—who then discovered the nonrandomness of the input

mechanism.

The law of indeterminability. An observer viewing this case without com-

plete knowledge of the system could arrive at one of two equally reasonable

conclusions. Either the input to the system was nonrandom, or there was a

subsystem consisting of five cells which somehow “resisted” the action of

the input, or at least behaved differently from the rest of the system. Indeed,

a simulation which was constructed along similar lines but which arbitrarily

prevented cells 12, 13, 37, 82, and 94 from becoming zero (by overriding the

basic rule in those cases) would behave in essentially the same manner as the

unconstrained system under this constrained (nonrandom) input. We have,

then, an important principle which is based on only the most general axioms

of systems theory

:

WE CANNOT WITH CERTAINTY ATTRIBUTE OBSERVED CON-
STRAINT TO EITHER SYSTEM OR ENVIRONMENT.

This principle, which we call the law of indeterminability
,
does not, of

course, prevent the observer from doing worse in specific cases, for he might

be contributing to constraint himself, where none actually exists. The classic

example of this type was proposed by Eddington, who imagined an ocean-

ographic vessel whose crew, by classifying the specimens it caught in its nets,

concluded that there were no creatures in the ocean less than 3 inches long.
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The uncertainty as to source of constraint is of quite general importance,

but it is especially important for a proper understanding of stability, one of

the central concepts of systems theory. We must pay special attention to the

concept of stability, because of the many confusions which always arise when

a word is taken over from common usage.

In everyday speech, the word “stable” often connotes something which

does not move, but we must not confuse “ stable” with “immobile.” Almost

everyone would agree that the Empire State Building is stable, yet on a

windy day the top sways appreciably from side to side. By “stable,” then,

we mean not necessarily complete lack of change, but rather change within

certain limits. If the building sways a little, it is stable; if it falls down, it is,

without doubt, unstable.

When there is no wind, most buildings do not sway at all. Conversely, if

the wind gets strong enough, any building can be blown down. Must we

conclude, then, that no building is stable ? Not at all. Just as “ stability ” implies

limits to the changes in the sytem, it also implies limits to the disturbances

which the system is supposed to withstand. Thus, when we speak of stability,

we are speaking of two things at once: a set of acceptable behaviors of the

system and a set of expected behaviors of the environment. We are, to put it

another way, defining a certain region of the state space of the environment

and a corresponding region of the state space of the system. For example,

we might define the stability of a tall building as “ swaying of not more than

10 feet from the perpendicular in any direction in winds of up to 90 miles

per hour.”

At this point, we must call special attention to a certain lack of emphasis

in our presentation of the concept of stability. We have scrupulously avoided

any statement to the effect that the behavior of the environment was the

“ cause ” of the behavior of the system. If we had done so, we would have had

to assume some special powers of observation which would enable us to

attribute the observed constraint to either system or environment. Since we

cannot, in general, make this discrimination, we do not want our concept of

stability to rest upon it. Instead, we merely require that certain behaviors

be observed within certain limits—then the system can be presumed stable,

within the limits of our inductive evidence.

By definition, the system is that part of the world that is of immediate

interest to us. Consequently, we often elevate the system to undeserved special

status in the system-environment relationship required for stability. If we

are designing a system, we often overlook quite simple ways for producing

stability by limiting the environment, such as building in a sheltered area or

erecting some special baffle to divert the strongest winds, rather than trying

to provide stability “in” the building itself.

When we say that a system is stable, we are talking about a relationship
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between system and environment. More than that, whatever behavior of the

system we are talking about—no matter what simplifying words we use—we

are talking about a relationship. If we could only keep this equivalence

between system and environment in mind, how many fruitless controversies

would be eliminated!

Stability and goodness. Another conceptual difficulty we wish to avoid is

the idea that
44
stability” is somehow equivalent to

44
goodness.” In Ohio, there

is a coal mine that caught fire 40 years ago and has been burning ever since

—displaying high stability, but not much goodness. Moreover, since stability

and goodness are both defined relative to a particular point of view, it is easy

to see how the same situation can at once be
44
stable and good,”

44
stable and

bad,” “unstable and good,” and
44
unstable and bad.” The form of a govern-

ment may remain stable, even though various officeholders shuffle in and out.

From the conservative point of view, the government is stable and good,

whereas the radicals consider it stable and bad. The deposed officeholders

think that it is unstable and bad, while the poor, abused citizens deem it

unstable and thereby good—since the rascals get thrown out eventually.

Still, we do tend to feel that stability and goodness are related, and they

are—in our minds. How does this association come about, and why is it so

universal? When we seek explanations for such admittedly universal impres-

sions, we should look for some equally universal experiences from which the

impressions arise. In this case, our feelings about the goodness of stability

probably arise from universal change as a personal experience. We are more

likely to notice changes than lack of change. Furthermore, among the things

we notice, the ones which cause us pain or discomfort tend to stand out as

individual impressions. Thus, when a change takes place, the ways in which

we feel we are worse off generally make a stronger impression, so we begin

to equate change with badness and, by implication, stability with goodness.

Perhaps each of us has in mind an ideal world in which only the
44 bad”

things change, while all the “good” things stay the same. But our world is

not built that way, if only because we change our definition of what is good as

time goes by. In the same way, we can change our definition of what is stable,

and a system that was once
44
stable” can become 44

unstable” simply by our

changing ideas as to what should be the range of its behaviors or what should

be the range of environments in which it is stable. The change may come about

gradually, as in the case of a parent who comes to accept new behaviors of

his children; or it may be rapid, probably in response to an actual event

which taxes the previous definition. Suppose, for example, that a building

were to fall down on a day when the wind velocity reached 1 10 miles per hour.

The owners of the building and the people injured in the event would accuse

the architect of having designed an “unstable” building. At such a time, it
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would not do much good to remind the owners that they approved plans in

which “stability” was defined in terms of maximum winds of 90 miles per

hour. The occurrence of a 1 10-mile-per-hour wind has changed their con-

ception of stability, even though before the fact they might never have

approved of the extra expense to build for a wind velocity not previously

known.

Stability and observation. There are three main parts of the definition of

stability, and all depend on the observer’s point of view: the system behavior

and the environment behavior depend on his selection of the system, and the

critical limits assigned depend on his goals. Nevertheless, isn’t there something

special about the concept of stability, something that makes it one of the

central systems concepts rather than simply a derivative and dependent one?

The answer, of course, is yes, and the reason for this answer was supplied

in a definition of “system” given by Parsons and Shils [5, p. 107] when they

said, “.
. . if a system is to be permanent enough to be worthy of study, there

must be a tendency to maintenance of order except under unusual circum-

stances.” In other words, a selection of variables out of the world does not

have to exhibit stability to be a system, but the less stable it is, the less chance

it has to be “worthy of study.”

Implicit in our definitions of stability for a system is our inability to think

of “change” as an abstract entity, our necessity to identify “change” with

two “things,” the old thing and the new—different—thing. In order to have

a “thing,” we must feel that there is a certain persistence of the character-

istics by which we identify the “thing,” and it is to get this persistence that

we require stability. Perhaps someday we will be able to think in different

ways about change, but for the present we require stability in our systems if

we are to think about them at all.

In science, we often go to extreme lengths to find the needed stability. To
a physicist, an isotope which exists for a millionth of a second is a system

worthy of study, whereas “common sense” tells us that such a system really

does not exist at all. In engineering, the study of linear systems has been

elevated to high importance, largely because these systems have the property

that, if they are stable for any input, they are stable enough if the input is

doubled—or multiplied by any factor. Of course, the accepted range of

system behavior must also be multiplied by the factor; but the important

point to the engineer is that the system under study does not exhibit different

kinds of behaviors, such as runaways or breakdowns, just because the magni-

tude of the input is increased. In common experience, however, we rarely

come across a system which even barely approximates a linear one, for all

systems break down when they are “ overloaded.”

Yet, everything considered, scientists have been very successful at abstracting
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points of view which elevate in importance the more constant parts of the

system—so successfully, in fact, that they forget that this constancy is largely

a matter of choice, not chance. Darwin [6, p. 46] recognized this situation

over a century ago when he observed:

Authors sometimes argue in a circle when they state that important organs never

vary; for these same authors practically rank that character as important (as some

few naturalists have honestly confessed) which does not vary; and, under this point

of view, no instance of an important part varying will ever be found; but under any

other point of view many instances assuredly can be given.

Darwin was, of course, thinking of anatomists and naturalists. It is inter-

esting, however, to observe the same kind of circular argument being expressed

more than 100 years later in the field of anthropology by such a noted theorist

as Julian Steward [7, p. 184] (author’s italics):

The present statement of scientific purpose and methodology rests on a conception

of culture that needs clarification. If the more important institutions of culture can be

isolatedfrom their unique setting so as to be typed, classified,
and related to recurring

antecedents or functional correlates
,

it follows that it is possible to consider the

institutions in question as the basic or constant ones
,
whereas the features that lend

uniqueness are the secondary or variable ones.

In the end, nothing is constant. Everything changes, and only change is

unchanging. For a person to make any sense out of such a world, he must

introduce mental simplifications which ignore certain changes—or, rather,

which classify certain changes as being irrelevant to the continued existence

of the mental construction, or system. Even the word “person” denotes this

kind of simplification, for who would deny that he is different in some ways

from moment to moment? We cannot even express the thought of change

without recourse to some implicitly unchanging person about whom we

speak. Thus, though our expressed purpose is to study change and though

we know that everything changes, we must study things which seem to remain

the same, and we must do it in terms of things which we imagine are unchang-

ing.

At bottom, then, this persistent search for the invariant in system behavior

is a consequence of the inductive nature of our learning. If a system or sub-

system is to be around long enough for us to learn about it, it must have

certain invariant properties. If it does not, it becomes “something else”

before we have had time to recognize it as a system. Consequently, a question

of fundamental interest to general systems theory is, Why do some systems

survive whereas others do not?
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4.6. REGULATION, ADAPTATION, AND LOSS OF IDENTITY

Ifyou look at automata which have been built by men or which exist in nature you will very

frequently notice that their structure is controlled to a much larger extent by the manner in

which they might fail and by the {more or less effective) precautionary measures which have

been taken against their failure . And to say that they are precautions against failure is to over-

state the case
,

to use an optimistic terminology which is completely alien to the subject.

Rather than precautions against failure
,
they are arrangements by which it is attempted to

achieve a state where at least a majority of all failures will not be lethal. There can be no

question of eliminating failures or of completely paralyzing the effects offailures. All we can

try to do is to arrange an automaton so that in the vast majority offailures it can continue to

operate. These arrangements give palliatives offailures ,
not cures. Most of the arrangements

of artificial and natural automata and the principles involved therein are of this sort. John

von Neumann [8]

Why does a system survive? From the long-range viewpoint, a system

survives because systems which do not survive are not around to be thought

about. The systems we are accustomed to seeing are those which have been

selected from all systems of the past; they are the best “survivors.”

Lest we imagine that this is some sort of trivial quibbling, we should

observe that surviving is a truly remarkable thing for a system to do. Our
view is biased because we most often see systems which are good survivors,

but the vast majority of systems do not survive for long—over any time span

that we wish to choose. At the level of biological individuals, we have reason

to believe that nobody lives forever: the most ancient living things we know
are no more than 4000 years old. If we choose populations as our systems,

so that the systems survive even when individual members die, the situation

is not much better. Since life began on this planet, over 90% of all species

that ever lived are now extinct—and there are but few species like the cock-

roach, which has been around about 300,000,000 years. Human organiza-

tions are even more puny. Most new businesses fail, and it is hard even to

think of a business which has been in operation for more than a few hundred

years. Organizations like the Roman Catholic Church, which is not quite

2000 years old, are of the greatest rarity.

Survival, then, is far from being a trivial property of system behavior. It

is a property which every system must have for us to study it, and a property

which not every arbitrary collection is likely to have. Consequently, it is

important that we have a pellucid understanding of what we mean by

“survival.” Since survival is the continued existence of a system, we must, if

we are to be precise about this property, examine the meanings of continued

and existence in this context.
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Survival time. “Continued” refers to the length of time that a system has

to exist in order to be worthy of study. How long this must be is a question

of relative time scale between system and observer—and thus, is related, at

least indirectly, to the typical length of time the observer survives. In the case

of man as an observer, the effect of time scale is not difficult to ascertain. We
do not, for instance, ordinarily think of plants as moving about under their

own power; however, if we watch a plant through the quickened time scale

of a time-lapse motion picture, we see it as writhing about in a most active

manner. Through the device of slow-motion photography, we can begin to

empathize with worlds such as the microbiological one, where things other-

wise are born and die before we can apprehend them.

Our simple system, which has served us so well in illustrating other points,

can be used also as an excellent illustration of time scale. Recall the four

regions in the state space, SO, SI, S5, and S6, so named after the equifinal

states to which they led under random input. While we pictured the approach

to states SO, S5, and S6, we only talked about the inevitability of reaching SI.

The reason we did not show the approach was time scale, for if we show the

behavior starting from such a state as (0, 25, 0, 25, 0, 0, 0, 25, 0, 25), the

result is something like Figure 4.9, which does not at all seem to be approach-

ing SI.

The reason the behavior does not seem to be approaching SI is evident in

Figure 4.10, where we have started the system in a state (0, 99, 0, 0, 0, 0, 0, 0,
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0, 1), the state which must precede SI. An input such as the fifteenth line

of Figure 4.2 would be required to move the system to SI
;
however, that did

not occur just at this time, and the system moved farther and farther away
from SI, though remaining in a subspace of all l’s and 9’s. We might have

expected this to happen, for the probability of just the right input occurring

before (0, 99, 0, 0, 0, 0, 0, 0, 0, 1) was lost is 1 in 100. Thus the system might

reach the state (0, 99, 0, 0, 0, 0, 0, 0, 0, 1) many times before passing into SI,

where it would “ stick.”

How long, then, would it take to reach (0, 99, 0, 0, 0, 0, 0, 0, 0, 1) ? Although

this state might be reached from (0, 99, 0, 0, 0, 0, 0, 1, 0, 0), the best chance

of getting there would be from (0, 98, 0, 0, 0, 0, 0, 0, 0, 2), because the latter

is a lumping of more states. Nevertheless, the probability of the required

penultimate transition is only 0.04, so the probability of reaching SI from

(0, 98, 0, 0, 0, 0, 0, 0, 0, 2) is 0.04 x 0.01 = 0.0004.

We could continue the analysis, but we have made our point; starting

from an arbitrary state in Si’s region, it will probably be a very, very long

time before we actually get to SI—though once we do, we shall surely stay

there. How long is “very, very long”? If the computer we are using can

make 1000 state transitions a second, we should probably have to wait much
longer than the age of the universe to see SI. So, though we know that the

system must, by force of logical necessity, reach SI, we would never charac-

terize it in that way if we knew it only through observation of its behavior. In

that case, Figure 4.9 would be a “typical” picture of the behavior of the
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system, and we would say that that behavior has a tendency to survive

—

even though it is doomed to eventual extinction. And if we did ever happen to

observe one of these systems reaching SI, after having known it for a long

time, we would probably say that the system we knew no longer existed.

Thus we come to the second part of our ideas regarding survival, the idea of

existence.

Existence. To exist is to have an identity. Identity is indeed synonymous

with viability, for nothing remains to be identified which is not viable, and a

thing which changes its identity passes out of existence. But to have an

identity is to have an identifier, and hence comes the difficulty of sayingwhen

a system exists or ceases to exist. Did Rome fall in 476? Some historians say

so, but several million Romans live in the city today. Did Dr. Jekyll cease to

exist when Mr. Hyde was roaming the streets? It all boils down to a question

of how we establish the identity of a system.

Looking out my kitchen window on an early spring day, I saw a blue jay

in the cherry tree. I recognized it as a blue jay because it was blue. I am not

a professional (or even an amateur) bird watcher; if someone showed me a

red blue jay, I would call it a cardinal. Furthermore, I feel safe in saying that

most people would make the same identification. But an ornithologist sees

the matter differently, for to him color is not the major identifying variable

of blue jays. No doubt he would be surprised and delighted to find a red blue

jay, but he would never mistake it for a cardinal; to him it would be a sport,

a mutation, but still a blue jay. Now, who is right, the ornithologist or I?

We are both right, of course. We can argue about whose set of identifying

variables is superior; but even there, we are likely to come away from the

argument holding our original views, for my criterion is perfectly adequate

for my poetic purposes and completely inadequate for the ornithologist’s

prosaic ones.

In any case, suppose that the blue jay which inhabits my cherry tree turned

red overnight. To me, a blue jay has disappeared and a cardinal has come

into my world; to the ornithologist, the jay has changed its color. Until we

can agree on just what states of what variables identify a blue jay and a

cardinal, we will be wasting our time in an argument about what happened

to the blue jay.

Perhaps this example seems ludicrous. It was chosen for clarity—not for

subtlety—so as to avoid prejudicing the argument, as might have been done

with numerous classical examples. When did the first man appear on earth?

What happened to the Standard Oil Company? Who is a Negro? Does a

revolutionary government have to honor agreements made by its predecessor?

Is space empty or filled with an ether? In all these cases, the argument has

meaning only because there is no agreement about the identifying variables
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of the system in question. Still, we all are confident that we know a man when
we see one, are aware what constitutes a company, and can recognize Negroes,
governments, and empty space. Only when our fuzzily defined concepts are

challenged by actual cases do we see how fuzzy they usually are; in everyday
life we have no need for more careful delineation.

To discuss the problem of identity, we do not need to go to the trouble

of making an explicit list of the identifying variables of any system; rather,

we can separate the problem into two parts. First, we can assume that all

observers will see when certain changes are made in the system. Second, we
can explore the questions of how observers will disagree when they have
different lists of identifying variables for the same system. We mean to imply
not that people always carry around perfectly defined lists in their heads (or

even that they ever do), but only that they do have some idea of what they

mean when they talk about the continued existence of a system or its failure

to continue existing.

But surely are there some systems on which everyone agrees? Probably
not, if we ever really got down to cases; but to the general systems theorist

it is simpler to assume that there may always be differences and to see where
that assumption leads. If there is general agreement in a particular scientific

discipline or culture or family or even the whole human race, well and good;
but we do not need such agreement to talk about systems. We only need to

agree that such agreement is theoretically possible so that we can talk at all.

Suppose, then, that we have agreed on how to recognize a particular system.

We have then agreed on what variables are relevant in the recognition and on
what values those variables must have (such as the redness of the cardinal).

If our identification is based only on a selection of variables—identifying

variables—and their values, we can decide on the question of identity by
making a single observation. In that case, the system is recognized if all the

identifying variables lie within the proper ranges, that is, if the system
occupies a particular region of the state space at the time of our observation.

In other cases, a single observation may not suffice, for we often identify

systems by the behavior they exhibit, not merely by their instantaneous

states. If, of course, a system were closed and state determined, the observa-

tion of one state would always suffice, for it would be equivalent to observing

all future behavior. Because of this behavior of closed, state-determined

systems, we tend to think of identification as a process involving a single set

of observations which could, in principle, be made simultaneously.

The problem of survival In cases where identification proceeds in this

manner, the problem of survival can be represented schematically as shown
in Figure 4.1 1, a diagram of immediate effects ,

following Ashby. In this figure,

the environment is represented as affecting the identifying variables through
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Figure 4.11. The general problem of maintaining identity.

the medium of a transformation. The transformation is the set of rules which

determine how particular events in the environment will affect the entire

state of the system and, in particular, the state of its identifying variables.

In our formula

st+ i
= F(S„ /,),

the F represents what we have represented in this diagram as the transforma-

tion. As the formula shows, F determines the new state of the system, once

the previous state (the system’s contribution to the change) and the input (the

environment’s contribution) have been given.

The transformation rules stem partly from the “ laws of nature ” and partly

from the way in which the particular system is put together. Thus, for example,

as the outside temperature rises from 10 to 20°, the internal temperature of

one animal may rise while that of another may fall. Similarly, a decline in the

stock market may be profitable for some investors and disastrous for others.

The transformation, in other words, is one of the factors which prevents

us from speaking of environments as “good” or “ bad.” As Yeblen observed,

there is no change, no matter how generally beneficial, which does not harm

someone, and no change, no matter how generally odious, which does not

act to someone’s advantage.

Now, in terms of the diagram of Figure 4.11, a system survives if its trans-

formation continues to convert variations in the environment into values of

its identifying variables which lie within the indentification region of its

state space. Alternatively, a system survives in an environment if its identifying

variables are stable in that environment.

Seen in this way, the problem of survival is a problem of having the right

transformation at the right time. It would seem, however, that as time went

by there would be fewer and fewer systems as the unsuccessful transforma-

tions fell by the wayside, one by one. Formally, this argument may be true,

but on any reasonable time scale it does not have to be. The catch lies in the

question of how a system is identified, and what the source of its transforma-

tion is.

In our simple system, as implemented on a computer to produce our

descriptions of its behavior, the state of the system is represented by a set of
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digits stored in the computer’s memory. The environment is simulated by

another set of digits, which is generated in another part of the same memory.
In a way, then, the computer’s memory represents a larger state space out of

which our system and its environment were projected. The advantage of this

outlook lies in the homogeneity of the computer memory as an embedding
space, for the state of any system embedded in it is represented in the same
way—as a set of digits.

If two of the boxes in Figure 4.11 can be thought of as digits in the com-
puter’s memory, what about the third, the transformation? In the computer
simulation, the transformation is simulated by a program. In a computer,

the program is the set of instructions obeyed by the computer which deter-

mine how it will operate on the numbers in its memory to produce new
numbers in its memory. Since the numbers in the memory constitute (or

simulate) a state space, the program plays the role of the transformation, that

is, the set of rules determines how particular events in the environment will

affect the state of the system. But the program is stored in the computer as a

set of numbers, numbers which represent the instructions in coded form.

Thus the transformation, too, is represented in this state space as a set of

numbers

!

Recognizing the homogeneity of representation in the computer’s memory,
we can begin to appreciate the power and suggestiveness of the digital com-
puter as a tool in the study of systems. Examination of our simulation has led

us quite naturally to recognize a fact which would be rather difficult to

appreciate fully in a more natural (and thus less homogeneous) system. The
new fact is simply stated: the transformation is part of the system. Symbolic-

ally, the equation describing the behavior of the system can be rewritten as

St+1 =F(St
,I

t) = n((V
t
,T

tlIt),

in which the state variables of the system have been partitioned into T, the

variables affecting the transformation, and V, the other variables, including

the identifying ones. The small letter n represents a transformation, too, but

now stands for the transformation brought about by the laws of nature, that

is, the universal laws which do not depend on the particular structure of the

system at hand. What the formula says, then, is that the state of the system

at any given time is obtained by applying the laws of nature to the state of a

larger system, ((V
t ,
T

t), I
t ), which includes the environment. If we wish, this

formula may be taken as a definition of what we mean by “laws of nature.”

In the case of the computer simulation, the universe of choice is the com-
puter’s memory, as shown in Figure 4.12. Consequently, the laws of nature

are the programming rules which are built into the circuitry of the computer
and which determine how different sets of digits are to be interpreted as

instructions to change other digits in the memory. The computer itself is, of
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Figure 4.12. Embedding a model of a system in a computer memory.

course, embedded in an even larger universe of choice, a universe whose

laws may be taken to be the ordinary laws of science, or some local applica-

tion of those laws. The existence of this larger universe need not concern us

in studying our simple system, because we have restricted our attention to an

approximately closed system embedded in that universe. In our artificial

universe, the laws of nature need not bear any resemblance to the laws

outside.

Regulation and adaptation. Having expanded our awareness of the struc-

ture of our system, we can return to the question of survival and the number

of possible transformations. Previously we implicitly assumed that the trans-

formation was fixed, but our new point of view shows us that the transforma-

tion can be separated into a fixed part (the laws of nature) and a variable part

(the program of the system). Since there is a variable part to the transforma-

tion, or program, one way in which a system might preserve its identity is by

changing the transformation itself, rather than by using a fixed transformation

to convert the environmental variations into acceptable values of the identi-

fying variables.
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When the system survives by making a change in its transformation, we

say that the system is adapting. When it survives while retaining a fixed

transformation, we say that the system is regulating. Regulation and adapta-

tion are two central concepts of systems theory, for every system either

regulates or adapts; otherwise it loses its identity.

By recognizing the possibility of changing the transformation, we solve the

problem of using up all possible transformations. In our system, for instance,

we previously recognized lO
100

states,but we were using only 100 digits of the

computer’s memory to achieve this vast number. If the computer has a memory

of 1,000,000 digits—a typical number—there are lO
1000000

different programs

(transformations) which can reside in that memory. Each of these programs

will have some characteristic effect on the 100 digits we have singled out for

attention, but many of them will have the additional property of changing

some of their own digits, as indicated in Figure 4.13. Thus each transforma-

tion we observe is one of a set of transformations, each of which produces

the same behavior over the period of our observation.

Input

program

Transformation

Identifying variables

program

Figure 4.13. Overlapping of transformation and identifying variables.

As an illustration of the richness of transformation, let us return to the

observed behavior of our simple system when in SO. After a reasonable

amount of time, the system settles down into SO, never to show variation

again. Never? Well, hardly ever. Figure 4.14 shows the behavior of a system

which is very similar to our original one, but which has a special feature to

its transformation. Whenever SO is reached, the system waits until two equal

input numbers are received and then suddenly restores a random state to the
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Figure 4.14. Chronological graph of digits.

100 digits. The behavior we observed in Figure 4.5 would be precisely the

behavior of this system in an environment which produced random inputs

with one constraint—that no equal pairs were produced as input.

We should not be surprised by this result, because of the law of indetermin-

ability. We are surprised, however, because we tend to think of the transforma-

tion as a separate, or separable, part of the system. There are important

reasons why we have this impression, but for now we need only observe that

an inexhaustible supply of new transformations will always exist
—“always”

in the same sense that our simple system will “never” reach SI, even from

the region of SI.

Identification by transformation. All of these conclusions were reached

on the basis of a simplifying assumption—namely, that the system was

identified by the states of certain variables, and not by the display of certain

behaviors. We now see, however, that once the transformation is represented

as part of the state, the identification by behavior—in a standard environ-

ment—is reduced to the identification by region of the state space. The only

difference is that some of the transformation variables, T', are included in the

list of identifying variables. Thus, the division into transformation variables,

identifying variables, and other variables is not a true partition, for certain

variables may be in two classes at once.

The assumption that the variables of a system can be partitioned cleanly

lies very deep under many scientific arguments. From biology, we might say

that this view represents the “anatomists.” The anatomical view tries to
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understand change through statics, which would be simpler, could it be done.

But even species discriminations cannot be done on a strictly anatomical basis,

and confusion reigned on the species question until a behavioral definition of

“species” came into common use. Although the behavioral view cleared up

certain questions in classification, it ruined the simplifying assumption of a

clean partition between transformation and identifying variables. In effect,

the concepts of adaptation, regulation, and failure to survive became no

longer separable as they were under a purely anatomical view.

Once we have so identified the source of trouble, many of the major pro-

blems which have plagued philosophers and scientists simply disappear. In

biology, does the species of fish which starts to be able to breathe air become

a new species or is it simply adapting? In anthropology, does the group of

people which adopts the language and some of the other ways of another

group become a new culture, an adapted culture, or part of the culture from

which the adoptions are taken? In organizational theory, does the acquisition

of new tasks produce a new organization or is the result an adaptation of the

old organization?

Since the method of breathing is part of the transformation as well as part

of the identity of a “fish,” since a language is part of the transformation and

part of the identity of a “culture,” and since the tasks performed are part of

the transformation and part of the identity of an “organization,” none of

these questions can be solved—because the definitions of “ adaptation” and

“preservation of identity” rest on an assumption which they do not satisfy.

If we tried to put these problems to a computer, as we should with our

simple system, we would have to be explicit in our definition of the system,

and we would find that we were unable to make the required partition. Of
course, if we arbitrarily assigned the variables in a certain way in order to

obtain a true partition, we would get a point of view under which adaptation

had taken place; but if we threw the partition in the other direction, we

would then have loss of identity.

Confusions of differences among the different viewpoints of a system may
also lead to confusion between adaptation and regulation, or even between

regulation and preservation of identity. These confusions are compounded

because of the complementary relationship which exists between regulation

and adaptation :

1. A system which is doing a good job of regulating need not adapt.

2. A system adapts in order to simplify its job of regulating.

For our final example, we choose the realm of psychology, where such

paradoxical material is almost the trademark of the field. The sense of self, or

ego, is often closely related to particular behavior patterns—or, in our terms,

transformation variables. When an individual makes such an identification,
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he may continue to exhibit the behavior in question even when signals

from the environment seem (to us) to make such behavior inappropriate.

Thus a man may continue to behave in a socially unacceptable way, even

though he is in danger of losing his job, his friends, or his family because

of it. To him, the particular behavior pattern represents his identity more

than do the things whose loss is threatened. He thus screens out or avoids

the warning signals from his environment; hence, from our point of view, he

is regulating to preserve his identity, to survive. The more effective is this

regulatory system, the less likely he is to alter the offending behavior; and

the only hope for change is to change his method of identification.

4.7. PROSPECTS FOR THE FUTURE

/ have but one lamp by which my feet are guided
,
and that is the lamp ofexperience. 1 know

of no way ofjudging of the future but by the past .... Patrick Henry

We have tried to show how the computer as a model can have a continuing

influence on systems thought. This chapter, of course, represents only part a

of the approach, and the contribution of only one person or of a small group

of people. We have argued elsewhere [9] that the growing use of digital com-

puters will create increasing numbers of workers who will be attracted to

general systems theory. We have also written about how interaction with

computer models can be explicitly educational [10, 11]. A third type of inter-

action between computers and systems theory is obtained by reversing the

direction of interaction and applying systems theory insights to certain diffi-

cult computer problems [12, 13].

The achievements, then, in terms of published output, are modest, to say

the least. Judging the future by the past, we would have to say that this is not

a promising approach from the point of view of research output. Some

potentially strong results can be obtained, such as the clear idea that regulation

and adaptation can never be distinguished once and for all, but must remain

as useful, but potentially conflicting concepts. But perhaps the nature of

general systems theory is such that we cannot expect much in the way of

“results” from any approach, for when approaches become “results” they

cease to be general systems theory.

General systems theory, according to our view, is no more a collection of

results than a science is. A set of ways of looking at the world—that would be a

better description of general systems theory. Thus we feel that the major job

of general systems theorists is changing the thought patterns of people, not

publishing “results.” Our “results” are the people whom we can teach to

think a little more productively. If we can do that through published papers,
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well and good. If we use interaction with computer models, well and good
also. And what is the sense of arguing whether mathematics or computer

languages constitute the best way to reach systems concepts ? Let us hope that

no one system of systems theory ever eliminates the rest—that no approach is

elevated to the rank of dogma, and no group to the rank of high priests.

Should we not “let a hundred flowers bloom . .
.”?

PROBLEMS

4.1. In economics, one sometimes speaks of the “ law of supply and demand,”

which says that, if demand is greater than supply, price rises until demand is

diminished or an increase in supply is obtained, and that, conversely, if

demand is less than supply, price falls. List and discuss several simplifying

assumptions which might underlie such a law in economics, just as some of

the assumptions which underlie a law of physics were discussed in this

chapter.

4.2. Write a computer program for solving sets of linear algebraic equations,

or find such a program in a book or in a program library. Make an empirical

study of the behavior of the program (in particular, the execution time) for

various-sized sets of equations and for various sets of coefficients within each

size (e.g., with many of the coefficients equal to zero). How does the behavior

of the program compare with the square law of computation? Does the

program take advantage of any possible separation of the system into non-

interacting subsystems? If it did, how much would the user gain?

4.3. In a business magazine and also in an engineering magazine, see how
many chronological graphs you can find. Also see how many other forms of

state-space representation you can find in each. In the systems described,

identify the initial state and the input sequence, and discuss the effects which

different ones might have on the behaviors shown. If possible, describe each

behavior in terms of some other representation than the one given.

4.4. Make a list of some systems which you encounter in your daily life, such

as a particular tree, animal, business, machine, building, or road. Try to

establish a lifetime for each, and discuss the problems of attributing lifetimes

to such systems.

4.5. Write a computer program to simulate our simple system. Have that

program produce at least three new views of the system behavior in addition

to the ones shown in the text.

4.6. Modify the computer program for our simple system so that the trans-

formation follows this rule: Multiply the zth and y'th digits, as in our simple

system.
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(a) If the result is a single digit, use it to replace the yth digit.

(b) If the result is more than a single digit, add those digits to obtain a

new result. If this result is still more than one digit, add the digits again.

Use the final result to replace the yth digit, as before.

Thus, for example, in our simple system, 7 times 4 = 28, giving 8; but in

the new system, 7 times 4 = 28, giving 2 + 8 = 10, giving 1+0 = 1.

Study the behavior of this new system, and discuss its behavior in terms of

the principles discussed in this chapter.

4 .7. The most general transformation in a 100-digit system is simply a table

of 100 digits, arranged in a 10 x 10 matrix. The result of digit a interacting

with digit b is found by extracting the element in row a, column b
,
from the

table.

Cast the program for Problems 4.5 and 4.6 in the form of such a trans-

formation table, and create some different transformation tables which will

display interesting behavior.

4 .8 . The transformation in Problems 4. 5-4. 7 is completely independent of the

state of the system. However, since the state and the transformation each

consist of 100 digits, interesting systems can be created in which the two sets of

digits overlap, completely or partly. Write a computer program in which

there is overlap between the state and the transformation, and study its

behavior in terms of the principles of this chapter.
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5.1. INTRODUCTION

Until the last few decades a hierarchical structure was accepted almost

universally as the necessary and sufficient basis for all the living systems

encountered around us, including those of which we are part. Indeed, our

everyday language and folklore are full of expressions implicitly involving

the hierarchical concept, for example, “knowing one’s place,” “climbing

the ladder,” “the delicate balance of nature,” and “the trophic food (web)

pyramid.” Even the long history of political struggle has largely been aimed

at producing revolutions which only replace one hierarchy with another;

indeed, the relatively recent democratic movements and revolutions aimed at

establishing ideal egalitarian societies have, from the functional viewpoints of

145



146 John H. Milsum 5

how power flows and how control is exercised, resulted in only slightly

modified hierarchies.

These last comments make no value judgment upon whether better or

worse societies can result or have resulted from political revolutions, but

rather state only that the underlying social structures seem to remain hier-

archical. Consequently, it seems pertinent to ask whether a “ biological

imperative” applies in regard to the necessary structuring of human, and

indeed of all living, societies, at least up to now, and given a certain level

of complexity in the society.

At this point, a difficult but relevant question to resolve is whether there

is an essential discontinuity in passing from the “involuntary” structures of

man’s internal ecology to the nominally “voluntary” structures of his

external societies. We note first that human society is deeply involved in the

natural ecologies comprising flora and fauna. Now, in at least those ecologies

which we have not seriously perturbed, the imperative for a hierarchical

structure, in particular for that of the food pyramid, seems generally accepted.

Such a hierarchical structure can demonstrably favor the development of

stability in the population structure of an ecology, especially when a large

number of species are involved in the predator-prey reactions. Indeed, it

seems tempting to infer that the operation of selective pressure tends toward

population stability, possibly because this measure implies a minimization of

the probability of population crashes, and therefore of species extinction;

equivalently, it favors the probability of life continuing, in at least some
forms.

A rigid hierarchical structure is also evident in many of the highly developed

animal societies, especially those of insects. Later it will be argued that this

structure may well be optimal for an “information-poor” society. On the

other hand, in human societies the current information revolution based on

electronic computers renders us, potentially, an information-rich society, so

that at least the economic argument for a more or less rigid hierarchical

structure is less urgently applicable. However, the release of this constraint

does not necessarily guarantee that the ideal human society is nonhierarchical.

Indeed, a gap seems necessary between the ideal form of society to which

we nominally aspire and the practical form which we are realistically prepared

to support.

The structure of our human societies has obviously been a matter of basic

concern to us throughout our recorded history. Even earlier, mankind had

myths about the origins of his society, and one is particularly pertinent to

the present theme. Thus Fromm [1] writes:

. . . Bachofen [2] suggested that in the beginning of human history sexual relations

were promiscuous; that therefore only the mother’s parenthood was unquestionable,

to her alone could consanguinity be traced, and she was the authority and lawgiver
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—the ruler both in the family group and society. [Then] ... in a long-drawn-out

historical process men defeated women, subdued them and succeeded in making

themselves the rulers in a social hierarchy.

These two forms of society are, respectively, the matriarchal and patriarchal

orders.

In the matriarchal concept all men are equal, since they are all the children of

mothers and each one a child of Mother Earth. The patriarchal system, on the other

hand, considers obedience to authority to be the main virtue. Instead of the prin-

ciple of equality, we find the concept of the favorite son and a hierarchical order

in society.

There are still some human societies which are largely nonhierarchical,

for example, the North American Indian and the Eskimo [3-5], but none is

of the large, complexly interdependent, industrialized type. Thus, while the

use of hierarchy cannot confidently be asserted as the necessary basis for

industrialization, it seems impossible that any presently industrialized society,

especially our own, would ever voluntarily and responsibly accept the risks

implicit in a complete, or even large, removal of hierarchy. But since the

revolution in information and control technology is now removing much of

the physical rationale for the need of hierarchy, it becomes important to

understand better how the underlying psychosociological factors affect the

putative biological imperative favoring hierarchical societies. Indeed, since the

technological revolution is catalyzing the other current revolutions which are

attacking the discriminatory conditions of racial, generational, and sexual

classes, this new understanding will be essential to our survival. Thus it

becomes important to question whether complete elimination of all dis-

crimination would not lead to an unacceptably dull, unmotivated, homo-

geneous society. Indeed, it is important to draw a very clear distinction between

the idea of equality of opportunity for all, and the idea that all are equal;

instead, in Ardrey’s felicitous phrase, we need to recognize and accept the

innate random inequality of man [6].

This chapter, then, will attempt to explore the need and limitations of a

hierarchical structure in general living systems. The dual processes of co-

operation and competition will be considered as essential, concomitant but

complementary aspects of such hierarchical structures. The treatment will

cut across the approaches from many different fields, for this idea of hier-

archy has been recognized in a wide range of disciplines. This range might

conveniently be categorized, for example, by noting the matriarchal-

patriarchal concepts of Bachofen, already mentioned, at the human symbolic

level, as compared with the formal mathematical treatment of hierarchical

structures by Mesarovic et al. [7]. Indeed, we should note that the idea of

hierarchy has not been limited to living systems; for example, one recent
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book includes the observed clustering of the cosmic physical system into a

hierarchical set [8]. However, this aspect is outside the scope of the present

chapter, for here we are concerned to include that essential positive-feedback

ability conferred by the evolutionary process whereby the complexity of

living systems can apparently continue to grow. Specifically, we focus on

the extent to which the use of hierarchical structure has been and may con-

tinue to be an optimal strategy in the growth of complexity and stability in

our living systems.

5.2. DESCRIPTION OF GENERAL LIVING SYSTEMS

5.2.1. Natural Hierarchies

The word “hierarchy” comes from the Greek hieros (sacred) and archos

(ruler).

(a) The human hierarchy . If the cell is considered to be the fundamental

unit of viable life, a natural hierarchy follows, embracing all living systems.

Of course, the cell itself constitutes a complex dynamic system of a hier-

archical type in that there is a master controller, the DNA, and several levels

of manufacturing responsibility. At present we shall concentrate upon model-

ing at the supracellular level, but later we will summarize the intracellular

hierarchical system. In order, also, to avoid the complexity of differences

between various organisms, we shall initially consider the natural hierarchy

based on the human being (Figure 5.1).

Figure 5.1. The human hierarchy. The multiple subsystems at any level are suggested by the

several radiating lines. The variation in size at any level is suggested by the length of the

link.
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Cell. The human hierarchy starts with the human cell, which specializes

during the organism’s growth into one of some two dozen types, subserving

many different functions. Notable examples are the receptor
,
transducing

information about the organism’s environment (and about its own milieu

interne); the neuron
,
for information transmission and processing, both of

incoming and of outgoing signals; and the muscle cell, for manipulating the

organism or the environment. The number of cells within the human adult

is not known with any certainty, but it is approximately of order 10
14

. Three

functionally useful hierarchical levels can be distinguished within this range,

however.

Tissue
,
which is essentially a group of largely similar cells, specialized for

some function. Thus an organ such as muscle consists of the actual contractile

muscle tissues and of connective tissues, among others. Depending some-

what on its definition, a tissue may well have up to order 10
10

cells.

Organ
,
which essentially comprises a set of different tissues, grouped

together in a functionally recognizable way to perform one or more functions.

Muscle provides an important example of an organ, comprising muscular,

neural, connective, and epithelial tissues. Its primary evolved use is the genera-

tion of mechanical forces from chemical energy, but in addition it has evolved

the shivering mechanism whereby all of the chemical energy converted is

degenerated into heat for thermoregulatory purposes.

Organ system
,
which comprises a set of organs, usually operating as a

recognizable negative-feedback control system. The neuromuscular system

provides a pertinent example, comprising the organs of muscle, nerve, and
central nervous system (CNS). There are of order 10

3
skeletal muscles in

man, but many more if smooth muscles, such as those in the precapillary

sphincters, are included.

There are perhaps of order 10
2
variants of organ systems, the main ones

being, in addition to the neuromuscular systems, the cardiovascular, res-

piratory, thermoregulatory, receptive, central nervous, gastrointestinal,

reproductive, and excretory systems.

Organism. The human being is the complete, independently functioning

organism, the result of this hierarchical set of cells. It is relatively easy to

visualize the evolutionary march upward through ever-increasing complexity

of organization, because of the advantages gained by cellular specialization

when this is harmoniously controlled in a hierarchical way for the “common
good.” However, when we ask for whom is the “common good,” it is not

easy to answer whether it is for the good of all the constituent parts, or of

the whole organism only, or of both. In other words, is the system of these

elementary parts greater than the simple sum of the parts ? The deeply held
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human idea of soul as distinct from the material body obviously suggests

the answer yes, and so, in an apparently different context, does systems theory.

In any case, when we start a further progression up through the hierarchical

levels of human societies, the idea of purpose
,
which can be plausibly recog-

nized as the basis for the organismic hierarchy, is no longer so defensibly

pertinent.

Family. The family, of order 10
1 human beings, constitutes the purposeful

unit by which the growth stage of the new generation, from conception to

adulthood, has been ensured. Historically, the family has been of the hier-

archical type, typically with three hierarchical levels of husband, wife (wives),

and children. As such, it has been a unit in the patriarchal rather than matri-

archal society. Of course, the value and the continued existence of this struc-

ture are now being re-examined very critically, at least in Western societies.

Village. This unit of order 10
2—10 3 human beings, is still of conceptual

and practical importance in society. It may be considered to circumscribe the

mutually supportive activities of a group of persons who interact personally

with each other.

Town
,
City. These units are of increasing population size. In the city, the

population is of order 10
6 and is too large, spatially and intellectually, for a

single grouping of the various main facilities and activities. Such a grouping

is still possible, however, in a town.

Country, World. Although a country's size and boundaries have been

determined in part by ethnic homogeneity, a major factor historically has

also been the extent of the spatial domain which could be effectively con-

trolled, given the particular state of technology required for the movement

of information, materials, and people. Empires have represented further

groupings of countries, as regards hierarchies of control, but this particular

level may now largely be extinct. The human world at present merely repre-

sents the total human biomass, rather than any coherently functioning total

human system. However, this does not deny that some control processes

are continuously at work through politicoeconomic channels
;
it denies only

that the same effective political hierarchy of control exists as in any viable

country.

(b) The intra-cellular hierarchy. The scheme for intracellular hierarchical

control, as related through the hormonal systems to the supracellular systems,

has been summarized by Weber et al. [9]; see also the discussion by Water-

man [10]. As shown in Figure 5.2, the information flow is implemented in a

multihierarchical system. However, the hierarchical flow of control informa-

tion is reversed to some extent from that of Figure 5.1, depending on the



The Hierarchical Basis for General Living Systems 151

Figure 5.2. Hierarchical organization of genes, enzymes, and hormones in the overall

homeostatic system. Antagonistic action of hormones control enzyme activity in short-term

adaptation, and genetic mechanisms are responsible for their long-term adaptation. From

Weber et al. [9].

observer’s viewpoint. Thus, on the one hand, the hormones released by the

negative-feedback controllers of homeostasis produce conventional
4

4

down-

ward ” constraints in the hierarchy onto the enzymes, so as to produce cor-

rective homeostatic action. On the other hand, the flow intracellularly is that

the DNA controls RNA synthesis, which in turn controls the enzymes.

Finally, the DNA-RNA stages are controlled by long-term genetic adaptation,

the chronic adaptation of Figure 5.2, rather than the acute or fast adaptation

in the enzyme path. In the human hierarchy, the corresponding slow path

would be the “social adaptation” by which different types of individuals or
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communities become adapted or selected. The fast hormonal control of

enzymes would correspond to the fast-acting social control of law and

management.

(c) The management hierarchy. In a slightly different human grouping,

that of persons working in an enterprise, a hierarchical system normally

symbolizes the form of management. This comprises conventionally the

successive descending levels from the single office of “president” to much
more numerous “workers” (Figure 5.3). This span typically covers a numer-

ical range of about 10
4
in some four hierarchical jumps. (We note that there

are usually “boards of directors” to guide the executive regarding policy,

but they are not essential in the present argument regarding executive con-

trol.) The essential structure has tended to remain invariant, independently

of whether the enterprise is industrial, government civil service, military,

or other types. Even in the university, where for good reasons the management

function has been least clearly defined and centralized, there has been a gener-

ally similar administrative structure. This pyramidal form has, of course, the

sociological rationale that at each level in the hierarchy the “manager”
must operate through the group of his particular assistants—the prototype

political “cabinet,” in fact. A number of order 10
1 appears to be the largest

that can be handled conveniently by any one manager, that is, a convergence

factor around 10 appears to be sociologically ideal in moving up a hierarchy.

As an interesting comment on this, it has been noted that a political cabinet

has a strong tendency to grow over time, but that whenever its size exceeds

about 21 it tends to generate another intermediate hierarchical level of

“executive cabinet” tii].
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(d) Mobility in the hierarchy . In this presentation of the ubiquity of social

hierarchies, no comment has yet been made about the ability of individuals

to move around, and especially upward, in these hierarchies. Indeed, the

hierarchical nature of the structure itself should be clearly differentiated

from the mobility of the individuals within the structure. One difference

between a static society, such as a “feudal” one, and a modern industrial

society concerns the ability of an individual, according to his “innate random
inequality,” to move upward in the hierarchy. We note further that there

has been a tendency for an age-specific pattern to exist in which the movement
is correlated to a considerable extent with increasing age. This is based on

the belief that with increasing age comes increasing knowledge, wisdom,

and usefulness, but in recent years this idea has been subject to considerable

questioning. Specifically, the revolutionary nature of technological change

has militated for the use of younger people in responsible positions. Indeed,

it is sometimes questioned whether the accumulated knowledge and wisdom
of the generation currently in managerial command has any social usefulness

today.

(e) The experiential hierarchy . From the viewpoint of a given individual

moving through the social hierarchy in time, it is interesting to consider also

the situation of the individual moving through a hierarchy of ascending

personal achievement levels. In general, the base levels are concerned mostly

with fulfillment of material aspects (the deficiency needs
,
in Maslow’s terms

[12]), whereas the upper levels are concerned with the satisfaction of the

integrated thinking and experiencing human being (the B-values, the intrinsic

values of being
,
in Maslow’s terms). In this view a person aims to ascend to

the highest level of which he is capable, the reward being that experienced by

him internally, for example, Maslow’s peak experiences [12]. Graves has

proposed a recognizable hierarchy of seven levels [13], while from a slightly

different viewpoint Erikson presents a set of eight problem and achievement

levels encountered during different phases of the individual’s life (the eight

ages of man), as summarized in Figure 5.4. Thus Erikson, and before him

Freud, are considering the results of the individual’s innate physiological-

psychological growth processes, in which each individual moves through a

hierarchy of personal achievement. Also, of course, this approach is com-

patible with that of many great religions, especially the Eastern ones.

It is tempting to speculate that, if the neurophysiological basis of these

experiential hierarchies is ever discovered quantitatively, it will correspond

to the growth of a hierarchical neuronal network. Certainly there is some

suggestion for this in the way in which the CNS of animals has increased

hierarchically through phylogenetic development. For example, man’s

neuromuscular system certainly has the basic spinal reflex arc, but on this



154 John H. Milsum 5

Figure 5.4. Stages of psychophysiological development in man—inferred from Erikson [14],

Graves [13], and Maslow [12].

are superimposed successively higher “long-loop” pathways through the

brain stem, cerebellum, and cerebral cortex [15]. Present indications are that

the basic spinal reflex is retained and indeed is essential for fast protective

reflexes, but that the hierarchical loops are used for successively more refined,

skilled, and stable reflexes and voluntary actions. It seems probable, then,

that evolution would also incorporate such a successful, economical strat-

egy in other neural systems, for example, the CNS itself.

(f) The trophic hierarchy . Another important natural hierarchy is that

of the food web or pyramid in an ecology. In general, the predator-prey inter-

active web is very complex, for many species may be involved, but the con-

ventional pyramidal structuring is as shown in Figure 5.5. This pyramidal

structure is based implicitly on the underlying energy flow, which is upward

through the various trophic levels of the hierarchy, for this may be viewed as

the essential “engine” powering an ecology. Since the “efficiency” of

energy conversion between the different levels is much less than unity, only

a very small, omnivorous biomass can be supported for a given biomass of

photosynthesizers at the base level. The energy conversion efficiency may vary
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somewhat among these trophic levels, and in any case is not known exactly. A
figure of ^ probably represents a reasonable approximation to an overall

average, however [16], as a result of which we note that a convergence factor

of about 10 again applies to each upward step in the hierarchy. In this regard

it has been noted generally that the hierarchical structure provides a way of

avoiding “ direct confrontation between the large and the small in nature ” [8].

(g) Interwoven hierarchies . Finally, in regard to natural hierarchies, we
should comment that any individual entity in a system, the human being,

for example, may well exist simultaneously in a multiple set of coexisting

hierarchies which are different in either space, time, or essential variables.

Thus the university professor has simultaneous places in the university hier-

archy, the “invisible university” hierarchy of his codisciplinary workers

around the world, the local sociopolitical hierarchy, the local hierarchies of

age, sex, and race, and finally the food web of which he is a part.

5.2.2. Arguments for Hierarchies

Since the evolutionary process has amply validated the value of a hier-

archical structure, let us at this point consider in more detail some of the

arguments in favor of hierarchical systems.

(a) Elementary processes—few and simple . A few elementary processes

or building blocks may still allow structures of great complexity to be built

out of them. The major processes used in natural systems are, for example,

reproduction and growth (DNA, RNA, enzymes, membranes, and cell, as in

Figure 5.2); energy conversion (ATP and oxygen); and organization (cell

specializations, homeostatic systems, neural networks). This paucity of basic

building blocks requires less “capital investment” than other methods.

(b) Specialization . A particularly important economy and flexibility within

hierarchies has been made possible by the ability of cells to specialize for

different functions. Some important types other than those already mentioned

(receptor, nerve, and muscle cells) are the following: epithelial, structural,

glandular, blood, luminescent, and electrical capacitive. An especial advantage

accrues when the specialization may be changed if necessary during the life

of the organ.

(c) Economy of information flow. Information flow necessitates a finite

cost, partly in capital investment and partly in an operating cost proportional

to the rate of information transfer. When these costs are high relative to other

important costs, the system may usefully be categorized as an information-

poor or information-scarce economy. In an information-poor system, a hier-

archical organization is particularly desirable, because the upward convergent
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flows of information may be processed and the necessary control decisions

made at a single hierarchical stage (or at a few stages) up from the initiating

information. Only that processed information is then passed on to further

hierarchies which is necessary for decision making at their successive levels.

Such hierarchies are rather rigid in their behavior patterns, and although

presumably very near optimal for insect societies they are not ideal for man-

kind. Nevertheless, the human cost of information processing is very signifi-

cant, for example, in being physically present at committee meetings. Thus it

may often be nearer optimal for individuals to delegate their authority in

certain respects to an individual at one level up in the hierarchy; in this way
they can be free to do their own preferred tasks. However, as we shall explore

later, the electronic information-processing revolution opens up additional

operational methods which were not previously available, in particular by

the effective removal of many hierarchical decision makers, in that the pre-

vious constituency of each can now pool and process its information appro-

priately for decision making directly in a computer. Any such changes,

however, will be the result of moving into an information-rich economy.

The preceding discussion has implicitly concerned the suprahuman

hierarchies of Figure 5.3 or, in Figure 5.1, the levels above 10
14

. Below this

level in Figure 5.1, in the area ofphysiological systems
,
all the evidence seems

to point toward a highly structured hierarchy. Thus we note the many local

reflexes, and the comment that evolution has not yet entrusted the cortex

with any biologically important functions (e.g., one cannot voluntarily hold

one’s breath until death occurs). Furthermore, we note the large data conver-

gence in moving up the hierarchy, as exemplified by the eye having perhaps

10
8
visual receptors, but only about 10

6
neurons in the optic nerve carrying

the visual information on to the cortex. On the other hand, the CNS does have

the wide “alarm” powers of activating systems at any level when necessary

through broadcast neural and/or hormonal commands, which is a capability

implicit in the hierarchical structure. Flexibility of control here has clearly

been important, and it is noteworthy that in the human being the brain, the

“president” of the personal hierarchy, constitutes only about 2% of the

body mass but receives about 16% of the oxygenated blood supply in resting

conditions. In other words, selective pressure has favored a rich information-

processing capability, even though its cost to the system is high.

In the ecological pyramid of Figure 5.5 the concept of information flow is

less directly applicable, since as noted already the implicit assumption is that

of energy flow. Indeed, the concept of an actively operating control downward

through the hierarchy, based on information converging upward, is question-

able. That is to say, the carnivores do not predate upon their prey, the herbi-

vores, in order to control the prey population or to control some other

variables. Rather, we are forced to infer that evolution has operated at the
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ecological level, so that those ecologies have been selected which operate,

through the genetic endowment of their partaking species, as if a control

process were at work. In other words, the various species exhibit those

characteristics of predation, procreation, and the like which are appropriate,

and indeed which could well be those which would be programmed by an
intelligent, active control structure. In this context, and over fairly short

periods of time, these two types of system operate similarly, and it is not

helpful to try to distinguish between them functionally. Thus we may say

finally, in regard to economy of information flow, that ecologies behave like

an information-poor system with a relatively strong hierarchical structure.

(d) Accumulation of information (knowledge
, experience). The evolutionary

process may be considered as a very complex, continuing Monte Carlo

experiment. A crucial particular result of this process is that the ineffective

solutions are rejected, and only the effective ones are retained. In consequence,

a set of current best estimates to an idealized solution is made available.

Upon these best estimates further complexity can be grafted, using the same
continuing Monte Carlo form of experiment. Although this method cannot

in principle assure that a better solution could not be found to any current

problem by starting over again, it would certainly seem to be the best strategy

for an optimizing mechanism, working on the random search principle.

Notice that a temporal hierarchy is being structured here, in which time is the

ordinate of the hierarchy and the different biological variations of each

species, ecology, and so on constitute the abscissa. Thus at any given time,

corresponding to some level in this new temporal hierarchy, only small

proportions of the variations for each species, ecology, etc., are effective and
therefore are passed on upward in the temporal hierarchy.

This evolutionary process has interesting analogous features to the ac-

quisition of human knowledge, especially through the method of science. In

both cases transient successes of ineffective (wrong) solutions may occur,

but the self-corrective nature of the process subsequently eliminates them.

Indeed, it is even analogous in the sense that it proceeds by finite jump steps

rather than by continual smooth accretion. In this regard Kuhn has pointed

out that science actually advances fundamentally through breakthroughs or

revolutions, usually with considerable opposition and turmoil [17]. In the

biological analogy, breakthroughs have also provided the keys to the accumu-
lation of new information and life forms. Thus the few basic processes noted

in Section 5.2.2(a), such as DNA-controlled reproduction and ATP energy

conversion, represent good examples of breakthroughs. An outstanding in-

stance of such a breakthrough has been the biological “discovery” of the

negative-feedback mechanism which is now so ubiquitous and essential a

feature of all the homeostatic and neuromuscular control systems in animals.
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This analogy should not be pushed too far, however. Thus in science it is

hopefully unnecessary to repeat all past experimentation, and indeed the

experimentation process itself is at best serendipitous rather than random.

In nature, however, we assume that an unguided random experimentation

never ceases. Of course, the individual in his own life cycle represents an

intermediate case, for all practiced knowledge and skill must be gained anew

by each generation, and the learning process seems inevitably to require the

making of mistakes. In more general terms, no skill or knowledge can be

known to be optimal or true unless the knower has sampled the conditions

producing nonoptimal or untrue results.

It is also worth noting that essentially only since the invention of the

printing press has knowledge begun the exponential growth [19] which, not

accidentally, has been similar to human population growth, even though

with a much shorter doubling time. This presently uncontrolled information

explosion provides a stimulus to which the human individual and his society do

not yet possess stable and satisfactory responses.

5.2.3. Competition and Cooperation

Competition and cooperation constitute key basic processes in living

systems, and largely as a result of them living systems exhibit their many

complex behavior patterns. Their influences are inextricable, and indeed often

complementary, inasmuch as competition at one hierarchical level of organi-

zation may be recognizable as cooperation at the next higher level. The

complex structures which living systems have evolved over such long periods

imply that some optimizing principles of design have been effectively at work.

A restatement of a few basic ideas pertinent to the theme of competition/co-

operation will be helpful at this point.

(a) Growth. All living organisms have high potential growth (birth) rates.

In consequence, any early but transient stage of growth is characterized by

positive feedback dynamics and is represented simply in differential equation

form by

d
^(t) = kx{t). (5.1)

However, unlimited exponential growth (Figure 5.6) is not possible; instead

the growth rate must decrease as the population increases. Many theoretical

formulations exist, but the sigmoid (or logistic) growth curve represents the

simplest conceptual extension of Eq. 5.1 which is of some practical value:

dx ( x(t)\

where x0 = “ saturation” population as t -*• co.

(5.2)
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A third basic growth pattern of interest is that of epidemic growth (Figure

5.6), in which, after an initial rise, the population peaks and then decays

either to some small level or to zero. For present convenience this can usefully

be represented by the Gaussian density function, although in detail we note

that the latter is symmetrical and also decays to zero.

(b) Scarce resources . Given high potential birth rates, the inherent

practical constraint in any physical system of having only finite resources

{scarce resources) must eventually become effective. Thus the curve of popula-

tion growth must be forced away from the unlimited exponential, as already

exemplified in Figure 5.6.

(c) Competitive exclusion . When resources are scarce, the fittest of the

systems competing for these resources survive preferentially. In consequence,

and because of the inherent positive feedback dynamics of potential growth,

this implies the phenomenon of competitive exclusion. A simple model for

competitive exclusion, by which less fit systems are shut out [20], is sketched

in Figure 5.7; the reader is referred to [21] for more detail. Note that com-

petitive exclusion operates intraspecially so as to enhance the “breeding

pure” tendency, and interspecially so as to exclude less fit species.

(d) Specialization and cooperation . Given this selective pressure, the

process of specialization would have an advantage for survival in many
conditions. Initially, this selection occurred around the cellular level but

later operated also at successively higher hierarchical levels. At the species

level specialization occurs in the context of filling particular ecological

niches most effectively. The process of specialization amounts to selection

for any complexity which provides better performance. As such, cooperation
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also includes the various symbiotic arrangements by which different organisms

obtain mutual benefit.

It is interesting to note that this process of increasing specialization and
complexity is paralleled in engineering. Thus the performance of some initial

design is usually extended, or “ stretched,” as time passes, and this improve-

ment is almost always obtained by successive refinements which, in fact, com-
plicate the system. Thus the original turbojet engine for aircraft propulsion

has been made more complicated by the addition of such refinements as

automatic controls, afterburners, multiple and different-speed rotating parts,

the “bypassing” of some gas flow, thrust reversal, and sound reduction

equipment.

The viability of the more complex system depends typically on the reliability

of the basic design having been made excellent before the additions are

successively made, proof of system reliability being needed at each stage. Of
course, the specific addition of safety devices can directly improve system

reliability, but in both engineering and nature these tend to be used only

after the basic reliability is good, and for particular purposes. The neuro-

muscular safety reflex attributed to the Golgi tendon organ provides an

example of such a device, for it can intervene to protect the integrity of the

ankle joint when unanticipated balance or footing problems suddenly occur.

In the case of the jet engine, an automatic safety device can, for example,

provide for extinguishing an unexpected fire.

When these considerations are extended to include the various inter-

organism and interspecial symbiotic arrangements that have evolved, a

general impression emerges that evolution tends toward increasing complexity,

and that this is made possible in considerable degree through specialization

and cooperation. Some recent evidence concerning the evolution of brain

size in mammals supports this belief, since brain size presumably correlates

with system complexity. Evidently there has been a progressive increase in

brain size during the period from 65 million years ago to the present. Here

brain size is scaled nondimensionally as the size relative to that to be expected

in a living mammal of a given size [22].

(e) Duality of competition and cooperation. As noted already, competition

at one level may functionally be identical with cooperation as viewed from

the next higher hierarchical level. For example, the predator-prey relation

is certainly highly competitive at the personal encounter level, but its function

in the integrated context of the food web is cooperative. Furthermore, in the

civilized human activity of athletic and intellectual games, the competitive

and cooperative aspects exist simultaneously at the same level; that is, the

harder the competitors strive against each other, the more they feel the satis-

faction of a cooperative interaction. The unfortunate fact that the animal
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“ will to win ” may frequently in practice override the amateur ideal of “ good

sportsmanship” does not inherently upset the validity of this cooperative

concept. In any case, even in mortal human combat the loser in a hard-fought

battle can feel respect for his vanquisher. This feeling is, of course, reciprocated

by the more fortunate victor in the conflict, and this “ moment of truth
”

presumably contributes to the unshakable fascination that animal hunting,

fishing, bullfighting, and similar sports and contests hold for many persons.

In another area, the “ laissez-faire ” theory of economics was based on the

idea that unbridled competition would select the most efficient producers in

society. Therefore it would provide the goods which society needed most

economically, to the greatest overall benefit; that is, the unseen hand effect

would be that of cooperation. Of course, the totally free enterprise system

has, in the event, proved unsatisfactory in all societies, partly because it

tends toward the result of monopoly, after which a change of mode occurs

since efficiency is no longer a necessary criterion. Such a system proves

socially unacceptable and is therefore unstable.

(f) Games and their rules. Rules have been evolved at many levels for

the competitive/cooperative games. As examples, we note the phenomena of

territoriality, to stabilize and maintain viable the breeding population;

symbolic competition and fighting, to prevent fatal intraspecial fighting;

prudent predation, to limit predatory take to that needed ; and all the levels

of human games (childish through to warfare). In general, as any system

matures the rules become more formalized. In consequence, less effort and

uncertainty is involved, with the whole system becoming more stable. Thus

it is partly because of their relative newness that so many societal games are

unstable, in the sense that the intellectually preferable condition cannot be

reached by either party in a dispute. Game theory shows formally that this is

often due to the fact that the ideal solution requires the invocation of mutual

trust [23]. However, since neither disputant can independently afford to take

the risk of trusting the other, each is forced to the nontrusting, and highly

undesirable, solution. Arms races constitute one example of current and basic

international concern. Clearly, an effective higher hierarchical level of control

than the national level must be generated if the desirable stable solution is

to be reached.

(g) Systems versus subsystems optimization. If particular subsystems of

a larger system operate so as to optimize their own individual “ good

(performance indices), the net result will almost never be overall system

optimization. One particular problem is the “ tragedy of the commons,” to

use Hardin’s phrase [24]. In this situation, the commons represents a resource

held in common by individuals. Each may draw from this resource, and no

problem arises until it becomes “ scarce.” If each individual continues to act
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as a unit, his best strategy is to seek a greater share of the resource. Un-
fortunately, however, this applies to all, and hence the amount or quality of

the common resource is rapidly depleted to zero, to the mutual ruin of all

concerned. Thus again, as in game theory, there must be constraints enforced

on subsystems, in order that the common good may be realized.

(h) Evolution at ecological level. Evolution operates at the ecological

level also, in the sense that ecologies which have evolved so as to optimize

their overall performances, as measured by some pertinent indices, are better

fitted than those which have not. This provides the basis for the apparent

purposefulness which an observer is tempted to infer as existing in ecological

systems.

(i) Performance indices . The indices by which ecological performances

have been compared competitively in nature cannot be inferred by us with

certainty; they seem, however, to be related more to stability of living systems

than, for example, to maximization of biomass. It is still a moot point whether

stability in this context means a decay to essentially steady conditions after

being perturbed, or whether the normal condition may involve some steady-

state cycling. Thus, on the one hand, it can be argued that any oscillations

in such variables as population and biomass increase the probability of

extinction occurring. On the other hand, any system which adaptively op-

timizes itself must generally continue to oscillate about the optimal point in

order that any changes in this point due to disturbances entering the system

may rapidly be tracked. In this respect, we note the pertinence of Christian’s

postulate [25] that species which exhibit large population fluctuations, such

as lemmings and voles, would be able to exploit new environments rapidly

and to evolve in them. For this dispersal process, social hierarchy would
provide a major driving force, since the low-ranking members would be

forced to emigrate. There have been important examples of this process in

human society also, of course.

(j) Civilized society , Acceptance by individuals of rules has provided the

basis for civilized society. The greater stability, safety, and productivity of

civilization that resulted has been traded off against the loss of the individual’s

complete freedom. Among other disasters, civilized society has protected its

individuals against the tragedy of the commons [see Section 5.2.3 (g)]. Thus,

on the average, society has both regulated the extent to which any individual

could exploit a common resource, and increased the resource if necessary, for

example, by providing distribution systems for utilities and transport. Of
course, our civilizations are currently faced with a new set of common re-

source tragedies, most notably the loss of right to such unpolluted resources

as land, air, water, sound, or space unpolluted with other people!
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When a civilized society has been successful, it has also regulated its intra-

societal games so that the desired outcomes of mutual benefit can be obtained,

rather than the “all-lose” conditions of war and chaos. Now, on the one

hand, the result of achieving this end normally has been a hierarchically

ordered society, since the necessary controls have been complex, time-

variable, and adaptive, requiring good management. On the other hand, this

has required of the individual a significant loss of his complete personal

freedom, and this loss may produce anxiety, frustration, or stress, to such

an extent that even in the 1930’s Freud was pessimistic about man’s ability

to live satisfactorily in these conditions [26].

It is pertinent that stress in the neuroendocrine sense of Selye [27] seems

to be produced by overcrowding, among other causes. Thus, in increasingly

crowded urban societies, the crowding stress suffered by an individual may
correlate with the degree to which he loses personal control over his environ-

mental interactions. As examples, increased density may mean less ability

to predict the length of a commuting trip, successive interruptions by noises

of the act of falling asleep, and in due course, perhaps, anticipation of these

stresses even if they do not ultimately occur [28].

In summary, it is clear that the effects of transportation and communication

technology, and of urban size and density of population especially, have

combined to make current civilized society significantly worse in many re-

spects, and possibly unacceptably so. The original advantages of specialization

and cooperation remain, but increased size and complexity have produced

multiple, interwoven, multilevel hierarchies which severely constrain and

alienate the individual citizen.

5.2.4. Optimality and Hierarchical Control

Implicit in the hierarchical structure is the concept that a system at any

given level controls the performance of its several subsystems at the level(s)

indicated below. This control is based on optimizing a pertinent performance

index of the combined system. Unfortunately, it is much harder to infer

quantitatively the pertinent performance indices at the various levels through

a hierarchical structure, like that shown in Figure 5.1 for example, than it is

to accept the qualitative concept. Indeed, it seems that most systems must

operate satisfactorily in several different modes at different times, so that a

satisfactory performance index must surely be some weighted average, in

which the weighting of each individual parameter is based on its probability

of occurrence and/or its survival value. Fortunately, some evidence is

available for systems at certain hierarchical levels and will be summarized

below.
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A distinction must be drawn between (a) the optimization of the design

of a biological system through the long-drawn-out evolutionary process, as

typified by the mammalian vascular tree, for example, and (b) the optimiza-

tion of the operation of a biological system, which may change significantly

and frequently during the life of the organism. In the above example, the

adaptive operating optimization of the cardiorespiratory operational para-

meters is highly pertinent. Of course, the system design for this optimization

has also occurred during the long-drawn-out evolutionary process, but its

“fast” adaptive capacity within a minute fraction of the organism’s lifetime

makes it functionally different.

(a) “Static” optimization of design . In the mammalian vascular tree

used as an example, there are clearly many geometric configurations by which

the blood vessels could be branched successively from the single aorta into

the capillary network (of approximate order 10
9

capillaries) necessary to

provide for gas and material exchange to all the organism’s cells. Provided

a pertinent performance index can be postulated, it would seem likely that

one (or some) of these many configurations should prove optimal. Further-

more, if this putative optimal configuration should match that observed

naturally, this would encourage belief in the validity of the optimization

index postulated. Unfortunately, there is a uniqueness problem here in that

the agreement does not necessarily validate the postulated index as being

the one which the natural system has, in fact, optimized.

In the vascular system a pertinent performance index seems to be the

combined metabolic cost to the organism of producing both the cardiac

pumping energy for circulating the blood through the vascular system, and

the maintenance energy for sustaining the various cells in the blood and in

the vascular walls (see [29] for a current review). As a result of trading off

these two cost components for a combined minimum, various optimality

conditions prevail, in particular, the radius of a vessel, and the radii and

departing angles following branching.

This design optimization is called static here in that it presumably remains

essentially constant throughout the mature life of the organism. However,

through evolutionary changes it may certainly be slowly modified during

the history of the given species. Of course, there is also a dynamic control

problem in that the design must be created during the growth of the organism,

but unfortunately this process is not adequately understood to attempt

modeling here.

As shown in Figure 5.8, there are further hierarchies of system organiza-

tion, notably up to the design of the combined cardiorespiratory system. The

same arguments about static design optimization would continue to apply;
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as we shall show, however, operating optimization becomes an important

function at the higher levels.

At supraorganism levels in animal societies, the same processes of evolu-

tionary design optimizations would seem to have occurred, but they cannot

be explored in this article. In any case, some aspects, such as territoriality

and social hierarchy, have already been mentioned.

(b) Operating optimization through feedback control. Figure 5.9 illustrates

in its upper feedback loop the minimal complexity necessary for homeostatic

control. In the present example of the cardiovascular system (CVS) two

System

(from other

intercoupled

systems)

Actual

process

control

Figure 5.9. Negative-feedback homeostatic system, with adaptive control.

typical set points are systemic pressure and cardiac output. In general, there

are multiple variables and components so that each information flow line

is to be understood as a vector; for example, the heart and the vasomotor

system comprise effectors of variable characteristics in the CVS. It is this

multivariable nature of the control that gives rise to the possibility of some
particular control strategy, from among the available set, being optimal.



168 John H. Milsum 5

For example, in the CVS the cardiac output (flow rate, Q) equals the product

of the stroke volume (V) and the heart rate (/):

Q =fK (5.3)

while a similar relation holds for the respiratory system. There is evidence,

reviewed in [29], that these systems can adaptively track any movement of

the optimal strategy which may be required as a result of various system dis-

turbances, in the sense that / and V can be varied reciprocally at constant Q
until the condition involving minimal energy consumption is reached. The

term operating optimization is used, since it can occur in the real time of an

organism’s living. As such, it seems to imply the necessity for an on-line

adaptive feedback loop which is richer in information than that needed simply

to ensure homeostasis (Figure 5.9) and is therefore, in the terms of this chapter,

a hierarchical control.

Further hierarchical levels of this optimizing control can now be postulated;

in particular, the combined operation of the cardiovascular and respiratory

systems must be optimized with regard to their primary system task of achiev-

ing the necessary transport of oxygen to the organism’s cells. Note that, as

individual subsystems, their most economical operations would result from

turning themselves down to zero output (Q). The key to an overall optimiza-

tion lies, therefore, in the specification of such variables as the g’s. This

involves a multiparameter optimization, including, for example, the important

parameter of hematocrit [29].

The earlier comment about the multimodality of such systems can be

amplified here. Thus the cardiovascular system has many other important

transport functions, notably of nutrition (glucose, etc.), heat, hormones, and

protective materials (white blood cells, etc.), while the respiratory system

transports fluid and heat and in addition is utilized for other functions, such

as the socially vital one of speech. Unfortunately, it is not clear at present

how any optimality analysis could weight all these factors quantitatively.

We should also note that it may not be realistic to draw a sharp distinction

between design and operating optimizations. Thus, for example, various

organs such as heart and skeletal muscles increase or decrease in their capacity

according to their state of use or disuse. This hypertrophy-atrophy aspect

may perhaps be viewed as a continued use of those mechanisms basic to the

original control of the organism’s growth.

(c) Open-loop control or preprogramming. The basis for homeostatic and

optimizing control shown in Figure 5.9 is provided by negative feedback.

This makes possible the comparison between actual and desired conditions

which is characteristic of conventional closed-loop control. However, we have

noted previously that the evolutionary process is essentially open loop at one
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level, in that particular systems either may or may not survive, according

largely to their “genotypic” endowment. In other words, in its elementary

form, the stage is set at the beginning, and the action plays out to success

or failure, without control measures being available during the process. Of
course, and in contrast, the larger but longer evolutionary process at the

species and ecological level can certainly be considered to incorporate feed-

back action.

An important form of biological control can be operationally defined from
these considerations, namely, an open-loop “ reflex ” system

,
together with

a longer-term closed-loop monitoring system. The elementary escape reflex

by which an undesirable contact produces a rapid (and possibly undirected)

mechanical escape action provides a basic example, being used by many
organisms from unicellular to the human. The reflex arc is characterized by
a receptor to recognize the undesirable stimulus, followed by transmission

to effector organs to power the escape movement. If satisfactory escape is

not achieved by this “open-loop” movement, feedback is then effective,

since the stimulus will still exist to trigger another reflex action. In a control

theory context it can be considered as a form of sampled-data control (for

more detail see [30]).

In many animals, including man, this basic reflex arc has been incorporated

in an important variety of neuromuscular reflexes, sometimes in a more
refined form involving some built-in feedback control, as, for example, in

the neuromuscular stretch reflex. In any case, it has evidently provided a
very effective and economic basic process in a hierarchical control context.

The economy arises in that the necessary information processing is relatively

small and discontinuous.

We may trace a whole hierarchy of ascending human functions based on
the reflex arc. This hierarchy starts with the various levels of neuromuscular

skills which the baby develops for feeding, moving its limbs and eyes, and
locomotion. As exemplified by the fast eye movements (saccades), the control

is characterized by a preprogramming in which the desired movement to the

target is estimated and then the muscular action is released. If the open-loop

action is insufficiently accurate to place the eye on the target, a second and
correcting saccade is generated after an interval of about J second [21]. It is

important to emphasize that in a preprogrammed movement the control

information is all generated before the movement is undertaken. In informa-

tion-processing terms, it can then be released at a lower hierarchical level

than the CNS’s main processor, and therefore frees the latter for other and
hopefully more important tasks.

This neuromuscular hierarchy continues to build up through very complex
and refined neuromuscular skills, for example, the throwing, kicking, striking,

and other highly skilled actions used in physical sports. However, most
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notably perhaps, it builds up in the communication skills of human speech,

writing, and behavior.

It is now possible to relate the preprogramming nature of developing

neuromuscular reflexes and skilled actions to the developing of cognitive

reflexes that may not result in immediate actions, but may rather be stored

and processed only neurally in the CNS integrative centers. Thus cognition

can be viewed as the result of preprogrammed neural reflexes and, further-

more, the intellectual processes of thinking, evaluating, and decision making.

As one example, we note that racial discrimination results essentially from a

preprogrammed reflex, which presumably had survival value at some point

in man’s history. This represents one example of a reflex which was appro-

priate in the levels of hierarchy then prevailing, but which now, at the higher

levels of the present human social hierarchy, has become inappropriate.

Perhaps the recognition that racial discrimination has a deep instinctual basis

may allow us to undertake its exorcism more effectively.

Another aspect related to neuromuscular preprogramming is the unfolding

characteristic of human memory
,
especially as related to tasks which involve

significant time periods for their completion and also need to be repeated a

number of times. We can note, as examples, the mental recovery of a route

as we pass over it, in a just adequately anticipatory form to make turns,

avoid hazards, and so on; and the continual mental unfolding of the score

of a known symphony as time passes, in a similarly anticipatory manner.

Note that by operating through a small but adequate time window of recovery

the required information-processing capacity is reduced. The corresponding

penalty that we cannot arbitrarily recall some particular segment of the whole

memory trace at any given time has presumably not been of survival value

to us, since usually we have only needed to recall in the unfolding sense of

actually living the experience. Incidentally, we noted the hypertrophy-atrophy

aspect of muscles resulting from their use-disuse, and an analogous facilita-

tion-decay aspect exists for memory.

The mentally capable adult needs considerable flexibility in his use of

memory, however, and, for example, becomes capable of
44
not losing his

place” after an external interruption. It is interesting, therefore, to note that

this facility is apparently gained only as a result of need and of considerable

practice. Thus the young child must start his sentence or story all over again

after being interrupted and of course finds this inefficiency very frustrating.

The same general form of preprogrammed reflex can be recognized at many

human social levels in many different contexts, but we cannot pursue the

matter here. As a closing comment, we should note that the claims just made

about a developing hierarchy of reflexes, based successively on the lower ones

already achieved, are entirely compatible with the somato-sensory-emotional

hierarchies proposed by Erikson (Figure 5.4) and others.
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5.3. CONSEQUENCES AND NEEDS IN OUR LIVING SYSTEMS

Up to now this chapter has emphasized the processes underlying the

hierarchies of living systems. In this concluding section we shall focus on the

consequences produced in our social systems and on the research aspects

necessary if we are to work toward a viable world hierarchy, taking into

account the different dynamic processes which seem biologically imperative.

5.3.1. Bandwagons, Initial Conditions, and Threshold

The inherent positive feedback implied in the saying “Nothing succeeds

like success ” characterizes the growth tendency in our living systems. How-
ever, the conditions under which growth first starts, and later under which it

ceases, are of considerable interest to us.

First, the forces tending to initiate change are often effective in a multi-

plicative rather than an additive way, and thus it is often useless to seek the

primary cause for a change. Unfortunately, in our sociopolitical systems we

often try to do precisely this when the growth is in an undesired direction.

This seeking for simple answers to complex questions can result, for example,

in the finding of scapegoats. Second, once the growth has started, the self-

sustaining nature of the process may render irrelevant even those initial

forces which can be identified, that is to say, there is no point in trying to find

and remove the match with which the fire was started. Third, a threshold is

often present in either of the following senses.

1. The system has some stability which resists the initiation of change until

some threshold of forcing stress is reached, after which growth seems to

occur explosively. Certainly once the threshold has been passed and the

response released, it cannot typically be annulled immediately. The initial

subthreshold depolarization, followed by the spike action potential in the

neuron, provides an interesting analogy.

2. Alternatively, the initial growth occurs smoothly but is not perceived

by society until some threshold level of activity has been reached.

Once the bandwagon stage of established growth has started, increasingly

large forces and/or changes in the system processes become necessary in order

to reverse the growth. If any such control or restructuring activities are

intended, it is obviously important that the planners have a good quantitative

understanding of the dynamics of the process. This understanding should

also include the end part of the growth process, that of stagnation or decay

(Figure 5.6), since reasonably accurate prediction of it may sometimes permit
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the conclusion that the process can be allowed to run its course harmlessly.

In regard to this end stage, Boulding’s pertinent remark is, “Nothing fails

in the end like success.”

These comments would seem to imply that society’s general need is to

retard exponential growth and to stabilize the system. Certainly the general

“good” will tend to be perturbed continually by small “selfish” perturba-

tions, but on many occasions change may be perceived as necessary by an

increasing part of the society. In this case, the comments of this section can

be taken the other way round to indicate effective strategies for producing

change.

5.3.2. Growth, Decay and Cycling

The various large living systems generally appear to the superficial observer

to be either statically maintained or recently growing more or less steadily.

However, within any such system there is an underlying hierarchy of cyclic

processes. For example, at the biochemical level there are the Krebs cycle

and the hydrogen-ion transport system. At the level of the cell, the basic

viable unit of life, an interestingly diverse situation holds. Thus in man some

cells, notably epithelial and blood, are in a steady flux of dying and replace-

ment, with relatively short life spans of the order of one month. On the other

hand, the life-span spectrum includes some cells, notably those of the CNS,

which are not replaced, even though they are subject to a small percentage

mortality rate throughout the individual’s life. Finally, at the level of our

societies, the human being is the basic viable unit, so that an underlying

renewal cycle must exist with a period of one generation, namely, some 25

years.

It is interesting, therefore, that the various hierarchies of man’s societies

seem to be characterized by further and longer growth-decay processes. Thus

Forrester [31] finds that the modeling of a city involves a growth to maturity

in some 200 years, typically with a tendency to decay thereafter, unless some

new stimulus to growth exists. The growth of empires has followed a similar

pattern but over a somewhat longer time [32]. Incidentally, Price [19] has

shown that the growth curves of many social system aspects consist not of a

single sigmoidal pattern, but rather of several such patterns superimposed

as new stimuli to growth occur successively, typically because of technological

breakthroughs.

Since a complete growth-decay process in any one system is usually coupled

with similar processes in competing and/or cooperating systems, the overall

system may appear to be cycling. This can be modeled by successive repeti-

tions of the epidemic growth curve in Figure 5.6. Now cycling (or oscillations)

appears to be a very general phenomenon in living systems, perhaps to a
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much greater extent than is justified by the inherent growth dynamics just

presented. Thus within the human organism there are cycles based on events

at the following levels, among others : capillary, cardiac, pulmonary, circadian,

water balance, menstrual, and annual. Many of these could be characterized

as relaxation oscillations in control theory terminology [29], with the implica-

tion that such theory may be helpful in designing any attempts to harness or

control such cycles.

It is certainly tremendously important for us to try to understand the growth

and oscillation processes within both ourselves and our societies. Especially

must this knowledge be applied at the political level. In this regard we note

that the typical term of elected office, whether in city or in national government,

is only a few years. Now, on the one hand, there are good reasons for this in

regard to the psychological characteristics of men in power; on the other

hand, however, the shortness of the period is not well matched to the under-

lying time constants required for the necessary long-term policies to be formu-

lated, implemented, and accepted by society.

In particular, we must devise new ways to organize our various hierarchical

societal levels so That physical growth is not a built-in criterion of success.

Indeed, the greatest challenge may be to engineer decreases in some major

societal variables, such as population and certainly pollution levels, without

incurring social demoralization. This problem may not prove insuperable,

however, if we can learn to understand and then harness the competitive and

cooperative processes underlying our societal system. In any case, a very

important aspect will be to re-emphasize personal attention to our own
experiential hierarchy, so that as a society we become much more inner-

directed.

5.3.3. Purpose, Striving, Unfolding, Reverence, and Leadership

(a) Purpose and striving in individuals. The comment has already been

made that living systems at almost any level seem to behave as if they had a

purpose, even though there may be no central intelligence in the system where

this purpose is stored or any issuing of control commands which make the

system work toward the purpose. Man thinks himself unique in that he tries

to articulate his purpose, but unfortunately a purely intellectual evaluation

often evokes the pessimistic judgment that no rational purpose exists. For-

tunately, at least from the optimistic view, man’s own biological hierarchy

imperiously requires him to strive as if he had a purpose, and in the normal

healthy human being this effectively produces purposeful living and striving.

This argument suggests a biological basis for our sense of purpose, or

performance index. Now indeed the various recent discoveries concerning

sensory deprivation and neural reward
:
punishment centers strongly suggest
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that continued rich stimulation of neural centers is vital for good performance

of the human system. In particular, the inputs from sensory organs and mus-

cular activity and the self-inputs of cerebral activity are very important. Thus

the concept of a top-hierarchical neural center suggests itself, where the

various inputs are weighted in order to evaluate overall performance; this

would then constitute the level of human “satisfaction.” In this context no

person is irrational; instead only the particular weightings adopted by the

psychologically “not-well” individual are significantly different from those

accepted by “normal” human beings. Again these comments are compatible

with the body-mind hierarchy of performance implied in Figure 5.4. Thus

it is important to have a well-functioning muscular system in order to provide

the basis on which further hierarchies of experiential satisfaction can be

constructed.

Maslow has pioneered an insightful theory concerning human motivation,

purpose, and striving [12, 33], some aspects of which are implicit in the fore-

going comments. Several of his basic points must therefore be stated [12]

and amplified in the present context. The work of some other persons along

similar lines has also been mentioned [13, 14].

1. The human being has intrinsic psychological needs as important as his

physiological needs.

2. These needs are related hierarchically, in such a way that the fulfillment

of one need tends to allow the next one at a successively less basic level to be

tackled. Some important increasing-level needs are food, safety, love, and

self-actualization. In particular, the first two are physiological (D-needs)

and the last two psychological (B-needs).

3. There seems to be a single ultimate goal toward which human beings

strive: becoming as fully creative, human, and self-fulfilled as each person

can become.

4. To the aspiring human individual involved in his climb through this

hierarchical set of goals, it usually seems that his ultimate goal is the one

toward which he is currently striving. However, once he has struggled to

this summit, a new and higher one begins to be visible up ahead through the

mist. (This limited window of vision is reminiscent of the time window

mentioned in regard to memory recall in Section 5.2.4(c).)

5. The struggle to achieve each successive hierarchical goal is sufficiently

and increasingly self-rewarding, so that we do not need to be frustrated by

the apparently unachievable height of an ultimate goal. Becoming provides

peak-experience rewards at successive transient states of being
;
or, in Maslow’s

phrasing, “If they are not mountain-peak-experiences, at least they are foot-

hill-experiences, little moments of absolute, self-validative delight, little

moments of Being” [12, p. 154].
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6. Our physiological and psychological capacities “ clamor ” to be exercised.

Their well-use is satisfying and produces harmony and health; their disuse

is irritating and frustrating, and may even produce a disease center. The term
well-use could perhaps imply the tendency to operate optimally, as already

explored at the neuromuscular level, for example.

7. Man’s higher nature and aspirations are founded on his lower nature

and would collapse without it. Therefore, to develop his higher nature, man
must first fulfill his lower nature, that is, he must gratify rather than renounce
his instinctual needs.

8. In the growth of the child the normal, desirable pattern is to feel initial

delight with each newly acquired skill, but then to become bored and “ eagerly
”

to strive toward new, more complex delights without feeling unsafe. Note
that in terms of skill these successive growths correspond to successive super-

imposed sigmoid curves (Figure 5.6), while in terms of delight or satisfaction

they correspond to successive “epidemic” growths (Figure 5.6). The latter

is approximately the derivative of the former, and indeed this relation is

expressive of the likelihood that the satisfaction characteristic at the neural
integration level will be adaptive.

9. One sentence from Maslow [12, p. 55] summarizes well: “The single

holistic principle that binds together the multiplicity of human motives is

the tendency for a new and higher need to emerge as the lower need fulfills

itself by being sufficiently gratified.”

(b) Unfolding. The unfolding aspect of our individual lives is also deeply
involved with our purpose and striving. Our life unfolds irreversibly as we
move through the cycle of birth, maturity, decay, and death. Although we
can to some small extent look forward, and can certainly learn from others

already older, the aperture of our experiential time window effectively covers

only the regime from the present back through an increasingly filtered past,

a “rear view mirror,” in McLuhan’s term. In consequence, each individual

necessarily exhibits an asymmetry of outlook, dependent on the stage of the

life cycle he has presently reached. In particular, no individual can anticipate,

perhaps fortunately, his future outlook as his experience irrevocably grows.
Thus, like his neuromuscular skills, his philosophy grows according to the

challenges he has accepted, and most inappropriate solutions cannot be
recognized as such without having first been tried. One result is the inevitable

tension and discord across generations. Unfortunately, these have become
less containable in recent years because the explosive extent of technological

change has resulted in members of the young generation growing up in such
a different world that they feel justified in questioning and largely rejecting

the conventional integrated wisdom of their elders. Although this is un-
derstandable, it would involve inherent danger if they were allowed total
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responsibility for society, while the mature generation abdicated its role. The
individuals in each new generation will inevitably mature as their lives unfold

and will then tend to accept many previously unacceptable concepts. In the

interim, the “torch ” must be carried on as well as possible.

In order that youthful lives can unfold in a good biological way, experi-

mentation must be facilitated; but to whatever extent it is irresponsible it

should also be peripheral to the mainstream of society’s management. Hence
it is pertinent to note that our mature professionals learn many of their new
skills through “irresponsible” simulators, or games; for example, the pilot

first learns to fly a new airplane on a simulator. Here he may crash it repeatedly

and harmlessly in order to learn the limits of his viable control ranges. In

the same way, good winter drivers are not those who never skid, but rather

those who do so purposefully when they can find “safe-play” conditions.

By thoughtful development of new simulators appropriate especially for the

adolescent, and by blending them into the real situation whenever practicable,

much present intergeneration frustration could perhaps be removed, and

better maturation ensured.

This unfolding of the lives of successive generations imparts an effective

cycling to the larger social system. However, within the individual’s unfolding

life there are certain faster renewal cycles. One of them seems to be an interest

cycle, lasting in the order of 4-6 years. Thus the challenge of a new situation

is typically accepted, mastered, and used up in this period. The actual char-

acteristic is something like the epidemic growth curve of Figure 5.6, perhaps

because of the same underlying functional processes. Note also that this

interest cycle undoubtedly relates to the social interest cycles in such areas as

fashions.

Another important example is the annual climatic cycle, to which most of

mankind has evolved. Although many would superficially welcome elimina-

tion of this cycle, the history of discovery and social advance has largely

been shaped by the more competitive people from relatively rigorous cyclic

climates. It is not necessary to make value judgments on this past in order to

recognize that we should be very wary of casually developing the apparently

ideal weather-controlled environments which are now technically feasible,

for example, through domed cities.

(c) Purpose and striving in society. These various concepts about the

individual human being have some immediate general applicability to the

several hierarchical levels of human society, namely, society’s psychosocial

versus material needs; the tendency of a society to develop increasing levels

of aspiration; the frustration of a chaotically disorganized, ineffective society

versus the attractiveness of banding together for a common purpose or chal-

lenge (even the destructive one of warfare); and, in general, the relevance of

such concepts as the national mood, the national objective.



The Hierarchical Basis for General Living Systems 177

One important current failing is that challenging but achievable social

goals are not being set, and certainly not being set into a hierarchy of con-

tinuing social needs. Indeed, the short renewal cycle of our political electoral

process contributes to the difficulty of doing so, as already noted. The difficulty

is accentuated in the industrially developed Western nations, especially in

the United States, by the fact that almost all of society’s material (D, or

deficiency) needs are perceived by the managers of society as having been

fulfilled. Then, since no higher B-needs have been articulated, the nation has

no worthwhile goal sequence to motivate it. Hence many subnational,groups

are forced to seek their own goal sequences, and these are often mutually

incompatible. Again we note that the subsystems themselves cannot perform

system optimization without first being provided with some minimal mutual

goals and restraints. Developing countries which have recently undergone

social revolutions are more likely to achieve an initial national consensus on

goals, especially because these goals typically involve catching up to the

known level of competitors. It is much more difficult for the runner who is

out in front to pace himself.

Another problem of our society is the tendency to provide material affluence

for individuals at increasingly young age, without requiring them to strive

to achieve these goals in successive stages as their lives unfold. Thus the

current tendency is to fulfill such objectives as new cars, furnished homes, and
“ exotic ” vacations immediately upon entering working life, through advance

credit financing. Since healthy growth seems to depend on the successive

unfolding of growth needs, this process of “fulfillment” without effort

could prove disastrous to the emotional growth and maturation of the in-

dividual recipients and their society.

On the other hand, the unremitting “ rat race ” to climb essentially arbitrary

“success” ladders is a no less satisfactory aspect of our society. Clearly, we
must give much thought to structuring our institutions so that a sequence of

attractive but challenging goals can be chosen by each member of society,

appropriate for his personality and abilities. In general, this sequence should

probably be arranged to peak in late middle age, and such strategies as then

developing “second careers” should be socially encouraged.

(d) Reverence. Historically, the development and codification of human
purpose has been entrusted in considerable measure to religion. Religion has

typically evolved “ transcendental,” or revealed truths, about the nature,

purpose, and right behavior of man. Among other aspects, these encourage

an attitude of reverence, which seems very salutary for healthy psychic growth

in man [34]. As Fromm [1] notes, these revealed truths are essentially myths

which express the “experiences of the soul ” in symbolic language. Since they

are largely prescientific in origin, these myths have apparently been proved

invalid by successive new scientific advances. The conflict engendered has
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been sufficiently strong that even in recent times it has been believed that

scientific advance may have to be suppressed in order that the transcendental

necessary for psychosocial health may continue to prevail (see, e.g., [35])

However, once it is realized that the intended truth of the myth lies in its

latent rather than manifest content, this conflict becomes largely avoidable.

With the resolution of such conflict, science can prove a valuable cooperator

with religion. Thus, in particular regard to the aspect of reverence, it is

important that the discoveries of science and the search for them all tend to

encourage a feeling of reverence in the scientist for this marvelous, almost

infinite system which is nature. No matter how many peaks of discovery are

scaled, a new range of them always becomes visible up ahead, and one dare

not even surmise where the peak of ultimate truth may be.

(e) Authority and leadership . Unfortunately, this potential cooperation

from science requires from religion and philosophy an understanding of the

concepts and methods of science which has not generally been forthcoming.

Since science and technology are the agents most responsible for the current

massive modifications in our society, undoubtedly the scientist and the tech-

nologist must make major efforts to “bridge the gap ” separating them from

their humanist colleagues.

With religion, and its revealed truths about the purpose and conduct of

life, have been associated authority and leadership. As already noted, this

authority has historically evolved into fairly rigid hierarchical structuring,

however irrelevant this may have been to the founder’s philosophy. Indeed,

this point provides another example in which the inherent growth dynamics

of a process renders the initial condition not very important to the outcome

(Section 5.3.1).

With the development of human knowledge and technology, the natural

base of social authority has moved overtly to the secular, political process,

involving variable degrees of democratic participation. In consequence, the

leaders must now be selected largely through their own characteristics, and

this raises many questions for society to resolve in order to obtain leadership

of the kind it needs, especially since the type of leadership required is changing.

In regard to the hierarchical theme of this chapter, we need only inquire

here into the leadership effects of the random innate inequality of human
beings. Certainly society should enable each person to find his own appropri-

ate experiental hierarchy and to work in it. The spectrum of such hierarchies

will undoubtedly require much continued organization of society and there-

fore the selection of leaders. Now an unresolved problem is that these leaders,

by whatever process they are currently selected, are not usually motivated

toward the self-actualizing society to which we would ideally aspire. Instead,

they may rather be motivated by the wish to exert personal power, as an end
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in itself. Indeed, there is the complementary tendency that the B-need oriented

person, who can already fulfill himself, would rather not become involved,

and possibly sacrificed, in the political process of managing society. The result

has been that the societal framework is generally more conservative and less

experimentally minded than the innately superior members of society would

have organized had they exerted their natural leadership [36].

Indeed, this again raises the difficult problem, which is probably rationally

unresolvable, of how the needs of the different components of society should

be weighted. Thus, although there is a tendency in the long run for societies

and natural leaders to select each other mutually, it has remained politically

unfeasible to enforce such a process. In this regard, we should note Maslow’s

tentative suggestions [12] that healthy people probably choose on the whole

what is “good for them” in both the physiological and the psychological

senses, and that these choices would also be good for the others, were they

better choosers. He then proposes “ that we explore the consequences of

observing whatever our best specimens choose, and then assuming that these

are the highest values for mankind ” [12, p. 169].

5.3.4. Optimization, Tradeoff, Cost : Benefit, and Discord

We can summarize the optimization process (Section 5.2.4) as follows:

1. Optimization involves searching the available parameter space for the

extremum of a relevant performance index (e.g., maximizing the profits or

minimizing the costs).

2. The performance index comprises a weighted set of component indices
,

and most of the difficulty in system optimization theory concerns the appro-

priate allocation of these weights.

3. Once an optimization has been achieved, there is still the adaptive

problem of finding a control strategy by which to track any movements in

the optimal condition due to system changes or disturbances.

4. In human systems especially, an important aspect is the extent to which

degrees of freedom in optimization are available at the lower hierarchical

levels, for this deeply affects the motivation level of the human being and

hence his performance.

In practice, optimization involves a tradeoff' process in which, as manip-

ulatable parameters are changed, some of the component indices decrease

while others increase. This implies that the optimal solution is not an absolute,

unchangeable imperative, but rather a negotiated compromise. Clearly, the

bargaining of trading nations, of management and labor, and of psychological

transaction theory exemplifies this process. However, our societies are still
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tempted to lay down principles which must be honored “ at all cost.” In fact,

however, such honoring would clearly be absurd and is not practiced. As an

example, the optimal value of a city’s crime rate cannot be zero, even if some

moral principles dictate that crime is evil and must not be tolerated. Instead,

a tradeoff must be practiced between the increased social and economic cost

when civil “ protection activity ” is increased, and the corresponding decreased

cost of the crimes committed.

Actually, the existence of significant mismatch between the idealized and

the real indices may indicate that the optimization is being performed on an

invalid basis or on an incomplete system. In this case the whole spectrum

of connected systems should be evaluated, from the possible uses of technology

through the advancement of educational and cultural aspects.

Cost .'benefit analysis provides an important technique for evaluating what

the members of society consider the value to them of any given system com-

pared to its cost. Many of the data are necessarily empirical, however, since

no theoretical modeling yet seems possible. Thus again we note that an ideal

such as perfect safety is not sought by society in practice. Specifically, Starr

[37] has shown that the underlying statistical risk of death from disease

apparently determines society’s psychological yardstick for other risks. For

example, individuals accept “voluntary” risks (as in sports) at a rate some

1000 times higher than this basic “involuntary” rate.

Another implication of the tradeoff process is that a nonzero amount of

dissatisfaction ,
discord

,
or frustration must remain even at the optimal con-

dition. Now there are many basic discords in any society, partly because of

the lack of complete communication across groups, and partly because of

their necessarily different objectives. Thus we note particularly the discords

between the different classes of race, generations, sexes, urban-rural dwellers,

economic conditions, and workers. On the one hand, at extreme levels of

discord, it is undoubtedly true that an old social system is proving unsatis-

factory and will undergo a “hierarchical restructuring,” in Platt’s term [18],

and our current society may well be approaching this point [38]. On the

other hand, moderate levels of dissatisfaction are not undesirable in that

they can provide the graded negative feedback necessary for corrective action

to be undertaken. Indeed, as such they represent important stimulating inputs

for the system, whether for the single individual or his society, and the system

must learn to use them creatively in order to be optimal. In this regard, note

the earlier comment that the human being needs a rich neural stimulation to

remain alert.

Moreover, if all known frustrations and discords could be removed from a

society or an individual, it seems entirely probable that each would invent

new ones in order to prevent such dull agreeableness. Perhaps this helps to

explain why few people ever seem really motivated to build and sustain the

putative utopias which have been proposed throughout our history!
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5.3.5. Simulation, Gaming, Computer Utilities, and Reduction of Hierarchy

Society’s problems are so immense and variegated that no overall utopian

blueprint seems conceivable, even if such were desirable. However, scientific

discovery and technological application make possible some new approaches,

especially modeling techniques utilizing electronic computers. Furthermore,

when the information-processing abilities of computers are teamed with

(a) the information transmission abilities of telephone, microwave, and satel-

lite, and (b) the information display and inputting techniques associated with

television, the computer utility (social information utility) emerges as an im-

portant potential tool for implementing our new societies. In particular, it

must be emphasized again that our transition to an information-rich society

opens up for the first time tremendous possibilities for the members of this

society to become self-fulfilled individuals enjoying previously impossible

freedom of access to knowledge, instruction, entertainment, and other needed

resources and stimulants. Of course, this potentiality poses tremendous new
educational problems to be solved before the resources can be fruitfully

exploited by society. Indeed, there is the real danger of these potentialities

being subverted, and of society becoming regimented in a rigid hierarchy

under total electronic control. However, such alternative outcomes of greater

good or greater “bad” have existed throughout history in exploiting each

new technological breakthrough.

One hopeful strategy for achieving the good result is to involve the individ-

uals of society in its study and improvement. Specifically, the advent of simple

programming techniques makes it possible to generate simulation models of

large systems relatively easily. These can then be used for gaming studies

by almost any interested group of individuals, as well as the professional

planners and managers for whom gaming is becoming a primary tool. As a

result of “hands-on” experience they can develop a feel for and involve-

ment in their own society, at any desired hierarchical level. Indeed, the

desirable next step is then to carry on in the classical scientific method:

1. Study the available imperfect model of the system, and game with it to

discover various possibly desirable strategies, as well as improvements in the

model.

2. Carry out the implied experiment in the group’s community, with the

full understanding of the community that this small-scale experiment may
not prove successful. On the other hand, since an amateur competitive game
is being engaged in, the overall outcome is that the results of a set of parallel

“best-guess” experiments can become available to the larger community.

One advantage of these small-scale pilot experiments is that no great capital

investments are involved. But more importantly, the exciting sense of involve-

ment and challenge should benefit the individuals of society tremendously.
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3. Continue the iterative cycle ofimproved simulation and experimentation

as long as is desirable. Clearly, the whole process is open ended, since worth-

while possible improvements are endless and continue to unfold as each new

improvement is incorporated.

Another social problem of hierarchical systems can be tackled by these

techniques, namely, the difficulty, on the one hand, that if subsystems op-

timize themselves without regard to the total system needs such nonoptimal

conditions as
44
mutual ruin ” may occur; and, on the other hand, the difficulty

that subsystems comprising living persons cannot remain challenged and

motivated unless they can retain considerable degrees of freedom for optimiza-

tion purposes, as well as the constraints which must inevitably be sent down.

Computer gaming by subgroups will encourage them to look at their unit

interactions with the whole system, and therefore to begin to accept some

responsibility for the fate of the whole system.

In this way the subgroup will embrace the vision and responsibility of

several hierarchical levels at once. Perhaps this will provide a working

approach to how our society’s structure may be reduced in the extent and

number of its effective hierarchal levels, and yet remain viable. Indeed, it is

interesting to note that this reduction in hierarchy would make human

society functionally more like ecologies, which, as we have already noted,

behave as if they were hierarchically controlled, although in the daily routine

sense they operate as individual units. The computer gaming experience

would provide the equivalent of the evolutionary process by which the
44
right

”

behavior is evolved in ecological systems so that each subsystem operates

harmoniously for the common good in the process of fulfilling itself.

The potential advantages of gaming can be summarized as follows

:

1. The cultivation of an experimental outlook in our society can reduce

alienation and increase the individual’s involvement in his society.

2. Our material affluence can afford us the luxury of many experimental

probes coming up with unsatisfactory solutions. In any case, no great capital

is tied up in any single probe.

3. The conduction of multiple small experiments in parallel makes it

likely that good solutions will be arrived at faster than if one supreme group

were entrusted with finding the optimal solution and then imposing it on all.

Furthermore, the obtaining and implementing of multiple good solutions

will provide the diversity (requisite variety
,
in Ashby’s [39] term), which

improves the survival probability of the system when the environment changes.

In other words, many options are kept open.

4. The competitive coexistence of these diverse good solutions can help

prevent the bandwagon effect from taking over, and therefore can keep

society from becoming too monolithic.
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5. The fruitful use of the social information utilities can ensure that the

relatively free subsystems operate harmoniously with, and in full knowledge

of the needs of, the other competing/cooperating subsystems.

6. This whole process is suitably biological in that it constitutes a form of

socially directed and accelerated evolution. The fact that we can use our

intelligence for prediction and serendipity are only added advantages.

7. The harsh exclusion characteristic of biological evolution can be experi-

mentally modified with some reasonable confidence when enough experi-

mentation has been performed. In particular, we should be able to tackle

the festering problems of increasing disparity, for example, as between

developed and underdeveloped nations, and between races and classes within

one country.

5.3.6. Conclusions

The concept of a hierarchical society is under vigorous attack, because of

its perceived rigidity and consequent hampering of man’s efforts to realize

himself fully. Whatever may be the truth in the myth that a matriarchal

society preceded the patriarchal one of our recorded history [1], there is

now much pressure to discard the patriarchal principles and embrace the

matriarchal ones. For example, Slater [38] writes, “The old culture, when

forced to choose, tends to give preference to property rights over personal

rights, technological requirements over human needs, competition over co-

operation, violence over sexuality, concentration over distribution. . . . The

new counter culture tends to reverse all of these priorities.”

This chapter has advanced the thesis that competition and cooperation are

vital complementary processes in a hierarchical structure which remains

essential for any viable society that accepts technology. However, this accep-

tance does not deny that society must direct and control the technology so

as to receive only that part which is judged to contribute the maximum
benefit. In justification of this view, we have claimed that the basic hierarchical

structure has been so efficient that evolution has incorporated it in the whole

spectrum of living systems, up to and including human experiential growth.

As such, we would now discard it completely only at our great peril. How-
ever, by encouraging a multiple experimental approach to our society,

especially through intelligent use of our new computer tools, it seems possible

that a satisfactory new structuring will be discovered. Although the pattern

can at present be only dimly discerned, it would seem to consist of a func-

tionally flexible hierarchy operating with such information-richness that the

individual can enjoy not only responsibility for controlling the system, but

also adequate freedom to work toward his personal fulfillment.
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PROBLEMS

5.1. Consider a simple hierarchy in which each lower level has 10 times as

many elements as the level above; furthermore, each element at any level has

10 elements converging on it from a lower level. Let the “ 10-to-the-zeroth
”

level be the top, where total convergence has occurred to 1 element; the nth

level below therefore has 10” elements. We now deal with two informational

structures

:

Type (/): Each element processes the information converging on it from

its 10 elements, and then passes information on up the hierarchy. For sim-

plicity, assume that the upward information flow rate of every element is

the same, b bits per second, independently of hierarchical level.

Type ( ii): Only the elements on the lowest level (TV) generate information

(again b bits per second), and the elements of the higher levels operate only

as “postboxes,” that is, pass on but do not process the information.

The same conditions can apply for “ downward ’’-flowing information,

and the computations to be performed are not affected by including these

flows also.

(a) For three hierarchical levels (TV = 3) compute the total information

rates, B
1
and B2 ,

in the system for types (i) and (ii), respectively. Here B is

to be computed as the bits per second transmitted across a single hierarchical

stage.

(b) Find how the ratio (B2/B l ) behaves as a function of TV, and in particular

show that it tends to 0.97V as TV increases.

(c) Generalize your results for any arbitrary convergence factor, C, rather

than for 10.

(d) Consider further aspects in the modeling, such as the costs of informa-

tion processing in the two methods, in order to make the model more realistic.

5.2. Consider more fully the comment in [8] that the rationale for a hier-

archical structure is to provide a way of avoiding “direct confrontation

between the large and the small in nature.” Is the tendency of social organi-

zation to generate a new “executive committee whenever the basic com-

mittee becomes large” (p. 152 and [11]) an illustration of this principle?
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Establish for as many hierarchical examples as you can the approximate

convergence factors which apply. Is the convergence factor typically constant

within a hierarchy, or does it depend on the relative information rates to be

processed?

5.3. The hierarchy of the food web is quoted as having an approximate energy

convergence ratio of 10 [16]. Does energy flow indeed represent the appro-

priate information measure for making the food web hierarchy analogous

to the other information hierarchies? Do such other measures as biomass

and numbers of organisms have any greater pertinence?

5.4. Nominally an organization such as a factory follows a strict hierarchical

structure. Make reasonable estimates for the convergence factors of the

following levels: individual machinist, charge hand, foreman, manager.

Furthermore, guess at the orders of magnitude of information rates up and

down these hierarchies in normal operation. Assume initially that all informa-

tion flow is “vertical”; then guess at the modified information flows when

the realistic “horizontal” information flows are included.

5.5. The basic information flow for industrial production-inventory-sales

could once be considered hierarchical with all or some of the following levels:

head office, production plants, warehouses, wholesalers, retailers, customers.

Unfortunately, the nominally efficient feedback of sales information upward

through the successive hierarchical stages, in fact, provided at least one reason

for a tendency to instability in the inventory-production control system.

In detail the time lags of each stage can produce such instability in a closed-

loop system. This problem has been solved in simple but effective ways.

Discuss some of these ways, and their significance for the effectiveness of

hierarchical structures. Could the dynamic instability exhibited in this

example apply to any of the previous problems for which stable equilibria

have been implicitly assumed ?

5.6. Another aspect of hierarchical information flow is seen in our neuro-

muscular organization especially. Thus preprograms seem to be developed

at the lowest viable level for skilled but repetitive actions—for example, the

muscle actions necessary for locomotion (whether ambulation, swimming, or

flying), eye movements, and speech. Again, the retina does much preprocessing

of visual images. Indeed, more generally the neural receptors often seem to

have the characteristics which are already essentially those needed for the

pertinent systems they will control (e.g., warm skin thermoreceptors vary

their signal with temperature in almost the same way that the muscles sub-

sequently respond in producing heat by shivering). In general, this amounts

to following a principle of decentralization; in computer analogy we would

say that nature uses small dedicated computers with relatively fixed programs

at many decentralized sites. Thus the time-sharing information-processing
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demands at the more central computers are minimized. Does it seem that

this difference is due to the different “technologies,” or is perhaps some

basic organizational principle illustrated here? In your considerations note

also that one of nature’s important criteria seems to be that, in the event of

breakdown higher up in the system, subsystems at each lower hierarchical

level should remain viable.
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6.1. INTRODUCTION

The focus of this chapter, by a sociologist, on some perennial problems

traditionally dealt with by the philosopher reflects the current critical state

of sociology and some other social sciences. Questions are being asked, and

demands made on this area, that transcend its current level of traditional

theory and methodology. The latter are thus under critical attack on many
sides, and a basic change in the underlying theoretical paradigm of the field

(to use Kuhn’s term [1]) is blowing in the wind.

Although the ultimate goal for sociology proper is a more adequate con-

ception of the structure and dynamic processes of complex sociocultural

systems, it appears that such a conception requires a better understanding of

the microprocesses underlying the macrolevel. Among many other areas,

current concern is with such problems as the “ social construction of reality,”

group interpretation or “definitions of the situation,” and the nature and

role of language as a mediator, if not creator, of such constructions and inter-

pretations. On the assumption that the larger social structures and processes

of society represent the net outcome at any one time of these group construc-

tions and interpretations continually occurring in the underlayers of the give-

and-take of daily social life, including the undertakings of the scientific

endeavor itself, it becomes important to focus on the knowledge process in

general, that is, the problem of epistemology.

188
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This chapter will attempt only to make a start at mapping out a model of the

epistemological process as seen from a systems theoretical view, the main
emphasis being on the knowledge process as (not unreasonably) primarily an

information-processing system. Many scholars already think in these terms

and may find little that is novel here; others, however, use a wide variety of

thought-schemes and terminologies, and for them it is hoped that a system

model, because of its great generality, may provide a framework for more
common and cumulative discussion across perspectives and disciplines.

One other disclaimer is in order. This chapter will touch on many phil-

osophical bases, but the analysis can hardly be taken as adequate from that

point of view: it attempts only to skim off* some of the basic epistemological

arguments, with the hope that the ignored refinements and subtleties do not

seriously damage the position taken.

In essence, the sketch or model of the epistemological process presented

here pictures a flow of information (in the modern broad sense) from the

physical and social environment through the various transformations, codings,

and processings of the human sensory, linguistic, and other mental or neuro-

physiological mechanisms, to the decision-making and consequent motor

output apparatuses, and thus to actions or behaviors that constitute trans-

actions back again on aspects of the physical and social environment—often

changing the latter and hence the nature of its later inputs into the system

(see Figure 6.1). The main points that I wish to argue below may be summa-
rized as follows:

1. Adequate epistemological (as well as ontological) analysis must focus

on the total system as a complex on-going whole, for the information selection,

transformations, or codings that occur at any point or linkage in the system

depend not only on prior events and processes in the system, but also on

feedbacks from later points. A well-known example is the fact that the infor-

mation attended to or selected for processing during activity is continually

changing as a function of the on-going intentions, decisions, and actions of

the individual. Perception, as well as conception, is at best a continual

sampling out of the extensive potential informational cues available in the

external (or internal) environment.

2. Thus the total system, when operating fully, is what I have referred to

elsewhere as a transactional system, with morphogenic (structure-changing)

as well as morphostatic (structure-preserving) capabilities [2]. What this

means, among other things, is that knowledge is not passively and finally

given merely through information input to the sensory apparatus, but rather

is actively constructed and reconstructed through continual interchange

between the individual and his physical and social environment. Cognitive,

emotive, decision-making, and instrumental motor energy are also required
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Figure 6.1. Schematic model of epistemological system.

to drive the system. Each of these subsystems contributes to the structuring

and operation of the others.

3. Consequently, the classical philosophical approaches to epistemology

and ontology, to which we still tend to adhere, are seriously incomplete and

deficient, focusing as each does on only one or two links and transformations

of the total system. I refer here to early empiricism and idealism, phenomenal-

ism, phenomenology, logical atomism, and varieties of positivism (see the

excellent review of these positions in [3]). They have moved along parts of the

sequence from information inputs from an assumed (or studiously denied)

external world to the sensory apparatus, to its transformation into sensations,

sense data, or percepts, and thence to mental phenomena, concepts, ideas,

images, or language and logical symbols. One or more of these transforms
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is taken as the “ ultimate” or “primitive” raw data of knowledge, which are

then to be verified either through internal “intuitive” operations or by some

reductive mapping against objects and relations of the external world.

6.2. A MODEL OF THE EPISTEMOLOGICAL PROCESS

In elaborating on these points, I will discuss (a) The aspects of information

theory that seem especially pertinent to our model; (b) the transactional

perspective; (c) the classical epistemological positions mentioned above; and

(d) some implications for a modern theory of knowledge, including science.

(a) The modern theory of information and communication (c.f., among
others, [4]-[6]) teaches us that information is inherently a relational concept,

involving, let us say, a mapping of one subset of elements organized in a

certain way (e.g., words of a vocabulary organized into written sentences)

into some other subset of elements organized in a correlative way (e.g., mental

concepts organized into complex ideas). If the words happen to be in a

language foreign to the receiver, there is no mapping and hence no communi-

cation of information. Thus, when we speak of “information ” from physical

events in the external world being transformed by the sensory nerves, we are

really using the term loosely, since such inputs are not information unless

they map into—can be related systematically to—the internal, mental refer-

ence set; otherwise they constitute only “noise,” without meaning. Also, if

two or more receivers have significantly different internal reference sets, the

same input signals may impart significantly different information, since the

relational mappings will be different. Furthermore, since the organization of

the internal reference set is a function, not only of prior external signal inputs

but also of internal operations, such as cognitive and emotive operations, as

well as of feedback signals deriving from active transactions of the individual

with the external world, we must conclude that those philosophers are wrong

who assumed that knowledge derives only from sense data from the external

world.

Modern information theory also teaches us that the essence of information

is the pattern or organization of the signal elements, regardless of the substan-

tive nature of these signals—electromagnetic vibrations, air vibrations, spatial

or temporal arrangements of objects or events, and the like. This means that

signals may go through many transformations and appear in various sub-

stantive forms, but as long as the organization of the various elements remains

invariant over the transformation, the potential information provided by

the signals is preserved and requires only the final mapping into the receiving

reference set to deliver its message. As a familiar example, we might take

radio and television broadcasting and receiving, or the reproduction of events
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via disc recordings or audio and video magnetic tape. Thus sound signals from

air vibrations are transduced by the microphone, which transforms the pattern

of air vibration into a nearly isomorphic pattern of mechanical vibration of a

diaphragm; this in turn transforms the pattern into electrical signals which,

after several more transformations, may preserve the pattern as wiggles in a

record groove or magnetized sections of a tape. Eventually, if the fidelity is

adequate, the pattern may be transduced by a loud speaker into air vibrations

recognized as the vocal or musical message that originally entered the micro-

phone.

Now, this illustrative model is not intended as a very close analog of the

human knowledge process (which is much more of a transactional matter),

but it is similar in that in both cases the input signals go through many

transformations and the original pattern is preserved throughout with some

degree of fidelity. Our main point here, however, is that the modern informa-

tion theoretical framework provides a critical base for assessing the earlier

philosophical analyses of the epistemological process. Thus of immediate

import is the question of the significance, or lack of it, of attempting to

localize the “really primitive or fundamental data of experience” as did the

empiricists, idealists, phenomenalists, phenomenologists, and others. To

localize such data in “ immediate sense data,” “ immediate mental impressions
”

from sense data, “phenomenal mental configurations,” language symbols,

or other cognitive constructions is probably not by itself of any greater signif-

icance than to ask whether, in reproducing music via the phonograph, any

one transformation of the signals—mechanical, magnetic—provides the more

“fundamental or primitive” data (or information) about the original input

signals. Theoretically, the question is not meaningful. If the signal pattern is

well preserved in each case, then the potential information is as “funda-

mental” in any form. And just because the substantive form of the signals

has changed, the potential information about the external world is no less

direct or indirect, and is just as good for knowledge purposes regardless of

the transformation, as long as the fidelity of pattern is maintained. Of course,

the signal pattern is not “the same as” the external events that produced

them, but for the knowledge game this is irrelevant, since the object of the

game is to know of and about the external world, not to reproduce its “sub-

stance” in the mind.

In sum, since “information” (including “meaning”) is inherently rela-

tional (a mapping between knower and known), it becomes meaningless to

ask what the “ real world ” is like apart from a knower. And given the notion

of information transmission as the preservation of pattern over transforma-

tions, there is no question, in principle, about how we can know the external

world. That we “ only” know it through its effects on our senses is no block

at all to our knowing it, and in the fullest sense of that word. There is no
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sense to the notion of knowing the external world
4

4

directly,” just as there is

now no sense in claiming that we know our selves or phenomenal experiences

in some more “direct sense” than through the internal processing of “infor-

mation” in the broad sense.

(b) The difficulty we actually face, then, is to be seen, not in the principles

involved, but in the practical mechanisms of information transmission and

transduction and their very complex organization in the higher organism.

This leads us to a consideration of the fully transactional nature of the rela-

tionships between knower and external world.

We have already argued that the individual is not simply a passive receiver

and recorder of incoming signals and sense data, but actively contributes

additional information as well as helps to construct the particular framework

or organization of the internal knowledge reference set that alone gives

meaning to additional signals generated from without or from within (e.g., by

thought or emotion). Additional information and knowledge structure are

no doubt added, then, by the basic physical structure of the peripheral, cen-

tral, and autonomic nervous systems; by on-going feedback from various

phases of the total transaction of the organism as an open system adapting

to or goal-seeking in its environment; and by the sociocultural processes,

including language and other symboling, in which the individual and his

information-processing activities are constantly embedded.

In the last few decades the work of neurophysiologists, psychologists, and

the modern linguists have given new life to Kant [7] by suggesting the innate

structuring of the nervous apparatus as a contributing factor in the struc-

turing of perception and conceptual thought. The analysis of the nervous

system as a complex of nerve nets processing data in the manner of logic

circuits, with the higher centers acting to coordinate the various kinds of

information from peripheral processes and from memory storage and to

integrate it into plans, decisions, and actions, gives us a rather definite picture

of a construction
,
rather than mere reproduction, process. We must await

further work by the neurophysiologists and neuropsychologists to tell us the

extent to which the peripheral, central, and autonomic nervous systems act

as neutral transducers passing and transforming signals without adding to

them significantly; the degree to which they add information that shows up

in our picture of the world; or the extent to which they provide a framework

(e.g., spatial and temporal), a kind of
44
coloration” which does not, however,

alter the information pattern significantly. Studies strongly suggest that, if

they do not actually add, subtract, or distort information patterns being

processed, they most certainly contribute substantially to their structuring

or format at the level of perception and conception.

It has been argued for some time, starting at least with transactionalists

like Dewey [8] and Mead [9], that the world as we see and act on it is to a



194 Walter Buckley 6

great extent created by us, in the sense that we gradually build up a con-

struction of it by interacting with it. A good deal of research has corroborated

this view. Some studies, such as those on extreme sensory deprivation and

those in which a subject wearing inverting prismatic goggles gradually comes

to reconstruct an upright perceptual field, show that, not only does one have

to learn or relearn a meaningful perceptual world, but also in order to con-

struct such a world one must actively manipulate it—engage in transaction

with it. Other studies, with a broader behavioral focus, have broken down

the older stimulus-response model and have shown that attention, perception,

conception, decision, and action all constitute a system of complexly inter-

linked components of the on-going act, or transaction, and none can be fully

specified apart from the others. The experimental work of Piaget and his

colleagues [10], cumulative over the last few decades, has done more than

probably any other single group to support empirically and theoretically this

transactional view. The development of perception, intelligence, and thought

in the child is seen to be a matter of complex organization and construction

involving the interaction of external data and internal operations, and these

operations—which transform or modify the external data—are built up from

the continual sensorimotor actions and coordination of actions normally per-

formed on objects and their interrelationships.

As far as the peripheral sensory apparatus is concerned, the external world

is a matter of sampling and the reception of intermittent, partial, and tempo-

rary cues, which must be constructed into larger patterns and wholes and

related to other events in certain ways before they become meaningful or

useful information to the organism. Thus Piaget and others have shown that

even the percept or concept of a stable, constant object is not immediately

and passively given but is constructed through interaction with bits and

pieces of information organized from different perspectives. Even logic, a

purely relational matter and one usually explained as a mere convention of

language, is argued by Piaget to be, on the contrary, the basis of the structure

of language. The roots of logic lie in the transactional experience of the child;

logical concepts are built from operations abstracted, not from the perception

of objects, but from the general coordination of actions performed on objects.

This coordination of actions tends to be isomorphic with the relations among

the objects dealt with and to build up, starting from the sensorimotor level,

the internal schemas (nervous system routines) that develop further on the

higher levels to structure thought and language. In coordinating its actions

on the objects and events the child is engaging in acts of uniting, arranging

in order, classifying, conserving some quantity or quality, including or ex-

cluding from classes, negating, and so forth—some of these depending on

earlier experience with others. Thus these actions, which at first involve

primarily the sensorimotor mechanisms and later gradually involve the
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cognitive centers, presumably provide their share of “information” (perhaps

including proprioceptive feedback signals) which, along with the data from

the external world, lead to the build-up of internal representations and

organizing subroutines (to use MacKay’s terms [11]) that underlie the logical

work characterizing intelligent thought. The fully developed “ logico-mathe-

matical” and linguistic operations of the adult are thus a mode of experience

involving a large element of construction and having a transactional origin

similar to, though distinguishable from, the experience of external physical

objects.

Any attempts to go beyond the traditional theories of epistemology and

ontology, or to speculate on the innate, conventional, or experiential bases of

logic and language, must come to terms with the transactional theories and

research studies mentioned above.

(c) To complete the discussion of the major sources of additional “infor-

mation” and knowledge structuring besides those stemming from data of the

external world, we must also mention the input from the sociocultural trans-

actional process in which the individual, including the scientist, is intimately

involved. Language, as a sociocultural product and process of the first order,

has, of course, long been considered an important contributor to the struc-

ture, and perhaps the content, of knowledge and thought processes. How-
ever, too little research has been done since this theme was developed, espec-

ially by Whorf and Sapir [12, 13], to tell us much more than this.

The situation is not much better with the various versions of the sociology

of knowledge. This field has provided strong arguments for the general view

that social structures and processes significantly influence idea systems. Again,

however, we do not know much about the extent or conditions under which

this may, or must, occur.

It is at the microlevel of the basic social psychology of interpersonal trans-

actions that social influences on knowledge have been most convincingly

argued. Thus G. H. Mead has tried to show that the higher human mental

processes depend on the ability to manipulate symbols and the ability to take

one’s self as an object—both of which develop together in the child through

the give-and-take of social transactions. Through the responses of others to

one’s own actions, and using symbols as a vehicle for holding the self in the

mind as an object, one’s own actions and interactions with others become

mentally manipulate. Thus both the social and symbolic processes make
possible the higher knowledge processes involving the physical and social

world and also make probable the introduction of additional structuring and

content into these knowledge processes.

Piaget has argued that, whereas earlier intelligence in the infant is a sensori-

motor intelligence based on the internalization of actions, higher intelligence

requires the transformation of these internalized actions into operations, as



196 Walter Buckley 6

discussed earlier. This poses the problem of the mental representation of

what has been absorbed on the level of action, which in turn involves a con-

structive process of “ decentering” the child from his initial focus on his own
body and actions to a state in which his body and actions become objects on

a par with other objects and events in his external world. Once again, this

implies the requirement of the development of a sense of self as an object,

which in turn involves a long socialization process of interpersonal trans-

actions.

It should be noted that, whereas the philosopher dealing with epistemology

has focused almost exclusively on knowledge as knowledge of the external

physical world, he must eventually face the equally important problem of

knowledge of the sociocultural world. Here we have to deal with knowledge

of a wide range of social and cultural settings, and of the expectations, inten-

tions, wishes, and other internal states of persons with whom our actions

must be coordinated. “Knowledge” thus becomes an extremely complex

matter of the interpenetration of multiple perspectives and the continual

interpersonal validation and verification of events in the day-to-day trans-

actional process. Epistemology thus requires a group level reference, rather

than a purely individual one.

Even if knowledge of simple physical objects did not contain a significant

constructional component, the world of human experience involves much
more that depends on the complex organization of separate and fuzzy com-

ponents extending over time and space and intimately related to internal

emotive, cognitive, and moral schemas. It is well recognized that, as data

from the external world become more complex and ambiguous, their internal

and verbal representational construction involves a greater and greater social

and psychological component. It is no wonder, then, that knowledge, in-

cluding scientific theories and interpretations of the world, tends to harden

into “conventional wisdom” or “scientific paradigms” that require a great

deal of social, as well as purely cognitive, energy and creativity to change.

One result of the slow recognition of this fact has been the rejection of the

traditional epistemologist’s tendency to fall into a solipsist position and a

turning toward the intersubjective verification view of knowledge. But this

position has barely been developed. From the view of science as simply a

recording and logical organizing of external data we are coming to recognize

it as a fully morphogenic process, in which the sociocultural aspect may act,

not only as a distorting process, but also as a purifying, noise-filtering device

by gradually filtering out the idiosyncratic, the purely subjective, and the

empirically false, and leaving a residue of the relatively verified and true.

Having discussed some modern viewpoints relevant to a system model of

the epistemological process, we will look briefly at some traditional philo-

sophical positions.
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We have already said enough to act as a review of the fundamental inade-

quacies of the empiricist positions of Locke and Hume or the idealist view of

Berkeley. A model of their image of the knowledge process would simply

show input signals from “properties” of external physical objects being

transformed in some unspecified way by the sensory apparatus to produce

“sense data” or “ impressions” whose relation to the external world remained

mysterious, or at least a block to “direct” knowledge of the “real” world.

The sense data in turn were impressed on the mind in some way as ideas, with

little or no construction (for the empiricists) or with all being an internal

construction (for the idealist). No consideration is given to the other links in

the total transactional knowledge process, as suggested in our Figure 6.1.

The same restriction applies to the phenomenalist, for whom knowledge of

the external world is reducible to sense content alone. All statements of the

world are reducible to statements whose meanings can be given only in

terms of sense percepts as the ultimate primitives. The model here similarly

shows a flow from external objects to their transformation into sense data

and an apparently immediate translation into symbolic thought. Thus, for

Mach, at one stage in his thinking, a “thing” was a thought-symbol for a

compound sensation [3]. Conceptual, or theoretical, construction not only did

not, but also should not, play a significant role. The empiricism is rather

raw in this view, with perception as well as conception quite immaculate.

This position is a very seductive one for the empirically oriented scientist and

makes sense if we cling to the view that knowledge is only a matter of per-

ception and that we perceive the world only through sense data. But, as we
have tried to show, neither of these assumptions is true since the full trans-

actional process introduces much information and construction of a non-

external nature into both the perceptual and the symbolic conceptual pro-

cesses.

The phenomenologist simply moves the focus from sense data to mental

configurational entities as unique, private, primitive givens of experience.

He appears to recognize the constructive transformation of sense data into

the mental realm, and appeals to private intuition as the arbiter of knowledge;

however, he assumes that mental events are free from any transactional

structuring of the several kinds discussed above. This assumption, of course,

rests on very thin ground. There is little reason for believing that such phenom-

enal data are any “purer,” more basic, or less abstractive than consciously

thought-put theoretical constructions that are interpersonally validated. And,

from our information-theoretical point of view, there are no grounds for

claiming that private, intuitive mental configurations map the external world

with greater fidelity. In the last analysis, its main contribution may lie in its

agreement with the transactional viewpoint in warning against the atomistic

reduction of complex experiences to any assumed elemental sense data.
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This brings us to the logical atomism of Russell [14] and early Wittgen-

stein [15], and the logical positivism that was heavily influenced by it. In

focusing on language and logic, and on the scientific role of these as providing

a mapping of the external world, the logical atomism of Russell and Witt-

genstein moved us an important step further into the transactional know-

ledge-system we are modeling.

Based on the view that language pictures the world, as developed by the

early Wittgenstein of the Tractatus
,
and on Russell’s purification of logic in his

program, with Whitehead, in reducing all of mathematics, logical atomism

argued that the world is made up of atomic facts and that the scientists’

molecular propositions about the complexities of the world could always

be reduced to and verified by way of atomic propositions that map these

atomic facts in a one-to-one manner. Substantive words map to objects, and

the appropriate logic constructs their interrelationships to any required

degree of complexity.

Although modern information theory renders the mapping aspect under-

standable and plausible in principle, a number of problems arise. Russell and

Wittgenstein believed that logic is conventional and quite independent of

and not derivable from relations in the external world. Thus logic and fact,

word and object, belong to two different universes, and consequently, whereas

words picture external objects, logic is left with the mysterious task of relating

these objects in empirically meaningful ways—of classifying, ordering, in-

ferring, etc., as well as relating them into the complex wholes we seem to

experience. Objects are given ontological status, but not relations, despite the

fact that much of science is concerned with establishing such relations rather

than the mere existence of the objects. In addition, the assumption that the

world is reducible to a set of independent atomic facts can be questioned in

terms of the transactional system model we have outlined.

Language, our model suggests, involves at least a three-way mapping: of

individual mind to other individual minds and each to some relatively common

world of experience. Since language systems develop only in a group-vali-

dating context (which is true also of the scientist’s special symbol system), the

resulting mapping is a complex one interrelating external objects and rela-

tions, individual cortical-symbol systems, and the common group symbol

system and current understandings. Consequently, the picture theory, which

is based on a simpler direct mapping between object and language, misses

the full transactions in which not only do objects provide the referents for

words, but also words help construct objects. Words do this because they

develop in a social and manipulative transaction with the external world, in-

volving also, of course, the constructive contributions of the sensory and

higher mental apparatus. And if we accept the view that logic has an experi-

ential base and maps the relations between objects in the external world, then
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the logical atomist’s (and later positivist’s) program of purifying language

and logic in order to map and structure the world more accurately must fail.

Such purification must involve the sloughing off of needed potential informa-

tion about objects and relations that show up in the open-ended richness of

language. Purification is certainly necessary to clear away confusion and
error, for the transactional system we picture surely contains noisy channels,

but the main question is how to avoid clearing away useful information and
meaning as well. To be adequate to the heavy demands put on it, language

and logic must be rich enough to map the various levels of complex systems

and dynamic relations of the world, and we cannot afford to beg the reduc-

tionist question.

It is such considerations as these that may underpin the modern rejection

of extreme operationalism, the criticisms of a strict deductive-nomothetic

model of explanation, and the insistence on maintaining open-ended concepts

and theoretical constructs in the scientific vocabulary. Any positivistic appeal

to “immediate data” of experience, or reliance on “ostensive” definition

of atomic terms in scientific propositions, ignores the constructive process of

perception and conception that underlies any experience or ostensive point-

ing. A similar argument can also be made against any rigidly held verifica-

tion theory of meaning (cf., among others, [17] and [8]).

Logical atomism comes to grief especially over the question of what are

to be taken as atomic facts—as basic ontological units which are to map into

atomic propositions. Modern systems theory, with its emphasis on wholes

and relatively autonomous levels, throws into serious doubt the atomist’s

denial of “molecular facts” (e.g., systems whose components derive at least

some of their properties from being parts of the system). If we apply trans-

actionalism to the interactions of objects and events of the external world

(leaving aside the role of knower), we may conclude that the properties that

define or make knowable such objects and events are always relational and

are not totally inherent in the object itself. That is, a property or an attribute

of an object refers to the resultant of the interaction of the object with some-

thing else, and the something else we select will help establish the property

we tend to attach to the object alone. This may apply not only to so-called

dispositional properties, but also to those assumed to be inherent. Thus it

appears true not only of such properties as color (interaction of the structure

of the object with light waves) but also, modern science suggests, of what used

to be thought of as “primary qualities,” for example, weight (mass), size, or

shape. If this is the case, then the presumed object or event varies in its prop-

erties, depending on its relational or systemic context. Atomism would seem

to be applicable only to a static, highly entropic world of no transactions and

becomings. Wittgenstein’s later rejection of this Tractatus with its atomism

and picture theory of language, and his consequent development of the
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“language game” notion and the public use-theory of meaning in his later

Philosophical Investigations
,
can be interpreted as a shift to a transactional

view of the world and the knowledge process. However, the rejection of the

basic principle of a mapping process in favor of a vague use-theory of language

seems an unwarranted overraction; our model argues for the compatibility

and necessity of the two aspects.

6.3. CONCLUSION

By way of conclusion, it must be reiterated that this has been an exploratory

sketch, which barely touches on the wide variety of difficult issues and prob-

lems to be raised in any systematic, interdisciplinary attack on a modern

theory of epistemology. We began with the view that many problems in the

theory and methodology of human behavior require such an overhaul of

traditional epistemology. The main purpose of the chapter has been to sug-

gest and argue for a fully systemic and transactional model of the know-

ledge process as a basis for the reconstitution of epistemology. This calls for

the theoretical integration of many new developments of recent decades in

the diverse areas of information and communication theory; neurophysiology;

linguistics, psycholinguistics, and sociolinguistics; aspects of psychology,

social psychology, and sociology; and the philosophy of science. A systems

model seems clearly indicated here, since the genius of modern systems

theory is its continually developing potential for cutting across and unifying

disciplines that are battering more and more against the artificial barriers

separating one from another. We have not attempted to review these newer

developments here (even assuming our competence to do so), though an

integrative review is definitely in order and would provide an invaluable ser-

vice to the scientific community.

Our task has been the more modest one of suggesting a model that empha-

sizes that knowledge development is a complex morphogenic process involving

interrelated, goal-seeking, and adaptive individuals in constructive inter-

change with each other and their more or less common environment. As a

fully systemic and transactional model, it insists on taking into account (a)

the total flow of “ information” and its various filterings, codings, mappings,

processing, and utilization—from environmental input back to environmental

output and manipulation, in a more or less unified and on-going act; (b) the

way in which each phase or link in the circuit provides feedback or feed-

forward to affect earlier or later phases in important ways; (c) the manner in

which each transformation or processing stage introduces extra-environ-

mental structuring, information, or noise: the sensory, cortical, linguistic,
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motor, social group, and environmental manipulation stages all seem impor-

tant aspects of the transactional construction of knowledge, apart from raw

environmental inputs as such; (d) the extent to which some invariance of

pattern is maintained through the various transformations, codings, or map-

pings, to account for the veridicality attaching to knowledge despite the

transformations and structurings that occur (this is not to be identified with

the older “ psychoneural isomorphism” or copy theory). We have also intro-

duced some rather radical suggestions which we feel require serious considera-

tion : that logic has an empirical and experiential base, even if it also involves

a conventional component; and, correlatively, that ontological status might

be accorded relations in the external world as well as “objects” and events,

especially considering that they all involve some degree of construction in any

case.

It is our belief that the model roughly outlined is applicable not only to

knowledge acquired in the everyday manner but to the procedures of formal

science as well. Consequently, we offer it as a potential aid in the current

recasting of the philosophy of science as well as in carrying forward the study

of human behavior.

PROBLEMS

6.1. To say, as some philosophers have, that we can only know the external

world “indirectly” implies that it could make sense to talk about knowing

it “directly.” Discuss what this might possibly mean.

6.2. Some have argued that ontology and epistemology are independent

problem areas. Discuss the questions of how it would be possible to develop

a theory of one without having a theory of the other.

6.3. Discuss the question of whether the “signals” from objects and events

in the external world potentially available to a receiving individual can cor-

rectly be referred to as “information” in any strict sense of the term.

6.4. Discuss whether it may be merely an accident of human evolution (bio-

logical and/or cultural) that we tend to give full ontological status to objects

but not to the relations that we believe we find empirically between objects.

6.5. Einstein and Infeld, in their study The Evolution ofPhysics ,
describe the

decline of the mechanical view and the rise of the field view of the nature of

reality. Discuss the possible bearing of this development on the previous

question.

6.6. Discuss the implication for epistemology and the philosophy of science

of according full ontological status to relations obtaining between objects as

well as to the objects themselves.
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6.7. If logic (the study of relations) is only a convention of language, discuss

why it seems to work so well when applied to the external world (e.g., through

applied mathematics or as the basis of the modern computer).

6.8. Discuss the implications of general systems theory for the philosophical

arguments concerning emergence theory: the question of whether higher

levels of organized phenomena can, in principle, be predicted or explained

entirely in terms of the properties of lower-level phenomena.
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7.1. INTRODUCTION

If we consider for a moment the diversity of disciplines which have been

attracted in varying degrees to at least a reading of the materials available

in general systems theory, an immediate question comes to mind. With so

many divergent interests to be addressed, what could possibly be presented

which would not be devoid of specific usable content? The majority of

readers appear to be concerned with specific and generally quite complex

problems, and their motivation is usually the gaining of insights or a particular

solution to a particular problem. Content and broad applicability should be

primary characteristics of a general systems theory if it is to be expected to

come into widespread use. The approach taken here will specifically address

itself to this probelm.

The notion of system has enjoyed widespread use in numerous fields, and we
will rely on an intuitive understanding of the term until it becomes necessary

to elaborate it further by precise definitions. A system theory can be given

(developed) for a given meaning of the word “ system.” This has often been

done, resulting in a spectrum of theories as indicated in Figure 7.1. A general

system is essentially an abstract model of an already existing (physically or

conceptually) system which reflects (to the degree we wish it to reflect) all the

basic or fundamental systemic traits of the original. Its precise meaning will

become clear once some general principles of systems have been explored.

It is, however, not unique and is directly related to the definition of the

system that it is to model.

In order to indicate more completely the meaning of the spectrum in

Figure 7.1, we characterize more fully the various types of system theories.

Type /. This category consists of specific theories of mechanical, chemical,

biological, social, and economic systems; of electrical, linguistic, mathe-

matical, and archeological systems; and so on. Type I theories deal with

particular traits of interest within the boundaries of the discipline involved

and in general ignore those traits of the system under study which are mani-

fested by virtue of its being a system. The content of these theories is usually

taken to be of interest only within the discipline involved. This information
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does not take into account the fact that the underlying phenomenon may be

viewed as a system from perhaps several general definitional points of view.

Type II. It may be that several type I theories from different fields have

overlapping content in certain respects. Certain classes of systems may be

more than simply analogous in aspects; they may actually be isomorphic.

It is then possible to generalize those aspects (common traits) and to produce

common content. For example, the isomorphism between mechanical and

electrical circuits leads to a theory of generalized circuits which is applic-

able to thermal and acoustic circuits as well. Certain aspects of language

theory and machine theory combine to produce a theory which allows cer-

tain topics to be viewed from either the language or the machine point of

view. Regular languages and finite-state automata, as well as context-

free languages and pushdown automata, are examples of this. In the future

more of these relations will be uncovered and will give rise to system theories.

Nevertheless, the level of generalization is relatively low, and we would prefer

to call these theories generalized systems theories rather than general systems

theories. Hence a type I special theory of wiggets, if generalized, would be

referred to as the theory of generalized wiggets.

Type III. A type III system theory will be discerned as satisfying three

properties

:

1. It is applicable to at least all bounded (finite) systems.

2. It reflects fundamental systemic traits common to all systems.

3. It contains general methodical principles.

If a system theory satisfies these conditions, it will be called a type III general

systems theory (or simply general systems theory when the context indicates

type III). We note here that the type IV system theories are also general

systems theories.

From this standpoint there may be many different general systems theories

capturing different fundamental traits of systems. Such a development of

supplementary theories would allow of periodic integration, thus yielding

access to general systems theories of broader applicability and greater con-

tent. The integration of all current type III theories at any point in time

would no doubt be recognized as “ the ” current working general systems

theory. This of course presupposes the integration effort. It is exactly this

type of theory, a fine balance of generality with useful content and a method-

ology, for which George J. Klir has been striving in his approach to general

systems theory.

There are many theories in existence at a high level of generalization

which do not satisfy the three requirements but nevertheless yield results of

a general systemic nature. These constitute type II. Most of these results
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would be included in corresponding general systems theories satisfying the

requirements.

Type IV. The type IV system theories are of the highest order of generaliza-

tion. We are essentially working here with the mathematical theory ofsystems

and the derivation of fundamental traits of systems from a formal definition

of the concept of system. As such theories are more general than type III,

Increasing

generality

and

decreasing

content

Periodic integration

of general systems

theories leads to

Further generalization of

Type II theories leads to

Generalization

of Type I theories

leads to

i

^Periodic integration may increase content of theory as well as broaden applicability.

Figure 7.2. Relationships between system theories.



210 Robert A. Orchard 7

they are of necessity not as rich in content. We see the role of these theories

as outlining the borders of general systems theory, specifying general guiding

principles, and producing results which may be used in type III theories. It

follows of course that results obtained in type III theories must be con-

sistent with those of type IV and may in turn contribute to further develop-

ment of the latter. Periodic integration where possible should also occur at

this level.

The relationships between the four basic types of system theories are

summarized in Figure 7.2.

7.2. A PARTICULAR VIEW OF A TYPE in GENERAL SYSTEMS
THEORY

In Klir’s approach to general systems theory, it is recognized that a system

theory can be developed for a given definition of the word “system” and

that the definitions for systems in general are motivated by the problems that

are to be solved for the systems. The theory may also take into account a

class of systems, each of which is uniquely defined in some manner. If the

class of systems, or equivalently the collection of system definitions, is chosen

in such a way as to allow of general applicability to all disciplines, the systems

theory will also be of general applicability. The theory itself will study the

class of abstract systems (general systems) characterized by the definitions.

However, the definitions should be chosen by considering only the general

traits proper to all systems (called fundamental or basic traits). Of course a

crucial question is. Exactly how does this general systems theory relate to a

specific problem in a specific discipline ? Briefly the answer is as follows.

A formulation of a problem is actually a point of view taken by an investi-

gator concerning the problem. If he wishes to utilize a certain general systems

theory, he must define a system on the underlying phenomenon (i.e., take a

point of view) which coincides with a system definition encompassed by the

particular general systems theory. It is important to note that the point of

view is one which looks at the original problem in its systemic aspects. The

system which is eventually defined on it takes into account only those funda-

mental traits of systems which are present in the collection of system defini-

tions in the general systems theory being used
;
hence the results of any in-

vestigation by use ofthe theory will of necessity yield information of a systemic

nature only. Particular knowledge involving concepts indigenous to the basic

discipline involved must be derived initially by use of experiment or a type I

theory.

Once the system is defined on the phenomenon, mappings or homo-

morphisms are established between the system defined on the investigator’s
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problem and the general system based on the same definition. The general

system (together with the mappings) is referred to as a model of the investi-

gator’s system, which again is a point of view taken concerning the original

object of study. There is no reason why the same general system could not

be used for a model of many systems as long as they coincide in definition

and suitable mappings can be defined. We summarize this procedure in

Figure 7.3.

In order to define a system on an object with respect to the general systems

theory used, we must have available the class of system definitions proper to

that theory. Klir undertook an extraordinarily critical study of the use of

the system concept across numerous fields, including known expositions of

general systems theory. He lists no less than two dozen distinct definitions of

system found in the literature and presents an extensive bibliography and

guide. A cross section of systems was analyzed, and a careful compilation of

essential traits of systems which are not lost during the process of generaliza-

tion was made. System definitions are subsequently based on these traits. A
description of the fundamental concepts of systems based on Klir’s study

follows.

7.3. FUNDAMENTAL CONCEPTS OF SYSTEMS

Given a phenomenon {object) under investigation, we recognize that we

cannot know the object completely in either its full simplicity or its full

complexity. This is a basic epistemological premise. In an empirical science

what is not under consideration may be referred to as the environment of the

object. We would proceed to observe or measure values of certain quantities

which are associated with certain attributes of the object. The values may be

of a numeric or nonnumeric nature. Measuring and observing presupposes

that a space and time reference frame, that is, a space-time specification ,
has

been considered for each quantity of interest under consideration. The

accuracy and frequency with which we record the chosen quantities is referred

to as the space-time resolution level or simply the resolution level. For some

quantities the space or the time specification or both may be irrelevant.

Assuming that the quantities have been chosen and a resolution level has

been assigned to each, we measure the values of the quantities, starting at

the reference time instant t = 0. The result is a matrix, the variation in time

of all quantities, called the activity of the system (Figure 7.4). By observing the

activity of the system we attempt to determine the relations existing between

the observed quantities which are satisfied within a specified time interval.

These are called time-invariant relations. We seek the properties that deter-

mine them and the manner in which these relations are composed of simpler

relations.
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Time (continuous, discrete, or both)

Figure 7.4. Activity.

It is entirely possible that an activity is not the direct result of observations

or measurements. For example, if the quantities chosen are statistical in

nature, the activity may reflect some preprocessing of data over a class of

systems. Of course, the values may also be nonnumeric; no restriction is

placed on the quantities other than their meaningful nature. The object itself

may be a system or a class of systems defined on some other object.

The process outlined above is termed defining a system on the object from
a distinct point of view. The fundamental traits of systems studied by experi-

mental branches of science are the set of quantities, the resolution level, the

time-invariant relations between quantities, and the properties that deter-

mine the relations. In point of fact, these are fundamental traits of every

system, independently of the originating discipline which defines it. These are

characteristic traits of systems in general and therefore of what we refer to as

general systems. Of course, in different disciplines the problems associated

with systems may be different. For example, the relations between quantities
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may already be known or specified, the problem being to find a way of

implementing the relation.

Once the system is defined on an object in the experimental or engineering

branches of science, the system becomes the item of investigative interest. It

is no longer the object but rather the object restricted to a point of view

which is investigated. In abstract fields the system is the object. It is defined

by enumerating the variables, the set of admissable values, and certain

abstract properties, peculiar to the discipline, which determine the relations

between the variables.

Let us now assume that systems are characterized by the four fundamental

traits outlined. In order to facilitate the formulation of various system

definitions, it will be necessary to introduce a collection of concepts and

definitions related to the fundamental traits. We will attempt to do this in

as straightforward a manner as possible. For a fuller discussion consult [1].

7.3.1. Behavior of a System

With Figure 7.4, we introduce the notion of the activity of the system. In

order to analyze the activity and to determine whether time-invariant rela-

tions are present among the variables, we need a schema for sampling values

of selected quantities at specified instants of time in accordance with the

stated resolution level. Therefore the following notation is introduced.

T={t\tisa considered time instance and t e [0, tmax ]}.

X = {x
t , x2 , ...

,

xn} denotes the set of symbols identifying the observed

quantities (also called external quantities).

Xi(t) is the value of the external quantity x
t
at time t.

X
t
is the set of all possible values of x

{
.

L = {X
x ,
X2 ,

. .
. ,
Xn ,

T} expresses the resolution level.

Pj is a quantity called a principal quantity and is defined for given integers /,

h by

Pj(t) = x
t
(t + p) for 1 <; j ^ m, 1 ^ i ^ n, and p a real constant, t

9 ( t + p)

eT,x
i
(t + P)eXi ,pj

{t)eX
i

.

Pj(t) is the value ofp}
at time t

,
and the index j can be associated with the pair

(/, p). If p = 0 or P < 0 or ft > 0, then the value pj(t) represents the instan-

taneous, a past, or a future value of x
t
at time t

,
respectively.

Pj is the set of all possible values of Ifj is associated with (/, /?) for some

p, then Pj = X
t

.

The purpose of the principal quantities is to participate in any pattern of

sampling of the activity. Their values can be construed to be sampling values.

The behavior of a system is a particular time-invariant relation specified

for a set of quantities and a given resolution level, and based on samples of
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a certain pattern. There are as many behaviors for a system as there are

time-invariant relations among the quantities. In terms of the principal

quantities pj ,
the behavior is represented by a subset of the Cartesian product

P1 x P2 x P 3 x • •
* x Pm . If the system is observed over a sufficient time

interval, it may be possible, if desired, to associate each point of the behavior

(relation) with its probability of occurrence.

We distinguish three basic types of behavior:

Permanent (real) behavior. The absolute relation satisfied over the entire

time interval; the real property of the system.

Relatively permanent (known) behavior. The relative relation which is

satisfied anywhere within a particular activity. This relation is consistent with

all known data.

Temporary (local) behavior. A relation that is satisfied during a distinct

section of a particular activity.

The relatively permanent behavior is represented by a set of all temporary

behavior within a particular activity, and the permanent behavior is repre-

sented by the set of all temporary behavior. It is impossible to distinguish the

permanent and relatively permanent behavior by empirical verification. To
do this may require analysis of the properties that produce the behavior of

the system. It must be kept in mind that the sampling pattern of quantities

may be changed by the investigator, and hence there are many viewpoints

that can be taken in the investigation and explanation of a system.

7.3.2. Organization of a System

The organization of the system is the collection of all properties producing

the behavior of the system.

The structure of the system is that part of the organization which remains

permanent, fixed, or constant and forms the basis for the permanent or

relatively permanent behavior. The portion which forms the basis for the

permanent behavior is called the real structure , and the portion forming the

basis for the relatively permanent behavior is called the hypothetic structure.

The assumption of a decomposition of the behavior of the system into

simpler behaviors implies that the system is composed of simpler systems,

called elements (subsystems), each of which is characterized by its own
behavior (time-invariant relation). Every element then is defined by a distinct

set of quantities, a given resolution level, and a time-invariant relation (based

on a certain sampling pattern of its activity) between certain principal

quantities. Since the element is not the subject of study, its organization is

irrelevant to the current investigation, although it may be relevant under a

newly defined object system.
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The universe of discourse of a system is the collection of all elements of the

system. The composition of the element behaviors determines the behavior

of the system.

The coupling of two elements is the set of all common external quantities.

In the same fashion that was used to differentiate the contribution of structure

to permanent and relatively permanent behavior by use of the adjectives

“real” and “hypothetic,” we define the contribution of the couplings to

behavior. Real couplings are couplings valid over the entire time interval of

any activity of the system. Hypothetic couplings are couplings valid anywhere

within a particular activity of the system. The structure of universe of dis-

course and couplings (UC-structure) is the set of all elements and their

couplings (or, equivalently, the set of all element behaviors and their compo-

sitions).

The state of the system is the set of instantaneous values of all quantities

of the system (external as well as internal*)- The internal state of the system

is the set of all instantaneous values of all internal quantities of the system. A
transition is a change from one state of the system to another.

The program of the system is that portion of the organization which is

variable and which at any time t is an instantaneous state of the system, a set

of some other states of the system, and a set of transitions from the instantan-

eous state to the states under consideration in time. We distinguish three

types of programs.

Complete program . An instantaneous state, together with the set of all

other states of the system, and the set of all transitions from the instantaneous

state to all states of the system in time.

Subprogram. An instantaneous state, together with a nonempty subset of

the set of all other states of the system, and a nonempty subset of the set of

all transitions from the instantaneous state to all states under consideration

in time.

Instantaneous program. An instantaneous state, together with the transi-

tions from this state.

The complete set of states and the complete set of transitions between these

states constitute a fixed, permanent portion of the complete program and

therefore should be included in the structure of the organization. This is

defined to be the state-transition structure (ST-structure), and we distinguish

the real and hypothetic portions in the same manner as was done for the

UC-structure.

Figure 7.5 expresses an overview of the definitions introduced and their

* Internal quantities of a system are quantities which are not observable from outside the

system.
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manner of interrelating within the organization of the system. The environ-

ment is indicated on the diagram, and since we will shortly be introducing a

symbol for it, several comments will now be helpful.

The behavior of the system generally is influenced by something in the

environment. There may be traits in the behavior which follow not from the

organization of the system but rather from the organization of the environ-

ment, which may itself be considered as an object of study. If the relevant

elements of the environment are ever isolated, they should be incorporated

in a new definition of the system in order that the behavior be less environ-

ment dependent.

Independent quantities are quantities which are independent of the system,

cause events to occur in the system, but are produced by the environment.

Quantities which are dependent on the system are called dependent quantities.

Now in the general case the classification of external quantities into those

which are independent and those which are dependent is not a priori given.

All previous system theories assumed the classification as given. It follows,

when possible, from other information about the system either given or

observed. If the classification is known, the system is called controlled and

we say that a control of the system is known. Otherwise we say that the system

is neutral. Klir directs himself to this problem in [1].

In regard to the organization of the system, additional notation is now

introduced for the definitions in Figure 7.5.

S — {su s2 , . .
.

,

sk} is the complete set of states.

R(S
,
S) c S x S is the complete set of transitions between the states. The

transition from state i to state j may be viewed probabilistically in the man-

ner of the Markov process.

If (s
{ ,

Sj) e R(S
,
S), then £?(Sj

\

s
t) is the conditional probability of entering

state /, given that we are in state i.

{au a2 , ...

,

ar} is the set of symbols denoting the elements of the universe

of discourse.

a0 is the symbol for the environment of the system.

A = {a0 ,
au ...

,

ar} contains the elements of the universe of discourse as

well as those of the environment.

A
i
is the set of principal quantities defined on a

t ,
i = 0, . .

. ,
r.

A
t = {pj\j*-*(k, /?), where xk is the quantity defined on a

t}, 7 <->(£,

Pj = xk(t + P) for ft a fixed constant depending on j.

b
t
is the permanent behavior of the element a

{
.

B — {bu b 2 ,
. .

. ,
br} is the set of all permanent behaviors of elements of the

universe of discourse.
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Cij is the coupling of the pair of elements (a
t ,
a

y)
and is given by c tj = A

t
n Aj

,

Cij — Cji.

C =
|
Cij is the coupling of

,
a,), e A, i ^ /} and will be called the

characteristics.

7.4. DEFINITIONS OF SYSTEMS

Five basic definitions may now be formulated, based on the four funda-

mental systemic traits isolated in Section 7.3 (i.e., quantities observed at a

resolution level, activity of the quantities in time, time-invariant relations

between them, and properties that determine these traits), and the concepts

related to them which were introduced.

Usually, when solving problems, some traits of a system are given (primary

traits) from which we are to determine other traits (secondary traits). We
would not want to base a definition of system on traits which make it impos-

sible to determine whether or not the secondary traits are consistent. Nor
would we wish to base our definition on unknown or nonpermanent traits.

Also, the traits chosen should not be redundant.

A careful search through all the traits imposing the above conditions

yields the following candidates: the external quantities and the resolution

level, a given activity, the permanent behavior, the real UC-structure, and

finally the real ST-structure. Five definitions, each based on a separate trait,

are now given. For each a verbal definition is followed by a mathematical

definition, the two indicated as (a) and (b), respectively.

Definition 7.1. Set of external quantities and the resolution level

(a) A system S is a given set of quantities regarded at a given resolution

level.

(b) A system S is a 3-tuple (X,
t, L), where X = {xl9 x2 ,

. .
.

,

xn} is the set of

external quantities, t is time, and L = {Xu X2 ,
• .

.

,

Xn ,
T} is the resolution

level.

Definition 7.2. Activity

(a) A system S is a set of variations in time of the quantities under con-

sideration.

(b) A system S is a 1 -tuple (M), where M is a set of ^-tuples {(x^t),

x2 (t), . .
. ,
xn(t)) 1

1 e T, Xi(t) e X
t
for all i = 1, 2, . .

.

,

n }.

Definition 7.3. Permanent behavior

(a) A system S is a given time-invariant relation among instantaneous and/

or past and/or future values of external quantities. The relation may admit

of a probabilistic interpretation but is not required to do so.
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(b) A system S is a 1-tuple (R(PU P2 , ...

,

RJ), where R is a relation

defined on X?=i P
j
and P

j = Xi
if P) for some /?, or S is 2-tuple

(R(Ri, P2 , • • • ,
Rm), ^(R)), where R is as defined previously and R) is a

probability measure, defined on R
, such that ^(r) is the probability of the

occurrence of r, r e R.

Definition 7.4. Real UC-structure

(a) A system S is a given set of elements, their permanent behaviors, and a

set of couplings between the elements and between the elements and the

environment.

(b) A system S is a 2-tuple (R, C), where B = {b 1 ,
b2 ,..., br} and

c = {c,j
I
Cij = At nAj, i #7}.

Definition 7.5. Real ST-structure

(a) A system S is a set of states and a set of transitions between the states.

The occurrence of transitions from one state to another may admit of a

probabilistic interpretation but is not required to do so.

(b) A system S is a 2-tuple (5, R(S, S)), where 5 is a set of states and R a

relation defined on S x S, or S is a 3-tuple (5, R(S, S), ^(R)), where S and R
are as previously defined and ^(R) is a probability measure, defined on R,

such that if (si9 Sj) e R then 0>(sj
\

s
t) is the conditional probability of transi-

tion from state s
t
to state Sj .

A minimal definition of system would have to be one of the basic definitions.

However, more information with respect to other fundamental traits may
be available. Any combination of the five definitions would again be a valid

system definition, but not a basic one. This process alone would yield thirty-

one possible definitions of system. It may also be the case that partial infor-

mation is available concerning a permanent trait. As long as at least one of

the basic definitions is incorporated into the definition, the partial knowledge

may also be included. For example, the set of states may be known but not the

transitions. In the final analysis, whatever is added to the basic definitions

must reflect some aspect of permanence.

If the control of a system is known, the classification of external quantities

as input or output quantities is a permanent piece of information for this

system. Each of the five basic definitions can be modified slightly to incor-

porate it. This would yield five basic definitions for the class of controlled

systems. For example, for Definition 7.4, UC-structure, the modification

would proceed as follows.

Let the sets A and B of elements and behaviors, respectively, be as defined

previously for the UC-structure. The following new definitions will be needed

:
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I
t
is the set of input quantities for the element a

{
.

Oi is the set of output quantities for the element a
t

.

A directed coupling of two elements is the set of all quantities that belong

to the output quantities of the first element and to the input quantities of

the second.

dtj
is the directed coupling of the pair of elements (a

t ,
a
3) and is given by

dij = O
t
n I

j

. We note the following:

dij / dji ,
and d

tj
is defined for i = j*

D = {d^
j
dij is the directed coupling of (a

t , aj), a
t ,

cij e A}

and is called the directed characteristics.

A definition can now be given which will characterize a controlled system

by its real UC-structure.

Definition 7.4'. UC-structure

(a) A controlled system S is a given set of controlled elements, their per-

manent behaviors, and a set of directed couplings between elements, including

the environment.

(b) A controlled system S is a 2-tuple (£, D), where B = {b
x , b2 ,

b 3 ,
. . ,

,

br}

and D = {d^
|

du = O
t
n /,•}.

In a similar manner the other four basic definitions for controlled systems

could be formulated.

In retrospect, what is now available to us is a large class of possible systems

definitions with the five basic definitions serving as the foundation for the

class of all system definitions. If a given system definition is used in the process

of solving a problem, and information is derived using the general systems

methodology, then it may be incorporated in a redefinition of the system. This

follows since the only thing learned from general systems theory formally is

systemic. Of course the new information (traits) must be of a permanent

nature. Information of a nonpermanent (time-varying) nature must be rele-

gated to the area of secondary traits since we allow only permanent traits to

characterize a system. In fact, if a system is characterized positively by its

permanent traits, then it is defined by one of at most thirty-one definitions.

Figure 7.6 shows this and also the relationship of various classes of system

definitions.

Any definition of a system which is valid must be derived by taking a

combination of the five basic definitions in the ground plane and modifying

them by the traits contained on exactly one line through the vertical axis.

The basis, for example, of the class of T-systems definitions is derived by

* The notion of feedback is implicitly defined by the definition of directed coupling.
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Figure 7.6. Classes of system definitions.

translating the ground plane up to the point T
t
and modifying each definition

(fundamental) by traits T
{

. There are now thirty-one possible definitions of a

7ysystem.

As one can see from observing the vertical axis in Figure 7.6, a good deal

of work may be done in the general area of classifying systems. Particular

classifications will depend on whether the classification is to be oriented to

type T, IT, or III system theories. Individual disciplines may contribute quite

heavily to system classification and may point out certain classes of systems,

heretofore not recognized, as of interest to type III theories. Some of the
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classes of general interest which have been characterized are the physical,

abstract, real, conceptual, continuous, discrete, pulse, hybrid, unique,

repeated, controlled, neutral, deterministic, stochastic, memoryless, sequen-

tial, simple, complex, teleological, physically realizable, closed, relatively

closed, and bounded. The concept of an open system appears in the literature

and within the framework of Klir’s theory represents or is represented by the

object upon which a system is being defined.

The basic definitions require boundedness of a system as an essential ingred-

ient. This does not prevent us from considering a system which has an

infinite number of external quantities and/or an infinite structure (i.e., an

unbounded system). It simply requires that the system be defined using a

definition which does not refer to the trait possessing the infinite quality. In

other words we recognize the trait not as a primary trait of the system but

rather as a secondary one. In some cases it may not be possible to define a

system within the current framework. A simple example would be a situation

in which all five definitions referenced an infinite attribute of the unbounded

“system.”

A class of system definitions can be associated with any horizontal plane

for which the corresponding set of permanent nonfundamental traits is con-

sistent. There may be points T
it
T

i2
Th . . . T

in
on the vertical axis which will

be undefined because the traits are inconsistent. The class associated with

a horizontal plane (the basis of basic Tydefinitions) consists of a finite number

of definitions reflecting the nonuniversal nature of the T
t
traits.

A class of system definitions can also be associated with a vertical plane.

It will correspond to the collection of definitions based on one fundamental

trait and an arbitrary permanent nonfundamental trait or traits. It will con-

sist of a potentially infinite number of definitions (assuming the existence of a

potentially infinite number of nonfundamental permanent traits). The basis

for this class will be the subset of the plane corresponding to points on the

vertical axis characterized as a single trait point. When taking combinations

of these basis definitions, only those which are consistent with one another

may be used. Clearly any combination of vertical planes yields another class

of definitions. The potential infinity of a class of system definitions reflects

the universal nature of the permanent fundamental traits. It appears that

there is no shortage of possible system definitions. We note that these defini-

tions are permanent and hence hold for all time t.

A similar circumstance exists when traits which vary in time are considered.

Since they are not permanent, we cannot base a definition of system on them

and where possible we would characterize them as secondary traits of the

system. The relationships which exist between time-varying “systems” and

infinite “systems” are currently under investigation and may prove to be
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of an essential nature. In general, then, time-varying and infinite systems can

be treat ed when the traits admit of a secondary classification consistent with

the basic definitions.

7.5. CLASS OF GENERAL SYSTEMS AND THEIR USE

The class of general systems may now be identified by using the five basic

definitions with the modification that defined variables, without any particular

interpretation and in dimensionless form, be used everywhere in the definition

in place of quantities. We see immediately that for any system defined there

is a corresponding general system which could be defined with respect to the

modifications just mentioned.

Since general systems theory is to be applicable to all systems, the essential

preoccupation is with the class of systems definable by the five basic defini-

tions and the development of a methodology for working with these systems.

However, methodology may also be developed for certain subclasses of the

class of general systems (in the sense of Figure 7.6). The controlled systems

constitute a large portion of the systems actually studied by the various dis-

ciplines, and hence we would expect the general systems theory to address

itself to the problem of developing a methodology for the subclass of con-

trolled general systems. In the process of elaborating a theory for the sub-

class, additional concepts holding for all systems in that subclass can be

introduced. These may be viewed as being “fundamental” traits for the

subclass. The further we carry on this subclass differentiation, the closer that

portion of the general systems theory comes to being a type II theory.

The motivation behind general systems theory includes of course the ex-

ploitation of analogies known to exist between pairs of systems. The feeling

of similarity which sometimes haunts us when observing two apparently un-

related phenomena is usually an intuitive awareness of a systemic trait or

traits common to both. It is clear that the fundamental traits shared by all

systems (i.e., behavior, ST-structure, UC-structure, etc.) will in most instances

account for a large portion of what is intuited to be “ similar” in two objects

although, as the type 11 theories indicate, there may be other components of

the analogy.

Unless we can formalize the feeling of similiarity (a weak analogy) to yield

a strong isomorphism between specific entities, any hope of extracting in-

formation by way of the analogy is futile. In order to carry out the formaliza-

tion we proceed as follows:
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1. Establish (define) a system S
x
on the object of interest, incorporating

that trait (or traits) which appear to be the basis for the analogy.

2. Establish a general system S2 on the basis of the same definition or

another definition which also takes the trait or traits into account.

3. Define a unique transformation T (set of mappings or homomorphisms)

between some components of S x and S2 ,
the type of transformation T

depending on the trait or traits under investigation. To use S2 as a model for

S
x
with respect to the trait or traits investigated (or simply as a model of

“trait” for S^, T must be such that under the assignment the isolated trait

or traits of interest become equal in both systems.

To summarize, we start off with an intuitive similiarity and isolate its

basis. In step 2 an abstract system is established which also exhibits the

isolated trait or traits, and we may now refer our feeling of similarity to it or

rather view the analogy now holding between SA
and S 2 . Actually what has

been done, no more or no less, is to say that a particular aspect or aspects of

the original object appear to be systemic in nature (i.e., shared by a class of

objects). We then formulate a system definition and proceed to query the

general systems theory, which after all is a theory of widely held traits, for

further information concerning the trait of interest.

The formulation of the isomorphism corresponding to the analogy is

represented in step 3. The general system S2 and the set of mappings T are

referred to as a model of S
x

. We refer to S 2 as the model understanding that

a suitable T is available. The meaning of a general system is then an abstract

model of an already existing system which reflects (to the degree we wish it to

reflect) the basic systemic traits of the original system. Hence general systems

theory allows us to study traits of systems independently of any accidental

meaning but not in a manner which is independent of its own essential

meaning (i.e., with content). In this respect it is in the best mathematical

tradition.

For examples of the system concepts introduced so far and for the estab-

lishing of models the reader is referred to [1], where he will find an interesting

collection of applications, including quantities and resolution level for

weather, and for the institution of marriage in American society; activity of a

traffic light system; activity of a musical composition and the melody gener-

ated by a given relation; permanent behavior of a retirement system; UC-
structure for a heating system, a potted rosebush, a birth control system, and

a cybernetic model of the instinct of self preservation; ST-structure of the

U.S. legal system or of bacterial metabolism. Models of behavior, UC-
structure, and ST-structure are given, as well as general paradigms of several

classes of systems (sequential, simple, and complex probabilistic).
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Models of behavior, ST-structure, and UC-structure are of primary inter-

est since these are the models which appear for the class of general systems

per se. They are by no means the only models, however, which general

systems theory is capable of considering. As indicated previously, subclasses

of general systems are characterized by additional traits, and these will of

course be reflected in the models used in investigating these classes. Each of

these models still must be characterized as being essentially a model either of

behavior or of ST-structure or of UC-structure. Figures 7.7 and 7.8 give

examples of some of the concepts.

Circles denote states.

Directed lines denote transitions.

Probability of transition (if applicable) is denoted

by numbers associated with lines.

(a)

Figure 7.7 System representations, (a) Typical modes of representing ST-structure.
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Figure 7.7 (Continued) (d) Typical modes of representing activity.
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Figure 7.7 (Continued) (e) Typical sampling of activity by mask.
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51 and S 2 are defined by permanent behavior,

52 is a model of behavior for Si if

7i : x'j~>xi (\ < i< m, 1 < j < n), is an assignment (mapping) between input

X} -» JT/ variables of Si and S 2 and between their values

;

T2 : yk-+y'i (l<k<q, 1 < /< r) is an assignment (mapping) between output

Fk -> Yl variables of Si and S 2 and between their values

;

and S 2 produces responses equal to those of Si for every equal stimulus (or a sequence
of stimuli) when viewed through the mappings T\ and T2

51 and S2 are defined by UC-structure

52 is a model of UC-structure for Si if

T\\ at -> al and a\ is a model of behavior at a; under T2 (1 < i ^ r), and if

T\\ cti —> ai and T\\ dj dj, then T2 : Cy -^c-
;
(preserves couplings),

1 < i, j < r

Figure 7.8. System models, (a) Model of behavior. (6) Model of UC-structure
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7.6. SYSTEMS PROBLEMS AND METHODOLOGY

It is always easier to speak about problems than about the methodology

which might be used for their solution, and general systems theory is no

exception in this regard. The problems can be classified roughly into the three

major areas of analysis, synthesis, and investigation of the unknown (a black-

box problem). Within the framework in which we are working, a systems

theory of type III at the most basic level of definition, analysis is the process

of determining the behavior or ST-structure of a system, given its UC-struc-

ture; synthesis
,
the process of finding a UC-structure realizing a given ST-

structure or permanent behavior or activity; investigation of black box
,
the

process of acquiring knowledge of the system, given at least its definition as

quantities at a given resolution level and possibly but not necessarily addi-

tional information. If the problem concerns a system known to be in a specific

subclass of the class of general systems, the processes outlined may be sub-

jected to certain additional constraints germane to the type of system. In

synthesis, for example, minimization or maximization of some specified func-

tion may be required or a given set of elements must be considered for the

UC-structure.

Klir has indicated methodology in several instances. He has developed

additional concepts to delineate the class of discrete general systems and has

introduced masking techniques for the activity matrix to yield the behaviors

and corresponding ST-structures. In the area of controlled systems, the general

paradigms of sequential systems and of simple and complex probabilistic

systems have been given. The basic procedure of system analysis is outlined,

but extensive detailed elaboration is currently under development. For a

given UC-structure, methodology is available for the elimination of auxiliary

variables for deterministic controlled systems. The determination of control

for neutral systems and the detection of their behavior by way of casual

relations or control of the elements lead immediately to ST-structure deriva-

tion.

For system synthesis it is difficult to speak of procedure in general, since

so many constraints may be imposed on the UC-structure derived. Funda-

mental steps are available. Most procedures for synthesis have been formu-

lated for engineering systems, and work in this area is needed for other

classes of systems. For discrete systems, the classification and criterion for

completeness of elements, the determination of ST-structure followed by

UC-structure, the synthesis of combinational (memoryless) systems, and

basic procedures for sequential systems have been evolved.

In the area of the black box or basic investigative problem, fundamental

procedures leading to the solution of the problem have been established
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from both a deterministic and a statistical point of view. A searching method

for significant relations is being developed.

Even when methodical principles are relatively straightforward, there is

always the problem of computational complexity when systems of moderate

size are involved. Consider a system with several elements whose correspon-

ding behaviors are described, let us say, by nonlinear differential equations (or

difference equations). Such equations are difficult at best and in general are

incapable of explicit solution. In such cases the digital computer is almost

a necessity, and it should be used in general to aid in the analysis, synthesis,

and investigation of systems. Since we will include the digital computer as a

part of the methodology of general systems theory, a discussion of the role

of continuous systems will be helpful at this point.

7.7. CONTINUITY AND THE DIGITAL COMPUTER

It can never be verified that the physical universe is of a continuous nature.

Whenever it is observed it is at a discrete resolution level. For all intent and

purpose, then, the world is a discrete object and this also we cannot verify in

fact. However, we observe no instances of continuity, and discreteness is

experienced in varied instances. From the point of view of general systems

theory, continuous systems and discrete systems differ essentially in their

resolution levels; there is, however, a complete analogy between the concepts

defined for both types of systems. Some—the mask, for example—are prag-

matically meaningless for continuous systems.

Since physical measurements require a discrete resolution level, physical

systems are essentially discrete systems. Many times, however, they are viewed

as continuous systems because the mathematics is available to handle them

in this form. Mathematics has built up a superb collection of theories and a

long record of achievement in applying these theories to the physical world,

and many would be reluctant to give up this approach to a world view. There

is no doubt that it accounts for a certain economy of thought and allows us

to move from one point of information concerning a system to another with

zero error or at worst as arbitrarily small an error as we choose.

Suppose that the elements of a physical system had behavior or secondary

traits expressed by differential equations. Assume that by using the techniques

of continuous mathematics we could express these behaviors in function

form and proceed to compose the behavior of the system. Let us say that our

result is a single continuous function. No error has been incurred, or at least

no error which cannot be made arbitrarily small. If it is now desired to sample

a value of the behavior at a particular time instance, we generally expand the
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function in a series, truncate it, and use a discrete time instant. This is obser-

vation or rather measurement at a discrete resolution level.

If the physical system were assumed to be discrete, the behavior or secon-

dary traits ofthe elements might be finite difference equations. In many cases the

methods of solving these are analogous to, and no more difficult than, the

solution of the corresponding differential equations, with two exceptions;

the technique of change of independent variable is not available, and very few

finite series can be summed to closed form. Both of these techniques are used

in the solution of differential equations, especially those of nonlinear type.

If the digital computer is to be used for the solution of problems concerning

systems, it would appear to be advantageous to define our systems from the

discrete point of view. Systems work is not all computation, however, and

reasoning theoretically about a system within the framework of discrete

mathematics is not appealing from many obvious aspects. One cannot simply

discard continuous mathematics until discrete techniques at least as powerful

become available. Nevertheless, when faced with the computational aspects

of the system, and in some instances even the theoretical aspects, it becomes

necessary to contend with the digital computer and its resultant introduction

of a discrete resolution level.

The system could be defined as discrete and envisioned as continuous

where economy of thought is advantageous, in full realization that the opera-

tions we are thinking of will be carried out discretely on the computer, and

the results taken at a discrete resolution level. What we are saying here is

that we think integral and implement the calculus of summation.

An alternative approach is to define the system as continuous and to

require continuous operations to be carried out. The final results of course

will be available to us at a discrete resolution level. If we desire to convert

this to the continuous form for further theoretical argument, it may be

possible to utilize methodology available for transforming between discrete

and continuous systems [2]. In point of fact, whether the operations were

actually carried out continuously (as one assumes when using an analog

computer) or discretely (i.e., on a digital computer) is of no consequence as

long as the results are the same and the system is unaffected at the resolution

level that we choose for observing our “continuous” results. The fact that

ensuring this is a problem in numerical analysis constitutes the basis for the

digital simulation of continuous processes.

A digital computer may be made to appear to the user as if it were an

analog computer. The simple block diagram type of program used in pro-

gramming analog computers is retained, and many of the complexities and

disadvantages of the analog computer are lost. In general, speed is sacrificed.

The use of a digital analog simulator is simple to learn and provides us with
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a powerful tool for studies involving ST-structure, UC-structure, and the

permanent behavior of the system. Such a simulator offers a definite advan-

tage to the scientist or researcher with a minimal background in mathe-

matics and is of particular interest to the social scientist and biologist. It is

ideally suited to the handling of nonlinear problems, and this fact alone has

attracted applied mathematicians to its use. An example of such a simulator

is LEANS,* written in Fortran and available from the Lehigh University

Computer Center; CSMP* is similar and can be obtained from IBM.

Figure 7.9 lists the available elements and their behaviors. The application

A

Figure 7.9. Elements and behaviors.

* LEANS (LEhigh ANalog Simulator); CSMP (Continuous System Modeling Program).
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B > 0, A is stored

C = 0, previous stored

value of A is

output

C < 0, output = 0

A = B program stops

C = +B if A > 0

C = -B if A < 0

D = B if A > B

D = AifC<A<B
D = C if A < C

B must be greater than C

C = B if A > 0

C = 0 if A < 0

C = B if A < 0

C = 0 if A = 0

Figure 7.9. (Continued)

<L-Jt d

D = A rf C > 0

D = B if C < 0

D = A if A > B

D = A if A < C

= 0ifC<A<B

y = f(x
1
,x

2
,x
3 )

Any arbitrary function

desired. Written as

Fortran subroutine.

of user-programmed functions allows the freedom of designing an element

with any specified behavior. For this purpose (but not otherwise) a knowledge

of Fortran is required, or programming assistance must be available. Figure

7.10 shows simple examples of UC-structures simulated. Further information

is available in [3]. A collection of Fortran subroutines which allow discrete

simulation to be carried out, although not in the element-behavior style of

the analog, is GASP II* [9].

* GASP II (General Activity Simulation Program).



(b)

Figure 7.10. (a) UC-structure realizing the behavior y" + ax{t)y' + a2(t)y =f(t). (b

)

UC-structure realizing the behavior “The system output is the continuous estimate of

the mean of the input.”
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7.8. A WORKING ENVIRONMENT FOR METHODOLOGY AND
RESEARCH

Graph theory [4] is another mathematical theory which may be used in

ST-structure (diagraph) studies. There are various implementations of com-
puter programs to aid graph-theoretic work. A simulation of a sequential-

parallel processing computer with a planar array on which a graph theory

language may be implemented has been developed, based on a modification

of Unger’s original machine [5, 6], Development of programs for the simu-

lated device will be oriented toward ST-structure applications. Other lan-

guages in which similar manipulations may be carried out are also available

(PL/I, Snobol, etc.). It may be that, as the ST-structures of very complicated

systems are studied over a period of time, some definite patterns of structure

will emerge. The theory of ST-structures could then be viewed as a specialized

area of graph theory or as a theory of programming.
It appears to this author that simulation will play an increasingly important

role in carrying out general system theoretic studies and the necessary

systems modeling involved. Much of the algorithmic procedure developed
for general systems theory will also eventually have to be encoded for use on a

digital computer. A large body of mathematical methods is available for use

with various classes of systems which could contribute heavily to the method-
ology of general systems. This will have to be culled, organized, classified,

and integrated into the framework of the methodology—an undertaking that

in itself is a major problem.

Until we can see clearly a reasonable synthesis of the procedures now avail-

able in various system-oriented disciplines (i.e., the abstraction or extraction

of those suitable for general systems work), we should not accelerate the

development of new “ general systems ” techniques. In the same manner as

the definitions of systems were formulated (proceeding inductively and gen-

eralizing), a portion of the methodology may also be established. This would
certainly be consistent with Klir’s philosophy of approach.

In Section 7.7 we saw that certain useful tools are available as computer
programs. There is an increasing tendency to make such collections of pro-

grams available to the research community at large. A recent example [7]

presents a set of eight programs to facilitate the study of the class of linear

control systems. It must be repeated that in our case the primary emphasis be-

longs on the methodology applicable to all systems. Secondary emphasis would
be placed on the subclasses. Even if there is no current active development
of techniques for a subclass of general systems, we should be aware of the

developments outside the framework of general systems. There should be
some method for recording potentially general methods.
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What is now proposed is the development of a computer-based
,
interactive

system, for general systems-oriented work. Some of the more essential features

would include

:

1. A basic query system to allow the user to characterize his system (defini-

tion), his discipline, and his general problem.

2. The maintenance of information records ofpast users of general systems

theory
,
their disciplines, classes of systems, and types of problem (analysis,

synthesis, black-box investigations). Not all records would be kept—only

those of a highly representative type. This information could be used in a

variety of ways to contribute to the development of the theory.

3. A listing of the methodical tools applicable to all systems
,
with simple

examples of the use of each given on request.

4. A listing of the methodical tools which appear to be germane to the

user's problem and to the specific subclass of systems characterized by the

user in item 1.

5. The capability to apply methodology in an interactive mode under user

control.

6. A one-year record ofadvances in methodology in all system-oriented fields.

Since such diverse capabilities as simulation languages, both “ continuous
”

and discrete, and graph-theoretic and nonnumeric or string and symbol-

oriented languages will be needed by various users, it appears that PL/I may
be best suited for writing such a system. Actual construction will begin within

the next two years. The system will incorporate such devices as graphic dis-

play units, plotting equipment, and light pen instruments. This system will be

oriented toward the principle of the Klir paradigm of systems exclusively.

This will allow an immediate and clear definition of the specification of the

system and should significantly cut development time.

7.9. CURRENT ADVANCES

A new definition is now introduced which completes in a natural way the

set of five basic definitions presented by Klir. It consists of taking the dis-

junction of the five definitions as a definition in its own right with the addi-

tional provision that the disjuncts hold or do not hold as a function of time.

This will allow us to characterize systems by fundamental traits which may
vary in time. Previously, these traits would have been relegated to the status

of secondary traits of the system since a primary trait (defining the system)

is required to be permanent. The alternative in some instances would have

been to use the time varying trait to define a sequence of systems. In many
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problems (e.g., evolutionary systems studies) the sequence of systems is pre-

cisely the system under study, but within the definition structure of general

systems theory this system is not formalized. The following definition acknow-

ledges that time variance of fundamental traits is again a fundamental trait

of systems. We note that time invariance is a special case of time variance.

Let T be a well-defined set of values.

Let t
{ ,

i e A an indexing set, be an element of T.

Let Sj
l denote basic system definition /, ;e{l, 2, 3, 4, 5}, applied to an

object with respect to r
f

.

Let = {s/\ basic system definition j holds for the object with respect

to TJ.

Usually T will denote a set of discrete time instances, of intervals of discrete

time instances, of continuous intervals, or a combination of the three. The

sixth definition of system (definition by time-varying fundamental traits) fol-

lows.

Definition 7.6. Time-varying fundamental traits. A system S is said to be

defined with respect to T if for any given value t
t
eT there exists an Sf

{
and if

t i, tk eT (/, ke A); then there is a procedure SP* such that, for at least

one s/ e Sf
{ ,
SP derives from s/ an s), e k > i .

The permanent primary trait used in Definition 7.6 consists of a set of

values T, a collection of system definitions,
,
holding with respect to

T
f ,

i e A, and a process SP which allows us to move from one system defini-

tion to another in time. There are actually two levels of definition involved

here: a system defined at the value r i5 and the primary system S defined by

Definition 7.6, both of which can be studied by methods indicated earlier.

If = Sf, a singleton set for all e T
7

,
then S is defined by some one of

the five definitions given previously. In this sense the new definition subsumes

the five basic definitions and hence is consistent with them. The permanent

primary trait used in Definition 7.6 then holds also for Definitions 7. 1-7.5.

The new definition allows us to characterize certain nonfinite systems, namely,

those which are finitely describable. The application of the procedure SP
describes the manner in which the fundamental traits vary in time. Systems

defined by Definition 7.6 will be called A-systems.

In terms of the classes of system definitions generated, we may compare

Figure 7.1 1 with Figure 7.6. A system is now defined by a trajectory in funda-

mental nonfundamental-time space. Just as the previous definitions were

modifiable by nonfundamental permanent traits, we may modify them now
within the context of Definition 7.6 by nonfundamental traits which vary

in time. A system is now specifiable as a subset of F x NF x T, that is, as a

System Procedure.
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Figure 7.11. K-system trajectories.

set of triples {a, b
,
c), where a is the coordinate of a fundamental definition,

b of a nonfundamental definition, and c of time. Since we are dealing essen-

tially with integer 3-space, the possibility of bringing questions concerning

the solvability and unsolvability of general system theoretic problems within

the domain of recursive function theory is opened.

We note further that the infinite general systems will be infinite subsets of

F x NF x T. In particular they will be nontrivial in the sense that the funda-

mental definitions used will change arbitrarily often (i.e., the systems cannot

be defined by Definitions 7. 1-7.5). There will be infinite subsets ofF x NF x T
which will not qualify as definitions of system either because they are not

finitely describable or because they are inconsistent.

The trivial infinite systems are those for which a definition from 7.1 to 7.5



On an Approach to General Systems Theory 241

may have been used and those which exhibit a transient definitional behavior

and proceed to a steady state
,
that is, such that for all t > t0 the system is

characterizable by some of Definitions 7. 1-7.5, in time-invariant form. Both

of these types of infinite systems will be reclassified as finite general systems

in the following way. We note that they do not depend on time in an essential

manner.

In the first case we delete such systems from the set of infinite systems and

reclassify them as single-point trajectories (see trajectory 4, Figure 7.11).

This simply removes from consideration as infinite general systems those

systems whose fundamental traits are considered to be time invariant. In

Figure 7.6, a straight line in the plane parallel to the time axis is equivalent

to a point on the Taxis in Figure 7.11.

For the second case, only that portion of the time axis during which the

system is in a “transient” definition stage is considered. Once the system

becomes characterized by a time-invariant fundamental definition, the system

trajectory is considered to be terminated. An example of this would be tra-

jectory 2. Here is a system which for all t > 5 is definable by use of a time-

invariant form of definition by activity. Circles at the ends of trajectories

indicate that at that point in time the system definition becomes time invari-

ant. Both of these system types characterize the finite subsets of F x NF x T.

The infinite general systems are now the systems which are defined by

fundamental traits that are strictly time varying. We note that the trajectory

of a system may not be known a priori but rather may be derived in time

from the initial definition and use of the system procedure, SP. This will be

further explicated by an example.

Trajectory 3 represents a system which is infinite in the nontrivial sense

and is shown uncompleted. There are two possibilities: either it achieves a

class steady state in the sense of trajectory 1 for all t > t0 for some t0 ,
or it

changes its F coordinate arbitrarily often. We do not consider the situation

of a “steady state” (as in 2), with arbitrary changes occurring in the non-

fundamental traits, to characterize an infinite general system. Since the study

of such a system is an excursion into the area of nonfundamental trait vari-

tions, it can be considered to be a study in secondary traits. It can be handled

concurrently with the study of fundamental traits if the infinite general

system view is adopted, since the primary fundamental traits change regardless

of what the nonfundamental traits do. Further work in the characterization

of general systems by analysis of trajectories in F x NF x T may lead to

useful results.

Several additional comments are in order. The definitions of the system at

t = 1 and t — 2 in trajectory 3 may be identical or may be different. Similiarly

for 1 there may be arbitrarily long but finite repetitions of the same definition

by UC-structure. There is no restriction on the interval of time (tk _ 1 ,
tk)

;
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therefore, for example, if time is measured in hours with respect to T
,
the

period of time between successive system definition changes may be used

independently of T or concurrently with it to observe the system defined at

tk - 1 . This is a consequence of the fact that Definition 7.6 embodies two levels

of definition and can lead to a definition of heirarchial general system.

We proceed next to an example of a system defined by use of Definition 7.6.

The theory of tessellation automata will be used. It has a varied background

and includes as special cases a number of theories in which infinite arrays

of uniformly interconnected identical finite-state machines form the primary

structure [8].

Example 7.1. Consider a potentially infinite two-dimensional array of points

as in Figure 7.12a. At each integer lattice point, (/, /), a finite-state automaton

xik Represents the

"STATE” of the

cell (l, k) for all

l and k

xij Cell

*i-ij Left neighbor

*ij-i Down neighbor

*1+1/ R'ght neighbor

Xij+i Up neighbor

Figure 7.12. (a) Tessellation array. (b) Neighborhood structure.
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{cell) is placed which is capable of assuming a state value 0 (inactive state) or

a state value 1 (active state). A neighborhood structure is chosen for each cell

which will hold uniformly throughout the array. For this example, the

neighborhood for any cell (z, j) in the array will be the cell itself and its four

nearest neighbors, that is, the cells to the left and below, to the right and
above. The neighborhood of a cell is shown in Figure l.\2b. The double-line

coupling is reduced to single-line coupling in later figures for purposes of

clarity.

Each cell can change its state only at discrete time instances as a function

of the states of the cells in its neighborhood. Although the function may be

changed from time step to time step, it is identical for each cell at any given

time instance. A next-state function can be defined for a cell on its neighbor-

hood structure in the following way.

Let xiJ _ 1 , xifj ,
xiJ+1 ,

xi+1J denote the left and down neighbors,

the cell itself, and the upper and right neighbors, respectively. For ease of

notation we will use xl9 x2 ,
x3 ,

x4 ,
and x 5 in the obvious order. There are

five values to be considered hence 2
5
possible states of the neighborhood

and 2
25

ways of defining a function. It is required that a next-state function

g satisfy g{xu x2 ,
x3 ,

x4 ,
x 5)

= 0 if x
1 = x2 = x 3 = = x 5 = 0. Under this

constraint, if an inactive cell has an inactive neighborhood, it will remain

inactive when g is applied to it.

Imposing the constraint above leaves us with 231
possible next-state func-

tions which may be defined. As an example, define g{xu x2 ,
x3 ,

x4 , x 5 ) = x 3

+ x 5 ,
where + is defined by modulo 2. This particular function looks at the

value of a cell and its right neighbor, adds them, and assigns the resulting

value as the new state for the cell denoted by x 3 . This is indicated in Figure

7.13, where denotes the inactive cell state 0 and indicates the active

cell state 1. The arrow points to the initial center cell.

A cell is defined as observable if it either is in an active state or contains

within its neighborhood a cell in the active state. If the full neighborhood of

an observable cell is not in the collection of all observable cells, then the

missing cells are taken to have state value 0 for purposes of applying the next-

state function. This situation is depicted in Figure 7.13 by the use of the

symbol 0 in place of the missing neighborhood cells. This may be taken to

be an environmental coupling. We note in Figure 7.13 that the function g
applied to (i) brings new observable cells into the system.

Let us suppose that the patterns which develop when the cell at (0, 0) is

initialized at state value 1 and the array of observable cells is subjected to a

sequence of next-state functions are of interest. All cells other than (0, 0) are

assumed to be at state value 0. At any instant of time there will be only a

finite number of observable cells, although the number is potentially infinite.

If we define a system by UC-structure, the number of elements (cells) and
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(Hi)

Figure 7.13. g(x i ,
x2 , x3 , x4 ,

x 5) = * 3 + x 5 applied twice to (i).

their behavior (next-state function) will in general vary in time. If the sequence

of next-state functions applied is a constant sequence (same next-state

function), then the behavior of the elements will not vary in time, although the

number of elements may. The couplings may be taken as the neighborhood

structure and the environmental couplings as the coupling to missing neigh-

borhood cells, as previously outlined. If one were to vary the neighborhood

structure in time, then this aspect of the UC-structure definition (couplings)

would be time varying. This is not done, however, in this example. The

coupling of Figure 7.126 is used.

A system will now be defined on the tessellation array, using Definition

7.6 as follows:

Let T={0, 1, 2, . .
. }, that is, discrete time.

At any time instant t = i, Sf
t = {^s

1

}, s 5 \ the definition by UC-structure

holding at time t = i, is applied by taking the set of elements to be the set of

observable cells at time t = i. The behavior of the elements is identical, being

the zth next-state function in a given sequence of next-state functions. The

couplings between the elements and between the elements and the environ-

ment is given for all time t by the neighborhood structure, which is assumed

to hold uniformly throughout the array of observable cells. The cell (0, 0) is

assumed to be initialized with state value 1 at t = 0, all other elements refer-

enced in s 5

° having state value 0. The neighborhood structure being used



On an Approach to General Systems Theory 245

(Figure 7. 126) and the initialization of the observable array to that of Figure

7. 1 3(i) at t = 0 are arbitrary and are used for purposes of example.

The system procedure, SP is as follows:

Flere s5
°

is given as the set of observable elements: {(- 1, 0), (0, - 1),

(0, 0), (0, 1), (1, 0)}.

Let g0 denote the next-state function holding at t = 0. To derive s5
l

,
apply

9o instantaneously and uniformly to every observable cell, yielding a new set

of observable cells. This set is taken to be the set of elements for .y5
‘. The

behavior for these elements is gu the second next-state function in a given

sequence of functions. This sequence of behaviors is either given or selected

on a random basis (but in a well-defined manner) from the 231
possible func-

tions. These functions may be viewed as “instructions” to the array of
observable “ cells.”

Suppose that the sequence of next-state functions is as follows:

9o(x\> x2 ,x3 ,xA , x5) = x3 + x4
9i(xu x2 , x3 , x4 , x5) = x

1 + x3

gi(xi> x2 , x3 ,
x4 ,

x s )
= x

x + x2 + x5

93 (xi, x2 , x3 , X4 , x5 )
= x3 + x 5 ( =x t + Xj

, i = 3 and j = 5)

9J,x» x2 ,x3 ,xA , x s)
= x2 -x3

9

1

= 9 1 mod 5

To add a probabilistic aspect to the problem, we may assume that indices i

and j for function g z are to be chosen randomly with respect to some prob-
ability distribution from the set {1, 2, 3, 4, 5} whenever the function is refer-

enced. It is assumed that 3 and 5, respectively, were generated randomly for

the first application of the function. Figure 7.14 indicates the various UC-
structures obtained by carrying out the first five “ instructions ” to the “ cells

”

using the procedure SP. Here + is to be interpreted as modulo 2 addition,

and • in g4 stands for ordinary multiplication.

Comments. With no a priori knowledge of how the UC-structures (pat-

terns) will develop in time we may consider three alternatives. Either the UC-
structures will become arbitrarily large, or they will become bounded in size

but oscillate in some manner, or they will achieve a steady state in the sense

that the cardinality of the element set remains constant, including the possi-

bility of eventual annihilation (null pattern) with all cells inactive. In the situ-

ation in which the number of elements remains constant, the UC-structure

may still vary because of the possibility of time-varying behavior for the

elements. If at the point where the elements become constant in number the

behavior can be redefined so that it is time invariant, then the system has

achieved “ steady state ” and the current definition is time invariant. It is then

a finite general system.
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Figure 7.14. Sequence of UC-structures generated by the first five steps of the system

procedure SP, using Definition 7.6.
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Another aspect of Definition 7.6 mentioned previously is the freedom to

specify behavior for the cells independently of the behavior defined by the

next-state function. At t = k
9
for example, one may specify behaviors b(i, j)

for every observable cell (7, j), which may hold for all t or until a new UC-
structure is defined at t = k + 1. In addition to the 0 and 1 state values, the

cells may be endowed with larger state alphabets and may take state values

which consist of strings of symbols. A further possibility would be to generate

the next-state function for the next discrete time instant in T on the basis of

computations made in the intervening interval, using the behaviors b(i
9 j)

and the state values of the cells. This procedure would become incorporated

in the procedure SP.

It is hoped that the example used makes evident the usefulness of Definition

7.6 in referencing general systems whose fundamental traits vary in time. The

essential ingredient in the new definition is the requirement for a definitive,

finitely describable procedure to indicate the manner in which one moves

from one definition of the system to another.

A central problem in general systems theory may now be posed with respect

to Definition 7.6: Given a system trajectory, determine the permanent behavior

ST-structure, and UC-structure holding at any given time instant and com-

patible with the trajctory at that instant of time. This is indicated in Figure

7.15.

It appears to this author that the following areas of investigation may prove

fruitful in the further development of this approach to general systems theory.

Definition

UC--structure

ST-structure

Permanent

Behavior

Activity

System aspect

unknown

/ \ / \
\ / \

/ \ / \
? ? X ? / ? V ? \ ?

/ \ / \

To

Be

/ \ /
' \ /

System aspect

^ known

Completed

System defined

by Definition 7.6

Quantities and • 1 1 1 1 1 L

resolution level
t
o h l

2 h t
4

t
5 *6

Figure 7.15. Completion problem for system trajectories.
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Some have been mentioned previously but are included again for the sake of

completeness.

1. The applied role of universal algebra, category theory, topology, and

recursive function theory in this approach to general systems theory must be

investigated.

2. Development of a computer-based working environment for general

systems theory is in order. The role of artificial intelligence and heuristic pro-

grams in reducing the complexity of problems should be seriously considered,

as well as the development of a high-level general systems theory program-

ming language. The latter should be extensible, simple to use, and totally user

oriented.

3. In considering the problem of general systems education, equal atten-

tion must be given to the rapid transmission of advanced mathematical

techniques, both discrete and continuous, to nonmathematical specialists.

This will require highly innovative educational approaches, and considerable

research, utilizing both digital and analog computers. Some work is being done

on this problem at Fairleigh Dickinson University.

4. Procedures of synthesis for general systems need to be developed, and

the problem of interpreting these synthesis procedures in nonengineering

branches of science must be investigated.

5. A complete survey and documentation of methodical tools and prin-

ciples common to all fields of endeavor and suitable for general systems

theoretic work is in order. This will serve as an essential basis for the further

development of methodology in general systems theory.

7.10. SUMMARY

The approach to general systems theory as formulated by George J. Klir

has been outlined. The foundations of the theory consist of five systemic

traits shared by all systems; on the basis of these traits five fundamental

definitions of systems are developed. Additional traits may be added to yield

a wide variety of definitions characterizing special subclasses of general

systems.

System problems are distinguished in terms of the five basic traits, and

appropriate methodology is indicated. The basic traits common to all systems

have been isolated by a procedure of induction and generalization. It is sug-

gested that the development of the methodology of general systems theory

should proceed in the same manner wherever possible. A plan to construct a

computer environment in which work of a general systems-theoretic nature

may be carried out is outlined. The needs of individuals without extensive

mathematical background will be a strong factor in its design.

A sixth fundamental definition of general system, which completes in a

natural way the set of five definitions formulated by Klir, is introduced. It
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allows the characterization of systems by time-varying fundamental traits

and recognizes the time variance of fundamental traits as basic to all systems.

A system is defined on a tessellation automaton to exhibit the potential use

of the new definition.

PROBLEMS

7. 1 . Starting with two system theories of type I, find an aspect common to

both and attempt to generalize it in clearly defined terms at the type II system

theory level. Can it be generalized to apply to all systems ? Is it one of the six

fundamental traits covered in this approach to general systems theory?

7 .2 . Utilizing the system bibliography, find an example of each of the system

theory types indicated in Figure 7.1. Present the reasons why you have cate-

gorized each as being of a given type.

7 .3 . Choose two objects with which you are familiar. Use one of the six

definitions to define a system on each of these objects. Explicitly show the

correspondence and interpretation of the trait used in the definition with

respect to the objects. Can both systems be defined by the same type of

definition? Can one be used as a model for the other?

7.4. Using the notions introduced by Figure 7.6,

(a) determine the number of distinct definition classes containing a poten-

tially infinite number of definitions utilizing arbitrary nonfundamental traits;

(b) choose an object with which you are familiar. Determine a significant

nonfundamental permanent trait. Construct the basis (five definitions) for

general systems with this trait.

7.5 . (a) Give an example of an object not definable as a system by using

Definitions 7. 1-7.5.

(b) Is the object definable by Definition 7.6?

(c) Is there an object on which a system cannot be defined by using Defini-

tion 7.6?

7 .6 . (a) Choose two objects which you intuitively feel to be similar in some
respect. Isolate the basis for your intuition. Can you use this to define both

systems by the same type of definition?

(b) Find two objects which are definable by the same definition (i.e., are

isomorphic).

7 .7 . Define a ^-system, using Definition 7.6, that has a trajectory consisting

of more than one point and is not in a class steady state.

7 .8 . Construct an example of an infinite general system.

7.9 . Using the elements and behaviors shown in Figure 7.10, construct a UC-
structure realizing the following behavior: x"{t) = x'(t) + y(t), y'(t)=f(t),

x(0) = x'(0) = 0, /(0) = 300.



250 Robert A. Orchard 7

Hint: Start the procedure as if you had x"(t) and complete the link-up

when the diagram allows x'(t ) and y(t) to be “ tapped.” The completed diagram

can then be simulated on LEANS.

7 .10 . Using the solution to Problem 7.9 and the UC-structure of Figure 7.106,

construct a UC-structure realizing the continuous estimate of the mean of

the behavior of Problem 7.9.

7 .11 . Suppose that the following periodical activity is generated by a system:

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

x(t)=1010001110 1 0 0 0

i i

a period

Find a deterministic behavior of the system. Hint: Consider principal vari-

ables (quantities) x(t ), x(t — 1), x(t — 2), x(t — 3).

7 .12 . (a) Is the behavior = 0 with probability 0.5 and x = l with prob-

ability 0.5 ” consistent with the system defined in Problem 7.1 1 by its activity?

(b) Is the behavior “ x{t) — x(t — 1) = 0 with probability 0.5, x(t) — x(t — 1)

= 1 with probability 0.25, and x(t) — x{t — 1) = -1 with probability 0.25”

consistent with the system defined in Problem 7.11 by its activity?

7.13 . Describe each of the following functions of time, where time t may
assume all positive real values including zero, by a time-invariant relation:

(a) y = t
2

; (b) y = sin t; (c) y = e~'\ (d) y = loge t.
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EDITOR'S COMMENTS

It is unthinkable to read this chapter without a certain level of maturity

in mathematics, primarily in set theory and mathematical logic. The book

Stoll, R. R., Set Theory and Logic. San Francisco: W. H. Freeman, 1961,

seems to be a sufficient prerequisite. Alternatively, the following pair of

books may be chosen:

Halmos, P. R., Naive Set Theory. Princeton, N.J. : Van Nostrand, 1960,

Quine, W. V. O., Methods ofLogic. New York: Holt, Rinehart & Winston, 1950.

Readers who like many solved problems may prefer to learn set theory from

the book

Lipschutz, S., Set Theory and Related Topics. New York: Schaum, 1964.

Mesarovic uses standard notation of set theory and mathematical logic.

This notation is used in, for example, the books recommended above.

Therefore it was not deemed necessary to provide this chapter with a glossary

of symbols.
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8.1. OBJECTIVE AND SCOPE

The objective of this chapter is to present an approach to general systems

theory which, although initiated ten years ago is still in the developmental

stage. A selected bibliography on this development consists of [1]— [1 1]. The
characteristics of this approach are as follows:

1 . It is a mathematical theory
;
basic concepts are introduced axiomatically,

and the properties and behavior of the system are investigated in a precise

manner.

2. It is concerned as much with the decision-making or control representa-

tion of systems as with the input-output representation. For example, the

study of hierarchical, multilevel, decision-making systems was from the

very beginning of major concern.

This approach differs from other approaches to general systems in many
respects. The theory is completely general, and mathematical structures are

used in such a way that precision is introduced without losing any generality.

This will become apparent in Section 8.3, where the basic concepts are dis-

cussed. It is important to realize that nothing is gained by avoiding the use

of precise language, that is, mathematics, in making statements about the

system of concern. We take exception, therefore, to considering the general

systems theory as a scientific philosophy [12], but rather regard it as a scientific

enterprise, without denying, however, the impact of such a scientific develop-

ment on philosophy in general and epistemology in particular. Furthermore,

once a commitment to mathematical method is made, logical inferences can

be drawn about the system’s behavior. Actually, investigation of logical

consequences of systems having given properties is of central concern for

the general systems theory, which cannot be limited to the descriptive classifica-

tion of systems.

The decision-making or goal-seeking view of system behavior is of para-

mount importance. General systems theory is not a generalized circuit

theory [13], a position that we believe has introduced much confusion and

has contributed to rejection of systems theory and the systems approach in

fields where the goal-seeking behavior is central, such as psychology and

biology. Actually the theory presented in this chapter can just as well be termed

general cybernetics, that is, a general theory of governing and governed

systems. The term “general systems theory” was adopted at the initiation of

the theory as reflecting a broader concern, but in retrospect it appears that

the choice might not have been the happiest one, since the term had already

been used in a different context.
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8.2. FORMALIZATION APPROACH TO DEVELOPMENT OF
GENERAL SYSTEMS THEORY

In order to clarify the meaning of general systems theory it is necessary

to be explicit about what the systems theory is. We consider systems theory

as dealing with the explanations of observed phenomena or conceptual con-

structs in terms of information-processing and decision-making concepts.

The field is best delineated by contrast with other scientific disciplines, such

as physics, chemistry, or biology. Each of these fields has a set of its own
primary concepts (e.g., energy, force, quantum, etc., in physics). In systems

theory, observations are explained in terms of how the information is trans-

mitted and the goals are being pursued, or, still differently, how these pro-

cesses are organized without an explicit reference to the nature of the

mechanisms (physical, biological, social, etc.) involved. The subject of study

in systems theory is not a physical object or a chemical phenomenon but a

“system,” a relationship of observed features in the context of information

processing and goal seeking.

General systems theory deals with the most fundamental concepts and
properties of systems. Since various branches of systems theory (control

theory, automata theory, theory of adaptation, etc.) have preceded the

development of the mathematical theory of general systems, an important

question is how to arrive at the concepts and problems which are general

and fundamental. Two lines of development have been investigated. One
operates via abstraction : starting from well-known specific theories, one

develops constructs which will embrace the common features of the initial

structures; differential equations systems and automata are used widely as

the starting points for these attempts [14, 15, 17, 18]. The principal deficiency

of this approach is that the newly developed concepts are not general enough
(e.g., the concept of a system is given in [16] by a page-long definition), so

that one is bogged down by technical problems of minor conceptual impor-

tance [19]. Perhaps equally limiting is the fact that the resulting concept of

a system could not have been used for the study of large systems consisting

of a number of subsystems because of the complexity of the concept [17].

What is clearly needed is a simple
,
elegant

,
general

,
and mathematically

precise concept of a (general) system which provides a point of departure

for more detailed and more complex notions and problems. We have intro-

duced such a concept in the development of the general systems theory via

formalization. The approach, essentially, is as follows: One first defines the

concept verbally as intuitively understood in the fields of application and
then defines the concept axiomatically, using minimal mathematical structure.
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Starting from this basis, one can study large-scale systems as interconnections

of subsystems, or as systems which have more specialized properties, which

may be investigated by adding more axioms and studying the logical con-

sequences of the new assumptions.

8.3. BASIC CONCEPTS

The starting point is provided by the notion of a (general) system as a

relation on abstract sets

S^X{Vr.ieI}, (8 . 1 )

where X denotes a Cartesian product, while I is the index set. When / is a

finite set the more common notation will be

Sc v
t
x ••• x Vn .

The components of the relation, V
{ ,

are referred to as (the system’s) objects.

An object stands for a feature or the characteristics in terms of which the

system is described
;
the set V

t
is the totality of alternative ways in which the

respective feature is observed or experienced. The system, then, is the totality

of proper combinations of the appearances of the system’s objects.

The following remarks will help to clarify some of the reasons for adopting

the concept of a system as a relation. A system is defined in terms of observed

features or. more precisely, in terms of the relationship between these features

rather than what they actually are (physical, biological, social, or other

phenomena). This is in accord with the nature of the systems field and its

concern with the organization and the interrelationships of components into

an (overall) system, rather than with the specific mechanisms within a given

phenomenological framework.

The notion of a system as given in Eq. 8.1 is perfectly general. On one hand,

if the system is described by more specific mathematical constructs, say a set

of equations, it is obvious that these indeed serve to define or specify a

relation as given in Eq. 8.1. Different systems, of course, have different methods

of specification, but they all are but relations as given in Eq. 8.1. On the

other hand, in the case of the most incomplete information, when the system

can be described only in terms of a set of verbal statements, they still, by

their linguistic function as statements, define a relation as in Eq. 8.1. Indeed,

every statement contains two basic linguistic categories; nouns and functors—

nouns denoting objects, functors denoting the relationship between them.

For any proper set of verbal statements there exists a (mathematical) relation

(technically referred to as a model for these statements). The adjective

“proper” refers here, of course, to the conditions for the axioms of a set
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theory. In short, then, a system is always a relation, as given in Eq. 8.1, and

various types of systems are more precisely defined by the appropriate methods

—linguistic statements, mathematical constructs, computer programs, and

so on.

A system is defined as a set (of a particular kind, i.e., a relation). It stands

for the collection of all appearances of the object of study rather than for

the object of study as such. This is necessitated by the use of mathematics

as the language for the theory in which a “mechanism,” a function or a

relation is defined as a set, that is, by means of all proper combination of

components. Such a characterization of a system ought not to create any

difficulty since the set-relation, with additional specifications, contains all

information about the actual “mechanism” that we can legitimately use

in further development of the theory starting from a given framework, as

defined by the objects in terms of which the system is defined.

The specification of a given system is often expressed in terms of equations

defined on appropriate variables. To every variable corresponds a systems

object that represents the range of the respective variable. In stating that a

system is defined by a set of equations on a set of variables, one says that

the system is a relation on the respective systems objects specified by the

variables, each one with a corresponding object as a range, and such that for

any combination of elements from the objects, that is, the values for the

variables, the given set of equations is satisfied.

As we proceed along the path of formalization, that is, from more general

to better structured and more specific, the next question is, What are the

methods of systems specification, of defining a given relation as being dis-

tinct from others defined on the same objects ? There are two basic approaches

here: the input-output approach (referred to also as terminal, causal, stimuli-

response, and the like) and the goal-seeking approach (referred to also as

decision-making, problem-solving, teleological, etc.).

In the input-output approach the objects are grouped into two categories,

inputs {stimuli), X = Xl*7;
• * 6 and outputs {responses), Y = X{Ef

: * E

where {Ix ,
I
y}

is a partition of /. The system is then a relation on inputs and

outputs

:

S cz X x Y.

Next, a constructive procedure, a “mechanism,” defined by means of more
specific mathematical structure in the sets X and Y, is provided, which to a

given input associates an output (or outputs).

In the goal-seeking approach the inputs and outputs are again recognized,

but instead of providing a “mechanism” relating stimuli with responses the

behavior of the system is described in terms of a goal-seeking process, that

is, as if the system responds to any given stimulus so that a given goal (or
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objective) is pursued. Let us consider a general example. Assume that in

addition to X and Y there are given the following objects: decision objectM
and value object V. Furthermore, let there be given two functions: the

outcome (process) function

P:Xx M->Y,

and the performance function

G: M x F-> V.

Let V be such that every subset has a minimum. A system S c X x Y can

then be defined by the following statement:

For any xeX and y e Y, (x, y) e S if and only if there exists mx e M such

that for all m e M
G(mx ,

P(x
,
mx)) < G(m

,
P(x, m))

and

y = ^(*, /Wx).

In other words the system S c X x 7 is defined by the following statement:

For any input * e X the system’s response (output), y e 7, is such that an

appropriate performance function is minimized while some constraints as

specified by an outcome function are observed. The goal of the system appears,

then, to be minimization of G.

For proper understanding of the goal-seeking approach the following

remarks will be helpful. We have defined the goal-seeking activity of the

system in the example as minimization. This, of course, is just a special case.

Many other approaches (satisfaction, general problem solving, etc.) can be

used to define the goal-seeking activity.

The goal-seeking procedure, such as minimization in the given example, is

introduced solely in order to provide a specification of the given system,

that is, a relation on inputs and outputs. In general, the only objects actually

observed are X and Y; M and V are additional objects assumed for conve-

nience of an appropriate and efficient specification of the system. There is little

point (within the systems theory as such) to arguing whether the system is

actually pursuing such a goal or not. All it matters is that the systems func-

tioning can be described and is most appropriately described in such a

manner. In general there may be more than one way to describe the system

as goal-seeking. Also, there might be a case in which the systems functioning

can be described only as goal seeking, while an input-output transformation

specification is not given. That does not mean that the system fails to satisfy

some kind of causality requirements and has some intrinsically different
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character from, say, a system described by a set of differential equations. It

means only that within the family of constructive procedures which we are

currently using to describe input-output transformation there is none which

corresponds to the observed input-output relationship. After all, there is no

reason to believe that all input-output transformations ought to be describ-

able by the transformation procedures currently used. The availability of a

goal-seeking description, then, can be simply considered as a convenience

and indeed a necessity for an efficient specification of systems.

The goal-seeking activity of a system, in general, is of a much more compli-

cated nature, involving a multiplicity of goals. This complexity, however,

does not change the basic character of the goal-seeking systems description,

in contradistinction to the input-output description discussed above. Further

discussion of this subject can be found in [9] and [21].

In principle, any system can be described as an input-output (terminal)

system or a goal-seeking system. This observation can provide a point of

reconciliation for many conflicting approaches, such as Skinner’s behaviorism

and Chomsky’s structuralism.

8.4. SOME RESULTS IN THE ABSTRACT DYNAMIC SYSTEMS
THEORY

In order to give a constructive specification for an input-output system it

is necessary to introduce more mathematical structure into the system objects.

There are two basic ways to do this: (1) define elements of the objects as

functions, x: Tx -> Ax and y: Ty -> B
y ,

and define the constructive specification

of a system by means of an induction process on the domains of these func-

tions; and (2) define system objects as algebras and introduce constructive

specification in terms of algebraic operations in S or, rather, X and Y. The

first approach leads to the time and dynamic systems; the second, to the

algebraic systems. We shall follow the first route here as being intuitively

somewhat more appealing.

Proceeding along the formalization path, we have the following two

notions

:

(i) A (general) time system is a general system such that X = A 1
,
Y = BT

,

that is,

S a A T X BT
,

where A and B are (abstract) sets referred to as alphabets
,
while T is a linearly

ordered set referred to as a time set. It will also be necessary to assume that T
is a complete lattice.
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(ii) A (abstract) dynamical system is a time system for which there are

given a (abstract) set Z and a pair of functions

p: Z x X x T -> Y x T,

0: Z x X x T x T -» Z,

such that

(3z)[p(z, x, 0 = (y, 0] <-(*, y) e S,

P(<t>(z, x, t, t'), x, t ') = 0, t').

Here Z is referred to as the state space
, p as the state representation (or

systems response function), and 0 as the state transition.

An alternative way to define an abstract dynamic system, which is slightly

less elegant but more intuitively appealing, is to define p and 0 on the restric-

tions of the time set. Let T
r ,

T\ and T/ be the segments of T defined as

follows:

T
t
= {£*: t* > t}; T f = {t* : t > r*};

T/' = T
t

. n V = {t*: t < t* < t'}.

We can now define restrictions of the inputs and outputs, for example,

x
t
= x\ T

t ,
= x\ T x

. For every t there is defined, then, a state-representation

function

such that

p t
:Z x X

t
-+Y

t

(3z)[p(z, x
t) = y t

]++(x
9 y) e S & x

t
= x\T

t & y t = y\T
t

For the state transition there is given, then, a two-parameter family of func-

tions

0rr' : ^ X Xtt
.-*Z,

such that

pA4>w(z, Xtr), x,,) = p,(z, x,)\T
t

,

The interpretation of p and 0 for the time evolution of the system is now
apparent: Given the state at a specific time, z, and the remaining input, x t9

the state-representation function gives the rest of the output. The state-

transition function, on the other hand, gives the new state at any time t'

if the state z at an earlier time, t, is given.
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We shall now present briefly some of the results in the general theory of

time and dynamical systems. The following format will be used. The question

of interest will be stated verbally, and the answer given in the form of a

theorem. References for the proofs and more detailed discussion will be

indicated.

1 . Existence of the state space. The question of interest is, What properties

ought a system (i.e., the observations) to have so that the state space can be

introduced, that is, the state-space approach can be applied? The answer is

simply provided by the following:

Theorem 8.1 [4]. For every time system there exist a state space and associated

state-representation and state-transition functions, that is, every time system

can be represented as a dynamical system.

The theorem answers the question, What are the minimal axioms needed

for the introduction of a state space or, rather, for viewing the system as a

dynamical system ? Minimal axioms are given in the notion of a time system

;

that is, the elements of the objects ought to be functions defined on a linearly

ordered set which is a complete lattice.

2. Natural {minimal) state space. For a given system there might be any

number of alternative state spaces, and the question is whether some of them

have special character implied by the system’s observations, that is, the input-

output pairs. Let Z
t
be the set of states the system can be in at time t; Z

t

will be referred to as the set of natural states (at time t) iff there exists a

function X
t

: X f x Y t Z
t
such that

X,{x\ /) = z, <->(3z)[z e Z0 & cp(z, x, t0 ,
t) = z,]

and furthermore

(dx)[p(z
t
,x,t) = p{z[ ,

x, 0] (z
t
= z

't)-

A state space is natural if for any t it contains only the natural states if they

exist
;
that is, if the system can be in z e Z at t and there exist natural states

at t, z is such a state. We shall say that the system is pastdetermined at t iff

{x\y t

) = (x
r\y' t)^y(t)=y'{i).

We have then the following:

Theorem 8.2 [11]. A system has a natural state space iff there exists t e T such

that the system is pastdetermined for all t
f > t.
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Basic characteristics of the natural states are that they are determined

solely by the past history of the input-output pairs and do not depend on

the initial states. While every time system can have a dynamic system

characterization, not every time system has natural state space. The existence

and the type of the natural state space for a system represent an important

characteristic of the system.

It has also been proved that the natural state space is minimal in the appro-

priate sense; for example, it gives the state space in terms of the minimal

number of component sets (minimal dimension) in appropriate concrete

realization (see [9]).

3. Causality in dynamical systems. Causality in a system is determined by

the recognition of the input and output objects, the dependence among the

output objects, and the nonanticipation in the time evolution. It is the third

aspect to which we are referring here. We shall say that a given dynamical

system is causal iff for any z e Z and t e T

(y, t) = p(z, x, t) & (y ', t) = p(z, x\ t) & x f = xn -> y(t) = y'(t).

In other words, starting from a given state z e Z, the outputs can differ only

after the inputs become different. The corresponding state space will be

referred to as causal. We have then the following:

Theorem 8.3 [4, 10]. For any time system there exists a causal state space,

that is, the system can be represented as a causal dynamical system.

The conclusion here is similar to that in item 1 : All that is needed to be

able to define a system as a causal dynamical system is that the elements of

the input and output objects be functions defined on the sets which are

linearly ordered and complete lattices.

4. Realization for linear systems. Let the system objects have the following

structure. There is given a binary operation in X, X x X X, and a set

of mappings A = {a: X -> X} and similarly * : F x YzndB = {P: Y-^Y}
and furthermore K : A-*B. A functional system S: X -* Y is then linear iff

for all x, x' e X and cue A
(i) S(x o x') = S(x) * S(x'),

(ii) S(a(x)) = K(oc)(S(x)).

The linearity of a system as a relation is defined analogously. If the system

objects are monoids, it has been proved that the state can be decomposed into

the null-state and null-input parts, that is,

<Kz, x, t
,

t’) = (j)(z0 ,
x, t, t') • 0(z, Xq

,
t, t'), (8 .2)
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where z0 and x0 are the null state and the null input, respectively, while • is

the binary operator in Z. The state transition for a linear system is not, in

general, a bilinear function, that is, linear in z for every x and linear in x
for every z, although the null-input and the null-state parts are linear functions.

However, not any two linear functions defined on appropriate objects can be

composed into the state transition for a linear system. A pair of functions,

MZo : Xx Tx T-^Z and Nxo : Z x Tx T-+Z, will be referred to as a

realization for a linear system iff they yield (in the manner given in Eq. 8.2)

a state transition for such a system. We have then the following:

Theorem 8.4 [9]. Let Z be a group and let 4>Xo represent a null-input part of

a state transition, 4>Xo : Z x {x0 } x T x T-+Z. There exists a linear realization

for the system iff there exists a function linear in X
,
TV: {z0} x X x T x T-> Z,

such that

N(zo ,x,t0 ,t) = ^(zj 1

,
X, t0 , t),

where

Zx = N(
,
zo ,

x, t, t0) and zx • zx
1 = z0 .

A direct application of this theorem for differential equations systems gives

the condition for a matrix to be a weighing pattern (impulse response)

function of a linear system.

5. Controllability. Controllability is defined in reference to the objective

of control. Let S: M x U -+ Y be the system and G: M x T-> F the per-

formance function. Also, M is the control object, while U can be the set of

initial states and/or disturbances. Then S is controllable in V' c V over

U' c U iff

(Vi?)(Vtt)(3jw){v e V' Slue U' -> G(m
,
S(m

,
w)) = v)

If U' — U and V' = V or if these sets are understood from the context, we
simply say that S is controllable (relative to G). The function G depends on
the objective of control. In the classical guidance problem both U and V
are the state space, and controllability is defined as the ability to bring the

system from one state to another. In functional reproducibility V is the output

object and the controllability means that any output from V can be repro-

duced. In other applications V is the set of real numbers giving the cost of

operation. At any rate V in general has several components, that is, V =
V* x • •

• x V*. We have now the following:
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Theorem 8.5 [6], A system cannot be controllable if there exists a number
r < k and a function F: V -> V, where Vr = V* x • x V*

,
such that the

diagram

S-G
'MxU * y

S-G-p\\ j/

F

V
is commutative, where pr is the projection map, pr : V -> V.

Theorem 8.6 [6]. Let S and G be linear and V a module. Then S cannot be
controllable iff the conditions from Theorem 8.5 are satisfied.

Applications of these theorems give various controllability conditions,

such as those for classical point-wise state-space controllability and for

functional reproducibility. It should be noticed that Theorem 8.5 holds for

nonlinear systems too and that the linearity assumption makes the conditions

necessary and sufficient.

6. Stability. We shall consider here only the stability of the null-input

part of the state-transition function. Let Z be a topological space (although
the closure space would suffice) with the topology 9. A subset Z' <= Z is

stable, for a system S, iff, for any a e 9, Z' e a, there exists [1 e 0, Z' a p,
such that for any z e f{

Xq
, to > 0 £ OC

for all t e T, where
(f>xo is the null-input state transition. In other words, the

set Z' is stable iff for any open neighborhood a of Z' there exists another
open neighborhood /? such that the state of the system will remain in a
whenever the initial state is in /?. Apparently the stability depends on the

topology which the state space has, that is, on the concept of neighborhood
implied by this topology. Every system can be viewed as stable by appropriate
selection of a topology. Of course, in general, the topology cannot be selected

at will but is given by the problem at hand.

Let F be a function on Z into a linearly ordered and lower-bounded set V,

F: Z —> V. Then F is a Lyapunov function iff

:

(i) (Vz)(Vz')[z' = cj)(z, x0 ,
t, t') -y F(z) > F(z')];

(ii) (Vr)(3a)[r ef&Z'ca&zea-t F(z) < d]
;

(iii) (Va)(3r)[t> ef&Z'ca&zeZ~a-> F(z) > r].

We have now the following:



A Mathematical Theory of General Systems 263

Theorem 8.7 [9]. A set Z' cz Z is stable for a system S whenever there exists

a Lyapunov function.

To make the existence of a Lyapunov function both necessary and sufficient

additional structure ought to be introduced in Z, probably the uniformity,

that is, 6 has to be a uniform topology. However, this question has not been

fully explored as yet. A related study can be found in [20].

8.5. GENERAL SYSTEMS THEORY AND METAMATHEMATICAL
PROBLEMS

To demonstrate the unifying power of the proposed general systems

approach we shall show how the questions of consistency and completeness

in the logical systems, in the sense of Godel, can be considered in the proposed
formalism. Starting from this result many questions of computability and
linguistics can be treated similarly.

Let S a X x 7 be a system and p : Z x X ->• Y its state representation,

that is,

(3z)[p(z, x) = y] iff O, y) e S.

Apparently, for every z e Z, there is given a function Sz : X -> Y such that,

for any input xe X, Sz(x) = p(z, x) whenever defined. The system S is the

union of such functions: S = (J {Sz : z e Z}. To any zeZ corresponds a

subset of inputs Xz ,
the domain of Sz ,

Xz = Q>(SZ). A set X' cz X will be

termed acceptable by p if there exists zeZ such that X' = Xz .

Let W cz 7 be a set of outputs which are considered as undesirable, and V
be the set of the system’s outputs, that is, V = {y: (3z)(3x)(y = p(z, x))} is a

state representation. The system is consistent (relative to W) iff V n W = 0
and complete iff V u W = Y. We shall now give the characterization of a

class of systems which cannot be both consistent and complete.

To investigate the conditions for the consistency and completeness of Sz ,

let g be an injection g: Z-+ X; g will be termed Godel (;restricted) mapping.

In reference to a given Godel mapping we can now define a norm (or diagona-

lization) for a state z eZ, yz = p(z
,
g{z)). Let U be an arbitrary subset of 7.

There is defined, then, a set of states Zv
d whose norm is in U

,
that is,

z e Zv
d
<r+ p(z, g(z)) e U

Let Xv
d be the image of Z

L ,

d under g, Xv
d = g(Zv

d
). We can now give the

following theorem, stating a sufficient condition for the inconsistency or

incompleteness of S:
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Theorem 8.8 [5]. Let S be a given system, p its state representation, and W a

set of undesirable (forbidden) outputs. If Xwd
is an acceptable set of inputs,

the system is either inconsistent or incomplete.

The general systems consistency and completeness theory can be directly

applied to obtain various results in metamathematics. The procedure consists

of two steps: (1) construct a system in the sense given in Section 8.4 that

corresponds to the given axiomatic mathematical structure and establish the

counterparts of the notions of acceptable inputs, norm, consistency, and so

on; and (2) prove the desired theorem as an application of Theorem 8.1.

Application of Theorem 8.8 to derive classical theorems of Godel, Rosser,

and Tarski is reported in [5].

8.6. GENERAL SYSTEMS THEORY OF HIERARCHICAL
SYSTEMS

Finally we shall show how the proposed formalism can be used in the large-

scale systems area or, more specifically, in the study of multilevel, hierarchical

systems [22]. At the same time we shall show the usefulness of the goal-

seeking approach since some of the subsystems will be represented as decision-

making units.

A block diagram of the system under consideration is given in Figure 8.1.

The basic subsystems are the following. A controlled process, P: M -> Y,

is decomposed into n interacting subprocesses, P
t

: M
t
x C/

f
-> Yi9 where

M = M
1
x * •

• x Mn are controls, 7= ^ x x Yn are outputs, and

U = JJ
1
x • •

• x Un are the interactions which can be expressed in terms of

controls by the interaction functions, K
t

: M^Ui. There are n first-level

control subsystems defined by the respective subprocess models (assumed to

be exact), P
t

: M
t
x U

t
-> Yi9 and a local performance function, G

t
: M

t

x Y
t
x {/?} V, where /? is the coordination term while V is the value set.

Finally, there is a second-level subsystem, termed a coordinator, whose task

is to select the coordination term /? so that the first-level units, while being

concerned with their local control problems, will actually satisfy the overall

control objective for the total system defined by the total process, P: M -* Y,

and an overall performance function, G: M x Y -> V. Assume that:

1 . The overall objective is to minimize G with the constraint given by P.

Denote by m a corresponding optimal control.

2. The local control objective is to minimize G
t ,

for any given coordination

term /?, by selecting optimal values for both and u i9 the optimal pair

being denoted by (m/, uf).
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P Overall process

P
y

, . . . ,
P„ Local subprocesses

Dy, . . . ,
D n First-level decision units

D0 Coordinator

Figure 8.1. Basic block diagram of hierarchical systems.

3. The coordination strategy which the second-level unit uses to select the

coordination term /? is based on the following reasoning: Although each of

the first-level units selects an optimal pair (m/, uf) only the control m/ can

be applied to the process P. Denote by uf the (actual) interaction which

occurs when the locally optimal controls mp = (m/, . .
.

,

m/) are applied,

that is, uf — In general, for an arbitrary /?, the locally optimal and

the actual interactions are different, uf ^ uf or K^m?) ^ uf. A coordina-

tion strategy, termed the interaction balance, then requires that the second-

level unit select ft so that the actual and locally optimal interactions are equal,

that is, uf = u/ or u/ = K^m^).

The question then is, Under which conditions is coordination by inter-

action balance possible? Since the subprocesses and the respective models

are already defined, the conditions ought to be given in terms of the relation-

ship between the overall and the local performances, G and Gu . .
.

,

Gn ,
which

up to now are arbitrary. If the balance uf = w/, when achieved, necessarily

implies that the overall optimum is achieved, we shall say that the interaction
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balance principle is applicable. If in addition there exists a coordination for

which such a balance is reached, we shall say that the system is coordinable

by the interaction balance principle.

We have now the following results:

Theorem 8.9 [22]. Balance of interactions, that is, the condition up = up
,

implies the attainment of the overall optimum whenever:

(i) There exists a function, \\j: Vn -> V, such that for all me M

\ £)> • • • >
Gn(m n ,

Pn(mn ,
un ), /?)) = G(m, P(m))

whenever u = K(m).

(ii) \jj is an order-preserving (monotone) function.

Theorem 8.10 [22]. Let conditions (i) and (ii) of Theorem 8.9 hold. The

system is coordinable, that is, the optimal coordination $ which results in

the balance exists, only if

max min \j/ = min G (8.3)
B M x u M

where B is the set of all coordination terms, B = {ft}.

Theorem 8.11 [22]. Let conditions (i) and (ii) hold; furthermore \p is strictly

monotone. Condition of Eq. 8.3 is then necessary and sufficient for the

existence of an optimal coordination ft.

There are many other theorems on general systems and more specific levels

about the coordination processes in multilevel systems. Of interest here,

however, is only the fact that by using mathematically precise and general

formalism we were able to make concrete and definite, useful and general

statements about the hierarchical systems. This is in sharp contrast with the

verbose approach to general systems theory whereby only hints and sugges-

tions are offered as conclusions, and with the approaches based on more

classical foundations, notably differential (and difference) equations and

automata, whereby the conclusions, although precise, are limited to con-

sideration of systems which do not have explicitly recognized subsystems,

that is, to “ small-scale” systems. The usefulness of these results is based on

their generality. For example, the preceding theorems are true for an extremely

broad class of systems, including dynamic, nonlinear, and even nonnumerical,

algorithmic types. It appears that interaction balance coordination strategy is

fundamental indeed. Many additional general systems theory results about

multilevel systems can be found in [22], where other coordination principles

are also considered.
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8.7. CONCLUSION

In conclusion, it is of interest to ask a question about the usefulness of
general systems theory, or the purpose of its further development. The
raison d’etre of general systems theory seems to rest on five functions that

it ought to perform.

1 . Unification of various branches of systems theory. There are a number of
situations wherein the general systems theory, by providing a unifying basis

for various branches of systems theory, will help in the process of mathe-
matical model building. For example, in a given experimental situation it is

not known a priori which of the mathematical models available is most
suitable, and the general systems theory provides a framework to relate and
evaluate various alternatives. More generally, the model-building process

can be viewed as consisting of the following steps : verbal description of the

observations and assumptions; general systems model; specific, detailed

mathematical model suitable for the analysis or simulation studies. Presently,

detailed mathematical models (e.g., differential equations or linear program-
ming) are applied directly on the observed data in order that certain well-

developed techniques can be used. In such an approach one has to make many
assumptions not present in the observed data. By adding the general systems

model, even if only as an intermediate step in the model-building process,

one is in possession of a precise, although not detailed, mathematical descrip-

tion which is as close as possible to the phenomena actually observed.

2. Application of the systems models in new areas. In many areas of applica-

tion the use of systems models was hampered by the conditions that had
to be satisfied in order to use a mathematical model with sufficient accuracy,

for example, continuity and differentiability conditions for the differential

equations models. General systems models require very few assumptions
and can be applied in many areas, such as social and political systems, where
more restrictive models are simply too poor as approximations. Actually,

even the observations described solely by verbal statements can be formalized

in the general systems framework. This capability should make possible a
more definite application of the systems approach in many areas of social

and humanistic studies.

3. Provision of a precise language for multidisciplinary problems and inter-

disciplinary communications. Use of the knowledge developed in one field

within another field and the study of problems involving several disciplines

are greatly hampered by the diversity of concepts used to describe phenomena
which have similar (or even the same) formal structures. What is really needed
is development of a precise language which can be used to describe the in-

variant, structural aspect of the observations, divorced from the specific
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phenomenological interpretations. General systems theory can be used to

define many of these concepts and can serve as a language for scientific

investigations in such areas as the social sciences and humanities, as well as

for the study of large systems involving a variety of diverse factors (e.g., social,

political, ecological, and technological).

4. Means for describing large-scale systems. The concept of a large-scale

system cannot be attributed solely to the type of system under consideration

;

it depends also on the approach taken in describing the phenomena involved.

For example, what might be considered as a small system for a social scientist

can be a very large system for a psychologist. It is the number of details taken

into account and the way in which they are described that is crucial. For

example, a national economy is certainly a large system, but if it is described

by a set of, say, five differential equations, some if not all of them being

linear, it hardly deserves to qualify as a large-scale system. For a system to

be viewed as large scale, it is necessary that the “ largeness ” be reflected in

the model which describes the system. A prime example is a system which

consists of a (large) number of subsystems whose existence is explicitly recog-

nized, as in the multilevel hierarchical systems considered in Section 8.6.

For the study of such large-scale systems it is very important to have as

simple a description of the subsystems as possible so that one can be concerned

with the problems of the overall system, rather than becoming bogged down

with the complexity of subsystems behavior. General systems theory provides

such a description, as demonstrated in Section 8.6 for the multilevel systems.

5. Synthesis and organization of human knowledge in rather diverse but

still related areas. This is of importance in attacking and solving many

practical problems, for example, in ecology. Another endeavor in need of

such a synthesis is the field of education. General systems theory provides a

framework for such a broad synthesis and may well become a cornerstone

of any scientific or science-oriented education of the future, much as physics,

chemistry, and mathematics serve this function today.

What properties should a general systems theory have to satisfy all the

needs indicated ? It ought to be precise (mathematical), nonrestrictive (general),

and elegantly (simply) formulated. It is with these qualities in mind that the

theory described in this chapter was proposed, was developed up to this point,

and, hopefully, will continue to evolve.
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EDITOR’S COMMENTS

This chapter requires the reader to be of a certain maturity in mathematics.

The prerequisites are approximately the same as those for Chapter 8, but

knowledge of basic calculus, differential equations, and elementary abstract

algebra may prove beneficial. For these areas, the following books are

recommended:

Thomas, G. B., Calculus and Analytic Geometry
,
4th ed. Reading, Mass. : Addison-Wesley,

1968.

Ziebur, A. D., Topics in Differential Equations. Belmont, Calif.: Dickenson Publishing Co.,

1970.

Fraleigh, J. B,, A First Course in Abstract Algebra. Reading, Mass.: Addison-Wesley, 1967.

Ayres, F., Modern Algebra. New York: Schaum, 1965.

Wymore employs a special mathematical notation, which is not used in

the common mathematical literature and may be another source of difficulty

for the reader. Therefore, we advice the use of the Glossary of Symbols at

the end of this chapter (p. 298). Also, for a better understanding of the basic

concepts introduced in Section 9.2, we strongly urge a study of the Wymore
book [33].
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9.1. INTRODUCTION

A wattle is a woven work comprised of many intertwined branches. The
trend in general systems research that will be discussed in this chapter is

wattled in the sense that it is a thatch composed of divers branches of mathe-
matics, science, and engineering for the purpose of providing a roof under
which the problems of systems engineering can be attacked.

The wattling occurs, however, in metamathematical motivations and evalua-

tions. The approach to system-theoretic research to be discussed herein, is,

in essence, mathematical. It relies for its validity on perfect mathematical
rigor or, at least, on what passes for perfect mathematical rigor in these

particular times. Thus, in the spirit that all mathematics is tautological,

the distinctive flavor of the theory and its ultimate development are both com-
pletely determined by the basic definitions. These will be emphasized in this

discussion. The approach is based on a set of postulates in which the concept
of system is defined in terms of set- and function-theoretic concepts.

The principal criterion for development of this theory has been the degree

of its usefulness in applications to problems in systems engineering. Most
developments have been motivated by the necessity to create intellectual

tools useful in modeling real phenomena. Much of the progress of this

approach has been due to the desire to create a framework within which
particular mathematical, scientific, and engineering techniques might be
wattled.

This theory of systems has been developed to subsume both the theory of

discrete automata [4] and the theory of continuous systems defined by differ-

ential equations [39].

A completely rigorous framework has been missing within which to state

system concepts precisely, concepts, in particular, which have had vague
meanings in the folklore of systems engineering: “time-varying,” “ adaptive,”

“artificial intelligence,” and so forth [9].

Another motivation has been to provide a framework whereby extant

system tools might be used consistently in concert. Tools of particular interest

in this context are the mathematical models of operations research [30],

information!communication theory [26, 16], and linear control theory [8]. A
completely general but entirely rigorous framework within which each of

these might find a place has been lacking.

The technique of digital computer simulation has been widely used
in systems analysis and design, and appropriately so because simulations

have proved to be extremely useful [19, 7]. Nonetheless, simulations are

difficult to work with because the language in which they are couched
is more appropriate to digital computers than it is to the description of
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system-theoretic properties. What is needed here is a simulation language

based on system-theoretic considerations, not on computer requirements.

Ultimately, the aim of mathematical system theory, from this point of

view, is to lay a methodological foundation for the engineering of vast,

complicated systems, systems necessary for the solution of social problems,

exotic systems whose shapes and forms are not known.

An abstract theory of systems is hardly necessary if an engineer’s problem

is to design a better mousetrap. If the problem is to design a system to control

the pestilential infestation of a set of human domiciles, however, then the

engineer must' have some methodological guidelines.

From this point of view, the basic manipulations of systems that are

important are the putting together of simple system components to achieve

complex system behavior and the manipulation inverse to that one: that of

taking a very complicated system and breaking it down into simpler com-

ponents interconnected by input-output relationships.

Thus several historical intellectual branches are herein interwoven to

produce a wattled theory of systems. There is a thread from mathematical

logic, represented by the papers of Turing [28] and of McCulloch and Pitts

[18]. These generated the extant theory of discrete automata, whose greatest

achievement so far, from the point of view of the basic manipulations of

systems described above, is that of Krohn and Rhodes [15].

Another branch contributing to this wattled theory of systems represents

the work of the topological algebraists: for example, that of Pontryagin in

topological groups [24] and that of Hille in the theory of topological semigroups

[11]. Such works as these gave rise, on the one hand, to the field of topological

dynamics [3] and, on the other hand, to the study of topological algebraic

structures such as Banach algebras [17] and the qualitative theory ofdifferential

equations [20].

The theory of differential equations, however, has determined yet another

branch leading to mathematical system theory, an engineering branch, v/hich

resulted finally in what is now known as modern control theory [1]. This

theory must also be subsumed by mathematical system theory.

Then there is a more or less pseudo-mathematical branch leading to mathe-

matical system theory represented by the writings in the area of what is known

as general systems theory [2]. General systems theory evolved more con-

cretely into the area of cybernetics [32] and more concretely still into what is

called computer science [31]. A theory of systems which aspires to lay a

foundation for systems engineering must subsume these basic areas also.

The final thread leading into mathematical system theory is represented

by information theory and its offshoots. Information theory [26] is such a

beautiful theory that its limited application to any but a very narrow type of

system is surprising. But the whole theory of stochastic processes [6] is also
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included in this general branch of mathematical system theory, and these,

of course, have had extensive applications.

The attempt to intertwine and subsume all of these branches is the reason

for calling this, in particular, a wattled theory ofsystems. It is an intertwining

of many branches which, nonetheless, may yet form a suitable roof under

which a great deal of useful and pertinent systems engineering may be

accomplished.

9.2. DESCRIPTION OF THE APPROACH

The first object of the approach to a wattled theory of systems is to answer

the question, What is a system? An intuitive notion of a system is that of

a black box with inputs and outputs.

In the theory of automata the input is usually described as an alphabet.

Some member of this alphabet of inputs presents itself for processing by the

black-box system at every integral value of time.

Systems described by differential equations usually are thought of as having

a forcing function providing input to the system. If a theory of systems is to

subsume both these types of systems, the idea of the input alphabet must be

modified somewhat.

The time scale of a discrete system is some subset of the set of all integers.

The time scale of a system described by differential equations is usually thought

of as some subset of the real numbers which is a continuum. One way to

include both of these intuitions into a theory of systems is to assume, for

heuristic purposes, that there is some “real” time scale. That is, the time

scale that is ascribed to a given system is the time scale of a set of experi-

ments which will be performed on the system. A discrete system, then, would
correspond to a system in an experimental situation where real time is going

on but where the experimental data are sampled at discrete intervals of time.

Thus, in this context, even for discrete systems, it is not sufficient to talk only

about an input alphabet; it is now necessary to talk about an input function
,

a function which is defined everywhere over real time.

The actual inputs themselves can still be left quite arbitrary.

A set of input functions appropriate for systems models must also have

some characteristics demanded by this intuitive notion of the existential

condition of systems. One of these notions is the translation of the input

function. If/is an input function for a system, and if an experimenter on the

system is to be allowed to specify an arbitrary origin for the time scale of the

experiment, at, say, the point r on the “real ” time scale, then the translation

of/by the amount r must also be a legitimate input function for the system.

The translation of/ by the amount r, evaluated at any time, is the same as
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the value of the input function/ evaluated at the time r + t. Thus, associated

with every input functionf is the set of all its translates. This gives the system-

theoretic approach the ability to set the origin of the time scale at any instant

of the “real” time scale.

Furthermore, if the concept of experimenting on systems is to be retained,

another manipulation on input functions must be allowed. If an experiment

is to begin at time 0, and at time 0 an arbitrary input function is to be generated

for the system, then that total input history composed of the history of

input to the system up to time 0, and from time 0 on into the future, the

input function generated by the experimenter, must be a legitimate input

function for the system. This requires that all functions that can be generated

by this process result in legitimate input functions. Let / and g be legitimate

input functions to the system, and let the segmentation of/ and g be defined

as follows: the segmentation of/ and g is an input function of the system,

defined at time t as being /(f) if t is negative and as g(t) if t is not negative.

Following Pontryagin, a set of functions which has these characteristics

will be called an admissible set of input functions. These notions are formalized

in the following definition.

Definition 9.1. Admissible sets of input functions. Let P be a set not

empty. Let f g e FUNCTIONS(REALS
,
P), and let r e REALS, then

translation(f r) = {(t, f{r + t))\ t e REALS} and

segmentation(f g) = {( t
, f(t)): t e NEGATIVEREALS}

u {(*, g{t))\ t e NONNEGATIVEREALS}.

A set Pis an admissible set of input functions with values in P if and only if

:

Fez FUNCTIONS(REALS, P),

F ^ 0, if/, g 6 F, and r e REALS
,
then

translation (/, r) e F and segmentation {f g) e F.

The set of all admissible sets of input functions with values in P is denoted

A DMISSIBLES(P).
If G is an arbitrary subset of FUNCTIONS(REALS

,
P), then the smallest

admissible set of input functions which contains G is denoted ADMISSIBLE-
SET(G) and is defined as follows:

ADMISSIBLESET(G) =
f) {F: F e ADMISSIBLES(P), F => G}.

Discussion. In accordance with Turing and the school of discrete automata

theorists, the basic concept of what goes on inside the black box will be

represented by a set of states and the change from one state to another.

Thus, to describe a system, it is necessary to describe the inputs, the admis-

sible set of input functions, the set of states, the time scale, the set of permissible
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transformations of the set of states (i.e., the totality of the behavior available

to the system), and, finally, the way in which this behavior is causally or

(better) functionally coordinated to the input functions and the time scale.

These notions are all brought together under the heading of an assemblage;

this definition is given next.

Definition 9.2. Assemblages. An assemblage is a 6-tuple Z = (S ,
P, F, M, T, a),

where

:

S is a set not empty;

Pisa set not empty

;

F e ADMISSIBLES(P)

;

M c FUNCTIONS(S , S), such that identity(S) e M

;

Tc REALS and O e T;

(j g FUNCTIONS^X T, onto, M).

If Z is an assemblage and Z = (S, P, P, M, T, cr), then the states of Z,

the inputs of Z, the set of input ports of Z, the set of input functions of Z,

the set of state transitions of Z, the time scale of Z, and the state-transition

function of Z are denoted, respectively: STATES(Z), INPUTS(Z), INPUT-

PORTS(Z), INPUTFUNCT10NS(Z), BEHAVIOR(Z), TIMESCALE(Z\
and motion(Z), and are defined, respectively, as follows:

STATES(Z) — S;

INPUTS(Z) = P;

INPUTPORTS{Z)
= / if P = X I for some set / not empty of sets not empty and #(/) > 2

(if / is a set not empty of sets not empty, then the Cartesian product of

the sets in I is denoted X ^ an<^ defined as follows

:

Xl={x:xe FUNCTIONS (/, (J 7), x(A) e Z for every A e /}),

= {P} otherwise

;

INPUTFUNCTIONS(Z) = P;

BEHAVIOR(Z) = M;
TIMESCALE(Z) = T;

motion(Z) — cr.

If/ e P, t g T and jcgS, then the state of the assemblage Z at time t, given

the input function / and the initial state x, is (cr(/, OX*)-

If/ g P and x g 5, then the time trajectory of Z determined by / and x is

denoted timetrajectory(Z,f
\
x) and is defined as follows:

timetrajectory(Z,f] x) = {(f, (cr(/, 0)(*)) : t e T}.

An output function for Z is any £ g FUNCTIONS{S , 0, where 2 is anY

set not empty.
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Discussion. The concept of an assemblage is still too broad, however. It

encompasses mathematical constructs which do not satisfy intuitive notions

of what systemlike behavior should be. For example, it is possible to have

an assemblage whose state at time t depends on values of the input function

which will be received beyond t
,
that is, assemblages which are intrinsically

anticipatory.

Three conditions are necessary to rule out such constructs and to set in

the concrete of mathematical postulates intuitive notions of what constitutes

systemlike behavior and intuitive notions of what constitutes the state of the

system at time t.

Definition 9.3. Systems. A system is an assemblage Z = (S', P, F, M, T, o)

such that

<t(/5
o) = identity{S) for every fe F;

(j{translation{f\ s), s) = o(/, s + t) for every f e F, s, t e T such that

s + t e T;

cr(f, r) = cr(g, r) for every /, g e F, and r e REALS ,
if

restriction(/, T[o
,
r)) = restriction^ ,

T[o
,
r)) when r > 0,

or if

restriction(/, T[r, o)) = restriction(g, T[r, o)) when r < 0.

Discussion. It is here, at this point, clearly stated what, precisely, a system

is There is no longer any question. A system is a 6-tuple such that and so

forth, as indicated in Definitions 9.2 and 9.3.

The next question on the agenda to be answered is, What does it mean to

interconnect systems

?

The main purpose of the discussion will be to attempt to find a framework

within which complicated interconnections of system components can be

deduced from the behavior of the individual components. The first objective

is to formalize the idea of a coupling recipe which essentially answers precisely

the following questions: Which systems are involved in the intercoupling?

Which of the input ports of each system are assigned to receive input from

which other systems ? What are the output functions from systems providing

inputs to input ports of receiving systems ?

The idea of a coupling recipe is made explicit in the following definition.

Definition 9.4. Coupling recipes. A couple is a triple C = («3f, a
,
o), where

2£ is a set not empty of systems, such that for every Z, Z' e 2£
;

STATES(Z) # STATES(Z%
TIMESCALE(Z)

= TIMESCALE(Z '),

{(projection(INPUTPORTS(Z) n INPUTPORTS(Z'))f:

f e INPJJTFUNCTIONS}
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= {(projeciion(lNPUTPORTS(Z) n INPUTPORTS(Z'))f:

/ 6 INPUTFUNCTIONS (Z')}

;

a is a function defined on such that for every Z, Z', Z" e 2£, a(Z, Z') c=

INPUTPORTS(Z) and a(Z, Z') n a(Z, Z") = 0, if Z' # Z";

o is a function defined on ^ 2
,
such that for every Z, Z' e iZ,

o(Z, Z') e FUNCTIONS(STATES(Z), X a(Z', Z)) if a(Z', Z) ^ 0;
o(Z',Z) = 0ifa(Z',Z) = 0;
U {INPUTPORTSiZ) ~ a(Z, Z'): Z'e^Zef}#0.
If C = (iZ, a, o) is a couple and Z e iZ, then the set of system components

of the resultant determined by C, the input port assignments of C, the output

function assignments of C, the set of input ports of Z designated as occupied

by C, the set of input ports of Z left unoccupied by C, the set of states of the

resultant determined by C, the total set of input ports managed by C, the

total input determined by C, the set of total input functions determined by C,

the set of unoccupied input ports of the resultant determined by C, and

the time scale of the resultant determined by C are denoted, respectively:

COMPONENTS(C), inputports(C), outputs(C), OCCUPIEDPORTS(Z, C),

UNOCCUPIEDPORTS(Z,C), RESULTANTSTATESET(C), TOTAL-
INPUT PORTS(C), TOTALINPUT ( C), TOTALINPUTFUNCT10NS(C),
TOTALUNOCCUPIEDPORTS(C), RESULTANTINPUTS(C), and

RESULTANTTIMESCALE(C), and are defined, respectively, as follows:

COMPONENTS(C) = iT;

inputports(C) = a
;

outputs(C)
= o\

OCCUPlEDPORTSiZ, C) = (J {a(Z, Z '): Z' e 2C}\

UNOCCUPIEDPORTS(Z, C) = INPUTPORTS(Z)
~ OCCUPIEDPORTS(Z, C);

RESULTANTSTATESET(C) = X {STATES(Z'): Z' e iT};

TOTALINPUTPORTS(C) = [j {INPUTPORTS(Z'): Z' e iT};

TOTALINPUT(C) = X TOTALINPUTPORTS(C)

;

TOTALINPUTFUNCTIONS1(C)
= {/:/£ FUNCTIONS(REALS, TOTALINPUT{C)), (projection{INPUT

-

PORTS{Z')))fe INPUTFUNCTIONS(Z') for every Z' e iT};

TOTALUNOCCUPlEDPORTSiC)

= U {UNOCCUPIEDPORTSiZ’
,
C): Z' e

RESULTANTINPUTS{C)
= X TOTALUNOCCUPIEDPORTS(C);

RESULTANTINPUTFUNCTIONS(C)
= {/:/eFUNCTIONS(REALS, RESULTANTINPUTS(C)), there exists

g e TOTALINPUTFUNCTIONS(C) such that

/= (projectioniTOTALUNOCCUPIEDPORTS(C)))g}

;

RESULTANTTIMESCALE{C) = TIMESCALE(Z).
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Discussion. In Definition 9.4 a resultant determined by the coupling is

mentioned but is not explicitly defined. Certainly, it is desirable that the

resultant of coupling systems together according to some coupling recipe be

a system. The state-transition function of such a system can be defined,

however, only if the coupling recipe also determines a coupling function

which satisfies certain equations. The development of these equations can

be seen as follows.

As indicated in Definition 9.4, the input to the resultant will not be the

same as the input to any of the individual component systems because some

or all of the input ports of any individual component system could be desig-

nated as occupied by the coupling recipe. Nonetheless, if there is to be a way

of deducing the state-transition function of the resultant system from the

state-transition function of the component systems, there must be a mapping

defined on the set of restricted inputs of the resultant together with the

initial states of the resultant, with values in the totality of input functions of

the component systems reflecting the conditions of coupling.

It is clear that the resultant of an arbitrary couple may not be a system

in the sense of Definition 9.3, but the following definition gives the way in

which the resultant can be constructed on the basis of the existence of a

coupling function.

Definition 9.5. System coupling. Let C = (Jf, a
, o) be a couple. A function k

is a coupling function with respect to the couple C if and only if

:

k e FUNCTIONS(RESULTANTINPUTFUNCTIONS(C)XRESULT-
ANTSTATESET(C), TOTALINPUTFUNCTIONS(C))

;

for every fe RESULTANTINPUTFUNCT10NS(C), x e RESULTANT-

STATESET(C), t e RESULTANTTIMESCALE{C), and V e TOTAL-
INPUTPORTS{C):

(K(f9
x))(t)(V)

= (/(t))(V) if Kg TOTALUNOCCUPIEDPORTS(C),

= ((o(Z, Z'M{motion(ZMprojection(INPUTPORTS(Z)))k(/, x), t))

(x(STATES(Z)))))( V)

if TOTALUNOCCUPIEDPORTS(C), Vea(Z',Z) for some Z, Z'

ifge TOTALINPUTFUNCTIONS(C), xe RESULTANTSTATESET(C),
s g RESULTANTTIMESCALE(C), and (g(t))(V)

= ((o(Z
,
Z0)(((wo?/^(Z))((^r^ct/^(/APLTPO7?TS(Z)))g, t))(x(STATES

(Z)))))(K) for every V e a(Z ', Z), for every Z, Z' g i2f, and for every t e

RESULTANTTIMESCALE(C)[o, s) if s > 0, or for every t g RESULT-
ANTTIMESCALE(C)[s, 0) if s<0

9
then (K(projection(TOTALUN

-

OCCUPIEDPORTS(C))g, x))(t) = g(f) for every

t g RESULTANTTIMESCALE(C) [0, s) if s > 0, or

for every t e RESULTANTTIMESCALE{C)[s, 0) if j < 0;
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if/; g e RESULTANTINPUTFUNCTIONS(C) and y e RESULTANT-
TIMESCALE(C), and if

restriction(/, RESULTANTTIMESCaLE{C)[0, s))

= restriction(g, RESULTANTTIMESCALE(C)[0, sj) when y > 0, or if

restriction(/, RESULTANTTIMESCALE(C)[(j, y)'

= restriction(g, RESULTANTTIMESCALE{C)[s, Oj) when y < 0, then

restriction(k(/, x), EESULTANTTIMESCALE[0, y))

= restriction(K(g, x), RESULTANTTIMESCALE[0, y)) when y > 0, or

restriction

(

k(J, x), RESULTANTTIMESCALE[s, 0))

= restriction(K(g, x), RESULTANTTIMESCALE[s, 0)) when y < 0.

If C is a couple and k is a coupling function with respect to C, then the

resultant of C is ail assemblage denoted RESULTANT(C) and is defined as

follows:

STATES(RESULTANT(C)) = RESULTANTSTATESET{C);
INPUTS(RESULTANT(C))

= RESULTANTINPUTS(C);
INPUTFUNCTIONS(RESULTANT(C))

= RESULTANTINPUTFUNCTIONS(C)

;

BEHA VIOR(RESULTANT(C)) = RANGE(motion(RESULTANT(C )))

;

TIMESCALE(RESULTANT(C)) = RESULTANTTIMESCALE(C);
if / 6 INPUTFUNCTIONS(RESULTA NT(C)), t e TIMESCALE(RE-

SULTANT(C)), and x e STATES(RESULTANT(C)), then

(((motion(RESULTANT(C)))(f, t))(x))(STATES(Z))

= ((motion(Z))((projection(INPUTPORTS{Z)))K(f, x), t)){x(STATES(Z)))

for every Z e 2L

.

A couple C is a system couple if and only if there exists a coupling function

k with respect to C.

Discussion. Subsequent developments in this wattled theory have shown

that, when a coupling function exists, the resultant assemblage is well defined

and is, indeed, a system. Coupling functions generally exist when the com-

ponents all consist of discrete systems or all are differentiable systems.

An example will clarify most of the concepts of Definitions 9.4 and 9.5

better than extended discussion. Let

C = (3C, a, o), where

LZ = {Z l5 Z2 }, where

Zi = (Si, Pi, Ft , Mu 7/ oi ), where

p
i =X{pn,P12 }, where

Pn = REALS,
P12 = REALS,
F

1 = {/:fe FUNCTIONS(REALS, Pt ), ft ((f(x)){Pn ) + (f(r))(Pi2 ) dx e

REALS for every t e REALS},

Mi = RANGE{oi),
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Tx = NONNEGATIVEREALS ,
and, iffeF,teT,xe S,

t)(x) = x + J*0 ((/(rXPn) + (MXP12)) dr,

Z 2 = (S2 ,P2 , F2 , M2 ,T2 , <r2), where

S2 = REALS,
P2 = REALS,
F2 = {/: / e FUNCTIONS(REALS, P2), f0 /(t) </t e REALS for every

t e REALS},

M2 = RANGE(o2 ),

T2 = NONNEGATIVEREALS, and, iffeF2 ,teT2 ,xeS2 ,

(/, OO) = A' + jo /(t) dr;

a = {((Z l5 Z x ), 0), ((Zj, Z2), {P12}) ((Z2 , Z x), {P2}), ((Z2 , Z 2), 0)}; and

o = {((Z 1; Zj), 0), (YZ,, Z 2), identity(S2)), ((Z
x , Z), identity(Si)), ((Z2 ,

Z2),

0)}-

This coupling recipe is caricatured in Figure 9.1. Since the only output

functions involved are the identity functions on the state set, it is the state of

each system that is transmitted to each other system in the couple.

State of Z
2

at time t

1

1L ^12

Initial state:
State of Z

1

p

z
2

Initial state:

x(S
2
)

w J p

x(S^) at time t

r
2

n

^

i

*11

Figure 9.1. Caricature of the resultant of a system couple.

The coupling function k, for each / e RESULTANTINPUTFUNC-
TIONS(C) and x e RESULTANTSTATESET(C) [where, in this case,

RESULTANTINPUTFUNCTIONS(C) = {/: / e FUNCTIONS(REALS,
Pa), there exists g e F

1 ,/= projection({Pn ))g}, and RESULTANTSTATE-
SET(C) = X {So S2 }], must determine inputs to each of the input ports Pn ,

P12 , and P2 . Hence, for each t e RESULTANTTIMESCALE(C) (= NON-
NEGATIVEREALS, in this case), (k(/, x))(t) is a vector with three dimen-

sions whose components are indicated as ((k(f, x))(t))(Pn ), ((k(/, x))(t))(

P

x

2

),

and (0c(/; x))(f))(P2 ).
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From Figure 9.1 or from Definition 9.5, it is clear that (iff x))(t) must

satisfy the following set of equations

:

if V e TOTALINPUTPORTS (= {Pn ,
P12 ,

P2 }, in this case), then

((k(f,x))(t)(V)

=/(0 ifF = /*u ,

= (a2 ({projection{{P2}))k(/, x), t)(x(S2 )) if V = P12 ,

= (oMprojection({Pn ,
Pl2 }))x(f, x), t)(x(SJ)) if V=P2 ;

or, in view of the definitions of and <r2 ,

(«/; *)xoxn
=/(0 ifF = Pu ,

= *(S2) + Jo (k(/, x))(t)(P2) if V = P12 ,

= VSi) + J'o
(/(t) + ((k(/, x))(r))(P12)) dx if V=P2 .

The solution of this set of equations for the two unknown functions, (pro-

jection({P12}))K(f x) and (projection({P2}))K(f] x) (which can be found, in this

case, by the standard methods of linear differential equations), can be written

as follows:

((K(f, x))(t))(P12)

= sinh(f) x xfSJ + cosh (;t) x x(S2 ) + f0 sinh ( t — x) x f(t) dr,

((*(/, x))(0)(P2),
= cosh(t) x xf^) + sinh ( t) x x(S2 ) 4- f0 sinh (t — x) x /(t) dr.

If Z* - RESULTANT(C), then Z* - (S*, P*, P*, M*, T*, a*), where

s* = X(Si>S2},
p* = pn ,

F* ={f:feFUNCTIONS(REALS,Pn ), there exists # g F such that / =

(.
projection({Pn}))g},

M* = RANGE(o *),

T* = NONNEGATIVEREALS
,

if/g P*, t g T*, v g S*, then

0*(/, 0W)(^i)
= (cT

1
((projection({P11 ,

P12})M/, x), 0)(^(5'i)) (by Definition 9.5),

= x^) + Jo (/(t) + sinh (t) x x(5
a ) + cosh (t) x x(S2 ) + Jo sinh (t - t')

x /(F) Ft') Ft (by the definition of a
1
and of ((k(/, x))(t))(P12)),

= cosh (t) x x(Sj) + sinh ( t) x x(S2 ) + Jo /(t) dx + Jq Jo sinh (t — t')

x /(t') Ft' Ft; and

0*(/, t)(x))(S2 )

= (<J2 ((projection({P2}))K(f

\

x), t))(x(S2)) (by Definition 9.5),

= x(S2 ) + Jo (cosh (t) x xfSj) + sinh (t) x x(S2 ) + Jq cosh (t — t')

x /(t') dp) dx (by the definitions of o2 and of ((/c(/, x))(t))(P2)),

= sinh (0 x x(5
x ) + cosh (t) x x(S2 ) + J

r

0 Jo cosh (t - t') x f(x') dx' dx.

These are the basic concepts: the concept of the assemblage
,
the concept

of system
,
the concept of a couple

,
and the concept of the resultant ofa couple.
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These definitions make explicit exactly what a system is and what it means to

couple systems together to make more complex systems.

These concepts also make clear several other parts of the folklore of system

theory, for example, the ideas of subsystem and component. The following

definition makes these terms explicit.

Definition 9.6. Subsystems and components. Let Z and Z' be systems. Then

Z is a subsystem of Z' if and only if

STA TES(Z) c= STATES(Z');
INPUTS(Z) c INPUTS(Z');

INPUTFUNCTIONS(Z) c= INPUTFUNCT10NS{Z '
),

TIMESCALE(Z) c= TIMESCALE(Z');

and, for every / e INPUTFUNCTIONS(Z) and t e TIMESCALE(Z),

(motion(Z))(f\ t) = restriction((motion(Z'))(f’

t), STATES(Z)).

A system Z is a component of a system Z' if and only if there exists a

system couple C such that Z e COMPONENTS(C) and Z' is isomorphic to

RESULTANT(C).

Discussion. The concepts of subsystem and component are not the same;

it is clear that they are distinct and differing. In fact, they are dual concepts

in a very real way. The theory can be sketched rapidly as follows.

A system can be decomposed into its isolated subsystems. There always

exists a maximal decomposition of this sort (which may be trivial). Then the

given system is said to be the disjunction of its isolated subsystems. If Z is

the given system and is the maximal set of isolated subsystems, the above

relationship is symbolized as Z = OR(2Z).

A system can be resolved into its independent components. There always

exists a maximal resolution of this sort (which may be trivial). Then the given

system is said to be the conjunction of its independent components. If Z is

the given system and is the maximal set of independent components,

the above relationship is symbolized as Z = AND(^T). [The system AND(£T)

can also be characterized as the resultant of the trivial system couple C =

(iT, {((Z\ Z"), 0): Z', Z" e #}, {((Z', Z"), 0): Z', Z" e #}).]

If Z = (5, P, F, M, T, a) is a system, Q is a set not empty, and G is a subset

of FUNCTIONS(S
, 0, then the dual of Z with respect to G is an assemblage

Z*, defined as follows:

STATES(Z*) = G
,

INPUTS(Z*) = P,

INPUTFUNCTIONS^*) = F,

BEHAVIOR{Z*) = RANGE(motion(Z *)),

TIMESCALEIZ *) = -T;
if/e INPUTFUNCTIONS^), t e TIMESCALE(Z *), C 6 STATES(Z*),
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and x e S, then

(((motion(Z*))(f\ t))(Q)(x) = Q(o(translation(f t), - t)(x)).

The first duality theorem gives conditions sufficient to ensure that the
dual of Z with respect to G is a system.

The second duality theorem states that Z is always isomorphic to a dual
of the dual of Z.

The third duality theorem says that, if is a set of systems and if

DUALS(fF) is a set of duals of the systems in
, then the conjunction of

the systems in DUALS(&) is a system dual to OR(&); or, expressed in sug-

gestive symbolism: DUAL(OR(&)) = AND(DUALS(%')).

This suggests a way to compute the maximal conjunctive resolution of a
system Z

:

DUAL(DUAL(Z))

DUAL(OR(Z))

\AND(DUALS(%))

(by the first and second duality theorems), or

(e.g., by inspection of the state-transition dia-

gram of DUAL(Z) to discover the set 2£ of

isolated subsystems of DUAL(Z)), or

(by the third duality theorem).

Undoubtedly it has been noted that the concept of system isomorphism
was introduced in Definition 9.6.

One of the basic tools for the development of a wattled theory of systems
such as this is the system homomorphism, and its specialization, the system
isomorphism. On the basis of these two definitions and the definition of
subsystem, what it means to simulate a system and to implement a system
can be defined.

Definition 9.7. System homomorphisms. Let Z and Z' be systems; Z =
(S, P, F, M, T, a) and Z' = (S' , P', F', M', T', a'). Then Z is the homomorphic-

ip, p, 9) image of Z' if and only if

pe REALS and T=pxT’;
p e FUNCTIONS(F', onto, F) such that, for everyf,g eF’ and r e REALS,

p (segmentation(f, g)) = segmentation(p(f), p(g)) and p(translation(f, r ))
=

translation(p(f), p x r); and

9 e FUNCTIONS(S’, onto, S) such that, for every / e F', t eT', x e S',

9(a’(f, t)(x)) = a(p(f), p x t)(9(x)).

A system Z is an homomorphic image of a system Z' if and only if there

exist p, p, and 9 such that Z is the homomorphic(p, p, 9) image of Z'.

A system Z is isomorphic(p, p, 9) to a system Z' if and only if Z is the

homomorphic(p, p, 9) image of Z' and p and 9 are 1 to 1.

A system Z is isomorphic to a system Z' if and only if there exist p, p, and 9
such that Z is isomorphic(p, p, 9) to Z', or Z' is isomorphic(p, p, 9) to Z.
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A system Z' simulates a system Z if and only if there exists a subsystem

Z" of Z' such that Z is an homomorphic image of Z".

Let 3? be a set not empty of systems. Then a system Z is implementable

in if and only if there exists a system couple C such that

COMPONENT5(C) c: 3T

and RESULTANT(C) simulates Z.

Discussion. The fundamental theorems of homomorphisms will not be

presented here: the conditions under which an assemblage, which is an homo-

morphic image of a system, is a system; construction, from the artifacts of

Z', of a system Z" isomorphic to Z if Z is an homomorphic image of Z'

(analogous to similar theorems in group theory)
;
and the fact that any system

Z', of which Z is an homomorphic image, satisfies the same input-output

specifications as Z does. More will be said presently about input-output

specifications and their satisfaction by systems.

There are two archetypical subclasses of systems: discrete systems and

systems defined by differential equations. Definition 9.8 makes these classes

of systems explicit. The definitions depend for validity on the proofs of

preliminary theorems, which are not included here, asserting that the con-

structs given actually constitute systems.

Definition 9.8. Discrete systems and differentiable systems. Let A and B

be sets not empty and let b e B. Then the function constant on A and equal

to b is denoted constant(A ,
b) and is defined as follows: constant{A

,
b) =

{(a ,
b): a e A}.

A system Z = (S, P, F, M, T, o) is a discrete system if and only if

F 3 {constant(REALS, p): p e P};

T= NONNEGATIVEINTEGERS ;

and, for every / e F, t e T, and x e S :

<r(f, OO)
= x if t = 0,

= (o(constant(REALS , f(t
-

1)), 1)a(f9
t
- l))(x) if t # 0.

A system Z = (S, P, F, M, T, a) is a differentiable system if and only if

there exists a topological vector space E such that

S = VECTORS(E);

F 3 {constant(REALS , p)\ p e P};

T = NONNEGATIVEREALS ;

and, for every fe F, t e T, and x e S, off t)(x) is the value, y(t), of the

function y at time t
,
where

j;(0) = x, and for every s e T,

d(timetrajectory(Z ,
constant(REALS, f(s)), y(s)))

dx
(0)
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(or, less precisely, but more suggestively,

dy
, ,

d(a(constant(REALS, T)(y(s))))

7 w "
7 <0)) -

where the implied limits exist in VECTORS(E) with respect to

TOPOLOG Y(E).

Discussion. From Definition 9.8, it can be seen that a discrete system is

completely determined by specifying

o(constant(REALS, p), l)(x)

for every p e P, and xg S.

From Definition 9.8, it can be seen also that a differentiable system is

completely determined by specifying

d(o(constant(REALS, p), x)(x))

dx

for every p e P and x e S.

If Z is a differentiable system and h is a positive real number, then a dis-

crete system Zh ,
approximating Z, can be determined as follows:

/ \ i \ / \ /
d(o(constant REALS, p), x)(x))

xoh(constant(REALS, p), l)(x) = x + h x — — (0)
dx

for every p e P and xg S (where the algebraic operations indicated by +
and x are understood to represent the vector sum and the scalar product,

respectively, in the vector space E).

Conversely, if for every h e POSITIVEREALS a discrete system Zh is

defined with the same inputs and the same state space for each h ,
then a

differentiable limiting system Z is determined by setting:

d(o(constant(REALS, p), t)(x))

dx

oh(constant(REALS, p), l)(x) — x

h

h g POSITIVEREALS
j

, > j

,

provided the limit of the indicated net exists in S = VECTORS(E) with

respect to TOPOLOG Y(E) for every p gP and xg S.
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As a simple illustration of the application of the concept of homomorphisms

consider the following assertion: many discrete systems are simulatable by

discrete semigroup systems.

If G is a semigroup, then a discrete semigroup system, Z = (S, P, F, M, T, cr),

is determined as follows:

S=P = ELEMENTS(G),

F = FUNCTIONS(REALS, P),

iffeP and x e S, then o(constant(REALS, p), l)(x) = (operation(G))(p ,
x).

If Z = (S, P, P, M, T, a) is an arbitrary discrete system such that P =

FUNCTIONS(REALS ,
P), then there is a natural discrete semigroup system

Z' associated with Z
;
Z' is determined by the semigroup G according to the

construction given above, where ELEMENTS(G)
= M and operation(G) is the

composition of the mappings in M: Z' — (S', P'
,
F', V

,
a'), where

S' = P' = M

,

F' = FUNCTIONS(REALS, P'),

if ft e P',ae S', and xe S, then (o(constant(REALS, ft), \)(a))(x)) =

p(cc(x)).

Now suppose that in M all the mappings o(cp , 1) are distinct; that is,

assume that, if p, p'eP and p^p', then o(cp , 1) ^ o(cpf , 1). Suppose,

furthermore, that there exists x0 e S such that every state, y e S, is reachable

from x0 ;
that is, for every yeS, there exist fy e F and t

y
e T such that

v(fy ,
t
y
)(x0)=y.

Then Z' simulates Z. In fact, consider the discrete subsystem Z" of Z',

defined as follows

:

S" = S'

P" = {a(cp
,l):peP}czP\

F" = FUNCTIONS(REALS, P"),

if fe F", t e T", then a"(f, t) = o'(f, t).

Then Z is the homomorphic(l, (i, 6) image of Z", where, for every / e F",

a g S",

(p(f))(t) = 4>(f(t)) for every t e REALS, where, for every pe P,

<p(o(cp , 1)) =p, and

0(a) = cc(xq).

The crucial relation that must be proved is that, iffe F ", t e T", and a e S",

then (o"(f, 0(a)) = o(p(f), t)(0(a)). lft = 0, then

6(a"(f, 0)(a))

= 6(a) (by the definition of a"),

= a(x0) (by the definition of 6),

= v(ii(f), 0)(a(xo)) (by the definition of a),

= a(p(f), 0)(6(a)) (by the definition of 0).

If 0(a"(f, t
- l)(a)) = a(p(f), t

- l)(0(a)), then

0(o"(f, t)(a))
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= (cr"(f, t)(oc))(xo) (by the definition of 6),

= (a"(constant(REALS , f(t — 1), 1 )a"(f, t — l)(a))(x0) (by the definition of

O,
= (fit - 1 ))((<*"(f t

- l)(a))(x0)) (by the definition of o"(constant(REALS
,

fit — 1)), 1) as the composition of mappings),

= (f(t — \))(Q(o"(f t — l)(a))) (by the definition of 6),

= (f(t — 1 ))(a(g(f), t
- l)(0(a))) (by the induction hypothesis),

= cr(constant(REALS, (j)(f(t
—

1))), 1 )o(g(f), t
— l)(0(a)) (by the definition of

</>, for, if

fit — 1) = a(constant(REALS, p), 1) for some p e P, then <f)(f(t — 1)) = p
and

f(t — 1) = a(constant(REALS
, cfi(f(t

—
1))), 1)),

= o(constant(REALS
, (p(f))(t - 1)), \)a(p(f), t

- l)(0(a)) (by the definition

of p),

= a(fi(f), t)(0(o)) (by the definition of a).

So much for the basic concepts of this wattled theory of systems.

The basic principle involved in guiding the development of the theory is

to stick very close to mathematical rigor because the intuition of most people

with regard to complex system phenomena is not good. There is nothing,

therefore, to guide the intuition except mathematical rigor. On the other hand,

it is important that the system theory not be subservient to currently popular

mathematical techniques. It is a principle here to develop the mathematics

necessary to advance the system theory, not to apply any particular branch

of mathematics that happens to be extant.

On the other hand, it seems that almost any mathematical tool that is

available can be applied in this particular context. For example, the extensive

development of the theory of topological vector spaces can be applied here

by imposing, as indicated in Definition 9.8, the structure of a topological

vector space on the state space. If the mappings in BEHAVIOR(Z) of the

system Z are all linear, then some results concerning system resolution can

be obtained by applying the theory of the spectral resolution to the mappings

in BEHA VIOR(Z).

Stochastic processes can be studied in this context by imposing a probability

distribution on INPUTS(Z) or on INPUTFUNCTIONS(Z), or even on

STATES(Z) if the initial state of the system must be regarded as a random
variable, or even on TIMESCALE(Z) if the time of the observation of the

system is a random variable. It may be desirable to consider a joint probability

distribution on INPUTFUNCTIONS(Z)X TIMESCALE(Z)X STATES(Z).
A basic system structure has been proposed in this chapter. No matter

what system structure is adopted, however, problems remain, as they have

always existed, with respect to a mathematical theory of systems. First of all,
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it is necessary to be very precise concerning what a system is; perhaps,

ultimately, there will be a theory in which the undefined term is “system.”

Meanwhile we can, at least, be precise about what a system is in terms of

set-theoretic structures. The second problem for any theory of systems is to

determine what it means to couple systems together to form more complex

systems and to deduce the behavior of the resulting kludge. The problem

inverse to that one is equally important
:
given a complicated kludge, to resolve

it into simple components. The third basic problem of any system theory

must be to create a class of models powerful enough to represent any

engineering phenomenon of interest. “Engineering” here is taken in its

broadest sense, to include the design and analysis of health delivery systems,

wealth delivery systems, ecological management systems, and any other sort

of system phenomena which our society will need to model in order to design

precise solutions to social problems.

Hence one of the main methods for the development of this theory is to

look at the needs of society and of engineering in its broadest sense and to

attempt to wattle the solution to the problem.

9.3. STATE OF THE ART

Some aspects of the state of the art of this wattled theory of systems were

indicated in Section 9.2.

The elements of the theory, as outlined in Section 9.2, have been published

in book form [33]. In this book, the basic definitions are derived from intuitive

understandings and from numerous examples. There it is shown formally

how this wattled theory of systems subsumes the ideas of Turing machines,

discrete systems generally, and differentiable systems. Much of the classical

work in discrete systems is described there and generalized to the system

concept as given above. It is in this book that the work on duals is developed

extensively. It is shown there how a wide variety of engineering phenomena

may be modeled by the system-theoretic constructs of this wattled theory.

Elsewhere [35] the relationship between continuous systems and discrete

systems is extensively explored within the wattled theory of systems. Some

of the implications of this work for education in systems engineering are

explored in nonmathematical language in [34].

One of the most important developments of this wattled theory of systems

engineering is oriented toward the development of a methodology for systems

engineering. This methodology must include a definition of what constitutes

input-output specifications for a system, as well as what is meant by a system

satisfying a set of input-output specifications. An introduction to this method-
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ological discussion is contained in [33], the book cited above. A great deal

more work has been done subsequently, however, including a discussion of

measures of effectiveness on the universe of systems which satisfy a given set

of input-output specifications. In order that decisions may be made with

respect to system design, the range of a measure of effectiveness must be

partially ordered. This is one half of the methodological problem. The other

half consists in the specification of the technology within which a system

solution must be found. A specification of the technology then determines

the universe of systems implementable within that technology. A formal

definition of what it means for a system to be implementable in a set of systems

is given in Definition 9.7.

The solution to a system design problem, of course, must exist in the inter-

section of these two universes of systems: the final system must satisfy the

input-output specifications and be implementable in the given technology.

A measure of effectiveness on the universe of systems satisfying the input-

output specifications reflects the definition of what constitutes a good solution

in terms of the system satisfying the input-output specification. The universe

of systems implemented in the technology must also have a measure of

effectiveness defined on it, reflecting reliability, maintainability, produce-

ability, and so forth. The range of this measure of effectiveness must also be

partially ordered. All of this theory is discussed extensively in a book soon

to be published entitled, A Notebook of Systems Engineering Methodology.

The mathematics employed in that book are somewhat less than perfectly

rigorous.

The discipline of this wattled theory of systems has been used extensively

in developing mathematical models of complex systems. Some of these can

be found in [33], but the work of Norling in stream-flow management systems

[21], that of Cross in open-pit mining systems [5], that of Goodkin in oceanic

transport management systems [38], and that of Wadsworth in computer-

assisted instructional systems [29] are particularly worthy of mention.

In 1970, Dr. Tuncer Oren designed a compiler whose source language is

that of this wattled theory of systems [22]. He called this language GEST,

an acronym for GEneral System Theory implementor. Statements into the

compiler take this form: let Z be a system, where STATES(Z) equals so and

so, INPUTS{Z) equals so and so, and so on. One can specify a system couple

with the input port assignments and the output function definitions, and then

ask for a particular time trajectory or output trajectories of the resultant

system thus defined. The computer will deduce, from the specifications of

the systems and the interconnections, the behavior of the resultant system

and compute the outputs as desired. When the language and compiler are

fully implemented, this wattled theory of systems will really be available for

immediate application to problems of systems engineering.
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9.4. PRESENT EFFORTS AND FUTURE PERSPECTIVES

The wattle that is being described here still has a great many holes in it.

In fact, it could fairly be said that only the basic framework has been estab-

lished and just a few of the rafters have been laid. A great deal of work remains

to be done to fill in the gaps. To this end, there are seven basic research

thrusts, which can be characterized by the following generic terms: algebraic,

topological, probabilistic (stochastic), modeling, methodology, computer

implementation, and bridges. Each of these research thrusts will be discussed

briefly in turn.

The objective of the algebraic approach to research in this wattled theory

of systems is mainly to subsume the work of the discrete automata theorists

—

to subsume from that area, in particular, the applications of the theory of

semigroups to the computation of resolutions of systems into components.

This is mainly a process of generalization, clarification and application.

The thrust in the topological direction is mainly to explain, to subsume,

and to generalize what has been called linear control theory in engineering

and to place in this same context the theories of stability and of optimization

of systems. All three of these basic areas require extensive algebraic structures

such as vector spaces, as well as topological constructs, the means for dis-

cussing limits and continuity. Furthermore, classical treatments of these

areas require a calculus of vector-valued functions. Much of the work that

has been done thus far in this direction has consisted of reformulating many
of the basic concepts and much of the symbolism used in point-set topology

and topological vector spaces. The classical symbolism is adequate when the

principal objects of study are point-set topologies and topological vector

spaces. But if these kinds of constructs are to be imposed on another mathe-

matical structure, represented by the system-theoretic construct, the classical

symbolism is inadequate. A great deal of work is being done to remedy this

situation. This effort will yield dividends in another direction as well. It is

clear that there are no natural topologies in nature, and hence the topologies

to be imposed on a given model are also at the discretion of the modeler.

A strategic choice of a topology may yield interesting and useful system

properties.

The third direction in which research is progressing is toward the subsump-

tion of stochastic processes into this wattled theory of systems. The basic

system structure described in this paper can be used to discuss stochastic

processes simply by imposing probability measures on the inputs, the input

functions, the state space, or the time scale, or on all of these. Then prob-

ability statements of various kinds can be made about the system behavior.



A Wattled Theory of Systems 291

It is possible to discuss the adequacy of a model from a statistical point of

view or to choose a statistically optimum model.

The same criticism voiced concerning classical symbolism used in the dis-

cussion of point-set topology can be made about the basic symbolism in the

theory of probability. The difficulty here arises not so much in imposing

probability measures on the basic system-theoretic artifacts, as in using

probability theory as a modeling tool. It is quite clear that in the definition

or imposition of measures of effectiveness on various sets of systems, prob-

ability measures will play an important part, but these will be extremely

arbitrary, based not only on empirical data but also on subjective appraisals,

as well as on the desirability of outcome. Therefore, some way must be found

to make it easy to define arbitrary probability measures on arbitrary spaces.

The way suggested by the classical theory is simply too awkward : to define

a sigma ring of subsets and then to impose on it a countably additive measure

is just too much to ask, especially if such a construct is to be developed on
the basis of intuition or of subjective beliefs.

The fourth direction for research in this wattled theory of systems is toward
the development of specific models of interest in the systems engineering

context. The principal class of models that is the target for development

here consists of system-theoretic models of human behavior, and here human
behavior is intended to encompass not only the internal psychological and

physiological behavior of an individual human being, but also human inter-

actions in small groups and human interactions in large groups. The point

of the development of such models is to provide information useful in the

design of systems which have such human aspects: aspects of the design of

a man-machine interface, the design of interfaces between man and man in

human organizations, and the design of interfaces between systems and the

social environment in which they are embedded.

The fifth thrust for research in this theory of systems is toward the develop-

ment of a precise and rigorous design methodology . The methodological

framework described in Section 9.3 and more extensively in the forthcoming

book, A Notebook of Systems Engineering Methodology
,

still has many gaps

in it from the mathematical point of view as well as from the point of view of

practical implementation of the framework. The ideas of input-output

specifications and the satisfaction of input-output specifications by systems

are not hard to define; thus it is possible to arrive at definitions which are

satisfying both intuitively and practically. These definitions then raise

questions of existence: What are necessary and sufficient conditions that

there exists a system which satisfies a given set of input-output specifications ?

There are a few theorems extant in this direction, but none of them is very

complete or satisfactory.

If, for a given set of input-output specifications, a system satisfying them
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can be found and defined mathematically, then, in general, such a system will

not be immediately implementable within a given real technology. Therefore

this system has to be described in a great deal more detail. If a system satisfies

a set of input-output specifications, then any system of which that given system

is a homomorphic image will also satisfy the same input-output specifications.

Hence one can proceed to define ever more detailed systems simply by choos-

ing a system in the set of all systems of which a given one is a homomorphic

image. Are there mathematical techniques by which this selection can be

made ? Where does the classical systems engineering technique of system func-

tion analysis fit into this framework ? Where does the technique of reticulation

of the input fit ?

What are useful definitions for measures of effectiveness, and how can*

they be defined in practice? To find algorithms for the definition of the mea-

sures of effectiveness and for the partial ordering on their ranges is an extremely

important practical problem for systems engineering.

Much more powerful techniques for finding resolutions of systems are

needed. The achievement of Krohn and Rhodes is impressive, but it is a

far cry from what is actually needed in systems engineering practice. One of

the limitations of the Krohn-Rhodes theory is that only cascade and conjunc-

tive resolutions have been considered. It is quite clear that feedback inter-

connections also need to be considered, since these will quite often yield great

economies in system design and development. (If the Krohn-Rhodes lead

were followed, this would necessitate the studying of a symmetric wreath

product.) Furthermore, it is necessary to discover theorems dealing with the

resolution of systems, or rather their implementation, in very restricted

classes of technology. It is not possible to assume that one has at his command
all finite-state machines or all discrete automata. It is necessary to assume,

for example, that there is a very definite upper bound on the number of states

and the number of inputs that can be used to implement a given system design,

and theorems in this direction are badly needed.

The sixth thrust in research connected with this wattled theory of systems

is concerned with the design of systems involving computers whose aim is to

make available in practical form to practicing systems engineers and systems

engineering organizations the fruits of the research in the other five areas.

The work of Oren [22] is a step in the right direction, but further develop-

ment, expansion, and implementation are urgently needed.

A great deal of research still remains to be done in the numerical analysis

necessary for computation within the system-theoretic framework; that is,

the development of discrete approximations to continuous systems needs

much more work. Sometimes it is impractical to implement a given continuous

model directly on the digital computer
;
on occasion it is necessary to approxi-
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mate a continuous system with a discrete system, and this in itself is a real

system-theoretic problem fraught with difficulties because of the primary

problem of assigning a measure of effectiveness to the class of discrete systems

reflecting intuitive or technical standards for a good approximation.

The seventh direction for research in this wattled theory of systems is

perhaps not a direction for research at all. It is an ongoing effort to provide

bridges to other scientific and engineering disciplines and to ever-lower levels

in the educational process. This means mostly the production of textbooks

and popularizations of the theory to make it available to people who are not

particularly well trained in mathematics. These endeavors turn out to be

surprisingly difficult. People who are well trained mathematically find it

easier to think in terms of mathematics than to explain to a layman what the

mathematics means. It would be an ideal world if everyone were well trained

in mathematics and all one had to do was present the definitions, theorems,

and proofs, leaving it up to each individual to interpret the theorems and to

apply them in everyday practice. Unfortunately, this is impossible; it is

necessary for someone to interpret the mathematics and to show how theories

can be applied.

Someone recently said, “ Systems engineering appears to be an extremely

good thing—I only hope it has not arrived too late to save the world.” But
systems engineering has not arrived until a body of communicable methodo-
logy has been established. To this end, a great deal of effort needs to be

expended in a relatively short time.

PROBLEMS

9.1. Let A = {0, 1, a, a
, b}, B = {0, /?, a, c}, and C = {0, 1, b, a, y}. Then com-

pute:

(a) y {A, B, C},

(b) f) {A, B, C},

(c) A n (B u C),

(d) (A nB)u (An C),

(e) B ~ A (where B ~ A = {b: b e B,b $ A}),

(f) C ~ (A u B),

(g) B ~ (A n C),

(h) (A u B) ~ C,

(i) (AnC)~A,
(j) (A n B) ~ (A n C),

(k) A x B x C (where A x B x C = {(x, y, z): x e A, y e B, z e C}),

(l) X iA ’ B > Q (where X (A > S, C} = {g: g e FUNCTIONS({A, B, C},
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(J {A, B, C}), g(A) e A, g{B) e B
,
g{C) e C), and where if X is a set and Y is

a set then FUNCTIONS(X, Y) = {/:/ cz X x Y, for every xe X there exists

y e Y such that (x, y)Ef; if (x, j>), (x', /) g

/

and x = x', then j; = /}).9.2.

Prove or find a counterexample:

Let B

,

and C be sets not empty. Then

A kj (B n C) = (A B) n (A u C).

9.3. Prove or find a counterexample

:

Let ^4 and B be subsets of a set X. If X ~ A c= X ~ B, then A c= B.

9.4. Prove or find a counterexample

:

Let A and B be sets and let / be a function defined on A with values in B.

Let B
1
and P 2 be subsets of B . Then (setinverse(f))(B 1

u P2 ) = ((setinverse{f))

(20) n ((setinverse{f)){B2)) (where, for every C a B, (setinverse(f))(C) =
{a: aE A, f{a)EC}).

9.5. Prove or find a counterexample

:

Let P be a set not empty, and let f, g e FUNCTIONS(REALS, P); let

r, s e REALS ;
and let h = step{f\ r, g). Then h = translation(segmenta-

tion{translation{f, r), translation{g, r)), — r) and translation{h, s) = step(trans-

lation(f, s), r — s, translation^, s)) (where, if n e POSITIVEINTEGERS,
{e0 , . .

. , en} a FUNCTIONS(REALS, P), and {t l9 tn}
c REALS, such

that L < • •
• < L ,

then step(e0 ,
f 1? <? 1? . .

.

,

e„_i, tn ,
en) e FUNCTIONS-

{REALS, P) and is defined as follows for every t e REALS :

(step(e0 ,
t l9 el9

f

e0 (t)

exit)

e„-i> O 0X0 = ^i(0

loo

if f < L, or

if L < t < t2 ,
or

• •
•

,
or

if L<t<ti+1

for/G/AT£GJLRS[l,«
• •

•
,

or

if tn < 0.

1], or

9.6.

Prove or find a counterexample

:

Let and P2 be sets not empty. Let 0 e FUNCTIONS(P1 ,
P2) and let F

1

be an admissible set of input functions with values in Plm Let g be a function

defined on F
1
with values in FUNCTIONS(REALS, P2) defined as follows

for every fe F: g(f) e FUNCTIONS(REALS, P2), so that for every

t e REALS

wm = #/(0).

Let F2 = RANGE(g). Then F2 is an admissible set of input functions with

values in P2 .
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9.7. Prove or find a counterexample

:

If F, G e ADMISSIBLES(P), where P is a set not empty, then F nGe
ADMISSIBLES(P).

9.8. Prove or find a counterexample

:

Let P be a set not empty and let F, G e ADMISSIBLES(P). Then

Fu Ge ADMISSIBLES(P).

9.9. Prove or find a counterexample

:

Let a e REALS and F = {f:fe FUNCTIONS(REALS, REALS), fa (ex-

ponent^ x (t — t)) x /(t) <Zt e REALS for every t e REALS}. Then Fe
ADMISSIBLES(REALS)

.

9.10. Let Z = (S ,
P, F

,
M, T, o) be an assemblage where

S' = {a

,

Z?};

^ = {0, 1};

F = ADMISSIBLESET({constant(REALS, 0), constant(REALS, 1)}),

M = RANGE(a)

;

T = NONNEGATIVEINTEGERS
;
and

o' is defined as follows for every /efi t e T, and x e S

:

<K/> 0(*)

= x if t = 0,

= or(constant(REALS, f(t — 1)), \)o(f\
t
- l)(x) if t i=- 0, where

o(constant(REALS

,

0), 1) = {(a, a), (b, a)},

o(constant(REALS
, 1), 1) = {(a, b), (b, a)}.

Enumerate M.

9.11. Let Z be a discrete system, Z = (S, P, F, M, T, g), where

S = {a, b, c};

JP = {0, 1,2};

o(constant(REALS, 0), 1) = {(a, b), (

b

,
c), (c, a)};

o(constant(REALS
, 1), 1) = {(a, Z>), (6, Z>), (c, «)};

<r(constant(REALS
, 2), 1) = {(«, c), (&, c), (c, b)}.

Compute the state of the system Z at time 8, given the input function

step(constant(REALS, 0), 2, constant(REALS, 2), 3, constant(REALS, 0), 4,

constant(REALS
, 1), 6, constant(REALS

, 2)), and the initial state b.

9.12. Let Z be the system Z = (S, P, F, M, T, <j), where

S = REALS;
P = REALS;
F = {fife FUNCTIONS(REALS, REALS), f0 /(t) dx e REALS for every

te REALS}
;

M = RANGE(o);

T = NONNEGATIVEREALS;
and, for everyfe F, t e T, and xe S,

<?(f, t)(x) = x + Jq/(t) dx.
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Compute the state of the system Z at time 8.67, with the input function

{( t

,

3 1
2
): t e REALS}, and the initial state 4.5.

9 .13

.

Prove or find a counterexample:

Let Z = (S, P, F, M, T, a), where

s = pX^;
P is an arbitrary set not empty

;

F = FUNCTIONS(REALS, P);

M = RANGE(a);
T = NONNEGATIVEINTEGERS;

and, for everyfe F, t e T, and (x, x') e S,

I

(x, x') if t = 0, or

(/(0),x) if f = 1, or

(f(t-l),f(t-2)) if t >2;

then Z is a system. Furthermore, let £ e FUNCTIONS(S, P) be defined as

follows for every (x, x') e S : ((x, x') = x
f

. Then C is an output function for

Z with values in P
,
and, for every /e F, t e T, and (x, x')tS

,

t(cr(f,t)(x,x'))=f(t-2) if t >2

(i.e., Z is a two-unit delay).

9 .14

.

Prove or find a counterexample

:

Let P be a set not empty, and let n e POSITIVEINTEGERS. Then there

exist a discrete system Z = (S, P, F, M, T, <r) and an output function £ for Z
such that

F = FUNCTIONS{REALS
,
P),

and, for every /e F, t e T, and x e S,

£(cr(/, t)(x)) =f(t -n) if t > n.

9 .15

.

Prove or find a counterexample

:

Let P be a set not empty, and let d e POSITIVEREALS. Then there exist

a system Z = (S', P, F, M
,
T, er) and an output function £ for Z such that

F = FUNCTIONS(REALS, P),

T = NONNEGATIVEREALS,
and, for everyfe F, t e T, and x e S,

C(cj(f,t)(x))=f(t-d) if t>d.

9 .16

.

Let Z = (S, P, F, M, T, a) be a differentiable system, where

S = REALS;
P = REALS;
F =) {constant(REALS , p): p e P};

T = NONNEGATIVEREALS;
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and, for every p e P, x e S,

d(o(constant(REALS, p), x)(x))
(0) = p x exponent(-x).

dx

Let C e FUNCTIONS(S
,
REALS) be the output function for Z, defined as

follows for every xe S: £(x) = exponent(x).

Compute the output of Z with respect to £ at time 2, given the input

function, {( t
,
exponent^)) : t e REALS}, and the initial state, ^2.

9.17. Let C = ({Z 1,Z2 ,Z3 }, {((Z„ Z,), 0): /, j

e

{1, 2, 3}}, {((Z*,Z,-), 0):
i,je {\ , 2, 3}}), where, for each ze{l, 2, 3},

Z
f
is a discrete system;

Z
f = (S, ,P i9 Fi9 M t ,

T
t ,

cr
f), where

^ i

=
fai J 5

^ = {0,1},

F
f
= FUNCTIONS(REALS, P,),

cJi(constant(REALS

,

0), 1) = {(a,, <**), (6 i5 a,), (c*, £*)},

and

Oi(constant(REALS, 1), 1) = fe
f), (i

f , c
f), (c

f ,
tf

f)}.

Let Z* - RESULTANT(C).

Compute the state of the system Z* at time 3, given the input function,

step(constant(REALS
, (0, 1, 0)), 1, constant(REALS

,

(1, 0, 0)), 2, constant

(REALS, (1, 1, 0)), 3, constant(REALS, (1, 1, 1))), and the initial state

(a
1
,b2 ,b 3>).

9.18. Let C = ({Z
1 ,

Z2 ), {((Z l9 Z,), 0), ((Z lf Z2 ), 0), ((Z2 ,
Z,), {/>2 }),

((Z2 ,
Z2 ), 0)}, {((Z 1? Z,), 0), ((Z 1? Z 2 ), {(a, I), (6, II)}), ((Z2 ,

Z0, 0),

((Z 2 ,
Z 2 ), 0)}), where

Zj = (Sj, Pj, F1; M l5 T1? o-j) is a discrete system such that

Sj = {a, b},

Pi={ 1,2},

Fj = FUNCTIONS(REALS ,
Fj),

o
x
(constant(REALS, 1), 1) = {(<2 ,

a), (b ,
a)},

G
t
(constant(REALS, 2), 1) = {(a, b), (b, b)};

S2 = (S 2 ,P2 ,F2 ,
M 2 ,

T2 ,
c2 ) is a discrete system such that

S 2 = {A, B},

P2 ={1 UK
F2 = FUNCTIONS(REALS, P2),

o2(constant(REALS, I), 1) = {(A, B), (B, A)},

o2(constant(REALS, II), 1 ) = {(A, A), (B, B)}.

Let Z* = RESULTANT(C).
Compute o*(constant(REALS, 1), 1) and g*(constant(REALS

,

2), 1).
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9.19. Let C = ({Z}, {(Z, Z), {{I, II}})}, {((Z, Z), {(a, I), (b, I), (c, II)})}), where

Z = (S, P, F
,
M, T, cr) is a discrete system such that

S = {a, 6, c},

P = {1, 2} x {I, II},

F = FUNCTIONS(REALS, P),

o(constant(REALS, (1, 1)), 1) = {(a, a), (b ,
a), (c, a)},

o(constant(REALS
, (1, II)), 1) = {(a, a), (6, h), (c, h)},

(j(constant(REALS, (2, 1)), 1) = {(a, h), (,

b

, 0), (c, c)},

o(constant(REALS
, (2, II)), 1) = {(a, c), (h, a), (c, c)}.

Let Z* = RESULTANT(C).
Compute cj*(constant(REALS

, 1), 1) and g*(constant(REALS, 2), 1).

GLOSSARY OF SYMBOLS (IN ORDER OF APPEARANCE)

FUNCTIONS(A ,
P) is the set of all functions defined on the set A with

values in the set B.

REALS is the set of real numbers.

NEGATIVEREALS = {t:te REALS
,

t < 0}.

NONNEGATIVEREALS = {t:te REALS
,

t > 0}.

identity(S) is the identity function defined on the set S, that is, identity(S) =
{(x, x): x e S}.

#(I) is the cardinal number of the elements in set I.

T[r, t) = {y: s e T, r < s < t}, where T is given as a subset of REALS and r,

t e REALS. T[r, t\, T(r, f], and T(r, t) are defined similarly.

restriction^’ P) = {(h, /(h)): b e P}, where, for some >4 and C,

fe FUNCTIONS(A ,
C) and Pci

projection(if) e FUNCTIONS(X X where is a set of sets, if is a

set of sets, if c= and for every xe)(^, yi e if
, ((projection^))

(x))(^) = x(/t).

INTEGERS = {t: t e REALS ,
t is an integer}.

NONNEGATIVEINTEGERS = INTEGERS n NONNEGATIVEREALS.
POSITIVEREALS = {t:te REALS , f > 0}.
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EDITOR'S COMMENTS

This chapter, which provides a link between Chapter 9 and Chapter 12,

is most profitably read if the reader has some familiarity with elementary

concepts and principles from algebra and topology. Suitable references for

this purpose are

:

Stoll, R. R., Set Theory and Logic. San Francisco: W. H. Freeman, 1961.

Hall, D. W., and G. L. Spencer, Elementary Topology. New York: Wiley, 1955.

Mansfield, M., Introduction to Topology. Princeton, N.J. : Van Nostrand, 1963.

Readers who like solved problems may prefer to learn topology from the

books

:

303



304 Joseph V. Cornacchio 10

Lipschutz, S., General Topology. New York: Schaum, 1965.

Greever, J., Theory and Examples ofPoint-Set Topology. Belmont, Calif.: Brooks/Cole, 1967.

Reference [14] is recommended for a deeper study of topology.

Section 10.2 contains brief outlines of specific examples of systems from

a wide range of disciplines, and it is suggested that the reader consult the

sources listed in the references to this chapter for more detailed discussion

and insight. The notation used in Section 10.2 is consistent with the respective

sources. For a current and more complete discussion of the material in

Sections 10.4 and 10.5, the reader should consult Chapters 8, 9, and 12 of

this volume.

10.1. INTRODUCTION

The role of topological concepts in abstract mathematical models of general

systems has received little attention in the literature to date, considering the

importance of such concepts in the representation of many basic systems

properties. Mathematical theories of general systems proposed so far (see

Section 10.4) contain essentially only the set-theoretic structure of the under-

lying specific systems as part of the general theory. Thus, when such a general

system model is restricted to subsume a class of specific systems containing

topological structure as a fundamental property, it becomes necessary to

introduce additional structure into the restricted model to adequately represent

the specific class at hand. Such a theory lacks the degree of completeness at

the abstract general level required of a general systems theory. In particular,

the theory omits a construct—namely, topological structure—which repre-

sents an “essential trait” [3] of the class of specific systems which are pre-

sumably to be subsumed by the general system model. These observations

may be compared with the aims of the extensive efforts being devoted to

general system research [17]

:

1. To investigate the isomorphy of concepts, laws, and models in various fields

and to help in useful transfers from one field to another;

2. To encourage the development of adequate theoretical models in the fields

which lack them.

To motivate the need for topological structure in formal mathematical

models of general systems, we pursue an inductive approach by giving

examples of classes of specific systems in which topological concepts play a

fundamental role in the system description. The topological structure will

be seen to be that of the “classical” topological space. The motivation is

then pursued by determining a natural topological structure for the set of

input functions for a general system model due to Wymore [12]. This is
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achieved by a formal deductive approach and yields the interesting result

that the natural structure is not the classical topological space [14] but a

generalized closure space [10, 13], which we have denoted the JT-Appert

space.

The role of such generalized closure spaces in mathematical theories of

general systems must yet be explored. At this time, their principal applications

appear to lie in the Unitary systems of mathematics [10]. Applications in

system-theoretic models of “real-world” phenomena have to be established.

10.2. TOPOLOGICAL STRUCTURES AND CLASSES OF SPECIFIC
SYSTEMS

In this section we provide examples of specific systems models in which

the use of topological concepts is basic to the representation of fundamental

system properties. By representing a broad class of such specific systems,

we attempt to motivate the need for topological structure as part of the

abstract framework of any mathematical theory of general systems. Thus the

motivation is along inductive lines [3, p. 274]. The viewpoint taken is that a

mathematical theory of general systems which purports to subsume the

characteristics of specific (particular) systems should contain not only the

basic structure and mappings characterizing the classes of specific systems,

but also the topological properties which are a fundamental “trait” of these

systems [3].

We will establish, by giving examples, that there is a broad range of classes

of specific systems in which topological concepts play a fundamental role in

the system description and that such concepts are basic to the consideration

of approximation, continuity, optimization, connectivity, etc., in these

systems. The examples are taken from the natural sciences (physics), the

social and behavioral sciences (anthropology, economics, social psychology),

engineering (dynamical physical systems, control theory, functional systems),

and computer science (automata theory). These systems are seen to utilize

topological concepts in the “classical” sense [10], that is, topological spaces

[14] are the natural structure involved. The spectrum of disciplines is broad,

and the level of mathematical development of the topological concepts in

the systems cited ranges from “minimal” (application of concepts at verbal

or descriptive level) to “formally complete” (topological structure is part

of the system model, and theorems describing basic system properties exist).

Our review of the application of topological methods in classes of specific

systems begins with those in the field of engineering. Although the literature

of applications in this field is very extensive, we will discuss works which

either are of a fundamental nature or are representative of efforts in general.
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10.2.1. Engineering

Dynamicalphysical systems and control theory. In the model of dynamical

systems based on the concept of a state space [18] and used as the basis for

studying stability properties of linear dynamical physical systems [19], a

dynamical system is defined [18] as a mathematical structure satisfying the

following axioms

:

(a) There is given a state space, I, and a set of values of time 6 at which

the behavior of the system is defined; £ is a topological space.

(b) There is given a set, Q, of functions of time, defined on 0
,
which are the

admissible inputs to the system; Q is a topological space.

(c) Every output of the system is a function (R is the real line)

x/r.e x Z-+R.

(d) The future states of the system are determined by a state-transition

function:

<p:Qx$xdx£-*£.

(e) The functions \j/ and cp are continuous with respect to the topologies

defined for £, 6
,
and Q and the induced product topologies.

Topological considerations which arise for the subclass of this class of

specific systems corresponding to linear real, finite-dimensional, continuous

time systems [19, p. 155] include the preservation of stability properties
,

which requires, as a necessary condition, topological equivalence. In these

cases, the topologies are those induced by the Euclidean norm on the finite-

dimensional spaces and the resultant topologies induced on the product

spaces. Also of fundamental importance, for the case at hand, is the concept

of system identification, which requires the existence of certain continuous

matrices as necessary and sufficient conditions for the realization of systems

governed by differential equations of the type [19]

dx— = F(t)x + G(t)u(t),
dt

y(t) = H(t)x(t),

defined for -f e(— oo, oo), where x, y, u are vector functions of time t, and

F, G, H are continuous matrix functions of time. These equations are called

the dynamical equations of the system, and form the basis for much of the

work in the extensive research into control theory.*

* For additional material, including recent references and generalizations, see [11].
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For a detailed study of linear time-varying systems, including the role of

the state space, and topological considerations involving connectedness and
continuity, see [20].

A fundamental concept in dynamical physical systems and one which

has also been the object of significant study centers around the notion of

approximation and its derivatives: optimality ox optimization. From an intuitive

viewpoint, these concepts relate to the question of determining the “most
desirable” among a set of possible alternatives in the solution of a problem.

From a mathematical point of view, we may regard this area as the deter-

mination of the minimal elements of a partially ordered set [26]. Inherent in

the concept of optimization in the context of dynamical systems is that of

approximation
, which in turn, at the fundamental level, can be rigorously

described by the constructs utilized in the theory of topological spaces. The
description involves the imposition of additional structure on maps between

locally convex real topological vector spaces [26, p. 490 If.].

As a final example in dynamical systems and control theory, we refer to

the work of Halkin [21], who has presented a generalization yielding a

unified axiomatic and topological analysis of control problems for a very

large class of systems, including the systems described by differential and
difference equations. In this work a dynamical system is a pair

((r,«0, R)>

where ( Y, <8f) is a topological space
,
and ( Y, R) is a reflexive forward-ordered

set having certain additional properties, defined in terms of the subsets of

the topology Y. The set Y, called the event space, has elements called events.

On the basis of these fundamental concepts, Halkin proceeds to develop

“propositions” involving the determination of optimal solutions and optimal

trajectories for “dynamical polysystems” [21, p. 5].

It is important to point out that the rigorous and quite general mathematical

results described here and elsewhere in this section are possible for this

specific class of systems precisely because of its specific nature, namely, the

systems are well defined mathematically and have assumed structure to begin

with, for example, finite-dimensional, real, linear, etc. The magnitude of the

work required to bring into a mathematical theory of general systems a

topological structure which subsumes the material discussed here and yet

represents other “classes of specific systems” in a nontrivial manner begins

to assume large proportions.

Functional systems. Turning now to another subclass of engineering

applications, we consider the work by Brilliant onfunctional systems [7]. Since

we will be discussing this topic in some detail in Section 10.3, our description

here will be even less detailed than the format followed so far. The work on
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functional systems described in [7] is particularly relevant to the objectives

of this study since, in addition to the formal introduction of a topological

space, Brilliant has also motivated and explicitly determined the relevant

open sets which define the topology [14]. Thus his work serves as an instructive

example of the manner in which such structure may be introduced into a

given set-theoretic model of a specific class of systems to rigorously represent

intuitive notions of approximation and continuity.

In particular, approximation and continuity for such functional systems

are accounted for by introducing a topology on the set of input functions to

the system, and defining either concept in terms of the neighborhood (or base)

structure of the topology. Using such a derived structure, Brilliant is able to

rigorously state and prove results concerning the continuity of linear time-

invariant systems [7, p. 12] and the conditions sufficient for the approximation

of continuous (time-invariant) systems by a class of polynomial systems

[7, pp. 19-26]. We will return to this work in greater detail in Section 10.3.

10.2.2. Computer Science

The systems of interest in this field are the discrete or' countable systems

which serve as models for digital computation.

In the work by Arbib [23, 27], the need for topological structure appears

even in this case, where the discrete nature of the systems might suggest

that such structure would have ancillary relevance. In particular, with refer-

ence to the need for representing continuity, Arbib suggests that the problem

may be posed as that of determining a relevant topology for a discrete set

which is not the discrete topology [14], that is, a definition of continuity in a

form such that it is meaningful for finite automata [23, p. 179],

Following this motivation, Arbib has introduced the concept of a tolerance,

and, from that, the notion of continuity of functions mapping one tolerance

space into another. The pertinent theoretical structure is as follows. Given a

set X, a relation £ on A is a tolerance if C is reflexive and symmetric. A toler-

ance space is the pair (X, £). As an example, let X be the Euclidean plane

and £ be all pairs of points less than 8 apart; or let X be the visual field and

let £ be the visual acuity tolerance, that is, all pairs of points that are in-

distinguishable.

The relationship of this concept of tolerance to automata theory is made

more specific by introducing additional structure as follows. Suppose that

T = {0, 1 , 2, . . .} and that (X, £) is a tolerance space. Then a motion in X is

a function

m\T^X.
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The motion is £-continuous if (m(t), m(t + 1)) e ^ for all t e T, that is, there

are no “detectable jumps in the motion.” These concepts allow for the

introduction into the formal system model of a discrete automaton an

“intuitively acceptable idea of continuity” [23, p. 180].

Extensions of the notion of tolerance are then made to include the concept

of £-continuous functions between tolerance spaces by defining a function

/: Y,

where (

X

,
(Y, £y) are tolerance spaces to be ^-continuous if

(*i, *2) e ^ => (f(x i), f(x2)) e .

With this much structure at hand, it becomes possible to consider the stability

of such discrete systems defined in terms of states of the automaton. Sub-

classes of automatons
—

“1-tolerance” automata—are shown to possess a

stability property not possessed by a larger but similar class (“ n-tolerance

automata”), namely, that small differences in initial state cannot give rise

to large differences in state at later times [23, p. 181]. Having introduced a

topological machinery and the related approximation mechanism, it becomes

possible to rigorously consider the introduction of optimization into the

system and ultimately to state precisely the optimal control problem for auto-

mata [23, p. 183]. As a final step in the assimilation of topological concepts

in this discrete system, the derived topological concepts of closure, interior,

and boundary are defined in terms of the tolerance relation £. For example,

if S c= X is a subset in which X is a tolerance space, then the ^-closure of S

is the set

S = {x
|

(x, y) e £, for some y e Sj
,

etc. By introducing this structure into the set-theoretic model of an auto-

maton, Arbib is able to state and prove a result which is the analog for auto-

mata theory of the Pontryagin maximum principle of optimal control [23,

p. 184].

Another example of the role of topological concepts in automata systems

where countable sets are involved is the study of the relationships between

continuity and realizability of sequence transformations [25]. The fundamental

set defining the system of interest is the Cartesian product

Xn _|_j[
= Xn x n = 1,2,...,

where

*1 = {0, 1}.

Elements of Xn ,
that is, ^-tuples of 0’s and l’s, are called blocks of length n

,

with the set «5f infinite right sequences of 0’s and l’s denoted by X
,
that is,
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x^x* = \)xk
k = 0

is the set of mappings from the positive integers, 7
+

,
into {0, 1}. Thus x e X

implies that x can be written

x = x(l)x(2)x(3) .

.

x(i) e 7 1; i e 7
+

,

or in the usual fashion

x = x 1
x2 x 3

•
• *

with

x-
t
= x(i), i e 7

+
.

With this notation, the equality of elements in X, say x, y e X, is defined by

x = y if and only if x(i) = y(i), i e 7
+

.

By utilizing the set-theoretic structure available to this point, the entrance

of topological structure is achieved by introducing a metric on X, that is,

for x, y e X, the distance between x and y is given by

d(x, y)
(0, if x = y,

[l/k, where k = min{z e I
+

\

x(i) =£ y(i)}, if x ^ y.

Again the approach here is similar to that of Arbib as described above,

whereby the topological structure is introduced via an auxiliary construct, in

this case a metric which induces a topology on X. In particular, (X,
d) is a

topological space [14].

The principal property of interest in this work is compactness
,
which is

utilized strongly in determining conditions sufficient to realize a specific

class of sequence transformations in terms of the class of logic nets having

no feedback [25, p. 561]. The mathematical results are as follows. Since

(X,d) is a topological space
,
one may consider the continuity of sequence

transformations on X, that is, functions

q>: X X.

Hellerman et al. show that, in the topology induced by the metric <7, if cp is

any sequence transformation which is continuous at x e X, then, since X is

compact
,

cp is uniformly continuous on X. This, in turn, brings in the funda-

mentally associated concept of approximation in terms of the metric d, by

assuring that a measure of “closeness,” specified by

d(cp(x), (pix
1

)) < -
,

n e 7
+

,

n
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if some x, x1
e X holds for some m e I

+
if

d(x, x1

) < —

.

m

The principal result of interest in the work discussed here, which illustrates

how a topological structure may yield (by rigorous methods) systems

properties of profound consequences, is that sufficient conditions for the

realization of a sequence transformation in terms of logic nets (or “ modified
”

finite automata [25, p. 563]) include the property that the sequence transforma-

tion be continuous. The point being made here, again, is that the topological

structure is fundamental to the basic system concepts of continuity and approxi-

mation.
;
in this case, such structure also yields a system synthesis criterion—

a

fundamental consideration in any system theory.

10.2.3. Social and Behavioral Sciences

Anthropology. Kinship studies in anthropological systems have been cast

into mathematical models in which the basic structuring is accomplished via

topological spaces [28]. For example, the question of whether various separa-

tions of kinsmen by semantic features corresponds to separations in the

structure of the semantic space can be investigated by first defining a topology

on a set of kin terms [28, p. 71] (using geneological relations), and then

comparing the properties of the topology to the properties derived from the

semantic analysis [28, pp. 73 ff.]. The specific property of the topology is

that of the connectedness of the associated set and the resultant system of

components. Another approach toward the analysis and modeling of kinship

systems involves the introduction of a topology
,
T, on the Cartesian product

X2
of the set X of members of a given tribe [28, p. 49], that is, the pair

(X 2
,
T) is considered as a topological space representing a known kinship

relation. These approaches are of quite recent origin and are the subject of

active study by mathematically inclined anthropologists [28].

The increasing use of topological structures in anthropology, and the

social sciences in general, is suggested by Leach [29], who points out [29, p. 7]

that, since topology is a nonmetrical form of mathematics, it deserves special

attention from social scientists. In particular, he asserts that anthropological

kinship relationships should be considered as constituting a neighborhood

system
,
that is, a topological space [29, p. 7]. Again we see that a fundamental

topological concept of interest from the anthropologist’s viewpoint is

connectedness
,
with the implication that such concepts are relevant to

“regularities of pattern among neighboring relationships” [29, p. 7]. Thus

the interest in patterns of relationships generates a need for topological struc-

ture.
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Economics. The role of topological structures here is of course firmly

established, especially if one considers the heavy emphasis in contemporary

economics on optimization. In such cases, the topological structure is not

usually singled out in the system description since the relevant sets are the

real line or Cartesian products of subsets of the real line, where the topology

is the usual topology on the real line or the induced product topology. It is

useful, however, to point out a fundamental work, that of Debreu, related

to the nonmetrical* concept of utility [1]. The problem considered in this

work considers a result generated by the difficulties encountered in testing

the von Neumann-Morgenstern axioms for the existence of cardinal utility

in some specific situations [1, pp. 16-17]. The topological statement of the

problem reduces, in the specific case denoted by the term “ stochastic objects

of choice” [l,p. 17], to the determination of topological conditions—connec-

tivity
,
separability

,
and closedness—for a set S (“commodity bundles ”) such

that a utility function can be defined on S. Specifically, given a set S and a

preordering relation < on S x S, a utility function is a real-valued, order

preserving function u on S x S such that

u(a
,
b) = i[w(a, a) + u(b

,
b)]

for every a and b e S.

The problem is to find conditions on S and < which will guarantee the

existence of a utility function defined as above. Debreu makes the following

“assumptions” [1, p. 18]

(a) S is connected and separable.

(b) < is a complete preordering of S x S such that S x S and

{{a, b) e S x S
\

(a, b) > (<

a

', b')}

and

{(<

a

,
b) e S x S

\

(a, b) < (a\ b')}

are closed for every (a\ b') e S x S.

(C) [(fli, b2)
<

(a2 , bi) and (a2 ,
b 3 ) < (a 3 ,

b 2 )] => [(b 3 ,
a

3 ) < (bu o 3)].

Using these assumptions, Debreu establishes that there is a continuous utility

function determined up to an increasing linear transformation [1, pp. 1 8—19].

The need for topological structure to account for optimization, approxi-

mation, stability, and optimal control is well documented in the literature of

mathematical economics [30]. In the area of optimal resource allocation

* We can simply identify the concerns suggested by this adjective to be the problems in

which the real line and its usual Euclidean metric are not necessarily the basic structure

involved.
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models, the extensive use of topological structures, namely linear topological

spaces, is exhibited in the article by Hurwicz, entitled “ Programming in

Linear Spaces” [31, pp. 4-102].

Social psychology. The study of perception and the concept of structure

[6] involves the construction of models wherein the topological concepts of

connectedness, boundary, and continuity have made an intuitive entry. Some
particular applications of these concepts appear in the gestalt theory of

perception [6], where the correspondence between stimulus patterns and the

associated brain patterns is viewed as being topological in the sense that the

correspondence preserves relationships of “ betweennesses ” and “ adjacences
”

in a perceived figure, rather than exact sizes, angles, or shapes [6, p. 134].

A derivative of this gestalt approach, which eliminates physiological

considerations and focuses instead on the phenomenological concept, called

the field, is the field theory of behavior [6], due to Lewin [32; 33, p. 113],

with special emphasis directed toward motivation and goal-directed action.

This concept of the field is such that “ its medium is conceived not as metrical

but as topological in its spatial character” [6, p. 148; 32]. Within this field-

theoretic structure, the concept of life space [24, p. 151; 32; 37, p. 407] is

introduced in terms of a boundary line called the “Jordan curve.” This life

space is additionally characterized by the principle that there exists within

it a region or connected regions in which “locomotion” could occur. Thus

the topological concepts of interior, boundary, connectedness, and com-

ponents are already intuitively present in the conceptual structure.

The importance of the topological aspect of the model to the behavioral

applications to which it is directed is expressed by the observation [6] that

one of Lewin’ s greatest contributions was introducing, through topology

and the Jordan curve, the concept of the behavioral aggregate as something

that is highly flexible with respect to its spatial properties, is unified and self-

delimited, and yet possesses many possible degrees offreedom. The topological

system of Lewin is considered as one of the factors that made field notions

popular among psychologists. Through the dynamism of field concepts, the

topological system has helped to make perception and cognition a basis for

modern systems of social psychology [6].

10.2.4. Natural Sciences

Physics. The use of topological concepts and methods in contemporary

theoretical physics is comprehensive and profound, reflecting the position of

the field as the model par excellence of a mature mathematical science. Thus

we choose here to give an outline of some recent work concerning the concept

of elementary length as applied in theoretical studies of quantum-mechanical
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particle scattering [5]. Preliminary efforts have utilized a “natural topology”

to account for effects of an elementary length, where such a length is con-

sidered as a fundamental number, X, such that all length measurements are

integer multiples of X. The physical interpretation is that the distance between

two particles cannot be measured more accurately than X and also that the

distance will be a multiple of X. Although the concept has been of continual

theoretical interest since the days of Pythagoras [5], recent interest has peaked

because of anomalous results obtained in scattering experiments involving

electron-positron pairs, that is, results not explainable by the currently

accepted theory of scattering as described by quantum electrodynamics

[5, 2]. In an attempt to explain this anomalous situation, the concept of a

topological potential due to the existence of an elementary length has been

proposed [4]. The question of which class of topologies, when placed on the

particle coordinate system, is consistent with certain natural requirements

of an elementary length has been addressed [5]. It has been demonstrated

that there is essentially only one such class, thereby also placing on a firm

basis the ad hoc topology initially assumed in earlier attempts to explain

the scattering anomaly [5, 4].

The introduction of the elementary length topology is based on the defini-

tion of a length
,
and of an elementary length

,
on a normed linear space

(X,
||

•
||), where ||

•
||

is the norm, as a function

fx :X^{nX\n = 0,1,2,...}

satisfying certain requirements which are the formalization of the intuitive

properties of a length. These requirements lead to the result that a function

/on X is a length if and only if it has one of two forms [5]:

(1) f(x) = X 2 > 0, 0 <a<X

(2) fix) = 2< 2 > 0, 0 <a< X

with [g] and {g}, where ge R, defined as the smallest integer not less than g
and the smallest integer greater than g ,

respectively. The concept of an

elementary length is formally represented as a function on X of the form

f(x) = X for all x e X, X > 0.

To obtain the physically meaningful subsets of X which will also serve as a

base for the elementary length topology, an open ball is defined as a subset

of X given by

Bx, a(x, r) = {ye X\fx(y - x) < r).
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However, an attempt to utilize the open balls as a base for an elementary

length topology [14] leads to the result that the collection of open balls

corresponding to physically significant and accessible subsets of X yields the

discrete topology on X. The discrete topology, however, is unsatisfactory for

describing the physical situation. This contradiction between the properties

required for the collection of open balls to be a base for the elementary

length topology and that of physical significance leads ultimately to the

conclusion that the lengths on X do not generate a satisfactory topology in

the physical sense [5]. Thus the basic set on which the topological structure

is to be placed must be changed to account for the physical reality that the

lengths introduced must represent the distance between two particles, a single

particle being experimentally unobservable.

A Cartesian product X x X, representing the coordinate spaces for two

particles, is therefore introduced. The derived coordinate spaces Xc ,
Xr ,

representing the center of mass of the two particles and their relative position,

respectively, are then determined. At this stage it is possible for a physically

meaningful collection of open balls to serve also as a base for an elementary

length topology. The results are summarized by the following [5]

:

The balls B(x, nX) = {y\fA(y — x) < nl} generate a nondiscrete topology

on X
r : the elementary length topology on Xr ,

where Xr is the set defined by

the canonical map T: X x X -> Xc x Xr with

T(x i, x2) = ^
* *2

,
x

1
- x2 j,

xu x2 eX.

Endowing X x X with the weakest topology which makes T continuous

yields the elementary length topology on the two-particle space. A base for

this topology has elements of the form

{(*, y) e X x X\ \x + y-z1 \

< ajfx - y, z2) < b, zu z2 e X, a, be R}.

The topology so generated is observed to be that introduced in an “ad hoc”
fashion in the original attempt to describe the scattering anomaly in terms

of a topological potential [4].

Thus the structure of a topological space is seen, in this instance, to repre-

sent a fundamental physical property in this area of contemporary theoretical

physics.

10.3. TOPOLOGICAL SPACES IN FUNCTIONAL SYSTEMS

An example of the introduction and use of topological spaces in a class of

specific systems is the work [7] on time-invariant
,
physically realizable

, func-

tional systems. Such systems are characterized as follows. The input to the
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system is a function f: R-> R such that f(t), t e R, is the value of the input

at time t. The output of the system at time t depends on the input for only

those values of time up to t, that is, for values of/(a), with a < t. The time-

invariance property of the system is accounted for by assuming that the

input history up to time t can be represented by a function u
t

:

u
t
:R ++ -+R,

defined for every t e R and a given input/ by

u
t{%) = f(t — t), t > 0.

The assumption of physical realizability is accounted for by restricting t to

be nonnegative. The output of the system at time t is assumed to be a, func-

tional [22] of the input represented by u
t
(corresponding to a given input

function, /) and is expressed by

9(f) = Ku t),

where g(t) is the output at time t, g(t) e R. It is assumed, furthermore, that

the inputs to the system are bounded [7] : an input function is bounded by

A e R +
if, for all t e R, \f(t)\ < A. Thus it follows that, if/ is bounded by

A, then, for any t, u
t
(as determined by /) is also bounded by A. The formal

representation of the class of inputs to the system is given by the set PBI(^) c

Rr+ +

,
given by PBI(yf) = {u\u: R ++ -* R, \u(t)\ < A, t e R, u is Lebesque

measurable}.* The Lebesque measurability, of u is assumed to eliminate, as

possible inputs, functions which have no physical interpretation in the context

of the application of the theory being developed here [7]. The interpretation

of the set PBI(v4) is that, for a given input function /: R-> R and t e R, such

that the corresponding u
t
e PBI(T), h{u

t) is the output of the functional

system h at time t. We will now restrict our attention to the collection of

functions PBI(^4), considered as the set of input functions for the systems of

interest.

The topological considerations which arise within this class of systems

stem from the desire to address the following question [7] : Given the set of

input functions, PBI(^4), what structure defined over this set will account for

the intuitive notion of approximation in the following cases: (1) in the sense

of generating an approximating table of values [7], that is, the approximation

of all input-output pairs for the system by a finite collection of such pairs

;

and (2) in the sense of approximation of an arbitrary member of a subclass

of functional systems by a member of a “simpler” subclass of functional

systems within the class? In both cases, the definition and representation of

* PBI represents “Past of Bounded Input” [7].
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a continuous system play a fundamental role. We outline here the approach

followed in [7] to address these questions. On the set PBI(^4) a neighborhood

Nt, d(u)> is defined for every u e PBI(y4) and T, 3 > 0 by

Nt ,
s(u)

= jr e PBI(v4)
|

| J
[u(t) — v(x)]dz

|

<3, for 0 < x < T

On the set R
,
a neighborhood NE

(x) is defined for every x e R and s > 0 by

Ne(x) = {yeR\ \y - x\ < s}
y

that is, NE(x) = (x — s, x + e).

The motivation for and the interpretation of these neighborhoods are

contained in [7]; here we may observe that the pair (T, 3) can be considered

a tolerance in the sense that, given such a pair, all those v e NT> d(u) for a given

u are “equal” to u within the tolerance (T, 8), where “equality within the

tolerance (T, 3) ” is defined by v e NT ,
d(u) for any u, v e PBI(v4). We may also

interpret v e NT t d(u) as v being an approximation (to within T, <5) to u.

Notice that the definition of NT §(u) implies that, if v e NT>d(u), then

u e NTf 5(v), that is, if v is an approximation to u, then u is an approximation

to v. Similar interpretations concerning system output may be made for the

neighborhoods N
E
(x). For the collections of neighborhoods

a = {NT} d(u) I

T, 5 > 0, u e PBI(v4)}

and

Jf = {N
E
(x)\e>0, xeR},

a functional h on PBI(yl) is defined* as continuous if, for any & > 0, there

exists a pair (T, 3), T,3> 0 such that

h(NT ' S(u))czNMuy)

for any u e PBI(y4), where

h(NT , s
(u)) = {h(v)

|

veNT
'
d(u)}.

Any time-invariant, physically realizable system represented by the functional

h is said to be continuous (A) [7]. These considerations are represented in the

diagram of Figure 10.1.

The introduction of the collections and Jf and the definition of a

continuous system now allow for the consideration by formal methods of

the questions posed earlier. The principal results are as follows [7]

:

* The definition of continuity here is given in terms of the base of a topology [14].
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Input set Output set

1. The collection £8 forms a base [14] for a topology: the RTI (“Recent

Time Integral ”) topology.

2. The pair (PBI(^4), RTI) is thus a topological space, which is also com-

pact [4].

3. Since (PBI(y4), RTI) is compact, the input-output behavior of a con-

tinuous (A) system h can be represented in the form of a “table of values.”

This is achieved by first giving a tolerance s in R + and then choosing a finite

set of inputs, say u
t
e PBI(^4), i = 1 with a corresponding set of outputs

h(Ui) in R. The output, h(u), for any u e PBI(yt) can be approximated to

within e by the output h(u
t) for some u

t
e PBI(^) such that u e NT d(u^).

(That there exists such a finite collection of NTt8(u?), where h(u) e h
E
(h(u J)

—
corresponding to the finite set of u

t
—which covers PBI(^), is assured by the

fact that PBI(y4) is compact in the RTI topology [14].)

4. There exists a subclass of continuous functionals defined on PBI(R)

and called polynomial systems [7], such that the output of any continuous

system can be approximated arbitrarily closely in terms of polynomial

systems by using the approximation criteria described above.

Although we have outlined only the principal considerations involved in

the work on functional systems, the role of topological spaces in the repre-

sentation of systems-theoretic concepts of approximation and continuity is

evident.
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10.4. MATHEMATICAL MODELS OF GENERAL SYSTEMS

In this section, we present a brief description of abstract models of general

systems as proposed by Mesarovic [9] and Wyniore [12]. The purpose is

twofold: to illustrate the principal set-theoretic structure characterizing these

two axiomatic approaches to general systems models, and to provide back-

ground for Section 10.5.

In the Mesarovic approach [9], a general system
,
S, at the highest level of

generality, is defined as a relation on a given collection of sets, V = {V
t \

i e /},

called objects of the system (/ is an indexing set for the collection), that is,

Scz X v-

Further structure is introduced by assuming that the collection V is parti-

tioned into two subcollections such that

Sc: Xx Y,

where

X=X{Vi\ ielx} 9

Y=X{V
i
\ieI

y},

and {/x ,
I
y}

is a partition of I. In this case, X and Y are called the input and
output objects, respectively, of the system S. Within this binary relation

representation of S, the concept of state object is developed by introducing a

(partial) algebraic structure in S. A state space for such a representation is

then developed by specifying an equivalence relation on the union of all

state objects of the system.

A further specification of the binary relation representation is obtained

by considering complete time systems in which the input and output objects,

X and Y, are collections of functions

X=A t
,

Y=Bt
,

where T is a linearly ordered set (the time set), A and B are sets called input

and output alphabets (or spaces), and S is defined by

Sc/x Bt
.

The principal considerations in such complete time systems involve the con-

cept of the state, introduced in the general structure above and restricted to

this more specific class of system. In particular, such considerations include

[9], for example, the existence of initial state objects, and initial state repre-

sentation for complete time systems, definitions of state-transition relations
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andfunctions, determination of the state space for time systems, and conditions

for time systems to be state determined
,
nonanticipatory

,
and so on.

The conceptual approach underlying the mechanism for generating specific

classes of systems included in the general relation-theoretic structure (i.e., a

mechanism for the classification of systems) is that of constructive specification

of a system. In this approach, the specific properties which define S and pro-

vide its description, or structure, are derived from auxiliaryfunctions or simpler

systems. The specification proceeds by some particular method, for example,

by induction in the present work.

The role of topological concepts in this theory has not yet been explored,

although reference has been made [9] to the introduction of topological

structure in the general system model as a means of further specification

of the system.

In the axiomatic approach to a mathematical theory of general systems due

to Wymore [12], a general system, Z, is defined as a set

Z = {S, P
9
F

9
M

9
T

9 g} 9

where S and P are nonempty sets, called the state and input state sets, re-

spectively
;
F is a subset of PR with certain algebraic closure properties de-

scribed in the next section* and is called the set of input functions of Z;

M c: Ss
is the set of transition functions of Z and contains the identity func-

tion, co, on S
;
T<= R is the time scales and o\ F x T -»

M

(onto) is the system

state-transition function. For a given input function /e F, a time t e T, and a

state xe S, o{f t)(x) e S is interpreted as the state of the system at time t,

given the initial state * and input function /. In addition, requirements are

imposed on o which are interpreted to represent the intuitive properties

possessed by “real-world” systems, namely,

(i) (“initial state consistency”): For everyfe F

o{f 0) = co e M

;

(ii) (“composition property”): If tu t2 eT such that + t2 e T, then for

every input function,! feF,

o(fi h + h) = <K/-» h) ° <?(/, *i);

(iii) (“ causality ”) : If t e T, t > 0, andfig e F such that/ 1
[0, t) = g |

[0, t),

then

* The admissible set as defined in [12] has been generalized in Section 10.5 to allow for the

possibility that F= </>; this has the effect of modifying the topology generated by the

admissible set operator ^ and is also discussed in the following section,

f For f e F, t £ T, f t : R ->P is defined by [12, Chapter 2] (/-> r)(t) = f(t + r). /->r, is

the translation of /by r and is discussed in more detail in Section 10.5.
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a(f, t) = a(g, t);

similarly, for t < 0 and f\[?,0)=g\ [t, 0),

a(f, t) = a(g, t).

The general system model does not require an “output” as part of its

specification [12, Chapter 2], although the existence of an output or output

functions is accounted for by defining any nonempty set Q as an output set

and any function

C: S^Q
as an output function for Z with values in Q. Intuitively, the system Z can

be represented as in Figure 10.2.

The evolution of the system is formally described by various “trajectory”

functions [12, Chapter 2]: the time trajectory of Z,

e/,x
' S,

defined for each x e S and f e F by

ef ,
x(t) = ° (/> t)(x)

9
for all t e T;

Figure 10.2. Intuitive representation of the general system model due to Wymore [12]:

F is the set of input functions, with / e F a specific input function; S is the set of system

states with x e S the initial state; a is the system state transition function; a(f, t ) is the

transition function defined by (/, t) e F x T and is shown as a member of M—the set of

tiansition functions of Z; and, finally, cr(/, t)(x) e S is the state of the system at time t,

illustrated as the mapping which carries the initial state x into the state at time t, u{f, t){x).
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the input trajectory of Z,

10

ix , t
: F-+ S,

defined for each t e T and x e S by

ix , t(f) = c(f, t)(x) for allfe F;

and the output trajectory of Z, for an output set Q and output function

Ox
, f :

T -+Q,

defined for each x e S, f e F, by

O r == C ° e r*>/ * f,X’

The Wymore model also formally accounts for such concepts as coupling

[12, Chapter 5], subsystems and components [12, Chapter 6], and systems

classifications considerations [12, Chapter 4], although we will not make use

of them here.

In [12] Wymore has also introduced a dichotomy of the class of general

systems represented by the model, namely, the classes of discrete and con-

tinuous systems. Although we will have more to say in the next section on the

topological properties of the Wymore model, it is useful to point out here

that the approach we take to this aspect of systems classification is not that

of establishing the dichotomy on the nature of the time scale T, as Wymore
has done. A particular example which illustrates the distinction is the work
by Brilliant discussed in Section 10.3, where consideration of the continuity

of “continuous time” systems is established by the nature of the mapping

effected on the input functions by the system, independently of the time scale.

In simple terms, not all continuous time systems are necessarily considered

as continuous from this viewpoint.

10.5. CLOSURE SPACES IN A MATHEMATICAL THEORY OF
GENERAL SYSTEMS

As stated earlier, our interest in the role of topological concepts in the

mathematical theory of general systems has led us to examine the model of a

general system due to Wymore [12] in order to determine its intrinsic, or

natural, topological structure. This section is concerned with some results

of that study, in particular, a relationship between the work of Hammer on

extended topology [10, 13] and the general system model of Wymore.
Although a formal systems model can, in an ad hoc manner, incorporate

a topological structure by simply postulating that the sets of interest carry

a classical topology, that is, that they are to be a priori considered topological
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spaces, we have taken the approach that it is of more fundamental value to

inquire as to the existence of a natural topology determined by the intrinsic

algebraic and set-theoretic properties of the structure itself. If such a topology

were suggested, subsequent considerations would explore its system-theoretic

implications concerning approximation, continuity, and so forth. The pursuit

of this approach with respect to the general systems model due to Wymore
has yielded some interesting results concerning a topological structure

intrinsically determined by the theory [36].

Thus, in this section we wish to establish that:

(i) Within the framework of the elements of a mathematical theory of

general systems as developed by Wymore, the method ofgenerating admissible

sets of input functions suggests naturally a function, the admissible set

operator, which satisfies, in general, not the well-known Kuratowski closure

axioms, but the closure axioms introduced by Hammer in his work [10, 13]

on extended topology.

(ii) As a consequence of (i), the topology suggested by the theory, that is,

the topology associated with the admissible set operator, is not, in general,

a classical topology, but the extended topology of Hammer.
(iii) Closed subspaces of the Hammer topological space of (ii) represent a

topological extension of the set of input functions for a Wymore general

system.

10.5.1. Preliminary Definitions and Results

In the following development and throughout the rest of this section* let

P be a fixed, but arbitrary, nonempty set unless the contrary is specified;

let R be the set of reals
;
and define PR by

PR = {f\f:R^P}

Definition 10.1 [12]. Forf,ge PR
,
r e R,

(a) the translation of/ by r is the function /-> r : R -> P, defined by

f-+r(t)=f(r+t), teR;

(b) the segmentation of/ and g is the function/ 1 g : R ->• P defined by

m
&(t),

t < 0

t > 0

for every t e R. The next definition introduces algebraic closure in terms of

translation and segmentation.

* When not specified otherwise, the notation used in this section conforms with that of [14].
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Definition 10.2. A set F cz PR
is

(a) closed under translation if and only if, for every f e F and r e R,

f~>reF ;

(b) closed under segmentation if and only if, for everyf g e F, f\g e F;

(c) [1] closed under translation and segmentation if and only if it is closed

under both translation and segmentation.

Definition* 10.3 [12]. A set F is an admissible set of input functions (with

values in P) if and only if F c= PR and F is closed under translation and

segmentation.

Lemma 10.1. Let A be the subcollection of the power set of PR
,
£P(PR), con-

sisting of all admissible sets of input functions, that is, stf
— {P|Pis an admis-

sible set of input functions}, then

(i) 0e st\

and

(ii) PR
g jaC

Proof Since 0 c= PR
,
it need only be established that 0 and PR

are closed

under translation and segmentation.

(i) It is readily established that 0 is closed under translation and segmenta-

tion by observing that, if the contrary were true, we could infer the existence

offe 0 for some r e R, such that/-> r e 0, or offge0 such that f\g £ 0,
either case being a contradiction of the fact that 0 is empty.

(ii) This is established by observing that, by definition of PR
,
for all r e R,

f g PR
, /—> r g PR

,
and for allf g e PR

, f\ge P
R

.

10.5.2. The Admissable Set Operator and Kuratowski Closure

A function-theoretic concept fundamental to the results developed in this

work is that of admissible set operator. The principle motivating the definition

of this function is as follows [12]: given an arbitrary set of functions A c= PR
,

we are interested in the smallest (in the sense of containment) admissible

set of input functions containing A. This idea parallels the definition of the

closure of a subset of a topological space as the intersection of all closed sets

containing the subset [14, Chapter III]; however, there is a fundamental

distinction. Contrary to the situation characterizing closure in a topological

space, we have no topology for PR in the case discussed here, and thus no

* The definition given here is a generalization of that given in [12] in that F= 0 is not a

priori excluded as an admissible set of input functions. For further consideration of this

point see Theorem 10.2(i) and Section 10.5.3.
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closed subsets of PR . We begin by immediately defining the admissible set

operator.

Definition 10.4. The admissible set operator is the function gP(PR
) gP(P

R
),

defined by

&(A) = n {F
|

(Fe rf) a (A a F})

for every A e g?(P
R
)*.

For purposes of brevity, we introduce a neologism by defining a sub-

collection of A for each A c= PR as follows.

Definition 10.5. For every A <= PR
,
the containing collection of A is the set

s$A ,
defined by

^a = {F\Fe^) a(AczF)}.

The preceding definitions establish the following remark.

Corollary 10.1. Let A c= PR
;
then &(A) = n stfA . The next result demonstrates

that the admissible set operator is a function into A
, that is, the image under ^

of every A c= PR is an admissible set of input functions.

Theorem 10.1. For every A e £P(PR), <g(A) e stf.

Proof Let A e &(PR). Since PR e stf (Lemma 10.1), and A c: PR
9
we have

PR
e stfA . Therefore n srfA a PR and thus @(A) c= PR .

To establish that &(A) is closed under translation and segmentation,

assume that &(A) # 0 since, if <S(A) = 0, then .<&(A) ei by Lemma 10.1.

Let /, g e &(A) = n A and r e R. Let F e $0A ;
then f g e F. Since F is

closed under translation and segmentation, /-»r e F and f\g eF. Further-

more, since F e stfA was arbitrary, we have

f~* r
, f\genjt/A = &(A).

Finally, since f g e &(A) and r e R were arbitrary, &(A) is closed under

translation and segmentation. Thus &(A) is an admissible set of input func-

tions
; therefore &(A) e

Definition 10.6 [12]. Let A a PR
; then the admissible set of input functions

generated by A is the set <&(.

A

).

We now introduce the Kuratowski closure axioms and the definition of a

Kuratowski closure operator. We will then show that, for arbitrary non-

empty P, the admissible set operator satisfies all the Kuratowski closure

* The definition given here is a function-theoretic formalization of a result in [12, Chapter 2],

extended to the definition of an admissible set of input functions as used in this work. The
name and symbol for the function are due to [12].
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axioms except that for distributivity over finite unions

—

additivity—and is

therefore, in general, not a Kuratowski closure operator.

Definition 10.7 [5]. Let Jbe a set and K a function, K : 0>(X) -* &(X); then

K is a ^-closure operator on X if and only if the following statements, the

Kuratowski closure axioms, are true

:

(i) K(0) = 0;
(ii) A c= K(A), for every A cz X;

(iii) K o K(A) = K(A), for every A c= X
;

(iv) K(A uB) = K(A

)

u K(B), for every A, B a X.

Theorem 10.2. The admissible set operator, satisfies (i), (ii), and (iii) of

the Kuratowski closure axioms.

Proof.

(i) We have that @(0) = n j/0 . Since 0 e stf (Lemma 10.1), 0 e j/0 ,

and therefore n j/0 a 0. Thus*

n0) = 0 .

Let A c= PR in (ii) and (iii) below.

(ii) Let F e stfA ;
then A cz F, and therefore

A a n stfA = ^(vl).

(iii) From (ii).

Furthermore, noting

have

^04) c= &(&(A)).

that ^(^4) g *8/ (Theorem 10.1) and ^(^4) c= ^(^4), we

G J3/

.

Thus

^{A)) = n^ (il)
cz ^(,4).

Therefore

0 o ^) = <S{A).

* This property of & follows directly from the fact that 0 e A, which in turn results from the

assumption that 0 is not excluded as an admissible set of input function (cf Lemma 10.1).

If nonempty sets were the only valid candidates for admissible sets of input functions, we
would have the result that, for a given nonempty P, ^(0) would not necessarily be empty

;

furthermore, ^(0) would be different, in fact, for different P.
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Theorem 10.3. Let A, B a PR
;
then

&(A) u &(B) cz <3(A u 5).

Proof. From Theorem 10.2(h), A u 5 cz (A u B) and thus

^4 c= ^(^4 u B).

Furthermore, since &(A u jB) e A (Theorem 10.1), it follows that

u B)esfA .

Therefore

&(A) = n stfA c: ^(^4 u 5).

By interchanging A and B in the preceding argument, we have B)
cz

^(,4 u B). Thus <3(A) u ^(B) <= <&{A u B).

Remark 10.1. There exists a nonempty set P, and sets ^4 l5 A 2 c P* such that

u ,4 2) c|: u 9(A 2).

To establish the validity of this remark, let P = {p lf p2 } where p x iL p1 -

Now let A
x = {c

pi }, A 2 = {cP2}, where, given a nonempty set Q, for each

q e Q, c
q

: R -» Q is the constant function [1], defined by c
g
(t) = q for all t e R.

Observe that ^4 l5 A 2 e j^, since ^4 l9 ^4 2 cz PR and both are closed under

translation and segmentation (c
q
^r = c

q
for all q e Q and r e R). Further-

more, A
x

cz A
1
and A 2 c= A 2 ,

and therefore A
x e A 2 e <stfAl . Thus

^l) = n c: >4 l9 ^G4 2)
= n C= ^ 2 .

Since we also have A
t

cz &(A
t ), A 2 cz &(A 2) by Theorem 10.2(h), it follows

that

9(Ai) = Au 9(A
2)
= A 2 .

Thus,&(A
t ) u @(A 2 )

= A
1
u A 2 = {c

pi ,
c
P2j.

Furthermore, since ^(A
1
u A 2 )

must be closed under segmentation (Theorem 10.1), and since c
Pi ,

c
P2

e A
x
u

A 2 cz ^(A
1
u A 2), it follows that c

pi |

c
P2

e &(A
1
u A 2). However, it will now

be shown that c
pi |

c
p2 <£ &(A t ) u &(A 2). By the definition of segmentation,

we have

and therefore

t < 0

t > 0

c
pl I

C
P2(0 # c

P2
(t), for t < 0

c
p. I

C
P2(0 ^ cpi(0, for f > 0
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that is,

10

Thus

C
Pl \

C
P2^ C

Pl ^ C
Pi \

C
P2^ C

P2-

C
Pl I

C
P2 £ {CP,> CP2)

= ^(A l) U ^{A l)-

We have shown, therefore, that for P, Au and A 2 as defined above

$(A
l
u A 2 ) 41 &(A) u &(A 2 ).

10.5.3. Extended Closure and the Admissible Set Operator

Theorem 10.2 and the preceding remark have established that, for arbitrary

P (P 0), the admissible set operator ^ on PR satisfies (i), (ii), and (iii) of

the Kuratowski closure axioms but does not, in general,* satisfy (iv), although

containment is obtained in the sense of Theorem 10.3. Hammer [13, 10] has

introduced and studied the properties of an extended topology
,
in which the

primitive concept is that of a closure function [10, p. 147] that possesses

properties (ii) and (iii) of the Kuratowski closure axioms (Definition 10.7),

but differs from a A-closure operator in two respects which are of interest

when considered in the light of the properties characterizing the admissible

set operator:

(a) The null set is not necessarily closed.

f

(b) The closure function does not necessarily distribute over finite unions,

but does satisfy containment in precisely the sense of Theorem 10.3.

In addition to Hammer’s innovative work, Rio [16] studied and extended

fundamental properties of the Hammer topological system, including further

considerations of (a) and (b) above. Thus, as will be shown, the admissible

set operator ^ is a closure function on PR
in the sense of Hammer, with the

* Remark 10.1 establishes that, in fact, the only case in which (iv) is satisfied is the one in

which P is the unit set {p} and thus PR = {cp }. Since such a set of input states is a degenerate

case from a systems-theoretic viewpoint and because we do not wish to carry along the

euphemism “in general,” we will not so qualify remarks to which exception can be taken

on this account only.

f Since the precise meaning of “closure” is not yet needed, we have not defined the term

as used here; for purposes of the discussion to follow, it will suffice to interpret the use of

the noun “closure ” as follows : Given a set X and any closure operator, d
,
on X, then closure

in X oi B <= X is d(B). This topological closure is to be distinguished from algebraic closure
,

discussed in Definition 10.2. Qualifying phrases (e.g., “under segmentation”) used with the

latter will accomplish this.
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additional property that the null set is closed,* that is, ^(0) = 0. It is

interesting to note further that in the case in which the null set is closed for

both operators they differ only with respect to the additivity property, (iv) of
Definition 10.7, and it is this relaxation of additivity which is a principal

issue in Hammer’s development of extended topology [13].

We now present some of the formal structure of Hammer’s closure operator

and the associated topological space, and explore its relationship to the

admissible set operator.

Definition 10.8. Let X be a set and h a function h: 0>(X) &(X)\ then h is

an H-closure operator on X if and only if the following statements, the

Hammer closure axioms
,
are true:

(a) A c= h(A) for every A a X
;

(b) A c B -> h(A) c= h(B) for every A, B c X

;

(c) h o h(A) = h(A) for every A a X.

Hammer [13, 10] has used the terms enlarging
,
isotonic

,
and idempotent to

describe properties (a), (b), and (c), respectively. Thus his definition of a
closure function [10, p. 147] as an enlarging, isotonic, idempotent function

coincides with the definition given above of an //-closure operator.

Lemma 10.3. Let X be a set and h: &>(X) -> 0>(X); then the following state-

ments are equivalent:

(I) h is an //-closure operator on X :

(II) h has the following properties

:

(a) A c= h(A) for every A cz X,

(b') h(A) u h(B) c h(A u B) for every A, B c= X,
(c) h o h(A) = h(A ) for every A a X.

Proof The equivalence between 11(a) and 11(c) and the enlarging and
idempotent properties, respectively, is established immediately from the

definitions. Assume now that A, B a X. If h is isotonic, it follows that

h{A) c: h(A u B) and h(B) a h(A u B), thus establishing Il(b'). If, conversely,

h satisfies Il(b') and A c= B, then h(A) u h(B) cz h(A u5) = h(B); thus

h(A) c= h(B) and h is isotonic.

The preceding lemma establishes that statement II in the lemma is an
equivalent characterization of an //-closure operator.

* This additional property is not an intrinsically fundamental characterization of but is

rather a consequence of the fact that we did not exclude the null set from the collection of
the admissible set of input functions (Definition 10.3) for a general system. This may be
compared with the approach of Wymore [2, Definition 2.1], who requires admissible sets of
input functions to be nonempty.
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In the context of this general definition of a closure operator, we may
introduce a generalization of the (classical) topological space, namely, an

H-Appert space,* as follows.

Definition 10.9. An H-Appert space is an ordered pair (X ,
h), where X is a

set and h is an //-closure operator.

This definition is analogous to that of a (classical) topological space in term

of a set X and a Kuratowski closure operator on X.

Having now at our disposal the H-Appert space, (.X ,
h), we consider next

the question of the existence of a relative
,
or induced

,
//-closure operator on

subsets of X. This is an important systems-theoretic consideration since,

given a set of input states
,
P, for a Wymore general system, the set of input

functions for the system is a subset of PR
,
say P, and thus we are interested

ultimately in closure inF cz PR
,
which will generate a natural subspace of (X ,

h)

in the sense that the subspace inherits its properties from (X ,
h). In terms of

the //-closure operator, h
,
we may state the question as follows: Given an

//-Appert space (

X

,
h) and A c= X, is the inducedfunction

,
say hA ,

defined by

associating the closure in A of D cz A with the intersection of A and the

closure in X of D
,
an //-closure operator on A

;
that is, is (A, hA) an //-Appert

space? This question was answered in the affirmative by Rio [16].

Because of the importance of this result we present a proof (Theorem 10.4)

based on Rio’s work and using the notation and definitions introduced in

Rio’s paper.

First we have the following definition.

Definition 10.10. Let (X, h) be an H-Appert space and A c X; then the

relative closure operator on A is the function

hA : &{A) &(A)

defined by

hA(B) = h(B) n A for every B c A.

The next important result [16, Theorem 2.7] establishes that the relative

closure operator is an //-closure operator on the subset A.

Theorem 10.4 [16]. Let (X ,
h) be an //-Appert space, and A a X; then the

relative closure operator
,
hA ,

is an //-closure operator on A.

Proof We must establish that hA : &(A) 0>(A) is enlarging, isotonic,

and idempotent according to Definition 10.8.

* The terminology here is derived from Hammer [10, p. 149], who defines an Appert space

in terms of an 77-closure operator and another “ dual function ” determined by h: the latter

is not considered here.
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(a) Let D <= A
;
then

hA(D) = h(D) n A.

Since A is enlarging, D c /7(D), and thus

D c= A(ZZ) n A = hA(D).

(b) Let D, E a A so that D a E. We have, since A is isotonic,

A(Z)) c A(£).

Thus

/^(Z>) = /7(D) n A c A(£) n A = hA(E).

(c) Let D a A and consider A^A^Z))):

hA(hA(D)) = hA(h(D) n A) = h(h(D) n A) n A.

Since A is enlarging, we have

A(A(Z>) n A) a h(h(D)), h(A)

or

h(h(D) n A) c A(A(Z))) n A(y4).

Thus since A is also idempotent, we may write

hA{hA{D)) c /7(D) n A(y4) n ^4.

Using the enlarging property of A again, we have

A^(Z))) c A(Z>) n A = hA(D).

Thus

hA(hA{D)) a hA(D).

However, since A^(D) c: ^4, (a) above implies

w) <=MMm
therefore

hA ohA(D) = hA(hA(D)) = hA(D).

From Theorem 2.11 follow immediately the important results concerning

subspaces of an ZZ-Appert space.

Theorem 10.5. Let (X, A) be an Z/-Appert space and A a X; then the

ordered pair (A, A^) is an ZZ-Appert space.
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Proof. From Theorem 10.4 hA is an //-closure operator.

Definition 10.11. A subspace of an //-Appert space (.X ,
h) is a pair (A, hA),

where A is a subset of X.

Theorem 10.6. A subspace of an //-Appert space is an H-Appert space.

Proof Let (X, h) be an //-Appert space; then from Definition 10.11 a

subspace of (X,
h) is a pair (A, /z^), where A c X. From Theorem 10.5, the

pair (A, hA ) is an //-Appert space. Since the pair (A, h) and A cz X were

arbitrary, the result follows.

Having introduced some of the formal structure of the //-closure operator

and the associated //-Appert space, we now consider the relationship between

this structure and the admissible set operator.

It is immediately evident from Theorem 10.2 and 10.3 and Lemma 10.3

that the following result holds.

Theorem 10.7. Let P / 0 be given; then the admissible set operator 3 is

an //-closure operator on PR .

Proof From Theorems 10.2 and 10.3, the admissible set operator satisfies

(a), (c), and (b') of statement 11 in Lemma 10.3. Thus, from Lemma 10.3,

3 is an //-closure operator on PR *

The following theorems are an immediate consequence of Theorem 10.7.

Theorem 10.8. Let P A 0 be given; then the ordered pair (P
R

, 3) is an II-

Appert space.

Proof From Theorem 10.7, 3 is an //-closure operator on PR
,
and thus

the result follows from Definition 10.9.

Theorem 10.9. Let P A 0 be given, A cz PR
,
and 3 be an //-closure operator

on PR
;
then

(i) <3A ,
the relative closure operator on A, is an //-closure on A.

(ii) (.A ,
<3A) is a subspace of (P

R
, 3).

(iii) (A, 3A) is an //-Appert space.

Proof (i) From Theorem 10.8 (P
R

, 3) is an H-Appert space, and from

Theorem 10.4, observing that A <= PR
,

it follows that <3A is an //-closure

operator on A.

(ii) The result follows from Theorem 10.8 and Definition 10.11.

(iii) The result follows from (ii) and Theorem 10.6.

* This result can also be established as a corollary to Lemma 10.1, Theorem 10.1, and a

result given by Rio [16, Theorem 5.2].
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From a systems-theoretic viewpoint, that is, interpreting P as a given set

of input states for a Wymore system, notice that, since F e srf implies

<S(F) = F, we have the result that the closed sets in (P
R

, $) are the admissible

sets of input functions for the system. Thus we have a natural topological

characterization, in terms of the admissible set operator 0, of the admissible

set of input functions for a Wymore system having input state set P.

Thus the closed subspaces (F, ^F) of (P
R

, are a topological extension,

in the sense of Hammer, of the admissible sets of input functions for a

Wymore general system.

In summary, we have established in this section that, for the Wymore
system model with input state set P:

1 . The admissible set operator ^ is an //-closure operator on PR having 0
as a closed set.

2. (P
R

, is an H-Appert space.

3. For any subset A of PR
, (A ,

^A) is a subspace of (.P
R

,
<g), where <3A is

the relative closure operator on A.

In addition, it has been demonstrated that the //-Appert space introduced

is unique, is independent (in the abstract) of P, and requires the formalization

of only one additional function-theoretic concept, namely, that of the admis-
sible set operator.

It has also been established that, except for singleton input state sets, the

strongest closure structure associated with the admissible set operator is the

one which characteries the //-closure operator.

Finally, through the identification of admissible sets of input functions for

a Wymore system as the closed subspaces of (P
R

, &), the work on generalized

closure spaces may be introduced naturally into the axiomatic structure of

this general system model. In particular, the use of this generalized topological

structure may be explored at the abstract level to account for the topological

aspects underlying the systems-theoretic properties of approximation,

continuity, optimization, and so forth, as discussed earlier. An intrinsic

connection between H-Appert spaces and the Wymore theory having been
established, the possible use of such structure in other formal abstract models
also suggests itself.

10.6. CLOSURE SPACES IN GENERAL SYSTEMS THEORY:
SOME PERSPECTIVES ON FUTURE WORK

We have arrived at the following point: in Sections 10.2 and 10.3 we
motivated the position that topological structure should be an intrinsic

component of any abstract theory of general systems—the method used was
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inductive via a brief description of the role of such structure in a broad class

of specific systems; in Section 10.5 an examination of the weakest (most

general) closure properties possessed by the set-theoretic structure repre-

senting one approach [12] to an abstract model of general systems led to a

topological structure of greater generality than the (classical) topological

space generated by the usual Kuratowski closure axioms. We now indicate

three immediate questions which arise from these efforts.

1. Although we have developed a natural topological extension of the set

of input functions for a Wymore general system as an //-Appert space, the

use of such structure in representing the systems-theoretic properties of

approximation, continuity, optimization, and so on in the Wymore model

needs to be explored.

2. From an inductive viewpoint, it is clear from the exhibits presented in

Section 10.2 that topological structure is a fundamental trait of an extremely

broad class of systems, yet the structure involved in almost all cases is that

of the (classical) topological space (the one exception being the work on

tolerance automata [16]). Therefore, the question of the need for the weaker

(more general) structure characterizing the //-Appert space should be explored.

That such general structure is needed for the class of finitary systems in

mathematics has been advocated in the work of Hammer [10]; however, for

general models representing systems which are not the deductive ones of

mathematics, the question is open. Examples and insight are needed here.

3. Hammer [10] has explored for Appert spaces the nature of the topological

concepts of connectedness, separation, continuity, convergence, and so on in

this generalized closure space. With the representation of admissible sets of

input functions for the Wymore system as an //-Appert space generated by

the admissible set operator, the interpretation of these extended topological

notions from a systems-theoretic viewpoint should be explored. Again,

specific system examples would provide insight to be used at the abstract level.

The search for answers to these questions and for understanding—both

formal and intuitive—of these areas is of interest as part of the goal of intro-

ducing into abstract models ofgeneral systems a relevant topological structure.
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PROBLEMS

10 . 1 . Let d be a function,

d : (R x R) x (R x R)-+ R,

such that

d((X1, jO, (x2 , ,y2)) = (*! - x2)
2 + O'! - J2)

2
.

Verify that distance d satisfies the following properties:

(i) d((x
1 ,y1),(x2 ,y2))>0;

(ii) d((xu ji), (x2 , y2)) = 0 if and only if (xu y t ) = (x2 , y2)

;

(iii) d((xu y\), (x 2 , y2))
= d{{x2 , y2), {x

x , yx))-,

(iv) d((xj, yj, (x3 , j 3)) < d((x l , yj, {x2 , y 2)) + d((x2 , y2), (x3 , y 3)).

Find another function, d
1 :

(R x R) x (R x R) —> R, which also satisfies these

four properties.

Any ordered pair (X, d), where d: X x X -> R and d satisfies the properties

mentioned, is called a metric space.

10 .2 . Consider d: (R x R) x (R x R) -> R of Problem 10.1. This is the usual

definition of distance in the Cartesian plane. Now take a circle with center

(au a 2) and radius S. All points of the circle except those on the circumference

constitute a set. Let us call such a subset of R x R an open ball
—“open”

because the points on the circumference are not included. Since a ball can be

identified uniquely by its center and radius, we name an open ball with center

(a l5 a2) and radius 5, B((a 1 ,
a2), <5). Convince yourself that B((au a2)S) can

be written as

£((<?!, a 2 ), 3) = {(A, y) : (x, y) e R x R and d((au a2 ), O, y) < 3}.

Now consider a set df whose elements are all such open balls and subsets

generated by arbitrary union of these open balls. Show that

((R x R) x (R x R), dT)

satisfies all the properties necessary to be a topological space.

10 .3 . Reformulate Problems 10.1 and 10.2 for the Euclidean distance

d: R x R —+ R

where d(x
, y) = \x — y \

and verify the assertions in the formulated questions.

Remember that the elements of the domain of d are of the form (x, y), not

((* 1 ,
x 2), (Ji, y 2))* Can we in terms of circles any more? What is the

interpretation now ?
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10 .4

.

Consider the function represented by the graph in Figure 10.3. Deter-

mine whether the function is continuous at (i) a
,

(ii) b, and (iii) c. Explain,

using the definition of continuity given.

a b c R

Figure 10.3. Illustration for Problem 10.4.

10 .5 . Let X be the set X = {f\f: [0, 1] -> R, f is continuous}. Let d be the

function d: X x X -> R, where

d(x
9 y) = f

|

x(t) - y(t)
|

dt
,

x
9
ye X.

J o

Show that d is a distance function, that is, d satisfies the four conditions

listed in Problem 10.1.

10 .6. Consider the relation £ on R defined by

(a, b) e £ if and only if
|

b — a
|

<1.

Show that (jR, 0 is a tolerance space.

10 .7 . A merchant buys a large variety of commodities from retailers. For

each item that he purchases, the merchant knows the average price. He buys

an item if the price is within 5 % of this average. (He is guided by quality

and demand considerations.) Let £ be a relation on R ++ such that

(a, b) e £,
|

a — b
|

< 0.05a.

Here a is the average price and b is the current price. Is (R, 0 a tolerance

space ?

10 .8 . Verify that d as defined in Section 10.2,

|0 if x = v
d(x, y)

where k = min{i e I
+

|

x(i) A y(i)}, if x A y,

is a distance function on X.
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GLOSSARY OF SYMBOLS

R The real line

PBI(£) Set of all functionals with past of bounded input, bounded by B

N
e
(x) Set of all points within distance s of x

X ^ Cartesian product of collection C
Ba Set of all functions from A to B

fog Composition of functions / and g

f\A Restriction of function / to subset A; segmentation of functions/

and A
0>(A) Power set of A
stf Set of admissible functions

^ Admissible set operator

stfB Containing collection of set B
$(A) Admissible set of input functions generated by A
h H-closure operator; system functional

hA Relative H-Appert closure operator on set A
(A, h) H-Appert space with h an //-closure operator on A

||

•
||

Norm of *

/
+

Set of positive integers

R +
Set of positive reals

R ++
Set of nonnegative reals

< Preordering relation
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EDITOR'S COMMENTS

The prerequisites for this chapter are completely included in its two
appendices. However, the reader should feel comfortable with mathematics

to be able to read these appendices. Generally, the books specified in the

Editor’s Comments to Chapter 8 will be useful for Chapter 11 as well. The
reader should also take advantage of the Glossary of Symbols (p. 405).

11.1. INTRODUCTION

System is frequently used as a synonym for order . This may not be con-

sidered a very good explanation of “system” but is, nevertheless, a genuine

explanation. Indeed, any effective explanation will have to be finite and must
leave a final explanans (“ order,” in the above example) without explanation,

provided that the explanation is not circular. In fact, this is the reason for

introducing (unexplained) axioms and axiomatic descriptions as explanations.

Hence it is natural to look at the problem of explicability as a problem of

formalizability. This approach is taken in the following sections, where various

systems, like learning systems, self-reproducing systems, and evolutionary

systems, are explained in terms of formalizability (i.e., in a metalanguage for

formal theories).

Instead of elaborating upon what a “ system ” is, let us here in the introduc-

tion indicate an evolutionary effect of this concept. We first have to admit
that the search for a system or order in nature is really what constitutes basic

research in the natural sciences. Among the classical orders found, we have

Mendeleev’s periodic system and von Linne’s Systema Naturae.

The findings of such research permit us to order our surroundings even

further. For example, we may synthesize technological systems, erect educa-

tional systems, and even compete with natural variation and selection in

biological evolution.

The larger and more complex these artificial systems or controllable

natural systems are, the more difficult it can be to decide what effects they

will have. “Complexity,” in fact, may be the opposite of “order.” Although
the artificial systems are systems in the sense of being created by systematic

methods, they may not be orderly enough to permit us to understand their
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effects. Components may have emergent properties which are not revealed

until they are synthesized in a large system, provided, of course, that we do

not have a systems theory that is powerful enough to predict these properties.

What is desirable is a developing general systems theory.

The evolutionary effects of research can be looked at from many angles;

one is as follows. The order which the scientific discoveries reveal will be

talked about not only by the scientists themselves, but also by their colleagues

in other fields, and eventually will be taught to a new generation of scientists.

In this way, a potential is created for asking deeper questions about the

systems revealed, and finally new or related orders and systems may be found.

The potential will obviously be greater if the scientists of the various disciplines

have been taught to express their findings in a “ common scientific language
”

so that they can easily be understood and in turn can readily understand the

nature of their colleagues’ findings.

What do we mean by a “common scientific language”? Does a general

systems theory qualify as one? Let us briefly discuss the first question and

then, concerning the second, say simply that our interpretation of a general

systems theory is that it is a steadily evolving, common scientific language.

A large catalog of empirical scientific facts is usually not considered a

theory unless it is systematized. The more order that can be found, the shorter

an effective description of the catalog can be. If the description is sufficiently

short, it may qualify as a theory. It then usually happens that the regularities

found extend beyond the listings of the catalog. Hence the theory, as a descrip-

tion, can be very short compared with a particularization of all the scientific

facts that it contains. Indeed, these facts may be so numerous that it will

be impossible to communicate them to another scientist. However, it may

well be possible to communicate effectively the description, or theory, so

that the receiver at will can particularize any desired fact contained.

The problem here is determining how the regularities of the catalog should

be formulated so that the receiver will know how to interpret them. Even if

the description of the facts is supplied with a description (i.e., explanation)

of the first description, this second description in turn may have to be

described. A practical way out of this regression seems to be to improve the

educational system so that, for example, a basic course in mathematical logic

is taught to all potential scientists. Such a course should contain a sizable

part on formal systems and model theory. A reason for such an educational

program will be given in Section 11.2, where a hypothesis is formulated to

the effect that everything that can be effectively explained can be formalized.

There are many ways of formalizing theories, depending on how the logical

basis is chosen. However, I believe that agreement on a suitable logical basis

constitutes far less of a problem for a group of scientists than to interact

without formalizing their ideas.
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As will be further argued in Section 11.2, there is a kind of universality

about the concept of effective explicability, comparable to effective com-

putability. As we have witnessed, the modern computer has had unmistakably

unifying, interdisciplinary effects. It is my guess that a widespread use of

effective explicability could raise these effects to the plane of theory develop-

ment, and in this way serve as a basis for a common scientific language. It is

not suggested, of course, that scientists should be trained in formalizing their

ideas to such an extent that they start to think only formally. This may be

highly effective, but perhaps somewhat mechanical. Indeed, our inner ways of

producing new ideas may be incomprehensible to ourselves, and we could

not then, of course, hope to explain them effectively to a colleague. Instead,

what is suggested is that, as soon as a scientist believes that he has produced

a theory for some phenomenon, he should try to formalize the theory so as

to make it effectively communicable.

We want, then, to interpret the concept of general systems theory not

necessarily as a formal theory, but rather as a common scientific language in

the above sense, that is, as a metalanguage in which we can discuss the effects

of various logical bases for effective explanations of certain types of systems

phenomena. In the following sections we will use some mathematical logic

as such a metalanguage and discuss in it the effective explanation of learning

systems and various other particular systems.

The mathematical logic to be used is independently developed in Appendices

I and II, “Effective Computability” and “Formal Systems,” at the end of

this chapter. Reference to a definition, theorem, corollary, or example in

the appendices is indicated by affixing the letter A to the reference number.

Thus, Definition 11.1A refers to the definition numbered 11.1 in the appen-

dices.

11.2. RELATIVELY EFFECTIVE EXPLANATIONS

Asked to explain the fact that the implication relation is reflexive, a teacher

may give a proof of the theorem W=> W in the formal theory if of the pro-

positional calculus (cf. Ex. 1 1 .8A, p. 397). Thereby he provides an explanation

relative to if which may satisfy some students but not all. As the questioning

continues, he may be asked to also explain if and, furthermore, to explain

why if can be interpreted as a fragment of the English language where the

implication relation occurs. At each such further question, all the teacher can

do is give an explanation- relative to some sufficiently well-known concepts.

The explanation of W=> W relative to if illustrates a relatively effective

explanation. It is effective in relation to the interrogator in the same sense that

a program is effective in relation to a computer. It permits the interrogator to
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check (like a computer) every step in the chain of arguments and thus to

convince himself that the property in question really can be explained in

relation to $£

.

Many explanations are relatively effective even if not given as a sequence

of special symbols. The statement “If the sun is shining then either it is

raining or the sun is shining,” for example, may be effectively explained in

similar verbal statements to a person who understands (has learned or is pre-

programmed with) the postulates for the sentential connectives. Also, state-

ments which require proper postulates from the natural sciences can often

be effectively explained (or falsified) in relation to accepted postulates and

rules of inference. However, a complete reference to all postulates and rules

involved is seldom made, and so it may sometimes be very difficult for a

physicist to understand a biologist and vice versa. For the same reason, it

may even be difficult for one physicist to understand another. Such difficulties,

however, are avoidable if the explanation is a ^-explanation according to

the following definition, because a ^-explanation, as we shall see in Theorem

11.1, admits effective reconstruction of missing references.

Definition 11.1. A sequence E is a p-explanation in 9> (relative to 9^) if E is

a proof sequence in 9? and 9?
is r-formal (cf. Def. 11.18A, p. 396).

Let us emphasize that many authors simply denote as formal a theory

which here is defined as r-formal (recursively formal). However, other authors

mean by “formal theory” a more general concept. Since in this chapter

there are places where a theory has to be defined as in Definition 11. 18A,

we feel it necessary to complicate the notation with the term “r-formal.”

Theorem 11.1. With every r-formal theory 9

,

there is a Turing machine

which decides (i.e., it can be effectively decided) whether or not an alleged

explanation is a ^-explanation in 9, This is true even if the explanation does

not explicitly explain which axioms and rules of 9* have been used.

Proof. According to the proof of Tm. 1 1.41 A, p. 396, P^ ,
the set of proofs

in 9 is recursive if 9* is r-formal. Hence, by Tm. 11.3A, p. 375, with every

r-formal theory 9>
there is a Turing machine which accepts the proofs in 9,

that is, the ^-explanations in 9, and rejects all other alleged explanations.

There is no doubt, according to Theorem 11.1, that a /^-explanation in an

r-formal theory really can be agreed upon in an effective way, and in this

sense is effectively understandable.

Conversely, there are reasons to question whether an explanation cannot

be effectively understandable (relatively effective) even if it is an explanation

in a theory which does not have all of the constraints imposed on an r-formal

theory. However, in what follows, we shall be able to give support for an

hypothesis in the opposite direction.
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Explanation Hypothesis I. If an explanation E is effectively understandable

(relatively effective), then it is understandable in terms of the rules (explana-

tion arguments) and axioms (postulates) which constitute an r-formal theory

Sf, such that E is a ^-explanation in SE.

Let us first remark that this hypothesis cannot itself be proved because the

meaning of “effectively understandable” is only intuitively understood. We
can, however, give the following arguments for the hypothesis.

A first consequence of the hypothesis is that an explanation sequence

must be finitely long to be effectively understandable. An argument is simply

that each explanation step requires a nonzero time to be understood and the

whole explanation would never come to an end, that is, never be understood,

if it were not finite. However, this does not prevent nonfinite objects from
being effectively understood. For example, the set of integers can be effectively

understood by giving a ^-explanation relative to an r-formal number theory.

Next, let us examine an objection against the hypothesis, namely, that

Theorem 11.1 may hold even if the theory Sf is not r-formal but, more gener-

ally, has a recursively enumerable (instead of recursive) set of axioms. Let

us assume that the set of axioms A in the theory is recursively enumerable
so that A ={f(n) \ n e N}, where the enumerating function / is recursive.

Furthermore, let us agree to attach the integer /7, which generates an axiom
a(= f(n)) to the axiom itself as soon as the axiom occurs in a proof sequence.

Then we can effectively decide about an alleged proof sequence, whether an
<a, ^-occurrence is true in the sense that a = /(/?), because / is recursive.

Under this convention of writing a proof, the crucial argument in the proof
of Theorem 11.1 stands even though A is recursively enumerable and eventu-

ally not recursive. Indeed, we use this convention in Appendix II for the

proof of W=> Win the propositional logic (see Ex. 11. 8A, p. 397). Instead

of writing this proof as

((W=> ((JV => W) => W)) => ((W=> W)) => (W=> W))) (W=> ((W=> W) =>

W))((W=> (W=> W)) (IV=> W))(W=> (W=> W))(W=> W),

which can be effectively checked to be a proof of W=> W in J2?, we attach

the axiom number to each axiom occurrence in the proof in Appendix II

(and even supply further explanations).

Now, the main point of our argument in support of Explanation Hypothesis

I is the following. Suppose that the explanation E is effectively understandable

because of the convention of writing <a, n) instead of (a) for the axioms.

Then, although the set of axioms may be recursively enumerable, the set of

axiom-number pairs is recursive because the predicate a = f(n) is computable.

Hence the new explicit way of writing the explanation sequence E is equivalent

to a sequence written in the conventional way, where indeed the set of axioms

is recursive, that is, the reference theory is r-formal.
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Another natural objection to Explanation Hypothesis I is that Theorem 11.1

may hold even if the theory Sf is not r-formal, but instead has rules of infer-

ence that are semicomputable (Def. 11.11 A, p. 380) instead of computable.

Let R(Wh , Wh ,
. .., Win)

(Def. 11.17A, p. 396) be a semicomputable rule,

that is, the set {{W
it ,
Wh ,

. .
. ,
W

in): R(Wh ,
Wi2 ,

. .
.

,

W
it)} is recursively

enumerable (Tm. 11.17A, p. 385). Let ij/z(x) (Def. 11.1A, p. 380) be the recursive

function that enumerates this set so that i//z(m) = T(Ihmi ,
Wm2 ,

. .
.

,

Wmn),

where t is the «-tuple function according to Def. 11.12A, p. 382. To have

Theorem 11.1 hold in this more general case, we may agree always to write

<WWl ,
z, m) in a proof where we previously wrote Wmi as the consequence

of Wm2 , Wm3 ,
. .

.

,

Wmn according to the rule R (computed by z). Indeed this

is the type of explanation we supplied to the proof of W=> W in Appendix II

(see Ex. 11.8A, p. 397), although redundant in this case. We can always check

effectively whether a given triple (Wmt ,
z, m> is true in the sense that

\l/z(m) =
T(Wnt9 Wm2 , ..., WmJ because z can be effectively decoded into a Turing

machine which computes \j/z(m). Hence the new explicit way of writing the

explanation sequence is equivalent to writing a sequence according to the

conventional way, where indeed the rules of inference are computable. The
hypothesis is thus supported also on this point.

A third natural objection to the hypothesis concerns the finiteness of the

set of rules of inference in an r-formal theory. Could we not have the proof

of Theorem 11.1 stand with a nonfinite, but computable, set of computable

rules of inference? Let S be such a computable set of computable rules. Then
S is the extension of a computable predicate P(z) saying that z is the code

number of one of the computable rules of inference, say

Rz(Y,Xl9 X2 ,...,XJ.

However, since P(z) is computable,

R*(Y, z, Xl9 X29 ...
9 XJ =

defJRz(T, Xl9 X2 ,...,Xn)

is a single computable rule of inference that works on proofs where, instead

of a consequence Y, we write the pair <7, z). Provided that we accept this

way of writing proofs, we have an affirmative answer to our previous question.

We also have the somewhat surprising result that the whole computable set

of rules can be replaced by a single rule of inference, namely,

R*(Y
9
z

9
Xl9 X29 ...

9 XJ.

But if we do not affix a z to a consequence Y when writing a proof, the

answer would be negative. We would then have to decide upon

3zR*(Y
9
z

9
Xl9 X29 ...

9
Xn)

in order to know whether an alleged Y really is a consequence according to

some rule of inference. And, although jR* is computable, this predicate
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3z R* may not be computable (Tm. 1 1 . 12A, p. 382). As soon as the set of rules

is finite, however, the existential quantifier is bounded and the predicate is

computable.

Finally, let us consider the case of a recursively enumerable set S of semi-

computable rules of inference. Let f(m) be the recursive function that enumer-
ates S; f(m)

= k indicates that k is the code number of the recursive function

\j/k{v) that enumerates the extension of the wth rule of inference, Rm . Hence

f(m) = k and \jjk(v) = t (

7

Vl , YV1 ,
. .

.

,

7J implies that Rm { YVI , YV2 ,..., yj
holds. If we write our proof with a triple < 7, m, v> instead of a single 7 as

consequence, we can effectively check whether or not

'l'n«»(v) = <Y,Xl9 X29 ...
9 XJ 9

that is, Theorem 11.1 will still hold. At this point we realize that ^/(w)(v)
=

g(m
,
v) = h{%{m

,
v)), where g and h are computable functions of two argu-

ments and one argument, respectively (t is the pair function of Def. 11.12A,

p. 382). Hence it suffices to write < 7, g) instead of < 7, m, v> in the proofs.

We can still effectively compute h(g) = t(7, Xu X2 ,
. .

.

,

Xn) and thus effec-

tively check 7 as a consequence of the rules of inference, even though these

rules now are only semicomputable and the set of rules recursively enumerable.

As in the previous case it is necessary to affix a g to each consequence 7.

If we did not, we would have to verify 7 by deciding on

3g[h(g) = T(Y, 71? ..., 7„)].

This predicate, although semicomputable, need not be computable, that is,

Theorem 11.1 would fail.

All our arguments thus support Explanation Hypothesis I in the sense

that the stipulation of the reference theory as r-formal (Def. 1 1.1 8A, p. 396)

is precisely what makes the proof of Theorem 11.1 stand. It is true that we
equivalently could require that Sf possess only one rule of inference. However,
the greater ease of writing proofs in a theory with a few but finite number of

rules seems to be advantageous.

In the following sections Explanation Hypothesis I will be complemented
with hypotheses in the reverse direction, namely, that concerning the explana-

tory and predictive power of formal theories.

11.3. SYNTACTIC INFORMATION OF A THEORY

In [1] Bar-Hillel and Carnap develop a concept of semantic information.

Let Wx
and W2 be two well-formed formulas (wffs) in a formal system such

that W1 => W2 is logically true.* Then, in a semantic sense, Wt asserts all that

* A wff W is logically true, denoted N PL, if W is tautology (according to the proposi-

tional calculus) or if W is true for every interpretation (according to first-order theories).

For further clarifications of this semantic concept, see, for example, [16].
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is asserted by W2 and probably more. In other words, the information,

Inf(lTi) (conceived as a set), carried by IT, includes the information, Inf(IT2 ),

carried by W2 as a (perhaps improper) part. This stipulation, that is,

[Inf(IT2) cz Inf(tT,)] = [Y(W
l
=> W2 )],

is basic to the development in [1] of semantic information theory. Among

the models suggested for Inf(lT) is the set of all wffs W' such that t=(W=>

and such that not NIT'. The implied wffs which are logically true are deleted

because they carry no specific semantic information.

In a context of formalizability where the syntactic concepts dominate the

semantic, it is natural to conceive of information as a syntactic rather than

semantic concept. We could then say that, if IT, => W2 is a theorem in a formal

theory S’, then NT, implies (asserts) everything that is implied (asserted) by

W2 and possibly more. In other words, the syntactic information (conceived

as a set) carried by IT, includes the syntactic information carried by W2

as a (perhaps improper) part. However, instead of defining syntactic

information in terms of the special connective =>, which may even be missing

in some formal systems, it seems more natural to consider the concept of

deducibility. A wff W2 is said to be deducible in S from the hypothesis IT,,

denoted IT, VyW2 ,
if W2 is a theorem in S', obtained from S by augmenting

the axioms with the wff IT,. Thus, if IT, Y £rW2 ,
the wffs deducible in S

from the hypothesis W2 are among the wffs deducible in S from the hypo-

thesis IT,. Hence IT, is at least as informative as W2 in relation to S’ in the

sense that IT, is a stronger hypothesis than IT2 (or is at least as strong).

Every wff that is asserted by IT2 in relation to S’ is also asserted by IT, in

relation to S’. This motivates the following definitions.

Definition 11.2. I(W, S’), a syntactic information of a wff W in aformal theory

S’, is the following set of wffs in S : /(IT, S) = {X: IT Y<,X, X $ Tff.

We delete the wffs X that belong to 7> ,
the theoremhood of S, because a

theorem in S’ can be deduced from the axioms alone and hence also from

any hypothesis. Therefore a theorem does not contribute to the information

carried by a specific wff, W.

Our aim is, however, to define a syntactic information, not of the particular

wffs, but of a formal theory as such. Later we want to use this information

concept to measure the explicatory power of a formal theory.

Let us consider what usually happens in the process of formalizing experi-

mental findings. We first seek some rules or regularities in the findings. Such

rules permit us to describe the findings, not as separate facts, but as a formal

theory, say S’. Usually the rules of inference in S are of a logical nature,

fixed in advance of the formalization. The same may be true of some axioms,

called the logical axioms in S

.

The rest of the axioms in S ,
called proper
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axioms, properly result from the experimental findings. Thus, in the process

of formalizing the findings, we begin with a logical basis that is, a theory

containing all logical axioms and usually all rules of inference. Next, the

experimental findings lead us to formulate and investigate an hypothesis,

say a wff h
l

. This hypothesis is reasonable if its syntactic information relative

to 88 agrees with the information which has already been obtained experi-

mentally or which is to be obtained by further experiments (an interpretation

step is obviously involved here; because of lack of space, we want to suppress

this step as much as possible). If /q is reasonable, it will be added to the axioms

of 88 as a proper axiom, thus forming ££'. Next, an hypothesis h 2 is investigated

in relation to £8’

.

If the syntactic information of h2 relative to £f' agrees

with the information obtained by experiments, h2 may be added to the axioms

of £f\ thus forming £f\ and so on. If in this way a theory £f is obtained such

that the union of these successive syntactic informations, that is,

includes all the information that has been experimentally obtained, then £f

is a theory for these experiments.

It is reasonable, therefore, to consider Ty~Ta as the syntactic information

of the whole theory ££ relative to its logical basis 88. It may happen that the

explanation (formalization) of a certain phenomenon requires an hypothesis

that will not have the function of an axiom, but of a proper rule of inference.

In that case ££ should contain both logical and proper axioms and both logical

and proper rules, whereas J1

contains only the logical axioms and only the

logical rules of inference.

Definition 11.3. Let ^ be a formal theory with the logical basis 88
,
that is,

88 is a subtheory of £f containing only the logical axioms of £8 and only the

logical rules of inference of £f

.

Then \vf£f , 88), the syntactic information of

£f relative to 88, can be expressed as In(^, 88) = 7>-7V
It is true that the question of whether an axiom or rule of inference should

be regarded as logical or proper is not syntactic but rather semantic. However,

In(5^, 88), as a function (not as a function value), does not depend on how the

logical basis of a theory is determined. In that sense, that is, as a function,

In(^, 88) is a proper syntactic concept. This motivates the name “ syntactic

information of £f relative to 88” for In(^, 88).

Let us illustrate by example the semantic question of distinguishing between

a logical and a proper axiom. Let £8 be a first-order theory of groups, that is,

a formal theory which explains the mathematical concept of a group. For

one such theory the reader is referred to [16]. There is no doubt about the

classification of the axioms into logical and proper (properly mathematical),

with exceptions for axioms which concern the equality relation. If these

axioms are considered logical, one speaks of the group theory as a first-order

theory with equality. If instead these axioms are considered proper (properly
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mathematical), one speaks of the group theory as a first-order theory. Let 05 =

and 0 denote the logical bases, respectively; contains the axioms for the

equality relation, whereas 0 does not. Then In(^, 050) will be properly

included in In(^, 0). There is no doubt that In(^, 050) properly informs

about the group concept, whereas In(5G 0!) also contains information that

can be classified as logical as well as mathematical.

In formalizing a physical or biological theory, it may be more natural to

separate a logical basis and to classify axioms (and rules) as properly physical

or properly biological. There are, however, difficult questions involved here

too.

11.4. EXPLICATORY POWER OF A THEORY

According to Explanation Hypothesis I, every effectively understandable

explanation is a ^-explanation in an r-formal theory. We want now to examine

a converse problem: Given an r-formal theory, what understanding does it

provide, that is, what is its explicatory power? In this general context, let us

examine the following excerpt from Popper [19]:

... a full understanding of a theory would mean understanding of all its logical

consequences. But these are infinite in a non-trivial sense: there are infinitely many
situations of infinite variety to which a theory might be applicable; that is to say,

upon which some of its logical consequences may bear
;
and many of these situations

have never been thought of; their possibility may not even have been discovered.

But this means that nobody, neither its creator nor anybody who has tried to grasp

it, can have a full understanding of all the possibilities inherent in a theory; which

shows again that the theory, in its logical sense, is something objective and objec-

tively existing—an object that we can study, something that we try to grasp. It is no
more paradoxical to say that theories or ideas are our products and yet not fully

understood by us than to say that our children are our products and yet not fully

understood by us, or that honey is the product of the bee, and yet not fully under-

stood by any bee.

The richness of applications of a theory, to which Popper refers, may
certainly be considered a measure of its explicatory power. It may be difficult

to define, however, and instead we want to associate the explicatory power
of a formal theory with its syntactic information, In(^, 05). Here the

logical basis 0 reflects the preassigned logic which helps explain the proper

theorems. Such an association will permit a discussion, on a syntactic level,

of what power might be needed to explain certain phenomena (e.g., evolution).

In that direction, let us formulate the following hypothesis.

Explanation Hypothesis II. With every r-formal theory 0 and with every

contained logical basis 0
,

the nonrecursive properties of the syntactic
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information In(^, 9) reflect the explicatory power of 9 with respect to 9
as follows. If In(^', 9') < In(^", £8") (cf. Def. 11.1 6A, p. 393), so that the

reducibility function is 1-1, the explicatory power of 9" with respect to 9"

is greater than or equal to the explicatory power of 9' with respect to 9'

.

The explicatory powers are equal if also In(^", 9") < In(^', &). The

explicatory power of 9 is the explicatory power of 9 with respect to 0,
the empty set.

A theory 9 with claims to explain a natural phenomenon usually has a

logical basis 88 such that In(^, 88) is an infinite set. Since every one of the

proper theorems contained carries with it a p-explanation, that is, a proof

(which may or may not be effectively obtainable from the theorem), we can

choose to say with Popper that the theory may not be fully understood even

by its creator. He simply cannot examine each of an infinitude of proofs.

However, instead of having card In(9, 9) measure the explicatory power

of 9 with respect of 88, we want to have this power reflected by the nonrecur-

sive properties of In(^, 88).

Suppose that a certain phenomenon P has been formalized as a (e.g.,

biological) theory, 9\ and that we ask whether 9' can be translate^ into a

(e.g., physical) theory, 9"

.

This is possible if In(9
f

,
88') is strongly recursively

reducible to In(«9*", 88") so that the reducibility function is 1-1 (cf. Tm. 1 1.43A,

p. 399). Then the explicatory power of 9\ as a physical theory, is at least

as great as the explicatory power of 9\ as a biological theory.

In Section 11.10 we will see how the property of creativity (Def. 11.14A,

p. 387) suffices to explain certain forms of the phenomenon of evolution.

11.5. PREDICTIVE POWER OF A THEORY

Let {h
l
,h 2 ,

. .
.

,

hn} be a set of experimentally obtained facts. This set can

be considered the theoremhood of a formal theory 90 with {/%, h2 ,
. .

.

,

hn}

as the set of axioms, with no rules of inference, and thus with a logical basis

880 which is empty. Hence In(^0 ,
880)

= {/z1? h2 ,
. .

.

,

hn}. Such a mere listing

of the experimentally obtained facts has no predictive power whatsoever.

Not until we make an inference—which we cannot do without rules of infer-

ence—can the theoremhood contain a proper statement which predicts the

outcome of an experiment.

If the catalog {hu h 2\ . .
.

,

hn} is synthesized with the aid of some logical

basis, 9, the result will be a theory 9 such that {hu h2 ,
. .

.

,

hn}
c= In(^, 9).

Suppose that 9\ 9 is another such systematization of {/z 1? h 2 ,
. .

.

,

hn}.

Suppose further that hn+l and h'n + 1
are two conflicting proper statements

such that hn + 1 e In(^, 9) and h'n+l e In(^', 9), and such that neither hn + 1
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nor h'n+1 belongs to {hu h 2 ,
. .

.

,

hn}. Then, which of the two forecasts, hn + 1

or h'n+1 is the more likely?

The following reasoning will help in answering the question. A specification

of the proper axioms and proper rules of inference of a theory may be regarded

as a description of its proper theoremhood relative to a common logical

basis, The more rules concerning the generating part of the theoremhood,

{hu h 2 ,
• . • ,

hn}, that are discovered, the shorter can its description be, that

is, the shorter will be the string of symbols spelling out the proper axioms and

proper rules of inference. If, in the above case, the length of the proper axioms

and proper rules of Sf is shorter than that of the proper axioms and proper

rules of 9'

,

which has the same logical basis as 9

,

then hn + 1
is more likely

than h'
l + u because reflects more knowledge about the interrelationships

among the A? s than does 9 ’

.

The argument supports the following hypothesis.

Explanation Hypothesis III. Let 9 ’

and 9 "
be two formal theories with the

same logical basis, both of which explain one set of experimental facts with

comparatively short and few proper axioms and proper rules of inference.

Then, if both 9” and 9" predict further experimental results (as being proper

theorems or not), the theory with the simplest proper axioms and proper

rules has the greater predictive power, in the sense that its predictions are more

likely to agree with further experiments. The simplicity of the proper axioms

and proper rules can be measured by the total length of all corresponding

wffs (with a convention permitting a rule of inference to be written as a wff).

11.6. ORDER AND RANDOMNESS

Basic to the problem of detecting order and randomness is that of finding a

short description of a string of symbols. The more orderly a long string is, the

shorter its description can be if it utilizes the descriptive shortcuts permitted

by references to the rules. The more randomized a long string is, the longer its

description must be because fewer references to rules can be made
;
at the end

the long string has to be described by itself.

The importance of the shortest description problem in connection with our

general theme, that is, general systems theory, may be argued as follows. The

more complex the man-made systems become, the more difficult it will be to

talk of them, their behaviors, and their consequences. However, a man-made

system is planned in advance of its building. If its behavior and consequences

cannot be sufficiently well described, it will never be built. If the system is

intended to be very complex, to describe it effectively but at great length may

not suffice. It may be necessary to develop a sufficiently short effective descrip-

tion of the system. This can be done only if the system is orderly enough.
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Let us assume a widespread knowledge of logical bases in terms of which

it is possible to formalize wide classes of system behaviors. One problem is

then to study how short descriptions can be generated with respect to particular

bases. In what follows we will approach this problem by studying short

descriptions that are effective in relation to a universal Turing machine

(Def. 11.15A, p. 389).

Definition 11.4. Let x and z be words on the alphabet of a universal Turing

machine, U, with code number u (cf. Def. 11.1 5A, p. 389). Then x is said to

be a description of z with respect to u if U computes z from the standard

initial tape expression x, that is, i// u(x) = z. Moreover, x is said to be the

shortest description of z with respect to u if = z and if, for every other y
such that il/u(y)

= z, we have that the length of x is shorter than the length

of y or, if the lengths are equal, x comes before y in the lexicographical order

defined by the alphabet. The shortest form function y(z, u) has as its value

the shortest description of z with respect to u.

The problem of finding the shortest description of a long string z of symbols

with respect to a universal Turing machine U, is just the problem ofcomputing

the shortest form function, s(z, u). Hence, if s(z, u) were recursive, we would

have another Turing machine that solved our problem. In the light of the

above comments about the wide applicability of the problem, it will perhaps

not come as a surprise to learn that s(z, u) is not recursive.

Theorem 11.2. For no universal Turing machine U is s(z, u) a recursive

function of z.

Proof Assume that there is a universal Turing machine U such that s(z, u)

is recursive in z. Consider the function g(x) = pz[s(z, u) > x] (cf. Def. 11.4A,

p. 372). Because of our assumption, g(x) is partial recursive (Def. 1 1.5A, p. 373).

Furthermore, g(x) is total, because with every x there must be a string z

whose shortest description is larger than x. This follows from the obvious

fact that the number of distinct shortest descriptions is as large as the number

of strings z computable on U, that is, infinite. Hence g(x) is recursive

(Def. 1 1.5A, p. 373). This means (Tm. 11.33A, p. 392) that there exists an argu-

ment t in the domain of \//u such that \jju{t) = g(r) = gz[s(z, u)> t]. Thus U,

starting from t, computes a z, whose shortest description with respect to

the machine U is larger than t. This contradiction shows that the above

assumption is false, that is, there is no universal Turing machine U such that

s(z, u) is recursive in z.

Theorem 11.3. For no universal Turing machine U is there an algorithm for

the determination of a z such that s(z
,
u) is larger than an arbitrarily given x.
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Proof. Assume that there is a universal Turing machine U for which there

is an algorithm for the computation of /(x) such that s(f(x), u) > x. Thus,

since fix) is recursive, there is (Tm. 1 1 .33A, p. 392) an argument t in the domain
of \j/u such that \j/u(t) = /(t). This means that U, when started from t, produces

/(t), whose shortest description with respect to the machine U is larger

than t. This contradiction completes the proof of Theorem 11.3.

In [12] and [14] there are more complete results concerning the nonrecursive

properties of s(z, u). The exposition given here will suffice, however, for the

following discussion of order and randomness.

Order-randomness hypothesis. With every explicable conception of order

and randomness, there is a universal Turing machine U such that of two
equally long numbers (strings of symbols), zx and z2 ,

zt
is more ordered

(lawful) than z2 when s(zu u) < s(z2 ,
u), and z

1
is more randomized (lawless)

than z2 when s(z
x ,

u) > s{z2 ,
u).

Let z(v) stand for a string of v symbols from an alphabet of, say, n symbols.

With a simple dichotomy we could say that half of these n strings are ordered

and the other half randomized. According to the hypothesis we should then

have s(zu u) < s(z2 ,
u) as soon as z

x belongs to the ordered z(v)-strings and
z2 to the randomized. A definition which more accurately reflects the order-

randomness hypothesis is the following.

Definition 11.5. A string z of length v, written on an alphabet of n symbols,

is randomized to a degree r in relation to u if s(z, u) > s{w, u) holds for r • n
v

of the n
v

strings w of length v, where r is a rational number such that

0 < r < 1.

Hence z is randomized to degree 1 if z has a shortest description that is

longer than or equal to the shortest description of every one of the n
v
strings

of length v. On the other hand, if r is chosen close to zero, z is among the

most ordered sequences.

Theorem 11.4. For no universal Turing machine and for no degree of ran-

domization r > 0 is there an algorithm for the generation of a string z(v),

where v is an arbitrarily given length of the string, such that z(v) is randomized

to degree r relative to u.

Proof Let U be a universal Turing machine with an alphabet of n symbols.

Let x be an arbitrarily given number. Since r is nonzero, we can select a v

such that r • n
v > n

x
. This means that, if z(v) is randomized to degree r, then

s(z(v), u) is larger than the shortest descriptions of n
x
other distinct strings.

Hence j(z(v), u) itself must be larger than x, and it follows from Theorem 1 1.3

that there is no algorithm for the computation of z(v).
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Another way of defining randomized sequences is based on von Mises’

principle of the excluded gambling system. The reader is referred to Popper

[18] for a lucid discussion of this principle. Here a sequence is accepted as

randomized if it does not permit a gambler to predict the sequence so as to

win. A more accurate definition of randomness is obtained if the gambler is

rationalized and replaced by some universal Turing machine.

It is interesting to notice that the two concepts of random sequences,

although derived from distinct basic ideas, both imply that randomized

sequences cannot be generated effectively. With our definition, the reason

is the nonrecursive properties of s(z, u), which were first obtained in [12]

and then further studied in [14].

Instead of discussing the principle of the excluded gambling system, let

us here just give an example of another kind of game situation, and see how
it is connected to the notion of randomization. In the game called “ matching

pennies,” two players each put down a penny and bet as to whether the

coins will show the same or different sides. If they show the same side, whether

heads or tails, A wins; if they show different sides, B wins. The winning

player collects the opponent’s coin. Obviously, if A knows BA strategy, A can

always win. Any pure strategy employed by either player must then fail

(such as always playing heads, or playing heads and tails alternately). There-

fore the game is “indeterministic,” and “mixed” strategies come into play.

Von Neumann [22] showed that A’s best hope lay in changing his strategies

at random, preserving, however, the overall proportion of \ to \ for heads

and tails. In this way, his losses would ultimately equal his gains. For the

other player the same obviously holds true. Now, because of Theorem 11.4,

even if both players were as powerful as Turing machines, neither of them
would be able to reach the von Neumann solution. This does not mean,

however, that they could not play a balanced game. Indeed they would, if

both had the same predictive power (when looked upon as rule finders).

And the higher this power, the more randomlike would the two head-tail

sequences be. Nevertheless, if the game were played for a sufficiently long

time, the sequences would be found to be randomized not even to the smallest

degree, r (i.e., to any nonzero degree, however small).

11.7. LEARNING SYSTEMS

In biology we recognize two distinct ways of obtaining a property: it is

either acquired or inherited. An algorithm of Woodger [24] is intended to

explain the two concepts to such an extent that one can be separated from the

other.

In this section and the following ones we will study extensions of the two
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ways of producing properties in a context not solely restricted to biology.

Let us call these extensions of acquired and inherited characters “learned”

and “programmed” characters, respectively. Also, in biology, it is customary

to use the word “ learning ” for acquiring a property (as opposed to inheriting

one). Occasionally geneticists speak of genetic programs, and therefore it

seems appropriate to use the term “programming” for a generalized type of

inheritance.

It should be observed that Woodger’s algorithm for the distinction between

an acquired and an inherited character cannot be readily applied to dis-

tinguish between learning and programming simply because it is based on

the specifically biological concept of a genetical system. The following hypo-

thesis will be helpful for a distinction in the general case.

Learning-programming hypothesis. An object A can learn from a surrounding

S if A can extract order (regularities) from S. The more order that is extracted

(the shorter the description of S produced by A), the more genuine is the

quality of learning. The amount of work done by the learning mechanism

(the order-extraction mechanism) in A represents the amount of learning

done by A and is hence a subjective measure. If A obtains the properties of S
without any proper order-extraction work, A is said not to have learned S
but to have been programmed by S.

Let us indicate by a few examples how this hypothesis, abstract as it may
appear, can explain the most common conceptions of learning as they occur

in the everyday language. We often meet “learning” in sentences like “to

learn what to do.” Usually it is then not “ what to do ” which is learned. It is

primarily a regularity which is extracted, and extracted to such an extent

that its internal description will be short enough to yield a predictive power

(cf. Explanation Hypothesis III, p. 352). An inference of what to do in order

to have certain desires fulfilled can hence be made. Basically, however, it is not

what is done which is learned but the underlying regularity, even though it, as

well as the subsequent inference, may be wholly unconscious.

Also, learning through teaching can be fruitfully regarded as a regularity

extraction. A teacher usually rewards the type of behaviors he wants to have

taught. If his rewards are sufficiently attractive, his regularities are likely to

be observed by the students and a quick learning may result. Again, the

teacher may appeal to the primary learning drift (taste for discoveries), and

reveal a difficult relation far enough to whet the appetite of the student. Because

of the teacher, the amount of learning done by the student in the latter case

may be far less than that done by the researcher who learned the regularity

directly with nature as the teacher.
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It would seem plausible that almost anything could be learned effectively

with a sufficiently good teacher and a sufficiently elaborate learning mechan-

ism. As we shall see, however, this is not the case. There are problems which

cannot be learned without so much help from a teacher that the latter will

function instead like a programmer.

Consider an effective system A (a machine of Turing type), intended to be

universally learning in the sense that it should be able to extract every regularity

from a surrounding B as soon as there is an effective explanation of B.

According to the learning-programming hypothesis, the learning mechanism

of A would have to compute a shortest form function (Def. 11.4, p. 353).

Since, according to Tm. 11.2, p. 353, this is not recursive, it follows that A
cannot be an effective system. However, as we shall see in a later section,

with every B there is associated a self-describing B*. Obviously there are

systems A, and indeed very simple systems, which can “learn” from B*

simply by copying the self-describing part of B* (to obtain predictive power).

But, according to the learning-programming hypothesis, this type of behavior

is programming, not learning. Moreover, concerning programming, we know
from Tm. 1 1.27A, p. 390, that there are universal Turing machines which can

be programmed to behave like any other Turing machine.

There are several alternatives to the question of how to measure the amount

of work done by a learning mechanism. One way is to measure the work in

terms of the complexity of an irredundant computer for doing the work. If

the computer is sequential, obviously the computation time will also be a

factor. Another way would be to measure the work by the predictive power

produced by the learning mechanism (Explanation Hypothesis III, p. 352) or

by the length of a diagnosing program for the identification of the surrounding

as a machine.

11.8. PRODUCTIVE AND REPRODUCTIVE SYSTEMS

In this section and the two that follow we will examine certain phenomena

in the general area of productive, reproductive, and evolutionary systems.

Concepts like these have their strongholds in biology, where they rarely

need to be defined but can instead be directly demonstrated by reference to

our most common surroundings. Now, when we intend to embed the concepts

in an interdisciplinary systems theory, it becomes necessary to supply defini-

tions. Let us first see, however, how these concepts are used in a biological

context. In [7] Dobzhansky, writes as follows about reproduction, self-

reproduction, and evolution.
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Every species of organism reproduces itself (p. 23).

Heredity is a conservative force. If children and parents were completely identical,

evolution could not occur. Heredity, however, is opposed by a process of change,

variability. Self-reproduction occasionally results in an imperfect copy of the parental

living unit, and the altered copy, called a mutant, then reproduces the altered

structure until new mutations intervene (p. 23).

The evolutionary development of the living world has, on the whole, led from

simple to more complex forms of life. It is reasonable to suppose that this progression

from the simple to the complex was accompanied by an increase in the number of

genes which a species carries. Duplication and polyploidy are the only known

methods whereby such increase could occur, since the appearance of self-reproducing

genes from non-self-reproducing cell structures seems improbable (p. 66).

It would seem that Dobzhansky uses
46
self-reproduction” and 44

reproduc-

tion” in essentially the same sense, namely, as expressions for the property

of producing an eventually imperfect copy of a parental unit.

Let us first see how the underlying concepts, production and productive,

can be examined with reference to a logical basis. When can we say that an

object (automaton, organism) is productive?

Any property of an automaton A will have to be defined in relation to the

properties of its surrounding S. If S had no properties whatsoever, A could

be said to have properties relative to A, which, if explicable, would be ex-

plained only to A itself and hence would be of no use to us unless we were

included in A. We do not want to make such a strong assumption, namely,

to consider ourselves as automata. Rather, we want in Section 11.11 to

discuss the so-called reduction problem without having made any prejudicial

assumptions.

Definition 11.6. An object A is productive in a surrounding S if A causes S

to produce another entity B
,
symbolized by A ->d B and read as follows

:

The configuration (output state) d of A forces S to produce B. Here d can be

considered a description of B relative to S.

With a liberal interpretation of this definition, we could say that A is

productive in S as soon as A has some influence on its surrounding, S. The

reason for the actual formulation of Definition 11.6 may be clarified by the

following discussion.

Suppose that A is an automaton which is productive in its surrounding S,

of which we are part, so that A causes S to produce an entity B which is a

number, say two. Then A is capable of taking on an output state a material-

istic configuration like, for example, the sign 2 written on paper. This d forces

the surrounding (us) to conceive of it as the number two (2 forces us to pro-

duce the number two in our minds).

In general, let d be a description which has a unique effect on a surrounding
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S', such that, for example, d forces S to produce B. Then it is very natural to

say, as we have suggested in Definition 11.6, that A, which generates d as an

output state, is the cause of B in S, that is, that A produces B in S
,
or

A -» d-j* B.

IfA is productive in S, one of two things will happen : either the produced B
is again productive in S, or it is not. In the latter case B has no further effects

on S.

For example, if B is a number, and this number is neutral with respect to

the properties of S
,
then B is nonreproductive in S. On the other hand, if B

is productive in S
9
we will have the same two alternatives concerning the

object C which is produced by B in S, and so on. It is this property of pro-

ducing offspring that are again productive, and so on, that we want to refer

to as being reproductive.

Definition 11.7. An object A is reproductive in a surrounding S if there are

objects A
{
with descriptions d

t
such that

A^d1
-^A

l
and A

t
-> d

i + 1 -j+A i + 1 for i = 1, 2, 3,

(An object A is n-productive in a surrounding S if the /-index in the above

stipulation is delimited to the set {1, 2, . .
.

,

n — 1}.)

Eventually, this definition of reproduction may be considered an abstract

form of the following biological definition, found in Henderson [8]:
“ Repro-

duction: Continuation of species or race, sexually or through cell rupture,

cell-division, budding, spore-formation, conjugation, or parthenogenesis.”

In Definitions 11.6 and 11.7 we have the notion of a description d of B
in a surrounding S. As explained, this means that d forces S to produce B.

Again, this is possible only if S has some properties.

By way of example, let us consider a productive system which produces

Turing machines. Previously we have considered certain code numbers, z,

for Turing machines (Def. 11.9A, p. 378). Such a code number z is indeed a

description of a Turing machine Z in relation to us, who can effectively decode

z into a list of quadruples and, furthermore, effectively build a machine Z
which has all the characteristics implied by z. (The problem with the potentially

infinite tape may be overcome by using a tape-adding mechanism which is

influenced by the computation of Z.) The point is that all the decoding and

building steps are effective and could be done as well by a machine, M,
which operates in a surrounding, S,

which is far more simple than the one

which contains ourselves (as decoders and builders). In addition to M, S may

just contain the types of building blocks which suffice for constructing any

specific Turing machine. The properties of these building blocks constitute

the property of S which permits a productive system A to produce any

Turing machine, Z
t ,

that is, A d
i
-+Z

i
. Notice that here the descriptions d

t ,
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which are effective in relation to the surrounding S,
no longer need be the code

numbers z
t ,
which were effective in relation to ourselves. The ^-descriptions

are (sequences of) output states from A which directly force S to produce the

Turing machines Z
{

. Such a surrounding S will be said to be complete with

respect to the class of Turing machines.

Definition 11.8. A surrounding S is said to be complete with respect to a class

C of constructs if, with each e e C, there is a description d which forces S
to produce e.

Definition 11.9. STM is a surrounding which is complete with respect to the

class of Turing machines, so that the description c(z) forces *SXM to produce

Turing machine Z. Here, z is the code number of Z, and the code function c

is recursive.

The reader is referred to von Neumann [23] for discussions of various

SXM-surroundings.

11.9. SELF-PRODUCTIVE SYSTEMS

Let us examine the word “self-reproductive” (cf. the excerpt from

Dobzhansky in Section 11.8) from a logical point of view. There are two

distinct but natural interpretations. One is to say that A is self-reproductive

if, first of all, A is reproductive and, second, A reproduces a copy of itself.

The other interpretation is that A is self-reproductive if A is reproductive by

itself, that is, A is reproductive in a surrounding with no properties. In

accordance with our previous comments, we will not be concerned with such

surroundings here. Instead the interested reader is referred to [13] for a study

of this more abstract form of self-reproduction, there called complete self-

reproduction.

In this chapter we will be concerned only with the first interpretation,

namely, that A is self-reproductive in S if A is reproductive in S and produces

a copy of itself in S. Notice that we can equivalently say that A is self-repro-

ductive in S if A produces a copy of itself in S
,
for if A produces A in a

surrounding S, we have that there exist objects A
t ,

namely, A
t
= A, such

that

A-^d1 -^A 1
and A

t
-» d

i + 1
~^A

i + 1
for / = 1,2,...,.

Thus A is reproductive according to Definition 1 1.7. Hence a logically irredun-

dant notation for this phenomenon is that A is self-productive (instead of

self-reproductive).
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Definition 11.10. An object A is self-productive (self-reproductive) in a sur-

rounding S if A produces a copy of itself in S.

Corollary 11.1. If A is self-productive in S, then A is reproductive in S.

In biology, various forms of self-production are known. Let us here demon-
strate that these phenomena can also be effectively explained so as to permit

us to build self-producing, although nonliving, automata.

Theorem 11.5. There exists a Turing machine which is self-productive in an

£XM-surrounding (cf. Def. 11.9, p. 360).

Proof According to Definition 11.9, it suffices to prove that there exists a

Turing machine E, with a code number e, such that E computes its own
description, c(e), relative to STM . The existence of such an E follows easily

by applying the Kleene recursion theorem (Tm. 1 1.30A, p. 391) to the recursive

function g(y, x)
= ciUfiy, x)) (= c(y); cf. Def. 11. 5A, p. 372). We then obtain

an e such that ij/e(x) = g(e, x)
= c(e). This e is the code number of a Turing

machine E which computes description c(e) such that c(e) forces *STM to pro-

duce another Turing machine E.

In [23] von Neumann gives a detailed study of automata which are self-

productive in a so-called tessellation surrounding. He discusses various

connected problems of mathematical logic (but not explicitly the recursion

theorem). In [11] Lee presents a proof of the existence of a self-describing

Turing machine. Lee’s proof could have been simplified by a direct use

of the recursion theorem. In fact, the power of this theorem is so great that

the short proof it yields for Theorem 11.5 may give the impression that the

existence of a self-producing Turing machine is not very noteworthy. How-
ever, if one tries to modify the quadruples of a Turing machine to have it

compute its own code number, it is a surprise to learn that such a machine
really exists. Furthermore, the proof given for the recursion theorem is con-

structive in the sense that it indicates how such a self-producing machine
can be constructed, given the properties of an 5TM-surrounding.

Theorem 11.6. There exists a pair of symbiotically self-producing distinct

Turing machines, M and N
,
such that M produces N and N produces M in

an *SXM-surrounding.

Proof According to Def. 11.9, p. 360, it suffices to prove that there exists

a pair of distinct Turing machines, M and A, with code numbers m and w,

respectively, such that if/m(x) — c(n) and ij/n{x) = c(m), where c is the recursive

*SXM-code (cf. Definition 11.9). By the Kleene projection theorem (Tm. 11.1 5A,
p. 384), there is a recursive function g(y) such that 4f

g(y)
(x) = c(y) and

c(d(y)) > cO7)- [With the notations of Theorem 11.15A we would have
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\KSy > x) = c(y) = 'l'q>(zo,y)(x')> that is
> diy) = <p(z0 ,y); furthermore, we have

chosen q(x) = c2(x)
= c(x).] Hence we have both ^g (y

)(x) = c(y) and

^g(g(y))(x) = c(g(y)). The question is now whether we can find a particular y
such that, not necessarily g(g(y)) = y, but ^g (9 (y

))(x) = ijj
y
(x). We can, because

Tm. 11. 31 A, p. 392 (the second form of the recursion theorem) ensures a

number n such that ^(^(n»W = iA„(x) [the function g(g(y)) is recursive in y
according to Tm. 11.1 A, p. 374]. With ra for#(«) we thus have a pair of numbers,

m and n
,
such that ij/Jx) = c(n) and i/^(x) = c(m). Furthermore, since

c(g(y)) > c(y), we have that c(m) > c(n). Consequently the machines N and

M
,
which compute c{m) and c(n), respectively, must be distinct. This com-

pletes the proof of Theorem 11.6.

In the case of a pair of symbiotically self-producing machines, M and N,

we have a self-production cycle of length two
;
M produces N

,
which produces

another M. The proof of Theorem 11.6 can obviously be modified so as to

give the existence of a self-production cycle of any finite length.

Besides being self-productive, a machine M can also perform some other

function. It may, for example, compute a function f(x). Then M computes

both f(x) and its description c(m) relative to STM . If the value f(x) is not

supposed to be interpreted by *SVM as a description of a machine, f(x) may
have to be kept apart from the produced description, c(m). Let t(x, y) be a

corresponding recursive pair function which is effective in relation to STM
so that t(x, y) is interpreted by STM as a neutral value x and a description y
of a machine.

Theorem 11.7. With every partial recursive function f(x) there is a self-

producing Turing machine which computes f(x).

Proof. By the above comments it suffices to prove that there is a Turing

machine M, with description c(m), such that ij/m(x) = t(/(x), c(m)). For any

partial recursive /(x), t(/(x), c(y)) is partial recursive in x and y. Hence, by

the recursion theorem (Tm. 11.30A, p. 391), there is a number m such that

^TO
(x) = t(/(x), c(m)). This completes the proof of Theorem 11.7.

11.10. EVOLUTIONARY SYSTEMS

Mayr [15] and other eminent biologists have called the theory of evolution the

greatest unifying theory in biology. With the unifying property of general

systems theory in mind, we ask whether, in turn, there are systems theories

with an explanatory power great enough to permit effective explanations of

some theories of evolution as they occur in philosophy, biology, and other

sciences.
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When talking about evolution in general, it may be appropriate to dis-

tinguish between two types: evolution by reproduction and evolution by

production. Biological evolution (cf. the excerpt from Dobzhansky in

Section 11.8) exemplifies evolution by reproduction. Evolution is here carried

on by biological individuals with a life span which is short compared to the

duration of the evolution. Some individuals are reproductive, however, and

this is how evolution carries on: by successively reproducing new generations.

If there are no truly reproducing individuals, an 77-productive (Def. 11.7,

p. 359) individual and its successive generations may account for an evolution

with a duration of n generations.

The evolution of a theory may be taken as an example of evolution by

production. Usually the main body ofthe theory is never completely destroyed,

but functions as a productive center around which new hypotheses are

generated, examined, and eventually accepted as new axioms. Then it is the

whole production phase that carries the evolution.

We will not go into the question of whether there is an effective way of

distinguishing between evolution by reproduction and evolution by produc-

tion. It may well happen that evolution by reproduction can be considered

a special case of evolution by production. Let it suffice here to say that

biological evolution by reproduction is probably the best documented of all

evolutionary phenomena. Hence we could not claim to have a formal theory

explain a typical phenomenon of evolution if it cannot explain an evolution

by reproduction. This is the only type which will be considered here.

So far we have been able to demonstrate the existence of a very special

kind of reproduction, namely, self-production (self-reproduction). If the

successive generations of an individual all look the same, they certainly cannot

be said to be the carriers of an evolution. A kind of change is invariably

associated with evolution. Evolution by reproduction requires a nonperiodic

change in the series of new generations. Let us ask whether it is possible to

explain effectively an individual with the property not only to be productive,

but also to have its offspring productive so that all succeeding generations are

also productive and, furthermore, distinct, each from the other. At first

glance, the difficulties involved in constructing such an individual seem

insurmountable. However, the recursion theorem will help us out here, too.

Let us consider Turing machines that are productive in an *STM-surrounding.

Then, what we are looking for is an infinite series of code numbers, zl9 z2 ,

z 3 ,
. .

.

,

such that ^Zl (x) = c(z2), i//Z2(x) = c(z3), i//Z3(x) = c(z4), . .
.

,

and such

that the machines are all distinct. If this series Zl9 Z2 ,
Z3 , . .. is going to

be explicable, there must be a recursive function g(i), such that g(i) = z
f ,

that is, \}jg(y)
(x) = c(g(S(y))) for all v: and y(S(y) is the successor function of

Def. 11.5A, p. 373). In order to prove that a solution exists for this partial

evolution equation, we need the following theorem.
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Theorem 11.8. With every recursive function c(x) with a nonfinite range,

there is a recursive function f(z,y) such that \jjf{Zfy)(x) = c(ip z(S(y))) and

c(/(z, j>)) > y.

Proof. By Tm. 11 .27A, p. 390, h(x, y, z) = defc(il/ z(S(y))) is partial recursive

in x, y 9
z. Hence there is a code number e such that \j/fx, y, z) = c(\jjz(S(y))).

Choosing the functions c
x
and c2 of Tm. 11.1 5A, p. 348 as c and the identity

function, respectively, we obtain from Theorem 11.15A a recursive function

cp(e, y, z) such that (x) = c(\j/z(S(y))) and such that c(<p(e
9 y 9

z)) > y.

Hence /(z, y) = dc{(p(e, y, z) is the desired recursive function.

We can now prove the following theorem.

Theorem 11.9. There is a recursive function g(y) which satisfies the partial

evolution equation, i//
g(y)

(x) = c(g(S(y)))
9 so that no two of the machines

produced, G0 ,
Gl9 G2 ,

.
. * are alike [machine Gi+l has code number

g(i + 1); the description c(g(i + 1)), which forces STM to produce G i+1 ,
is

produced by machine GJ.

Proof. Applying the recursion theorem (Tm. 1 1 .30A, p. 391) to the function

f(z, y) of Theorem 11.8, we get a number m such that f(m, y) = \j/m(y).
Hence according to Theorem 11.8, = ctym(S(y))).

Thus there is a g(y) = def ^m{y) such that - c(g(S(y))) and c(g(y)) =
c(f(m , j)) > y. If two machines, M

t
and Mj (/ / j) 9

in the produced machine

sequence G0 , Gl9 G 2 , ... were alike, they would produce similar offspring

and the machine sequence would be periodic. Hence there could be only a

limited number of distinct offspring. This contradicts c(g(y)) > y, which

implies that an unbounded number of distinct descriptions c(g(i)) is produced

by Gy-machines. Hence there must be also an unbounded number of distinct

Gy-machines, that is, no two machines in the sequence can be alike.

Theorem 11.9 with its proof can be interpreted as describing an effective

construction of a Turing machine G0 which in STM will be the ancestor of a

forthcoming steadily changing sequence of reproducing offspring. Whether or

not this sequence should be termed evolutionary depends on what further

functions the machines G
t
may have. None has been specified so far. However,

we could say that every machine that would give rise to an effectively explic-

able evolutionary series of new generations in STM would have to correspond

to a recursive ^-solution to the partial evolution equation of Theorem 11.9.

Let us now modify the evolution equation so that it will account for not

only a changing reproductive structure, but also a normal behavior for each

individual of the evolving sequence. With reference to an STM-surrounding,
this is done with the aid of a pair function, z(y

9
x), whose value is interpreted

by ^tm partly as a neutral object x and partly as a description y. Thus, if
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there is a function g such that
\
//
g(y)

(x) = x(c(g(S(y))), f(y ,
x)), we may interpret

it as follows: g(y) is the code number of a Turing machine, G
y ,

which partly

produces another Turing machine, Gy+U with code number g(y + 1) and
partly computes the function /(y, x). Again, Gy+1 is reproductive and com-
putes the function f(y + 1, x), and so forth.

Theorem 11.10. With every partial recursive function (normal behavior)

f(y, x) there exists a recursive function g(y) which solves the partial evolution

equation ^(j0
(x) = x(c(g(S(y)))

9 f(y , x)), c(g(y)) > y.

Proof. Upon observing that x (c(i//z(S(y))), f(y, x)) is partial recursive in

x, y ,
z, we can continue just as with the proof of Theorem 11.9. There exists

an e such that ij/ e(x 9 y, z) = r(c(i// z(S(y))), f(y, x» = ^ ( e, y>Z
)(x), where,

according to Tm. 11.15A, p. 384, h(y, z) = de{ cp(e, y, z) is recursive and
c(h(y

,
z)) > y. Applying Kleene’s recursion theorem to h(y, z), we conclude

that there is an m such that h(y
, m) = ij/m{y). With g(y) for the recursive

function h(y, m) we thus have

^g(y)(x) = <c('l'm(S(y))\f(y, X)) = x(c(g(S(y))f f(y, x))

and c(g(y)) > y, which completes the proof of Theorem 11.10.

Comparing Theorem 11.10 with Tm. 11.7, p. 362, we see that, in regard to

normal behaviors, a self-producing machine can do just as much as an evolv-

ing reproductive series of machines. It is true that the normal function of

Theorem 11.7 is specified with only one variable, whereas in Theorem 11.10

the first variable of the normal function is connected with the generation

number so as to account for a change in the normal behavior as well. Such a

change can also be accomplished with a pure self-producing structure by

having the first machine, M, compute the normal function f(a). Furthermore,

the second generation M, which also computes the function f should now
compute on the result f{a) of the previous generation. Thus /(/(a)) will be

computed, and, at the nth generation, f
n
{a).

In [17] Myhill develops a theory for this kind of evolution by self-produc-

tion. Concerning the choice of the /-function, Myhill chooses f
n
(a) to be the

description of a nonproductive automaton which enumerates the theorems

of a theory Tn such that, for each n, Tn+1 is richer in content than Tn . In this

way he meets with a criterion, namely, the ability to solve a new problem,

which is often stipulated for an evolutionary process.

The difference between evolution by self-production (cf. Myhill [17]) and
evolution according to the partial evolution equation of Theorem 11.10

may be exemplified as follows. In an evolution by self-production it is not

the self-producing structure that evolves, but instead the normal behavior

of this structure. Although this new generation computes the same function
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as a previous one, it computes on a new value, namely, that produced by the

previous generation. Hence this type of evolution can be called evolution of

behavior
,
whereas evolution according to Theorem 11.10 is evolution of

structure (and at the same time evolution of behavior). In biology evolution

of behavior may be quite rapid, as when one generation of Homo sapiens

works on the results of a previous generation. The structural evolution

of the species Homo sapiens
,
however, is comparatively very slow.

Finally, let us see how the normal function f(y, x) of Theorem 11.10 can

be determined so as to exhibit a specific evolution character. As we know

(Tm. 11.41 A, p. 396), the theoremhood of an r-formal theory is always recur-

sively enumerable. Hence, with every such theory there is a code number z

such that S[z] (cf. Def. 11.14A, p. 387) is the theoremhood, say Tz ,
of the

theory SP

.

Again, S[z] ,
that is, Tz ,

is enumerated by a recursive function

*A<p(z)(x) such that cp(z) is recursive (Tm. 11.1 8A, p. 386). What will happen if

f(y, x) is chosen as the description of a Turing machine which enumerates

the theorems of T
y ,

that is, f(y, x) = c(cp(y))l According to Theorem 11.10,

the machine G
y

will produce both a reproductive machine, Gy+lJ and the

eventually nonreproductive machine, Z
y ,

which enumerates the theorems of

T
y

. In turn, Gy+1 produces Gy+2 andZy+1 ,
which enumerates Ty+1 ,

and so on.

Next, let us see whether it is possible to specify a recursive function /(y, x)

such that a specific sequence of enumerating machines will be produced. If

the enumerating machine Z generates only
44
true ” statements, the Z-machine

of the next generation enumerates further new 44
true” statements, and so on,

then the sequence of reproducing G-machines could be said to be evolutionary.

Let Q be a set of all true statements of a certain form. Such sets are usually

productive (cf. Ex. 11.10A, p. 401). For example, let the predicate P(x) be

defined as follows: “When started on the argument x, Turing machine X
,

with code number x, never halts.” Then the set of all true statements of the

form P(x) is productive. This follows from the fact that the set

K={x: 3yT(x
,
x, y)}

is creative (cf. Tm. 11.24A, p. 388), that is, Q = K= {x: 1 3yT (x, x, y)} is

productive (cf. Def. 11.14A, p. 387). From the productiveness of the set of

truths, Q ,
it follows that there is a partial recursive function h(x) such that

[Tz czQ]=>[h(z)eQ]&[h(z)$Tz ].

By Tm. 11.16A, p. 385, there is a recursive function r(z) such that

3y[F(z, x, y) v x = h(z)\ = 3yT(r(z\ x, y).

Hence Tr{z) = Tz u {h(z)} is a recursively enumerable set (a theoremhood of

an r-formal theory) which contains only true statements (Q-elements) and
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one new true statement relative to Tz . Since Q is productive, we can repeat

this process indefinitely without exhausting all true statements of Q. In

particular, Tr(r(z)) contains only true statements and one which is new relative

to Tr(z) .

Hence let us define f(y, x) = def cOK**
3

^))). Here r
y
(z) is the jth composition

of r, obtained by primitive recursion (Def. 11.3A, p. 372) from r and hence

recursive (Def. 11. 5A, p. 373). Then the following evolution characteristic

will result. The behavior of the machine G
y ,

produced at the yth generation,

will be partly to produce a reproductive machine, G
y + 1 ,

and partly to produce

the eventually nonreproductive machine, Z
y ,

with description c(cp(ry(z))).

Here Z
y
enumerates all truths which have been enumerated by previous

generations and, in addition, a truth which has never been revealed before.

Thus we have been able to give an effective description (rather, an outline

which, however, can be completed to the level of a blueprint) of a machine

G0 ,
such that G0 in an SXM-surrounding will be the ancestor of an evolving

sequence of offspring. For the description, we have used a property of a

creative set, K. Indeed, there are r-formal theories with high explicatory

power, so-called creative theories, which are semicomplete with respect to

the creative sets (cf. Def. 1 1.25 A, p. 400). However, in predicting the behavior

of this effectively described machine (70 ,
we have gone still further with the

set of truths, g(= K). This set, being productive (i.e., not recursively enumer-

able), cannot be defined as the theoremhood of any r-formal theory. Indeed,

the set of all truths ever enumerated by the offspring of G0 ,
namely,

T = {w: 3y 3v T(ry
(zl w, v)},

is recursively enumerable and cannot exhaust all truths of Q.

In light of this general systems discussion (i.e., metadiscussion of, e.g., the

set Q), we may well look upon G0 as a machine which is programmed for

evolution (cf. the discussion of Myhill [17]).

11.11. COMMENTS CONCERNING GENERAL SYSTEMS THEORY
AND THE REDUCTION PROBLEM

The problem of whether one science, for example, biology, can be reduced

to another, such as physics, is known as the reduction problem. The meaning
of “reduction” will obviously have to be informal as long as the sciences

are informal. On the other hand, if the sciences are formal theories, we suggest

that the reduction problem can be formalized as the question of whether one
of the theories can be translated into the other in the technical meaning of

Def. 11.24, p. 399.
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The effects of a general systems theory on the reduction problem may be of

various kinds. First, a general systems theory, if sufficiently developed with

mathematical logic, may contribute to a widespread formalization of scientific

disciplines. In that sense, it will make the reduction problem, at least for

sufficiently small disciplines, meaningful.

Second, the interdisciplinary character of a general systems theory is likely

to reduce the borders between the sciences. As a result of the systems theory,

a conflict between some axioms of two sciences may be revealed. If both are

natural sciences, the effect of such a discovery is likely to be a change in the

theories such that they may be united by a systems theory.

The more sciences a general systems theory unites, that is, reduces within

its explicatory power, the likelier it is that its predictive power will be small

unless it develops into a special general systems theory. In this context, the

remark by Klir [10] that “no permanent scientific explanation can be made

only on the basis of empirical data” is relevant. Indeed, it reflects the

importance of using a carefully selected logical basis to obtain both expli-

catory power and predictive power from a set of experimental facts (cf.

Explanation Hypotheses II, p. 350, and HI, p. 352).

One area where the reduction concept appears particularly interesting is on

that border between automata theory and biology where evolutionary pheno-

mena are discussed. As we have seen in Section 11.10 automata aspects

suggest that evolutionlike phenomena can be programmed in the code which

transmits structural information from one generation of automata to the next.

Are there biological theories of evolution with explicatory powers such that

phenomena of this type can be translated into them?

It would seem that recent biological findings concerning repair enzymes in

procaryotic cells may account for one such translation. Accordingly, DNA-
strands can be encoded to direct the production of an enzyme which to a

certain extent repairs DNA-errors. Such a strand can be said to contain a

partial program of evolution in the following sense. The repair enzyme

cannot possibly repair all errors, but will take care of some; hence they may

be classified as “undesirable” errors. Other errors will pass and among them

will be the “desirable” mutations. Therefore, due to the DNA-program, the

probability of certain changes (mutations) will be higher than the probability

of others, and we can speak of a partially programmed evolution.
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APPENDIX I. EFFECTIVE COMPUTABILITY

Among the prerequisites from mathematical logic which are developed

here, formal systems play a central role. Since formalizability is highly

dependent on the idea of computability, and because we also need many
particular computability results, it seems appropriate to present separate

appendices—the first one on effective computability and the second on formal
systems.

In regard to effective computability, let us emphasize that a description

(instruction) is usually considered effective if it can be executed by a machine.

Man himself is then not to be considered, a priori, as a machine. A machine
is a perfect deterministic, materialistic device. By hypothesis, a description

is effective in an absolute sense, if computable by a so-called Turing machine.

1.1. TURING MACHINES

Abstracting from all powers of man except his ability to compute, Turing

[21] has argued that any computation done by a human being could as well

be performed on a Turing machine. This remarkably simple device is supplied

with a tape, potentially infinite in both directions and divided throughout
into squares. Each square may be blank or have printed on it a symbol out
of a finite alphabet K,^2 > •

,

sm }. The tape passes through the machine
in such a way that in a given situation the machine scans just one square.

The machine is capable of being in any one state of a finite set of states

{q0 ,<h, •••,?„}•

Scanning a square, the machine determines its next move from its present

state, q t ,
and the scanned symbol, . Depending on (q t , Sj), there are

four possibilities: a halt in operation, a change of the symbol being scanned,

or a change (movement) of the scanned square to the right or to the left.

With the exception of the halt, of course, the moves are followed by a specified

change of the machine state.

The behavior of a Turing machine can therefore be completely determined

by a finite list of quadruples of the form
, Sj

,
sk , q,} or (q t ,

Sj
, R, q,} or

<<h ,
Sj

,
L, c/

; >, such that no two quadruples in the list begin with the same
pair <g ; , Sj>. If the machine is in state q t ,

and scans the symbol Sj
,

it prints

the symbol sk and changes its state to q l
if the list contains the quadruple

<?> >
s
j >

sk , qi >• If instead there is a quadruple <q t , Sj
,
R, q,) «q t , Sj

,
L, q t }),

the machine moves one square to the right (left) and changes its state to q,

.

If there is no quadruple beginning with <q t ,
Sj}, the machine stops in state

q t , scanning the symbol Sj

.
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1.2. COMPUTABLE FUNCTIONS

In regard to computability, there is no loss of generality to assume that

the symbol aphabet is binary {.B , 1}, where B stands for a blank square.

Definition 11.1A. The function ij/z(xx ,
x2 ,

. .
.

,

xn) computed by a Turing

machine Z is defined as follows: ^z(m x ,
m 2 ,

. .
.

,

mn)
= m if and only if Z,

being in state q0 and scanning the leftmost 1 of the tape expression,*

l
mi + 1Bl m2+1B ... Blmn+1 ,

proceeds according to its quadruples and finally halts with a tape containing

m l’s. If instead Z never halts within a finite number of operations when

beginning its computation from the argument <m 1? m2 ,
. .

.

,

ra„>, this argu-

ment is said not to belong to the domain of \jjz . A function f(xl ,
x2 ,

. .
.

,

xn)

is partially computable if there exists a Turing machine Z such that

/(X, X2 ,
...,X„) = t//z(xu X2 ,

. . . ,
X„).

If, in addition, f(xu x2 ,
. .

.

,

xn) is a total function, that is, is defined for all

^-tuples <xl5 x2 ,
. .

.

,

x„>, it is called computable.

It follows that in the process of computing a function for a well-defined

argument in its domain, the number of l’s printed on the tape will always be

finite.

It should be pointed out that Turing [21] himself did not define comput-

ability precisely as in Definition 11.1 A. He was interested primarily in com-

puting decimal point expansions of numbers like the transcendentals n and e,

which he proved computable. He therefore talked about a machine as com-

puting a sequence if it did not stop.

The exposition chosen here, that of Davis [5], is more natural than Turing’s

when dealing with the computability of functions with both arguments and

values defined in the set of integers, N = {0, 1, 2, 3, . . .}. All functions dealt

with here are of this type.

Example 11.1A. The Turing machine which is defined by the following list

of quadruples:

<q0 , 1, B, q0 }, (q0 ,
B, R, q t }, (qu 1, R, qj), (qu B, R, q2 }, (q2 , 1, B, q2 >

* \
m symbolizes a sequence of m consecutive l’s, that is, the whole tape expression is

I 1 UUI- - Ul UN- - M M • • M 1

1
1

1
1

---
\\\ I I

mi + 1 m2 + l mn +

1

A reason for adding an extra 1 to each block of m Vs becomes apparent upon considering

tape expressions for the number 0 and the pair <0, 0>.
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computes the function f(x, y) = x + y. If the machine starts from the argu-
ment <1, 2>, for example, it will perform as follows:

Qo <h

1 1

1
1

1
1

1 1
1

1
1

1 1 |
l l l

1
1 l

1 1
1

1
1

<?2

1 1 1

1
1 1

1
1

1
1

1
1 1 1 1 1

1
! 1

1
1

1
1

1
1 1

<7i Q 2

1 1 1 M 1 1
1

1
1

1 1 1
1 1 1

ll
1

1 1
1

1 1 1

Since there is no quadruple in the

machine halts after having erased

list, beginning with the pair <q2 , B}, the

two l’s, thus producing (1 + 2 =) three

l’s on the tape.

1.3. TURING’S AND CHURCH’S HYPOTHESES

In 1936 Turing [21] and Church [2] advanced hypotheses concerning the
nature of effective computability. In the following we have slightly reformu-
lated Turing s hypothesis which was originally stated in terms of computable
numbers.

Turing’s hypothesis. Every function which can naturally be regarded as

computable can be computed by a Turing machine.

Church’s hypothesis. Every effectively calculable function is recursive.

The recursive functions will be defined in the next section. As proved by
Turing [21], these two hypotheses are equivalent in the sense that the total

computable functions are equivalent to the recursive functions (compare
also Tm 11.7A, p. 378).

The hypotheses themselves cannot be proved true because of the lack of
precise meaning of “ naturally be regarded as computable ” or “ effectively

calculable.” They may be motivated, however, and Turing [21] advances the
following arguments. The behavior of a human computer at any moment
is determined by the symbols he is observing and by his “state of mind” at

the moment. The number of symbols which he can recognize is finite, for if

we were to allow an infinity of symbols there would be symbols differing

to an arbitrarily small extent. Again, if we admitted an infinity of states of
mind, some of them would be arbitrarily close and would be confused. As
we are considering computation by a preassigned method, the possible states
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of mind are fixed in advance of naming the particular arguments and we do

not allow mathematical invention in the midst of the computer’s performance.

These limitations on the behavior of the human computer in the act of

computing the value of a number-theoretic function of given arguments are

of the same kind as enter in a Turing machine. The machine state corresponds

to the computer’s state of mind, and the tape to the symbol space (sheets of

paper) of the computer.

The human computer may appear less restrictive in behavior than the

machine in the following senses. First, he can observe more than one symbol

occurrence at a time. Next, he can perform more complicated atomic acts

than the machine, and his symbol space need not be a one-dimensional tape.

Furthermore, he can choose some other symbolic representation of the argu-

ments and function values than that used in the above definition of a Turing

machine. Turing convincingly argues, however, that each of these different

modes of operation can be effectively reduced to Turing machine operations.

On that point the reader is referred to Turing [21] or to Kleene [9].

1.4. RECURSIVE FUNCTIONS

There is an entirely different way of introducing the computable functions

by means of a regular definition of a set of initial functions which, together

with a couple of operations, generate all computable functions. When intro-

duced in this way, the functions are called recursive instead of computable.

Although the two operations, composition and minimalization, are sufficient

to generate the recursive functions, we will also indicate another operation,

primitive recursion, which preserves recursiveness.

Definition 11.2A. The operation of composition associates with the functions

f(yi, y2 ,
• • • , yj, 9i(x), g2 (x), • • ,

g,„(x), the function

h(x) = f(g1
(x), g2(x),

g

m(x)).

This function h(x) is defined for precisely those x in the domain of each

^-function for which (g^x), g2 (x), . .
.

,

gm(x)) is in the domain of/. For the

variable x may be substituted an 77-tuple <A1? x2 ,..,,xn ).

Definition 11.3A. The operation of primitive recursion associates with the

total functions f(x), g(z
, y, x) the function h(z, x), such that h(0, x) = f(x),

h(z + 1, x) = g(z, h(z, x), x). For the variable x may be substituted an

/7-tuple 01? x2 ,

Definition 11.4A. The operation of minimalization associates with each total

function f(y, x) the function h(x), whose value for a given x is the least value
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of y, if one such exists, for which f(y, x)
= 0, and which is undefined if no

such y exists. The minimalization operation is written h(x) = py[f(y, x) = 0].

The total function f(y, x) is called regular if py[f(y, x) = 0] is total. For the

variable x may be substituted an /7-tuple <xl5 x2 ,
. .

.

,

xw >. [As a predicate,

f(y, x) = 0 may be denoted as P(x, y). With P(x, y) for an arbitrary predicate

gy P(x, y) is the function of x, whose value is the least value of y, if one such

exists, such that P(x, y).]

The regular definition of the recursive functions is as follows.

Definition 11.5A. A function is partial recursive if it can be obtained by a

finite number of applications of composition and minimalization beginning

with functions of the list:

1 .

2 .

3.

4.

5.

S(x) = def x + 1

t/j (Xj_, X2 5
• • • ,

Xn) def

x + y

_ jx-y if x>y
y def

\0 if x<y
xy

the successor function

the projection functions (1 <i <n)
addition

proper subtraction

multiplication

A function is recursive* if it is partial recursive and total. (A function is

primitive recursivef if it can be obtained by a finite number of applications

of composition and primitive recursion, beginning with the functions of the

above list.)

Example 11.2A. The function a(x) = 1 — x, that is, a(0) = 1, a(x) = 0 for

x > 0, is (primitive) recursive. This is easily seen by the decomposition:

«(*) = SiU^ix) - U^ix)) - U
x
\x)

which shows that a(x) satisfies Definition 11. 5A.

Example 11.3A. The function [^/x], defined as the largest integer < ^Jx, is

recursive. First let us observe that y = [Jx] is the smallest integer such that

y > a/x - 1, that is, such that (y + l)
2 - x # 0. Hence, we can decompose

[yjx] as follows:

W = wl(y + i )
2 ^ x # o]

= ny[a[S(U2
2
(x, y)) S(U2

2
(x, y)) U^ix, y)} = 0],

that is, [y/x] satisfies Definition 11. 5A.

* Davis [5] defines the recursive functions in a slightly different but equivalent way.

f The primitive recursive functions constitute a proper subclass of the recursive functions,

and the operation of primitive recursion preserves the property of being recursive; the

reader is directed to Davis [5] for proof.
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In order to prove that the partial recursive functions are partially com-
putable, it suffices to prove that the initial functions are computable and that

the operations of composition and minimalization preserve partial comput-
ability. (In the same way, a proof that the operation of primitive recursion

preserves computability yields a proof that the primitive recursive functions

are computable.)

We have already seen (Ex. 11.1A, p. 370) that initial function number 3 is

computable. The computability of the other initial functions can also be

established by exhibiting lists of quadruples for Turing machines which
compute them.

Example 11.4A. The list of quadruples for a Turing machine which computes
initial function number 4

, x — y, is given below, together with a program-
ming explanation

:

<0o, 1, B, 0o>

<0o, B, R, qx y

<01, 1, B, 0! >

<0i 5 B, R , q2 y

<02 9 h R, Qi)

<02 ,
B

9
L

, q3 y

<03 , 1, B , q3 y

<03 ,
By L, qAy

<04 5 ^ 9 By 05 y

<05 , 1, L, q 5 y

<05 »
By L, #6 >

<06, B, R , ?8 >

<06, 1,E, # 7 >

<0 7 ,
1

, Ly 0 7 >

<07,

<08, 5, 09>

<09 , 1, By q 8 )

erase 1 on the left

go to the right of separating blank

go to the right-most 1

erase 1 on the right

if the y-representing l’s are exhausted, stop; otherwise

continue

go to the left of separating blank

if the x-representing 1 ’s are exhausted, go to qs ;
otherwise

continue

go to the left-most 1 and return to q x

erase all l’s on the tape if x < y and stop

Demonstration of the computability of the remaining initial functions of

Definition 11.5A is left as an exercise.

The (partial) computability of composition and minimalization of comput-

able functions can be demonstrated by exhibiting Turing machines which

compute them (see Davis [5]). Here we will instead argue their computability

by referring to Turing’s thesis.

Theorem 11.1A. The operation of composition preserves both the property

of being computable and the property of being partially computable.
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Argument. Suppose that the functions g x (x), g2 (x), . .
.

,

gn(x) of Def. 1 1.2A,

p. 372, are computable. This means that there are Turing machines Zl5 Z2 ,

. .
.

,

Zn ,
respectively, which compute these functions. We also assume that

/(ji, y2 ,
• • •

, y„) is computable by Turing machineZ0 . Then there is obviously

an effective way of letting Z1? Z2 ,
. .

.

,

Zn compute their functions and of

transcribing the results in order with separating blanks onto an otherwise

blank tape which is fed to Z0 ;
Z0 will compute the composition function h(x)

of Definition 11.2A. Since the whole procedure is effective, there is, according

to Turing’s hypothesis, a Turing machine Z which computes this operation

of composition. Hence the operation of composition preserves the property

of being computable. Suppose next that / and the #rfunctions are partially

computable. Then the above argument applies for all x in the domain of h(x).

However, if (^(x), g2 (x), . .
.

,

gn(x)} does not belong in the domain of /, Z0

will never halt. Again, if z does not belong to the domain of some gjiyc), Z
t

will never halt. In any one of these cases the machine Z will compute forever

if it is instructed to wait for the completion of the # t
(x)-computations as well

as the /(#i(x), g2 (x), . .
.

,

#„(x))-computations before it halts. Hence Z
will perform a nonhalting computation from the argument x if and only if x
does not belong to the domain of the composition function, which completes

the argument of Theorem 11.1A.

Theorem 11.2A. The operation of minimalization preserves the property of

being partially computable.

Argument. Suppose that the total function f(y, x) in Def. 1 1.4A, p. 372, is

computable by a Turing machine Z. Thus there is an effective way to compute
in succession /(0, x), /( 1, x), /(2, x), . .

.

,

and at each step to compare the

result with 0. The first occurrence of a 0 can thus be effectively registered,

provided that there is such an occurrence, that is, that x belongs to the domain
of gy[f(y, x) = 0]. According to Turing’s thesis there is a Turing machine

which computes gy[f(y ,
x) = 0] for all x in the domain of this function and

which never stops for x not in the domain. The operation of minimalization*

thus preserves the property of being partially computable.

Theorem 11.3A. If a function is (partial) recursive, then it is (partially)

computable.!

* Notice that minimalization, according to Definition 11.4A, must be applied only to total

functions. Some authors define minimalization without this restriction, and then minimaliza-

tion does not preserve -the property of being partially computable. There are, for example,

partially computable functions ipu(x) such that fjiy(ipu(y) = x) is not computable although

total. Hence such an extended minimalization over a partially computable function may
define a nonpartially computable function.

t This notation is a short form for “If a function is recursive, then it is computable; and
if a function is partial recursive, then it is partially computable.” This form carries through-

out the chapter.
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Proof. The initial functions in Def. 1 1 .5A, p. 373, are all recursive and hence,

also partial recursive. Since the operations of composition and minimaliza-

tion preserve the property of being partial recursive, it follows from Definition

11. 5A that every partial recursive function is partially computable. Finally a

function is recursive (computable) if and only if it is partial recursive (partially

computable) and total.

Later we shall see that the converse of Theorem 11.3A is also true (see

Tm. 11.7A, p. 379).

1.5. RECURSIVE SETS AND COMPUTABLE SETS

So far we have been dealing with computability and recursivity of functions;

using the characteristic function of a set, defined below, we can extend these

properties to sets.

Definition 1I.6A. Let S' be a set of /7-tuples <x1? x2 ,
. .

. , xf). The character-

istic function ,
Cs(xu x2 ,

. .
.

,

xn), of S is then defined by

Cs(xx ,
x2 ,

. . • ,
xn)

= 1 if Oi, x2 ,...,xnyeS,

Cs(xl9 x2 ,
. .

.

,

xn)
= 0 if <x1? x2 ,

...,xny$S.

If the characteristic function of a set is recursive, it is also computable

(Theorem 11.3A). There is a Turing machine, then, which determines whether

or not any given element (/7-tuple) belongs to the set; and, as membership

is really that which defines a set, it is reasonable to say that the set in question

is computable. Hence the following definitions.

Definition 11.7A. Let S be a set of /7-tuples. Then S is recursive (computable)

if its characteristic function is recursive (computable).

Theorem 11.4A. Let R and S be recursive (computable) sets. Then the sets*

R u S, R n S, and R are also recursive (computable).

Proof. The characteristic functions of the sets R u S, R n S, and R can

be decomposed as follows:

Cr u s
= Cr + Cs ~ (Cr * Cs), CR n s = CR - Cs ,

CR = l — CR .

Hence, if R and S are recursive, so are R u S, R n S, and R. Again, if R
and S' are computable, CR and Cs are computable. As seen from the above

decompositions, then, CR ^ s ,CRnS ,
and CR can be obtained by the operation

* R denotes the complement of R with respect to the set of all /z-tuples, Nn
.
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of composition from computable functions. From Tm. 1 1.1 A, p. 374, we know

that composition preserves the property of being computable
;
hence R u S,

R n S, and R are computable.

1.6. RECURSIVE PREDICATES AND COMPUTABLE
PREDICATES

Having defined recursive (computable) sets, we are able to define recursive

(computable) predicates via the extension set of a predicate.

Definition 11.8A. The predicate P(x
1 ,
x2 ,

. .
.

,

xn) is recursive {computable)

if its extension {{xl ,
x2 ,

. .
.

,

x„> : P(x1? x2 ,
. .

.

,

xn)} is recursive (computable).

Definition 11.8A implies, for example, that if a predicate is computable

there is a Turing machine which can compute whether the predicate is true

or false for any given 77-tuple.

Theorem 11.5A. Let P and Q be recursive (computable) predicates. Then

the predicates P v Q, P Sc Q, and ~i Q are also recursive (computable).

Proof. Let C P denote the characteristic function of the extension set to a

predicate P. Thus

^pvq = Cp + Cq — (CP • Cq), CP& q = Cp • Cq
,

Cn p = 1 — Cp.

Hence, if P and Q are recursive (computable), P v Q, P Sc Q, and ~iP are

also recursive (computable).

Example 11.5A. The predicates P(x, y) and Q(x, y), defined as P(x, y) =
(x < y) and Q(x, y) = (x = y), are recursive and hence also computable. Let

us as a proof first consider P(x, y). The characteristic function of its extension

is CP = 1 — (x — y). Hence CP is recursive and by Tm. 1 1 .3A, p. 375, comput-

able, that is, P(x, y) is recursive and computable. On the other hand, Q(x, y)

can be written as

Q(x, y) ={x = j) = (x <y) &(y < x) = P(x, y) &P(y, x).

By Theorem 11. 5A, Q(x, y) is recursive and hence computable.

1.7. THE TURING MACHINE PREDICATE, T(z, x, y)

It is worthwhile to apply the concepts of computability to predicates which

themselves make statements about Turing machines and their computability.

Since the computable and recursive predicates have been defined for variables
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that range over N, the set of integers, such applications require that we

arithmetize the theory of Turing machines. Consider, for example, the

following predicate: T0(Z, x, Y) = “When started from a tape printed with

the number («-tuple) x, Turing machine Z performs the computation sequence

T.” We cannot really apply Definition 11.8A because two of the predicate

variables are defined, not on N, but instead on the set of Turing machines

and the set of sequences of tape expressions. First we will have to encode the

set of Turing machines onto a set of integers such that, without any ambiguity,

we can speak of a Turing machine as though it were an integer. The same

applies to the set of sequences of tape expressions as well.

A way of encoding the Turing machines would be to encode their lists of

quadruples. One such way is provided by the Godel enumeration technique;

when this is used, it is customary to speak of the Godel number of a Turing

machine (see Davis [5]). Given such a number, z, one can effectively compute

the list of quadruples that define the corresponding machine Z and vice

versa. Without going into this or any other enumeration technique, we assume

that there are such effective codes. We will use the term code number for an

integer, z, that effectively describes a Turing machine, Z.

Likewise we can talk about the code number for the computation Y of a

Turing machine, again taking it for granted that there is such an effective

code. With these preliminary points now settled, we can define the Turing

machine predicate.

Definition 11.9A. The Turing machine predicate
,
T(z, x, y), is true if and only

if z and y, respectively, are the code numbers of a Turing machine, say Z,

and a computation sequence, say Y, such that Z, when started on x, performs

Y. For the variable x may be substituted an n-tuple <xl9 x2 ,
. .

.

,

xn>.

Thus T(z, x, y) is a predicate about which we may ask whether or not it is

recursive.

Theorem 11.6A. The Turing machine predicate, T(z, x, y), is recursive and

hence computable.

Argument. A proof of Theorem 11.6A is given in Davis [5] on the basis of

a Godel encoding. Here we will only present an argument utilizing Church’s

hypothesis. What we want to prove is that, given an arbitrary triple <z, x, y>,

we can effectively decide whether T(z, x, y) is true or false. It then follows

from Church’s thesis, Definition 1 1 .8A, and Theorem 1 1 .3A that the predicate

is recursive and computable. Given a triple <z, x, we can, according to

our assumptions on the encoding, effectively reconstruct a list of quadruples

of a Turing machine Z, or decide that z is not a code number of a Turing

machine. In the latter case T(z, x, y) is false. Furthermore, we can effectively

reconstruct a sequence of tape expressions Y, or decide that y is not a code
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number of a sequence of tape expressions. In the latter case T(z, x, y) is false.

If the predicate has not yet been proved false, we proceed as follows. We
effectively apply the quadruple to the initial tape expression x (cf. Ex. 11.1A,

p. 370) and compare the result with Y. If the two do not agree, the predicate

is false; otherwise, the comparison is continued to the end of Y. Since Y
is defined, the total number of comparisons will be finite and can be effectively

executed. [Compare Example 11. 5A, showing that x = y is recursive, and
Theorem 11. 5A, showing that x # y is recursive; a comparison between two
integers is thus a recursive procedure.] The whole procedure is thus effective,

and the theorem follows.

For a full use of the Turing machine predicate we will also need the follow-

ing definition.

Definition 11.10A. Let y be the code number of a computation sequence Y.

Let n be the number of l’s in the final element of Y, that is, n is the number
computed by the machine which produces the sequence Y. As a function of

y, n will be denoted U(y), that is, n = U(y).

Obviously, U(y) is an effectively computable function of y.

1.8. KLEENE’S NORMAL FORM OF A PARTIALLY
COMPUTABLE OR PARTIAL RECURSIVE FUNCTION

By Theorem 11.6A, T(z, x, y) is a recursive predicate. Therefore, by
Def. 11. 5A, p. 373, \iy T(z

,
x, y) is a partial recursive function of z and x.

Finally, by Definition 11.10A, U(jiy T(z
,
x, y)) is partial recursive.

We notice that, for a given code number z, x is in the domain of jxy T(z
, x,y)

if and only if x is in the domain of the function computed by Turing

machine Z. Furthermore, if x belongs to this domain, jiy T(z
, x, y) will be

the code number of the sequence of expressions computed by Z because the

Turing machine is deterministic, that is, it can have at most one computation

sequence for each x of its domain. This means that U(jiy T(z
,
x, y)) = i/^(x),

a decomposition showing that every (partially) computable function ijjfx)

is (partial) recursive. It is thus possible to sharpen Tm. 11.3A, p. 375, into

the following normal form theorem.

Theorem 11.7A. The function /(x1? x2 ,
. .

.

,

xn) is partially computable if

and only if there is a number z0 such that

f(xu x2 ,
. .

.

,

xn)
= U(ny T(z0 ,xu x2 ,..., xn ,y)),

that is, if and only if /(x1? x2 ,
. .

.

,

x„) is partial recursive. This form is called

the Kleene normal form of a partially computable (i.e., partial recursive)

function.
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Although for simplicity we have occasionally used Turing’s or Church’s

thesis in the arguments for Theorem 11;7A, this is not necessary. A proof of

this important theorem, without using these hypotheses, may be found in

Davis [5].

1.9. SEMICOMPUTABLE PREDICATES

To extend our understanding of the absolutely computable predicates we

want to demonstrate the existence of predicates that are not computable.

Hence we turn to the semicomputable predicates.

Consider a predicate P(xl9 x2 ,
. .

.

,

xn), saying that a certain Turing

machine, Z0 ,
will perform a computation, that is, will halt within a finite

time when supplied with a tape printed with <x 1? x2 , , x„). Suppose that

we want to compute P(xl9 x2 , ,
xn) and that our only aid is the machine

Z0 ,
which is presented to us as a black box. We can compute P(x1 ,

x2 ,
. .

.

,

xn)

by printing an /7-tuple on the tape of Z0 and letting Z0 start its computation.

If Z0 halts, we know that P(x
x ,x2 ,

. .
.

,

xn) is true and computable for

that particular /7-tuple. But what conclusion can be drawn if Z0 does not

halt within a reasonable time? Evidently none. We could have Z0 compute

for some further time, hoping it would eventually halt; but obviously, if Z0

never halts for a given /7-tuple <xl5 x2 ,
. .

.

,

xn ), we can never find out whether

<x1? x2 ,
. .

.

,

xhy belongs to the domain of the partially computable function

i//zo(xi, x2 ,
. .

.

,

xn). Thus P(xl9 x2 ,
. .

.

,

xn) is not computable for this /7-tuple

on the basis of the knowledge about P(xl9 x2 ,
. . .

9
xn) that we possess.

We are thus led to the following definition of a semicomputable predicate.

Definition 11.11A. A predicate P(xi9 x2 ,
* .

.

,

xn) is semicomputable if there

exists a partially computable function whose domain is the extension of P,

K*i, *2 >•••>*»>

:

^(*i. x2 , *„)}

The concept of semicomputability is weaker than the concept of comput-

ability in the following sense. Every computable predicate is semicomputable

(cf. Theorem 11. 8A below), but not all semicomputable predicates are com-

putable (cf. Theorem 11.11A below).

Theorem 11.8A. Every computable predicate is semicomputable.

Proof. Let P(xu x2 ,
. .

.

,

xn) be computable. Then {(xl9 x2 ,
. .

. , xn)

:

P(xu x2 ,
. .

.

,

xn)} is the domain of the partially computable function

M( 1 - C P(x1 ,
x2 ,...,xn))+y = 0].

Every semicomputable predicate can be written in a normal form as follows.
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Theorem 11.9A. (Kleene’s enumeration theorem). Let P(x1? x2 ,
. .

.

,

x„) be a

semicomputable predicate. Then there is a number z such that

P(xl9 x2 ,
. .

. ,
xn)

= 3y T(z, xl9 x2 ,
. .

.

,

xn , y).

Proof. Let P(xl9 x2 ,
. .

.

,

x„) be a semicomputable predicate. Then,

according to Definition 11.11A, there is a Turing machine Z computing a

function
\l/z(x1 ,

x2 ,
. .

.

,

x„) whose domain is

K*i> x2 ,
. .

.

,

x„> : P(xl9 x2 ,
. .

.

,

xn)}.

On the other hand, the domain of
\l/z(xl9 x2 ,

. .
.

,

x„) is, according to Theorem

11.7A, {<x1? x2 ,
. . ., x„>: 3y T(z

,
xl9 x2 ,

. . x„,y)}.

A form of a converse of Theorem 11.9A is the following.

Theorem 11.10A. Let R(y, xl5 x2 ,
. .

.

,

x„) be a computable predicate. Then

3y R(y
,
xl9 x2 ,

. .
.

,

xn) is semicomputable.

Proof. Since R(y, xl9 x2 ,
. .

.

,

xn) is computable,

py R(y, Xl9 x2 ,
. .

.

,

xj

is partially computable. The domain of this partially computable function is

the extension of the predicate 3y R(y, xl9 x2 ,
. .

.

,

xn). Hence, by Definition

11.11A, this predicate is semicomputable.

Theorem 11.11A. A predicate P(x1? x2 ,
. .

.

,

xn) is computable if and only if

both P(x1? x2 ,
. .

. ,
x„) and ~iP(xu x2 ,

. .
.

,

xn) are semicomputable.

Proof. Let us assume that P{xu x2 ,
. .

.

,

xn) is computable. It follows from

Theorem 11.5A that ~iP(xl5 x2 ,
. .

.

,

xj also is computable. Hence by

Theorem 1 1.8A both P(x1? x2 ,
. .

. ,
x„) and ~iP(x

1 ,
x2 ,

. .
.

,

xn) are semi-

computable. Conversely, let us assume that P(xt ,
x2 ,

. .
.

,

x„) and

iP(x1 ,
x2 ,

. .
.

,

xn) are semicomputable. Then, by Theorem 11.9A, there are

numbers z
x
and z2 such that

P(xu x2 ,...,xn) = 3 T(zu xu x2 , ...,xn , Ji),

-1 P(xu x2 ,
. .

.

,

x„) = 3y2 T(z2 ,X1
,X2 ,...,X„, y2 ).

For each n-tuple x2 , . .
.

,

xn}, either

P(xu x2 ,
...,x„) or -i P(x!, x2 ,

. .
.

,

xn)

is true. Hence, for each n-tuple x2 , ,
x„), it is true that

3Ji T(zu xu x2 ,
. .

.

,

xn , Ji) v 3y2 T(z2 , xt ,
x2 ,

. .
.

,

xn , y2),

that is,

3y[T(zu xu x2 ,
. .

. , xn , y) v T(z2 , xu x2 ,
. .

. , xn , y)].
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There exists, therefore, a smallest such y; that is, the function

11

/;(*!, x2 ,...,x„) = ny[T(zu xu x2 , . .
. , x„ , y) v T(z2 ,

xu x2 ,
. .

. ,
x„

, y)]

is total. Let us recall that the T-predicates are recursive (Theorem 11. 6A).

The form of h thus reveals that h is partial recursive and total, that is, recursive

and computable. Finally,

P(xu x2 ,
. .

. ,
xn)

= T(zu xl9 x2 ,
. .

. ,
xn ,

h(xl9 x2 ,
. .

.

,

xn)) 9

that is P(xu x2 ,
. .

.

,

xn) is computable.

It follows from Theorem 1 1 . 1 1A that an eventual semicomputable predicate

which is not computable must have a negation which is not semicomputable.

There are indeed such predicates.

Theorem 11.12A. The predicate 3y T(x, x
, y) is semicomputable but not

computable.

Proof. Suppose that
~
\3y T(x, x, y) were semicomputable. Then, by

Theorem 11.9A, there would be a number z0 such that
—

1 3y T(x, x, y) =
3y T(z0 , x, y). We need only choose the number z0 for x to find that a contra-

diction has resulted.

Another consequence of the noncomputability of the predicate 3y T(x, x
9 y)

is the following.

Theorem 1I.13A. Let fc(x) be the completion of a function f(x), that is,

fc(x) = f(x) for all x in the domain of f{x), and fc(x) = 0 for all other x.

Then there exists a partially computable function /(x) with a noncomputable

completion /c(x).

Proof. Let cp(x) = 1 + (x - x), that is, cp(x) is the computable function

whose value is 1 for all values of x. Let /(x) = cpi/iy T(x, x, y)), that is, /(x)

is partially computable. Obviously fc(x) is the characteristic function of the

predicate 3y T(x, x, y). By Theorem 11.1 2A,/c(x) is not computable although

total.

Theorem 1 1.13A may suggest the following comment : sinee/(x) is partially

computable, that is, effectively computable for every x in its domain, there

should be an effective way of computing fc(x), that is, of computing /(x) or

of assigning zero as the function value. This, however, requires a decision as

to whether or not x belongs to the domain of f a decision which is not

effectively implemented.

Although the negation of a semicomputable predicate is not always semi-

computable, the property of being semicomputable is preserved under the

&- and v -operations (Theorem 11.14A below). For the proof of Theorem
11.14A, we need the following definition.
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Definition 11.12A. z(xu x2 ) is a recursive 1-1 pair-encoding function that

encodes the ordered integer pairs <xl9 x2 > onto the set of integers.* X{y) and

p(y) are recursive pair-decoding functions such that A(t(x
x ,
x2J)

= xt and

p(t(xu x 2 ))
= x2 .

Theorem 11.14A. If P(xlt x2 ,
. .

.

,

x„) and Q(x
t , x2 , • •

,

x„) are semicomput-

able, then so are P(x
1 , x2 ,

. .
.

,

xn) v Q(x
t , x2 ,

x„) and P(xu x2 ,
. .

.

,

x„)

& Q(xu x2 , ...,xn).

Proof. Let

P(xu x2 ,...,x„) = 3 T(zu x
1
,x2 , ..., x„

, yt )

and

Q(*i, x2 , ...,x„) = 3y2 T(z2 ,
xu x2 ,

. .
.

,

x„
, y2 ).

Then

P(xu x2 ,
..., x„) v Q{xu x 2 , ..., xn)

= ^y(T(zu xu x2 ,
. .

. ,
xn , y) v T(z2 ,

xu x2 , . .
.

,

x„
, y)).

Here T(zx ,
x

l ,
x2 ,

. .
.

,

xn , y) v T(z2 , xu x2 ,
. ... xn , y) is recursive. Hence,

by Theorem 11.10A, P(x
1 ,
x2 ,

. .
.
,xn) v Q(x

1 ,
x2 ,

. .
.

,

xn) is semicomputable.

We next turn to

P(xu x2 ,
xn) & Q(xu x2 , ..., x„)

= 3y 1
T(z

1 ,
xl7 x2 , ...,xn ,y l ) &ly2 T(z2 , xu x2 , ...,x„,y2 )

= 1yf3yz(T(zn xu x2 ,..., x„
, y x ) & T(z2 ,

xu x2 ,
. .

.

,

x„
, y2 )).

With the notations of Definition 11.12A we have

[P(xu x2 ,...,x„)& Q(xu X2 , ..., X,,)]

= 3t [T(zu xu x2 ,
. .

. ,
x„

,
A(t)) & T(z2 ,x1

,x2 ,..., x„
,
p(r))],

that is, P & Q is obtained by existential quantification over a computable

predicate. By Theorem 11.10A, P Sc Q is semicomputable.

I.10. THE KLEENE PROJECTION THEOREM

Two forms of the Kleene projection theorem will be given, namely, Theorems

II. 15A and 11.16A.,

* One such pair-encoding function is r(x i, x2 ) =M(*i + x2)
2 + 3*i + x2 ]. The reader is

advised to furnish the function values r(x i, x2 ) on a Cartesian representation of the domain

and to convince himself that each function value r(x i, x2 ) effectively determines a unique

A(r) = Xi and p(r) = x2 .



384 Lars Lofgren 11

Theorem 11.15A. There is a recursive function /(z, y) such that

<h(y,

x

u ..., x„) = ^f(Z , y)
{xu x2 ,

x

n).

Furthermore, with any two recursive functions cfx) and c2 (x) such that

the range of cfx) is nonfinite, there is a recursive function cp(z, y) such that

\jjz(y, Xl 9
x2 ,..., xn)

= i/z^^y/x^ x2 , ,
xn) and such that c^(cp(z, y)) > c2 (y).

Proof. For each fixed value <z0 , j0 > of <^, y}, ^Zo(y0 >
x

i

,

• • • ,
xn) is a

partial recursive function of xl9 x2 ,
. .

.

,

xn . Hence there is a Turing machine

W0 with code number w0 which computes it. The important content of the

theorem is that w0 = f(z0 , y0), where / is recursive. To convince ourselves

of this property off let us give an effective description of the Turing machine

W0 . Beginning with the tape expressionA Xl + 1B1 X2 + 1B . . . Bl Xn + 1

,
W0 should

first print P0 + 1
to the left, thus producing the expression

po + i^px +1^2+1^ B\ Xn +
\

and thereafter scan the left-most 1. From there on W0 should continue just

like the known machine Z0 with the code number z0 . Hence W0 is defined

by a list of quadruples which begins as follows:

<q0 ,
l,L,qo y, (q0 ,

B, L, qf), (q i9 B 9 1 ,qf, (q t ,
l,L,^

i + 1 >,

<^o + i, B, i,^
0 + 2 >; 1 < i <ko-

From there on the list should continue with the quadruple list of Z0 ,
with,

however, the states renumbered so that qj of Z0 now is called qyo + 2+j . Thus,

given <z0 , y0 }, there is an effective way of producing w0 = f(z0 , y0), that is,

f(z,y) is recursive by Church’s thesis. A proof without explicit use of this

hypothesis may be found in Davis [5]. This completes the proof of the first

part of Theorem 11. 15A.

For the proof of the second part, let us observe that to each code number
/(z, y) there corresponds a unique set of quadruples which defines a computa-

tion. Precisely the same computation is in this way associated also with an

unlimited number of distinct quadruple lists. If the f(z,y)-list is written on

Q =
{qo > <7i> • • • >

S = {sl9 s2 ,
. .

.

,

it can, for example, be continued

with an unlimited amount of quadruples of the type (qn + i ,
sm+j ,

sm+k , qn + i >,

/, /, k, l > 0, without having the computation affected. Hence, there must be

an unlimited number of <p(z, y)-values such that
\l/f(z y)

(xl5 x2 ,
=

'l'<p(z,y)(xu x2 ,
• • • ,

X„)
9
and in particular one <p(z, y)-value such that cf(p(z 9 y))

is larger than c2 (y), provided that the range of cfx) is nonfinite, as is assumed.

Furthermore, both cffx) and c2 (x) are assumed recursive. Therefore, there is

an effective way of obtaining such a cp(z, y)-value from z, y, f(z,y), cfx),

c2 (x), where also /(z, y) is recursive. Hence, by Church’s thesis, cp(z, y) is

recursive. This completes the proof of Theorem 11.15A.
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Theorem 11.16A. Let R(w, xu x2 ,
. .

.

,

xn) be a semicomputable predicate.

Then there is a recursive function f(w) such that

R(w, xx ,
x2 , ,

xn) = 3y T(f(w), x1? x2 ,
. .

.

,

xn , j).

Proof. Theorem 11.15A implies that

U(py T(z, w, x1? x2 ,
. .

.

,

x„

,

y)) = U(jxy T{cp(z
,
w), rB5 y)\

and the corresponding domains are equal

:

3y T(z, w, xl5 x2 ,
. .

. ,
x„

, j) = 3y T(cp(z
,
w)

9
xl9 x2 ,

. .
.

,

xn , y).

Since R(w, xl9 x2 ,
. .

.

,

xn) is a semicomputable predicate, there is a code

number, r, such that

x1? x2 ,
. .

. ,
xn)

= T(r, w, xl9 x2 ,
. .

.

,

xn , y).

Hence

R(w, xl9 x2 ,
. .

. ,
x„) = T(cp(r

9
w), x1? x2 ,

. .
.

,

xn , 7).

Here cp(r
9 w) =f(w) is a recursive function of w (cf. Theorem 11.15A),

which proves the theorem.

1.11. RECURSIVELY ENUMERABLE SETS

The recursively enumerable sets are closely related to the semicomputable

predicates.

Definition 11.13A. A set is recursively enumerable if it is the range of a partial

recursive function.

Theorem 11.17A. A set S is recursively enumerable if and only if S = {x: P(x)},

where P(x) is semicomputable.

Proof. Let S be a recursively enumerable set, that is, there exists a partial

recursive function f(x) = U(piy T(z0 ,
x, y)), whose range is S. Hence

w e S = 3x 3y[T(z0 ,
x, y) & w = U(y)],

that is,

S = {w: 3r[T(z0 ,
A(t), p(t)) & w= U(p( t))]},

where t, A, p are the pair-encoding and pair-decoding functions of Def. 1 1 . 12A,

p. 383. Thus S is the extension of a semicomputable predicate. Conversely,

let us assume that P(x) is a semicomputable predicate, that is, there is a
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number z1 such that P(x) = 3y T(zu x, y). Then the extension S = {x: P(x)}

of P(x) is enumerated by the partial recursive function

g(n) = X(jn[T(zu A(t), p(t)) & (i > /?)]),

which completes the proof.

Theorem 11.18A. A set S is recursively enumerable if and only if S = 0 or

5 is the range of a recursive function.

Proof. Consider first 5 = 0, which is the range of the partial recursive

function jiy( 1 + y + x = 0). By Definition 11.13A, 5 is recursively enumer-

able. Next let 5 be the range of a recursive function. Since every recursive

function is also partial recursive, it follows from Definition 11.13A that 5

is recursively enumerable. Conversely, assume that 5 is a nonempty, recur-

sively enumerable set enumerated by the partial recursive function g(x).

Then there is the following effective way of enumerating all the elements of 5.

Let G be the Turing machine which computes g. First let G make two com-

putations on the numbers 0 and 1, respectively, such that each computation

is cut off after one step. If any number is produced, that is, if any computation

halts before being cut off, the result is added to a list L. Next repeat the pro-

cedure with n = 2, that is, G computes two steps on each of the arguments

0, 1,2. If any new numbers are produced, they are also added to the list L.

At stage n
,
G computes n steps on each of the arguments 0, 1, 2, — 1, n.

By this effective enumeration every element of 5 and no other elements will

be added to the list L. By Church’s hypothesis there is a recursive function

which implements this enumeration, that is, 5 is the range of a recursive

function.

It should be observed that the enumeration technique used in this proof

does not contradict the previous result that there are partial recursive func-

tions with a nonrecursive completion (Tm. 11.13A, p. 382; compare also

Ex. 11.6A, p. 392). The technique shows only that the enumeration done by

a partial recursive function can be performed by a recursive function as well.

Theorem 11.19A. A set is recursive if and only if both 5 and 5 are recursively

enumerable.

Proof. Assume that 5 is recursive, that is, 5 = {x:P(x)} where P(x) is

computable. Then P(x) is also semicomputable, that is, 5 is recursively

enumerable. Since 5 is recursive, 5 is also recursive and so also recursively

enumerable. Conversely, assume that both 5 and 5 are recursively enumerable,

that is, 5 = {x: P(x)} and 5 = {x: ~iP(x)}, where both P(x) and ~iP(x) are

semicomputable. By Tm. 11.11 A, p. 381, P(x) is computable (i.e., recursive).

Hence 5 is recursive.
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An intuitive argument for Theorem 11.19A is as follows. If both S and S

are enumerated by recursive functions, that is, by Turing machines, say Zx

and Z2 ,
we can effectively decide for each x whether or not x e S, that is,

S is recursive by Church’s thesis. We only have to let Z
x
and Z2 work on the

arguments 0, 1, 2, . . . and see which of them first produces a given number x.

If it is Zl5 then x e S. If it is Z2 ,
then x £ S. The important point is that any

given x sooner or later must be generated by Zx
or Z2 . Conversely, if S is

recursive, its characteristic function Cs(x) is recursive and hence also /(x) =
x • Cs(x) + x0 • (1 — Cs(x)), which enumerates S if x0 is a particular element

of S, for example, the smallest. In the same way S is then recursive, that

is, recursively enumerable.

Theorem 11.20A. The set K = {x: 3y T(x, x, y)} is recursively enumerable

but not recursive.

Proof. By Theorem 11.1 2A we know that the predicate 3yT(x, x, y) is

semicomputable but not computable. Theorem 11.20A hence follows from

Theorem 11. 17A.

Although the complement of a recursively enumerable set need not be

recursively enumerable, the operations of union and intersection preserve

the property of being recursively enumerable.

Theorem 11.21A. If R and S are recursively enumerable sets, so are P u S

and R n S.

Proof. Tm. 11.14A, p. 383, and Tm. 11.17A, p. 385, imply the statement.

1.12. PRODUCTIVE AND CREATIVE SETS

If R is a recursively enumerable set that is not recursive, then, as we know,

R is not recursively enumerable. Hence, with every recursively enumerable

set P such that P a R, there is an m such that m$P and m e R. We inquire

whether there is an effective procedure by which, given P, we can obtain

such an m and thus extend P to a larger recursively enumerable subset of R.

A recursively enumerable set will be considered given, if a code number n is

presented such that P = {x: 3y T(n, x, y)}. This motivates the following

definitions.

Definition 11.14A. Let 5[n] be the nth recursively enumerable set of integers,

that is, S
{nl
= {x: 3y T(n

,
x, j)}. A set S of integers is productive if there exists

a partially recursive production function f(x) such that for each n

[Sw c S] => [/(«) e S] & [fin) $ S[n] ].

A set R of integers is creative ifR is recursively enumerable and R is productive.
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Theorem 11.22A. No recursively enumerable set can be productive.

11

Proof. Let S be a recursively enumerable set. Then there exists a number m
such that 5 = S[m] . By choosing the value m for the variable n in Definition

11.14A we get the contradiction

[S[mJ CZ S[m] ]
=> [f(m) e S[m] ] & tf(m) $ S[m] ]

to the assumption that S is productive.

Theorem 11.23A. No recursive set can be creative.

Proof Let S be a recursive set. Then S is recursively enumerable, that is,

S cannot be productive (cf. Theorem 11.22A). Hence S is not creative.

Theorem 11.24A. The set K={x:3y T(x, x
, y)} is creative.

Proof The form of K reveals that K is recursively enumerable. Further-

more, K is productive with the recursive production function /(x) = x for

all x, that is, (S[n]
c= K) =>{neK) Sc (n S[„]). This is demonstrated as

follows. First n e K = n $ S
inl

because

{n e K) = -i 3yT(n, n,y) = n $ Sw .

Next

[S[n] <= K] = [Vx: (x e S
ln) =>(xe K)]

= [Vx: 3yT(n, x, y) => ~i 3yT(x, x, j)]

[3yT(n, n,y)=>~1

3

yT(n, n, j)]

= [-
1 3yT(n, n,y)]

= [ne K].

Theorem 11.25A. Let Q be a productive set. Then Q contains arbitrarily

large recursively enumerable subsets.

Argument. Since Q is productive, there exists a recursive production function

f{x) such that (S[jc]
c= Q) => (f(x) e Q) & (f(x) $ S[JC]). Choose a recursively

enumerable subset SM of Q. Next construct the set S[n] u {/(/?)} and deter-

mine the code number, nu of the Turing machine which enumerates it. This

determination is done by a recursive function, cp(n) = nu obtained from

Tm. 11.16A, p. 385:

3y[T(n, x, y) v (x =/(«))] = 3y T(<p(n), x, y).

Repeating this process, we get an unlimited sequence of larger and larger

recursively enumerable subsets of Q such that S
lnl
c S

l(p(n)1
c= S

[(p((p(„ ))]
<=•••.

Theorem 11.26A. The set S = {z: Vx 3y T(z, x, j)} is productive.
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Proof. Let \j//(z) be a recursive function which enumerates the nonempty,

recursively enumerable set S[z] ,
that is, S[z] = {i///(z)(x): x e TV}. Notice that

there is an effective method of constructing a Turing machine which computes
the recursive enumerating function ^/(z)(x) for any given z (compare the

proof of Tm. 11.1 8A, p. 386). Next define a partial recursive function ^(z)(x)

as follows : i/^(z)(x) = ^/(z)(Jc)
(x) + 1. Let us argue that the function g(z)

thus defined is a partial recursive production function (cf. Definition 11.14A)

such that [S[z]
c= S] => [g(z) e S] & [#(z) S[z] ], which indicates that S is

productive. Hence let us assume that S
[2]

is a nonempty recursively enumerable
set such that S[z]

c= S. Then \j//(z)(x) e S' for every x, that is, ^/(z)(x) is the

code number of a recursive function. Hence ^/(z)oo(x) + 1 is effectively

computable for every x, that is, g(z) is the code number of a recursive function,

that is, g(z) e S. Furthermore, g(z) itself is partial recursive by Church’s

thesis. Finally, we must have g(z) $ S[z] ,
because otherwise there is an n

such that g(z) = ^/(2) (w), that is, ^/(x)(lI)(x) = ^/(z){x)(x) + 1, which yields a

contradiction for x = n.

1.13. UNIVERSAL TURING MACHINES

As we know, g(z, x) = U(gy T(z, x, y)) is a partial recursive function,

that is, there is a Turing machine, say U0 ,
which computes g(z, x), that is,

ipU0 (z, x) = g(z, x). This machine is “universal” in the sense that it can com-
pute any partial recursive function /(x). This is immediately clear, for there

is a code number z to each partial recursive function /(x), that is, /(x) = i/^z(x),

and obviously /(x) = \j/z(x) = i^ Uo(z, x). We may regard <z, x) as a program
which makes U0 compute

Let t/j be another “universal” Turing machine such that i//
Ul (<p(z, x)) =

il/z(x), that is, Uj computes ^z from the program cp(z
,
x). Now, how complex

may the programming function cp(z
,
x) be? If we allow it to be as complex

as the function which is to be computed, we could have \p u f(p{z, x)) = cp(z
,
x),

that is,
\J/ Ul would be the identity function. But there would be little sense in

calling such a machine U
l

(a pair of wires, e.g.) universal, if the work of

programming U
1
would require another universal and more complex Turing

machine.

There are several reasonable definitions of universal Turing machines
which meet with intuitive requirements concerning the relative complexities

of the computation and the programming (cf. Davis [3, 4] and Rogers [20]).

Rogers’ definition may be stated as follows.

Definition 11.15A. A Turing machine U is universal if there exists a recursive

function cp such that, for all z, ^ z(x) = i// u((p(z ,
x)). [For the variable x may

be substituted an /7-tuple <xl5 x2 , ...,xn >.]
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In order to argue the plausibility of this definition we will prove the

following theorems.

Theorem 11.27A. The Turing machine U0 which computes /(z, x) =

U(jiyT(z, x, y)) is universal.

Proof. Let cp be the recursive pair identity function cp(z, x) = <z, x>

[computed by a machine with, e.g., the single quadruple <q0 ,
B

,
B

, qf)\ this

machine leaves the tape expression l
z + 1Bl x+1 as it is]. Obviously

<Ai,o(<KZ > *)) = /(*, X) = lAz(x),

that is, U0 is universal.

Theorem 11.28A. The function computed by a universal Turing machine is

partial recursive and not recursive.

Proof. Assume that there exists a universal Turing machine which computes

a recursive function \j/ u . Then, by Definition 1 1.1 5A, i//z(x) = ijj u((p(z, x))

would be recursive for each z. But this is false. For example, the function

\jjzfx) = /iy(x + y = 0), which is computable by a Turing machine Z1? is

partial recursive but not recursive.

Theorem 11.28A indicates a characteristic difference in the computation

function ^ of a universal Turing machine and its programming function (p:

ij/ u is not recursive whereas cp is. A difference on a deeper level is revealed by

the following theorem.

Theorem 11.29A. Let U be a universal Turing machine. Then its domain

D[m] is creative.

Proof. According to Definition 11.15A, we have

Du = {<p(z, x): 3y T(z, x, j)}.

Since Z)[z] = {x: 3y T(z, x, j>)}, we have for all x and z,

x e Dm = <p{z, x) e D[u] ,

where cp, according to Definition 11.1 5A, is recursive. Suppose that

An] ^ An] (compare Def. 11.14A, p. 387), that is, that 3y T(n
,
x, y) => x <£ Du .

Then

3y T(n, <p(z, x), y) <p(z, x) $ Dw
=>x$ £>[z] => “i 3y T(z, x, y).

This is true for all z and particularly for z = x, that is, 3y T(n, (p(x, x), y) =>

—13y T(x, x, y). Because (p(x, x) is a recursive function of x, T(n, (p(x, x), y) is
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recursive in n, x
,
and y. By Tm. 11.10A, p. 381, 3y T(n

, <p(x, x), y) is semi-

computable, and hence by Tm. 1 1.16A, p. 385, there exists a recursive function

fin) such that 3y T(n
,
cp(x, x), y) = 3yT(f(n\ x, y). Hence, for each x 9

3y T(f(n), x 9
y)=>~\ 3y T(x, x

9 y). In particular,

3^ T(f(n), f(n), y)=>~i3y T(f(n ), f(n), y).

Hence -i 3j T{f{n), f(n ), y), that is, 1 3y T(n
, cp{f{n), /(«)), j) that is,

V(f(n)J(n))£ Dinl
. Furthermore, ~i3y T(f(n), f(n), y) implies that f(n) $

T)[/(„)] • Recalling the identity x e D[z] = <p(z, x) e D[u] from the beginning of

the proof, we conclude that cp(/(«),/(«)) $ T>[u] . We have thus seen that

there exists a recursive function g(n) = (p(f(n), f(n)) such that

(Dw cz DM)=>(g(n) e D
iul) & (g(n) $ Z)[B]),

that is, D
[fl]

is productive by Definition 11.14A. Furthermore, D[m] ,
being

the domain of a partially recursive function, is recursively enumerable.

Hence, by Def. 11.14A, p. 387, Z)[u] is creative.

1.14. RECURSION THEOREMS

The Kleene recursion theorems (Theorems 11.30A and 11.31A) are central

in recursive function theory. In particular, they provide methods for handling

with elegance many self-reference problems that otherwise would require

extensive, complex treatment.

Theorem 11.30A (Kleene’s recursion theorem). If g(y, xu x2 ,
. .

.

,

xn) is a

partial recursive function, then there is a number e such that

^e(xi, x2 , ...,x„)= g(e, x1,x2 ,..., xn).

Proof Let g{y ,
x

t ,
x2 ,

. .
.

,

xn) be partial recursive. Then

g(f(y, y),xu x2 , x„),

where/is the recursive function of Tm. 1 1.15A, p. 384, is partial recursive and
hence computable by a Turing machine Z0 . Let z0 be the code number of

Z0 . Then, by Theorem 11. 15A,

g(.f(y, y),xx,x2 ,

x

n) = ij/Jy, xu x2 , ...,xn )

= ^f(zo,y)(xl<X2 ,...,X„).

This is true for all y and particularly for y = z0 ,
that is,

g(f(z0 > ZoX Xl9 X2 ,
. . . ,

xn) = lA/(z0 , zo)i
XU Xn).

Hence /(z0 ,
z0) is an ^-number, which proves the theorem.
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Theorem 11.31A (Second form of the Kleene recursion theorem). Let /(x)

be a recursive function. Then there exists a number n such that ij/n(x)
=

Proof. Let us assume that f(x) is recursive. Then (p{z, x)
=

def 4*f(Z)i
x) is

partial recursive. By Theorem 11.30A there is a number, n, such that

cp(n, x) = i
l/n(x) = il/fin)(x).

Recalling that ^Mo (z, x) = \j/z(x), where u0 is the code number of the parti-

cular universal Turing machine, U0 ,
of Tm. 11.27A, p. 390, we conclude that

for each partial recursive function g(y, x) there exists a number e such that

\j/Uo(e, x) = ^e(x) = g(e, x). With t for (e, x> we have that ^Uo(t) = g(t). We
shall see that this result holds for any universal Turing machine.

Theorem 11.32A. With each universal Turing machine U and each partial

recursive function g{x) there exists an argument t such that if/ft) = g(x).

Proof. Let U be a universal Turing machine. By Def. 11.15A, p. 389, we

have, for all z and x, \j/z(x)
= i/^(<p(z, x)). Let g(x) be an arbitrary partial

recursive function. Since cp{z, x) is recursive, the composition h(z, x) =

g{cp{z, x)) will be partial recursive. By Theorem 1 1.30A, there exists an e such

that h(e, x) = \ Hence g{cp{e, x)) = h{e, x) = \j/e(x) = ^M(<p(e, x)). Hence

there exists an argument t = cp(e, x) such that /(t) =

If the function g(x) of Theorem 1 1 .32A is partial recursive and not recursive,

it can happen that the argument which is guaranteed by the theorem does

not belong to the domain of g and hence is not in the domain of ij/u .

Theorem 11.33A. With each universal Turing machine U, and each recur-

sive function g(x), there exists an argument t in the domain of ij/u such that

= $V).

Proof. Since g(x) is recursive, it is defined for all integers and hence for

the particular argument t which is guaranteed by Theorem 11.32A. Therefore,

by Theorem 11.32A, this x must also be in the domain of the partial recursive

function
\l/ u .

Let us indicate the power of Theorem 11.33A by applying it twice in the

following example, which constitutes a sharper version of Tm. 1 1 . 13A, p. 382.

Example 11.6A. Letfe(x) be an extension to the domain N of a partial recur-

sive function f(x). Hencefe(x) = f(x) whenever f{x) is defined
; fe(x) may be

defined in an arbitrary way for those x which are not in the domain of /(x).

Then there is a partial recursive function /(x), with a nonfinite domain,

such that no extension/e(x) is recursive.
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Let us see that i/^(x), where u is the code number of a universal Turing

machine, qualifies as a function f(x) of the example. First of all, we can

conclude from Theorem 11.33A that the domain of i//u(x) is nonfinite. There

are an infinite number of recursive constant functions, g t
{x) = i. Hence,

Theorem 1 1 .33A assures that for each i there is a t such that = g t {t) = /,

that is, the range of \]/ u is N. Hence ij/u(x) must also have a nonfinite domain.
It follows that g(x) = def ^u(x) + 1 is a partial recursive function with an
infinite domain. No extension ge(x) of g(x) can be recursive, however, for

otherwise Theorem 11.33A would imply that there exists a t in the domain of

iA«(*), that is, also in the domain of g(x), such that \j/ u{t) = ge{x) = \j/ u(t) + 1,

which is false.

1.15. STRONG RECURSIVE REDUCIBILITY

A nonrecursive set may have very specific nonrecursive properties, which
would not be revealed if we simply classified it as nonrecursive. Ways of

classifying nonrecursive sets are offered by the various reducibility relations

(cf. Davis [5] and Rogers [20]). Here it will suffice to present only one of

these, namely, strong recursive reducibility.

Definition 11.16A. Let A and B be sets. Then A is strongly recursively reducible

(or strongly reducible) to B , denoted A<B, if there exists a recursive function

/(x), the reducibility function, such that [x g A] = [/(x) e B].

Theorem 11.34A. The strong reducibility relation is reflexive, that is, A <^A.

Proof. Obviously there exists a recursive function /(x) such that [x e A] =
[f(x) e A]; /(x) = def x is such a function.

Theorem 11.35A. The strong reducibility relation is transitive, that is,

A<^B and B<^C implies that A < C.

Proof. Assume that A < i? and B C. Then there are recursive functions

/(x) and g(x) such that [x e A] = [/(x) e B] and [x e B] = [^(x) e C]. Hence
[x e A] = [/(x) e B] = [g(f(x)) e C], that is, there exists a recursive function

h(x) = def g(f(x)) such that [x e A] = [h(x) e C\.

Theorem 11.36A. A<^ B if and only if A < B.

Proof A<B if and only if there is a recursive function /(x) such that

[x e A] = [/(x) e B], which can be written equivalently as [x$A] =
[fix) $ B], that is, [xe A]= [f(x) e B ]. Hence [A < B] = [A B],

Theorem 11.37A. A set S is recursive if and only ifS«{l}.
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Proof. Assume that S is recursive, that is, its characteristic function Cs(x)

is recursive and [x e S] = [Cs(x) g {1}]. Hence S<{1}. Conversely, assume

that S <{1}, that is, there is a recursive function f(x) such that [x e S] =

[f{x) e {1}] = [f(x) = 1]. Hence S is the extension of the computable predicate

P(x) — def[/(*)
= that is, S is recursive.

Theorem 11.38A. A set S is recursively enumerable if and only if S < K,

where K = {x:3y T(x, x, y)} (cf. Tm. 11.20A, p. 387).

Proof. Assume S < A, that is, there is a recursive function f{x) such that

S = {x: f{x) g K} = {x: 3yT(f(x), /(x),y)}. Then, by Tm. 11.10A, p. 381, S is

recursively enumerable. Conversely, assume that S is recursively enumerable.

Then, by Tm. 11.9A, p. 381, there is a recursive predicate, R(x
, y) such that

S = {x: 3y R(x
, y)}. By Tm. 11.16A, p. 385, there is a recursive function g(x)

such that

3y[R(x, y) & (z = z)] = 3y T(g(x), z, y).

Hence

s = {*: 3y j)} = {*' ly[R{x, y) & (g(x) = ^(x))]}

= {x:3y T(g(x), g(x), y)} = {x: g(x) e K}.

Hence S<K.

Theorem 11.39A. Let A and B be two recursive sets such that each of the

sets A
,
B, A, B is nonempty. Then A<^B and B^A.

Proof. Since A and B are recursive, their characteristic functions, CA(x)
and CB(x), are recursive. Hence f(x) = de fw[CA(x) = CB(y)] is partial

recursive. Furthermore, since both B and B are nonempty, CB(y) is a mapping
onto {0, 1}, that is, f(x) is a total function. Hence, f(x) is a recursive function

such that [x e A] = [f(x) e B], that is, A<B.ln the same way B<A.

Theorem 11.40A. Let A and B be any two given sets of integers such that A,

but not B
,
is recursive. (Since B is nonrecursive, it has to be given in a less

constructive way than A, for which we know every element and every non-

element. Let us assume that B is given in such a way that we know at least

one of its elements, a
,
and at least one of its nonelements, b.) Then A<B

and B<^A.

Proof. Since A is recursive, its characteristic function, CA(x), is recursive.

Hence f(x) = def a • CA(x) + b • (1 — CA(x)) is recursive and [x e A] =
[f(x)eB], that is, A^B. Suppose that B<^A. Then there is a recursive

function g(x) such that CB(x) = CA(f(x)), contradicting the fact that CB(x)

is nonrecursive. Hence B^A.
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Theorems 11.39A and 11.40A show that the recursive sets are strongly

reducible to the nonrecursive sets, and that the converse does not hold.

Although every pair of recursive sets (except 0 and N) are strongly

reducible to each other, the same does not hold for the recursively enumerable,
nonrecursive sets. It is true that there is one recursively enumerable set, the
creative set K, such that every recursively enumerable set is strongly reducible
to K (Theorem 11.38A). There are, however, nonrecursive sets S such that
K<$,S and (cf. Davis [5]). Hence, the strong reducibility relation

reveals distinct nonrecursive properties already existing among the recursively

enumerable sets, that is, among the theoremhoods of r-formal theories

(cf. Explanation Hypothesis II, p. 350).

APPENDIX II. FORMAL SYSTEMS

A basic thought behind the formalization of a theory is to make it sus-

ceptible to exact mathematical study. For example, in certain formal theories

(r-formal theories), there need never arise a dispute about whether or not an
alleged proof really is a proof. The proof may be difficult to follow, but it

can always be effectively checked by a Turing machine.

H.l. FORMAL THEORIES

In a formal theory, the so-called well-formed formulas (abbreviated wffs)

are the basic objects. A wff is a finite string of symbols from a certain alphabet.

Invariably, the wffs are specified in such a way that an effective procedure
exists for deciding whether or not a given string is well formed.

Although the English language is not a formal system, we may compare a
grammatical English sentence with a wff of a formal theory. For example,
“Snoopy is a dog and” is not a grammatical sentence [cf. “D(s) &” which
is not a wff of a predicate calculus]. The sentence “ Snoopy is a dog and
Anne is a man” is grammatically correct [cf. “D(s) & M(a),” which is a
wff], although it is false. By the rules of English grammar, we can effectively

decide whether or not a given sentence is grammatically correct (cf. well

formed). However, we may not be able to decide effectively whether a given
grammatical sentence is true or false.

In order to apply the concepts of computability and recursivity, we must
encode the formulas of a formal theory to integers. In this way a set S of
wffs is called recursive if the set S* of code numbers of the elements of S is

recursive. Also a function f(X), which maps wffs on wffs, is called recursive
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if the function f*(x) is partial recursive, where f*(x) has as its domain the

set of all code numbers of the wffs and f*(c(X)) = c(f(X)), where c(X) is the

code number of the wff X.

Definition 11.17A. A formal theory is a set A of wffs, called the axioms

of together with a set of predicates, the rules of inference of SP. When
R(Y

,
Xu X2 ,

. . • ,
Xj is a rule of inference of SP, the wff Y is said to be a

consequence of the wffs Xu X2 ,
. .

.

,

Xn in £P by R.

Although many authors define a formal theory according to Definition

11.18A below, some others do not want to impose such restrictions on the

general concept of a formal theory. Hence we feel it necessary to introduce a

special concept r-formal (recursively formal).

Definition 11.18A. A formal theory SP is r-formal if SP has a recursive set of

axioms and a finite set of recursive rules of inference.

Definition 11.19A. A finite sequence of wffs Xl9 X2 ,
. .

.

,

X„ is called a proof

in a formal theory SP if, for each i, 1 <i <n, either X
t
e A or there exists

j\ , y2 ,
• • • 5 ju < l such that X

t
is a consequence of X

jx ,
X

j2 ,
. .

.

,

X
jk

by one of

the rules of inference of SP . Each of the X
t ,

i = 1, 2, . .
.

,

n, is called a step of

the proof.

Definition 11.20A. A wff PE is a theorem of SP, or, equivalently, a wff PE is

provable in SP

,

if there exists a proof in SP whose final step is PE. Also, PE

symbolizes that PE is a theorem* of SP . The set of all theorems of SP, the

theoremhood of SP, is denoted T$> . Occasionally, as should be clear from the

context, Ty may also denote the set of code numbers at all the theorems of SP.

Theorem 11.41A. The theoremhood of an r-formal theory is recursively

enumerable.

Proof Let TV be the set of all code numbers of proofs in an r-formal theory

SP. Let us first argue that P# is recursive. For any given code number, x, of a

proof, we can effectively decode v to obtain a string of wffs, Xt ,
X2 ,

. . . * Xn .

Since the set of axioms is recursive, we can effectively decide whether or not

X
x

is an axiom. If X1 $ A ,
we conclude from Definition 1 1.19A that x P^

.

Next, we can effectively determine whether X2 e A or whether X2 is a con-

sequence of X1 by a rule of inference in Sf

.

The reason is that the rules of

inference are finite in number, and each is a recursive predicate. Since the

string Xx ,
X2 ,

. .
.

,

Xn is finite, we can in this way effectively decide whether

it is a proof in 5^, that is, Py is recursive. Returning to T(f ,
we have, by

Definition 11.20A, = {x: 3z[zePy and x is the code number of the last

is a turn-styled T.
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element of the sequence whose code number is z]}. Since P
6? is recursive, the

whole predicate [z e P

p

and x is the code number of the last element of the

sequence whose code number is z] is recursive. Hence Ty is recursively enu-

merable (cf. Tm. 11.17A, p. 385, and Tm. 11.10A, p. 381.)

Definition 11.21A. A formal theory SP is called consistent if not every wff is

a theorem of SP. If not consistent, SP is inconsistent.

Definition 11.22A. A formal theory SP, with the negation symbol ~i
,

is

called (~i )-consistent if, for no wff W, we have W and ~i W. If SP is

not (~n)-consistent, it is called (myinconsistent

.

Example 11.7A. An r-formal theory SP for the propositional logic may be

defined as follows. The alphabet of SP consists of the symbols => —
i ( ) and

the propositional variables pu p2 , p3 f
.... Also, W is a wff of SP if there

exists a sequence Wl9 W2 , . .
.

,

Wn of formulas such that Wn is W and for

each z, 1 </</?, either W
t

is a propositional variable, W
t

is (Wj=> Wk),

where j < i and k < i, or W
t
is ~i Wj

,
where j < i. Moreover, SP has only one

rule of inference, namely, R(Y, Xu X2 ), which is true if and only if X2 is

X1 => Y. This rule of inference, which is called modus ponens
,
says, in other

words, that 7 is a consequence of X
l
and of Xl => Y. The axioms of SP are

as follows:

Al. (A=>(B=>A)),

A2. ((A =>(£=> Q) => ((A => B) => (A => C))),

A3. ((^A B) => (B => A )),

where A, B
,
and C are any wffs of SP

.

Example 11.8A. Let us demonstrate that, for any wff W of if, h% (W=> W).

The following is a proof of (W=> W) in SP :

(1) }-^ (( W=> ((W=> W)=> W)) => ((W=> (W=> W)) => (W=> W)))

(axiom A2 with the wffs W, (W=> W), W for A, B, C, respectively);

(2) b#(W=>((W=>W)=>W))
(axiom Al with the wffs W

,
(W=>W) for A, B

,
respectively),

(3) b#((W=>(W=>W))=>(W=>W))
(a consequence of (2) and (1) by modus ponens);

(4) \-<?(W=>(W=>W))

(axiom Al with the wffs W, W for A, B
,
respectively);

(5) b*(W=>W)
(a consequence of (4) and (3) by modus ponens).

Theorem 11.42A. Let SP be a formal theory which contains Al and A3 among
its axioms and modus ponens among its rules of inference. Then SP is consistent

if and only if SP is (~

i

)-consistent.
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Proof. Assume that SP is (~^-consistent. Then, if A is a theorem of

~iA is a wff which is not a theorem of . Hence is consistent. Conversely,

assume that SP is consistent and at the same time (—
i
^inconsistent. Then

there is a wff B such that both Vy B and ~i B. Let W be an arbitrary wff

of £f. By axiom A1 we have (~iB=> (—i W => —\B)). Hence, by modus

ponens
,

(~i W => ~\B). Furthermore, by ((~i JF=> ~iB) => (B=> IF)) by

axiom A3. Hence, applying modus ponens twice, we get by W. This means

that every wff W of 9* is a theorem of 5C contradicting the assumption that

SP is consistent. Hence, if 5^ is consistent, it cannot be (~i ^inconsistent but

must be (“i)-consistent.

Further examples of theories for which Theorem 11.42A applies are the

so-called first-order theories. A first-order theory contains among its symbols

the quantifiers V and 3, operating on individual variables. Among these

theories is the pure first-order predicate calculus, which has logical but no

proper axioms. The importance of this theory stems from the fact that every

r-formal theory can be translated into it (see [5], [9], [16]).

11.2. THE DECISION PROBLEM FOR A FORMAL THEORY

Although the set of proofs of an r-formal theory is always recursive, its

set of theorems, although always recursively enumerable, need not be recur-

sive.

Definition 11.23A. The decision problem for aformal theory is the problem

of determining, for a given wff, whether or not it is a theorem in Sf

.

The

decision problem is recursively solvable if Ty is recursive; otherwise, it is

recursively unsolvable.

Let us give an example showing that there are r-formal theories with

recursively unsolvable decision problems.

Example 11.9A. As we know (Tm. 11.20A, p. 387, and Tm. 11.24A, p. 388),

the set K = {x: 3y T(x, x, y)} is recursively enumerable but not recursive. Let

us try to use K for constructing an r-formal, undecidable theory by associating

the proof sequences with the computation sequences y of the recursive Turing

machine predicate T(z, x, y) [cf. Tm. 11.6A, p. 378; T(z, x, y) is true when

Turing machine Z, started on the argument x, performs a computation

sequence Y
x ,
Y2 , ,

Yn whose code number is y]. To interpret T(z, x, y) as

“y is (the code number of) a proof of q0 x in the theory z” would be uncon-

ventional in the sense that the computation sequence y begins, not ends, with

x. Hence it is more natural to consider the reverse computation sequence as a

proof of x from the axiom Yn . In order to simplify the axioms, let us consider
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the associate Z* to an arbitrary Turing machine Z; Z* is a Turing machine
which behaves precisely as Z, except that Z* halts in state qh ,

scanning the

number 0 on an otherwise blank tape, if and only if Z halts. It is left as an
exercise to prove that the code number z* of Z* can be effectively obtained

from z, that is, z* =/(z), where/is recursive. We can now interpret the recur-

sive predicate T(f(z), x, y) as “y is a proof of q0 x from the axiom qh 0 in a

system whose rules are the inverse quadruples of Turing machine Z*.” Let

Fz denote the formal system which is defined as follows. The set of wffs is

the recursive set of the Turing machine tape configurations. There is a single

axiom, the tape configuration qh 0. There are a finite number of recursive

rules of inference, R
t
(Y, X), such that Y is a consequence of X according to

if and only if tape configuration Y forces Turing machine Z* over into

tape configuration X (by the ith quadruple defining Z*). According to Def.

11. 18A, p. 396, the formal system Fz is /'-formal for every code number z.

Furthermore, q0 x is a theorem of Fz if and only if there is a proof of q0 x,

that is, there is a computation sequence from q0 x to qh 0, that is, Turing
machine Z halts [i.e., 3y T(z, x, v)]. Finally, by Theorem 11.9A, p. 387, there

is a z0 such that 3y T(x, x, y) = 3y T(z0 , x, y). Therefore

{x\ 3y T(z0 , x, y)}

is nonrecursive, and hence the decision problem for the /--formal theory FZo

(does q0 x belong to the theoremhood of FZo ?) is recursively unsolvable.

II.3. TRANSLATABILITY BETWEEN FORMAL THEORIES

Let if
!
and if2 be two natural languages. It may happen that if

x is richer

that if2 so that an attempt to translate from if
x
into if2 will not fully mirror

the fine details or convey the complete contents of a sentence in if
t

. Again,
it may be impossible to retranslate a sentence from if2 back into the original

if !-sentence without having the “translator” add to the contents.

In the same way, translatability (Davis [5]) between formal theories should

be neutral with respect to powers of effectivity. It should neither add to the

deductive power of a theory nor destroy it.

Definition 11.24A. Let £F and SF' be formal theories. Then SF is translatable

into SF' if there exists a recursive function f(X) such that by X if and only

if fQ0; moreover, if X # Y, we also have f(X) #/(T).

Theorem 11.43A. SF is translatable into SF' if and only if Ty is strongly

recursively reducible to 7> and the reducibility function is 1-1.
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Proof. Let x be the code number of the wff X. Then [by X] = [x e Ty]

and [Vy f(X)] = [f*(x) e TV], where /*(x) is a recursive function with the

code number of f(X) as value. Hence, 9 is translatable into 9' if and only

if [xeTy] = [f*(x)eTy.], where the recursive function f*(x) is 1-1. This

means that Ty^LTy with a reducibility function which is 1-1 (cf. Def.

11.16A, p. 393).

Theorem 11.44A. If9 is translatable into 9' and the decision problem for9 9

is recursively solvable, then the decision problem for 9 is recursively solvable.

If the decision problem for 9 is recursively unsolvable, then so is it for 9'

.

Proof. Suppose that 9 is translatable into 9' and that TV is recursive.

Then, by Theorems 11.43A, 11.19A, p. 386, and 11.38A, p. 394, Ty <C Ty K
,

that is, Ty^Kby Theorem 11.35A. Furthermore, Ty is recursive. Hence, by

Theorem 11.36A, Ty < Ty. < K,
that is, Ty < K. Thus, by Theorems 11.37A,

p. 393, and 11.19A, p. 386, Ty is recursive, that is, the decision problem for 9
is recursively solvable. On the other hand, ifwe assume that Ty is not recursive,

and that Ty~€ TV, then Ty must also be nonrecursive. For, if Ty were re-

cursive, we would have both Ty < Ty < K and Ty < Ty, < A, that is, Ty

would be recursive, which contradicts our assumption (cf. Tm. 11.40A, p. 394,

for another proof).

II.4. INCOMPLETENESS AND UNSOLVABILITY IN FORMAL
THEORIES

To provide a measure of the deductive power of a formal theory, the follow-

ing definitions (Davis [5]) of completeness are appropriate. This concept is

very strongly associated with the concepts of strong recursive reducibility

(Def. 11.16A, p. 393), and translatability (Definition 11.24A).

Definition 11.25A. A formal theory 9 is said to be semicomplete with respect

to a set of integers Q if there exists a recursive function f such that Q =

{n: f(n) e Ty). Also, 9 is said to be complete with respect to Q if it is semi-

complete with respect to both Q and Q.

Theorem 11.45A. A formal theory 9 is semicomplete with respect to a set

Q if and only if Q <Ty.

Proof. The statement follows immediately from Def. 11.16A, p. 393, and

Def. 11.25A.

Theorem 11.46A. 9 is semicomplete with respect to a nonrecursive set if

and only if 9 has a recursively unsolvable decision problem.
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Proof. Assume that 9 is semicomplete with respect to a nonrecursive set

Q ,
that is, and either Q < K or Q < iL Then Ty must be nonrecur-

sive, for otherwise T? <K and K, that is, both Q < K and Q < K,

which contradicts the assumption. Conversely, assume that 9 has a recursively

unsolvable decision problem, that is, T^ is nonrecursive. Then, because of

Tm. 11.37A, p. 393, 9* is semicomplete with respect to the nonrecursive set

itself.

Theorem 11.47A. If 9* is semicomplete with respect to every recursively

enumerable set, then 9 has a recursively unsolvable decision problem.

Proof. Assume that 9 is semicomplete with respect to every recursively

enumerable set. Then 9 is semicomplete with respect to the set K, which is

nonrecursive (Tm. 11.20A, p. 387). Hence, by Theorem 11.46A, 9 has a

recursively unsolvable decision problem.

(A converse of Theorem 11.47A, namely, that if 7V is nonrecursive, 9 is

also semicomplete with respect to every recursively enumerable set, is false.)

Theorem 11.48A. Let 9 be an r-formal theory which is semicomplete with

respect to a set Q. Then Q is recursively enumerable.

Proof Let 9 be as in the statement of the theorem. Then, by Tm. 11.41 A,

p. 396, that is, Q^K and Q is recursively enumerable by Tm.
11.38A, p. 394.

Theorem 11.48A has the following obvious corollaries.

Corollary 11.1A. If Q is not recursively enumerable, then no r-formal theory

is semicomplete with respect to Q.

Corollary 11.2A. If an r-formal theory 9 is complete with respect to a set

Q, then Q is recursive.

Corollary 11.3A. If Q is recursively enumerable but not recursive, then no
r-formal theory is semicomplete with respect to Q.

Corollary 11.4A. If Q is recursively enumerable but not recursive, then no
r-formal theory is complete with respect to Q.

Corollary 11.1A can be regarded as an abstract form of Godel’s famous
incompleteness theorem (see [6]). An interpretation of this theorem is given

in the following example.

Example 11.10A. In any r-formal theory which has a certain minimal com-
plexity and for which the notion of “true” wff can be defined in a certain

natural way, the set of “true” wffs is productive (cf. Rogers [20]). By Tm.
11.22A, p. 388, there is no r-formal theory which is semicomplete with respect
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to this set of “ true ” wffs. Hence there is no r-formal theory with an explica-

tory power large enough to explain all these “true” wffs (cf. Explanation

Hypothesis II, p. 350). The productivity of a set of “true” wffs may be ex-

emplified as follows.

Consider an r-formal theory that is flexible enough to make assertions about

Turing machines as arithmetical statements about their code numbers. State-

ments like “ 0 is the code number of a recursive function,” and “
1 is the code

number of a recursive function,” will be expressible within the theory. From

Tm. 1 1 .26A, p. 388, we know that the set {z : i//z is recursive} is productive. Hence

the set of true statements of the form “w is the code number of a recursive

function” is productive. Then, as we know from Corollary 11.1A, there is

no r-formal theory which will produce all true statements and no false state-

ments of this form as theorems. Indeed, an r-formal theory that produces

only true statements of the above form can be effectively used to produce a

new true statement (cf. the production function of Def. 1 1.14A, p. 387). Thus

all these produced true statements can be produced by a single r-formal

theory (see the proof of Tm. 1 1 .25A, p. 388), which again has to be incomplete.

No effective continuation of this process will yield an r-formal theory that

produces all true, but no false, statements.

As another example, there is no r-formal theory of arithmetic: the Peano

axiomatization of arithmetic can only capture a fragment of all arithmetical

truths.

PROBLEMS

11.1 (Section 11.2). Construct a formal theory Sf with a nonfinite set of

recursive rules of inference and a recursive set of axioms such that Tm. 11.1,

p. 344, is violated. In other words, the problem of deciding whether an alleged

proof really is a proof in should be recursively unsolvable.

Hint: Consider an r-formal theory with a nonrecursive theoremhood

(cf. Ex. 11.9A, p. 398). Use the recursive function which enumerates the

theoremhood of trade each theorem, but a single axiom, for a new recursive

rule of inference, to obtain a new theory with the desired property.

11.2 (Section 11.3). Let W1
and W2 be two wffs in the formal theory if for

the propositional logic (Ex. 11.7A, p. 397), such that b% (Wi
=> W2). Prove

that I(W2 ,
JSf) czI(Wl9 if) (cf. Def. 11.2, p. 348).

11.3 (Section 11.3). Let IE be a theorem of if (Ex. 11.7A, p. 397). Prove that

I(W
,
if) = 0 and I(~\ W, if) = Swff - 7>, where Swff is the set of all wffs

of if. Hence, if the amount of syntactic information is measured by card

I(W, if), the wffs W and W do not in general carry the same amount of

syntactic information in if.
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11.4 (Section 11.3). Let 9 be an r-formal theory with a decidable logical

basis 9 (cf. Def. 11.23A, p. 398). Prove that the syntactic information of 9
with respect to 91 is recursively enumerable.

11.5 (Section 1 1 .4). Let A and B be two given finite, nonempty sets of integers

such that card A < card B. Prove that A<^B and B<^A by exhibiting

corresponding reducibility functions (cf. Def. 11. 16A, p. 393). Furthermore,

prove that A is translatable into B and that the converse does not hold (cf.

Def. 11.24A, p. 399, and Tm. 11.43A, p. 399.)

Use the results to compare the explicatory powers of two theories with

finite syntactic information.

11.6 (Section 11.4). Let 9 be an r-formal theory with a logical basis 9 such

that, for any wff W, W => W is a logical theorem (a theorem of 9). Further-

more, let 9 have the following deduction property, D\ Let 9(A) denote the

theory obtained from 9 by appending the wff A as a proper axiom
;
then W

is a theorem of 9(A) if and only if A => W is a theorem of 9.

Prove that 9(A) can be translated into 9 with the reducibility function

f(X) = dei(A => X). Does this particular translation imply that 9 has greater

explicatory power than 9(A) with respect to 9?
Hint : What will be the logical status of the translation of the proper

axiom A1

11.7 (Section 11.4). Prove that the translatability relation (Def. 11.24A,

p. 399) is transitive, that is, if9X is translatable into 92 and 92 is translatable

into 9 3 ,
then 91

is translatable into 9 3 . Hence, by Explanation Hypothesis

II, p. 350, the property of having a greater explicatory power also defines a

transitive relation.

11.8 (Section 11.5). Use of Explanation Hypothesis III, p. 352, raises the

question of how to find a shortest set of axioms for a theory. Prove that there

are r-formal theories for which the problem of deciding whether or not an

axiom can be deleted, without changing the theoremhood, is recursively

unsolvable.

Hint

:

Assume that there are no such r-formal theories and derive a contra-

diction to the fact that there are r-formal theories with nonrecursive theorem-

hoods (Ex. 11.9A, p. 398).

11.9 (Section 11.6). Let the set S be defined by S = def{x: 3zs(z, u) = x},

that is S is the set of shortest descriptions which make the universal Turing

machine U compute the integers. Prove that S is not recursively enumerable.

Hint: Assume that S is enumerated as a recursive function f(n), and

obtain a contradiction from Tm. 11 .33A, p. 392, by applying it to the function

W/(M/(«) > *)))•

11.10 (Section 11.6). Let us say of two strings of symbols, zx and z2 ,
that z2

is the more complex (to describe) in relation to U if and only if s(zu u) <
s(z2 ,

u). (See the order-randomness hypothesis (p. 354), from which we can
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conclude that z2 is more randomized than z1? only if we know that z
t
and z2

are of equal lengths.) Let c(z) be a complexity operation such that

s(z, u) < s(c(z), u).

Thus c transforms a string z into a more complex string c(z) relative to U.

Prove that the complexity operation c(z) is nonrecursive for every choice

of universal Turing machine U.

Hint

:

Assume that c(z) is recursive. Then the yth composition cy(z) is

recursive, and

s(z, u) < s(c(z), u) < ^(^(z)), u) < ,S'(c
3
(z), u) < • •

• < s(cy{z), «)<•••.

Prove that this unbounded complexity increase contradicts Tm. 11.3, p. 353.

11.11 (Section 11.7). Although no genuinely universal learning machines

exist, there are machines which can learn limited classes of regular behaviors.

For example, let E be the class of output sequences s on the alphabet {0, 1},

generated by autonomous finite-state machines. Discuss a learning machine

M, with a learning mechanism in the form of a Turing machine, which can

extract the rules of any sequence s in E and, given an unlimited learning time,

will be able to predict s with certainty.

11.12 (Section 11.8). Define an SFM-surrounding along the lines of Def.

11.9, p. 360, for SXM-surroundings, but with Turing machines replaced by

finite-state machines. Give examples of simple S^-surroundings.

11.13 (Section 11.9). Construct a partially self-describing sentence of the

form :
“ This sentence contains precisely letters ” by filling the empty

spaces with an English word designating a number which makes the sentence

true.

11.14 (Section 11.9). According to Def. 11.14, p. 387, the recursively enumer-

able sets might be completely described by their ^-indices of the S^-forms.

Hence we could say of a recursively enumerable set
,
such that S[mJ = {m},

that it is self-describing. Prove that there are such self-describing sets.

Hint: A set {x} is recursively enumerable, and hence there is an n = f(x)

such that SLf(x)1 = {x}. Use Tm. 1 1 .16A, p. 385, to prove thatf(x) is recursive.

Next, apply Tm. 11. 31 A, p. 392, or see Rogers [20] for a similar proof.

11.15 (Section 11.9). The proof of Tm. 11.5, p. 361, is constructive in the

sense that it indicates how a Turing machine can be constructed so that it will

be self-producing in an SXM-surrounding. Determine in this way a Turing

machine which is self-productive in an SXM-surrounding with the code function

c(z) = z(cf. Def. 11.9, p. 360).

11.16 (Section 11.10). Use Tm. 11.10, p. 365, for a comparative discussion of

the evolution of normal behavior and the evolution of sturucture.
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GLOSSARY OF SYMBOLS USED

Symbol Definition Page Name or Explanation

=> Implication symbol.

“i 11.22A 397 Negation symbol.

by 11.20A 396 b means that the wff W is a

theorem of the formal theory SP

.

V 347 b W means that the wff W is logic-

ally true.

jR is the complement of the set R
with respect to the set of all«-tuples,

Nn
,
if R is a set of ^-tuples.

- 11.5A 373 Proper subtraction.

« 11.1 6A 393 A^B means that A is strongly

recursively reducible to B.

A-* d-+ B 11.6 358 The object A is productive in the

surrounding S.

X(x) 11.12A 383 Left pair-decoding function.

p{x) 11.12A 383 Right pair-decoding function.

y) 11.12A 383 Pair-encoding function.

ny[f(x, y) = 0] 11.4A 372 Minimalization.

|AzOi, • • • ,
xn) 11.1A 370 The partially computable function

computed by a Turing machine with

code number z.

11.3 349 The logical basis of a formal theory.

cs(x) 11.6A 376 The characteristic function of the

set S .

c(z) 11.9 360 Code function.

I(W, //) 11.2 348 Syntactic information of the wff W
in the formal theory SP.

J1

) 11.3 349 Syntactic information of the formal

theory SP relative to its logical

basis J>

.

Inf(W)

se

348 Semantic information of a wff W.

The propositional logic.

/^-explanation 11.1 344 Proof sequence explanation.

r-formal 11.1 8A 396 Recursively formal.

SP 11.17A 396 A formal system (theory).

S[n] 11.1 4A 387 The «th recursively enumerable set

{x: 3yT(rt, x, y)}.
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GLOSSARY (Continued)

Symbol Definition Page Name or Explanation

^TM 11.9 360 Surrounding complete with respect

to the class of Turing machines.

S(x) 11.5A 373 The successor function.

s{z, u) 11.4 353 The shortest form function.

Ty 11.20A 396 The theoremhood of the formal

theory Sf .

Tiz, x, y) 11.9A 378 The Turing machine predicate.

U 11.15A 389 A Universal Turing machine.

U(y) 11.10A 379 Final-element function.

Ui\xu xn )

wff
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EDITOR’S COMMENTS

Although Chapter 12 may well be easy reading for a person familiar with

the concepts discussed, it may become quite difficult for readers without

such a background. To obtain the full benefit from this chapter, the reader

should at least be familiar with the fundamentals of set theory, calculus,

abstract algebra, and topology. The references recommended in Editor’s

Comments to Chapter 8-10 seem to represent sufficient preliminaries for this

chapter.

Some readers may be interested to read an original paper:

Appert, Antoine, “ On the Equivalence of Different Definitions of Continuity in General

Topological Spaces, and the Axiomatization of such Spaces” (in French). Rendiconti

del circolo Matematico ,
Vol. 10, Series 2, pp. 333-346, 1961.

* This work was partially supported by the NSF Grant GJ-797.
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For the definition and a discussion of the Lipschitzian function, see the

following book

:

Cech, E., Topological Spaces. New York: Wiley, 1966.

12.1. INTRODUCTION

My own work in what may be called a systems-theoretic direction has been

slanted toward the interpretation of mathematics. The scientist with an

appreciation of mathematical methods and the mathematician who is delving

into the technical ramifications of his special subarea tend to accept most of

the concepts and structures defined by others and to be unconcerned with

interpretations. Yet, after some years of work in a rather few areas, I have

discovered that rarely is an important concept given proper interpretation;

axiom systems have been chosen without careful thought, and, worse, attitudes

which are detrimental to the development of mathematics have arisen.

For example, the cavalier treatment of nomenclature indicates a lack of

discipline which is far from the idealistic image of scientists portrayed to the

public. I have repeatedly shown how certain concepts have been defined in

contexts too limited for their characters. Only rarely, however, have I detected

any appreciation of the need for clarity.

Now, I have been asked to record some of my conclusions and the reasons

for them rather than to choose one of the various areas on which I have

worked and to expand on it. My philosophy is simple : It is important to

understand every major concept in the simplest of terms possible. Although

I accept a concept on which mathematicians have devoted much time as

important, I cannot usually accept their definitions or interpretations as

being the best which can now be made. Moreover, once I have reached what

I feel to be a basically better interpretation or definition, I do not claim to

have achieved the ultimate. At one time, I might have felt that some terminal

goal had been reached, but experience has indicated that new insights are not

only possible but also likely.

Anything of real importance (certainly this includes mathematics) should

be made available to the young with as much clarity as possible. Confusion

produced by misinterpretations, by poor nomenclature, and by inadequate

instruction contributes to the mystery but does not help in resolving the

fundamental questions which remain after we have done our best.

System theorists may find that this has little to do with their work. However,

since every person who has come through the educational system has been

subjected to a number of misinterpretations in regard to mathematics, and

since few have had the acumen to question these interpretations, it is clear
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that systems theorists, like everyone else, do not have an adequate grasp of

the tools they are using. Let me add here that I myself do not have an adequate

grasp of mathematics. I differ mainly in the nature of the attempt to improve

the situation.

So far I have left out specific clues to the matters that I have tackled.

These will come in the body of this chapter. Let me first cover in a rather

abrupt fashion topics that I have treated in more detail in a number of papers

and manuscripts.

12.2. PRELUDE

Among the terms which seem appropriate in relating mathematics to the

objectives of people, I find accessibility
,
structure

,
and information to con-

stitute a suitable starting place. The structures of phenomena, that is, the

real world or universe, are not directly available to us. Yet man tries to

increase the accessibility of these structures by acquiring information con-

cerning them. The means of increasing access are numerous. We have means

and modes of travel and of communication; we have books, schools, and

teachers to increase accessibility. We have tools, such as telescopes, micro-

scopes, and electronic computers; we have languages, theories and algorithms.

Mathematics makes part of its contributions through increasing information

via abstract models.

Now, although increasing accessibility is an objective, there are also

activities which restrict accessibility. Thus we have buildings, prisons, and

locks; we have legal and natural restraints. Guilds, such as special interest

organizations, have restricted access to their techniques and guarded their

prerogatives, and they continue to do so. Schools not only provide access

but also limit access. Technical jargons as well as natural languages provide

barriers. Mathematics is no exception despite the fact that pupils are required

to study this discipline for a protracted period of years. Perhaps this is the

real reason for the failure to introduce general principles in mathematics

education, although it seems also true that mathematicians themselves have

not really sorted out the general principles.

Thus the structure of mathematics remains a mystery to mathematicians,

but unless every teacher of mathematics has some concept of its structure,

how can he or she teach it well? I have produced a chart of elemental mathe-

matics which, when suitably modified and explained, could be used to display

some of the relationships among mathematical areas. However, nothing

comparable has appeared in teacher-preparation courses.

As a general observation, I should say that algebras tend to be simpler

than geometries, including analyses and topologies. The reason that such
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algebraic constructs as groupoids, semigroups, and groups are comparatively

simple is that their definitions can be quite well managed in the language.

However, most geometric concepts (e.g., angle) cannot be satisfactorily

explained through language.

The reason that arithmetic is taught early in school is not that it is easy

but that it is adjudged important. Arithmetic, especially if taught without

algebra, is difficult. It should be obvious that every important aspect of

mathematics should be taught before graduation from high school. Yet this

is not done.

12.3. EXTENSIONS OF TOPOLOGICAL SPACES

Among the branches of mathematics, topology is an example of the more

active ones of comparatively recent vintage. In keeping with my theme, I

ask, What is the quality of information provided by topology? To a marked

degree, topology deals with conceptualizations rather than procedures and

algorithms. The flavor of topology, accordingly, tends to be qualitative

rather than quantitative. In a given context such terms as “closed,” “open,”

“compact,” “connected,” “perfect,” “dense,” “separable,” and “con-

tinuous,” as used in topology, indicate ways of describing situations which

are assumed, but which are ordinarily beyond the reach of computation.

Let me mention one way in which topologists have provided information.

The number of surfaces which we perceive as boundaries of real objects com-

prise a veritable morass. To attempt to classify the surfaces of all mathematical

solids in three-dimensional space or just the surfaces in terms of the locations

of their points would, as far as can now be seen, be impossible and fruitless.

However, by ignoring most differences and defining the topological equiva-

lence of surfaces, the topologists have provided a classification of such sur-

faces. This is but one of the successes topologists have achieved.

The commonly accepted definition of topological spaces is an astonishingly

permissive one. To generate a topological space, choose a set, say E, and

choose any class of subsets of E which covers E; you now have a subbase

for the open sets of a topology in E. To get all the open sets, include all

intersections of finite subclasses of the class of sets chosen; the union sets of

arbitrary subclasses of the resulting class constitute a class of open sets which

determines a topology.

Now, even in finite sets E there can be a large number of different topologies,

and if E is infinite the number is indeed large. Surely, you may then say, this

is going too far—who has use for all these topologies ? The answer is that the

number of explicit topological spaces used is trivial (a small finite number, in

a sense) compared to the possibilities. Many mathematicians, including a
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number of topologists, would agree. Topological spaces are, they say, too

general.

The advantages of a general definition are that the conceivable scope of

the field is greater and the reasons why certain results hold can be made
clearer. The disadvantage is that without specializations the general system

may not yield the results needed. However a generalization of a given system

always embraces that system and, usually, others as well. A generalization,

then, may be effective in providing a basis for comparing concepts, results,

and structures in areas previously considered to be separate.

I have given certain generalizations of topological spaces some attention.

I shall mention first one generalization of a moderate sort with pleasant

consequences. In topology, the intersection of two open sets is an open set,

by definition. I drop that requirement. Start with a set E
,
choose any class of

subsets of E,
and extend it to include the union sets of every subclass of the

class you chose. I will call the resulting class of sets the open sets of an Appert

space (after A. Appert). Note that it is simpler, conceptually, to form an

Appert space than a topological space since I do not require that the class

you chose cover £, nor that the intersection of each pair of open sets be an

open set. However, since these possibilities are not excluded, Appert spaces

embrace topological spaces. Now let x e E; then the class V0(x) of all open

sets which contain x as an element is an open neighborhood base for x The

complement on E of an open set is a closed set by definition, and hence the

class of closed sets contains the intersection set of each of its subclasses. The
closure f(A) of a set A

,
is the intersection set of all closed sets which contains

it. The interior g(A) of a set A is the union of all open subsets of A.

It is now readily verified that / and g are dual functions, that is, g = <tfc

(and /= cgc), where c is the complement function. A topologist might

object that I have distorted the meanings of “closedness” and “openness.”

However algebraists also use the term “closed” and my definition embraces

all algebraic closures. Again, algebraists might object: What do they care

about open sets ?

I consider it an obligation, when possible, to meet objections and to estab-

lish relevance. If I can show that I have not merely engaged in a generalization

for the sake of generalization (as some would say), then I can rest my case.

First let me admit that the neighborhood structure is often quite complicated

when algebraic closures are involved and, while providing insight, does not

seem to lead to nice algorithms. However, consider the case of convexity as

a property of sets in some real linear vector space, E. The intersection set of

any class ofconvex sets being convex, I choose to interpret convex as “ closed
”

and the complement of convex as “ open.” Thus convexity gives examples of

Appert spaces which are not topological spaces.

The convex hull operation is a closure operation. It is a closure with respect
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to a binary operation, say /{x, y} 9
which has the line segment xy as the pro-

duct, or {x} if x = y. Since the convex hull of A, say f(A), is a closure with

respect to a finitary operation, there exists for each x e E a neighborhood

base of open sets which is minimal, that is, a class of sets each having no

proper subset which is a neighborhood of x and no proper subclass of which

is a base. It is necessary and sufficient ,
for x to be in the convex hull, f(B),

of a subset B of £, that B intersect every one of the neighborhoods of x

(in convexity). This result of mine is the first such condition proved. It

amounts to reinterpreting the topological result and applying it where it

had not been applied before. I have, in fact, established a series of results

concerning convexity and generalizations of convexity which were not proved

before [16, 18].

Now let me ask; Are Appert spaces too general ? They are the least general

spaces which include all closures. As applied to convexity, they are quite

specialized, having special properties not holding in general Appert spaces.

The more general framework was necessary to contain convexity.

I have given an indication that Appert spaces are useful, and it might be

thought that they comprise an ultimate in useful generalizations of topology.

This is not the case. I shall mention a few other generalizations, using the

neighborhood concept. A Frechet (or reflexive) space is given in E by assigning

to each point x in E a class of subsets of E
9
each of which contains x as an

element. This class of sets is called a neighborhood base for x. Then a con-

vergent of x is any set which intersects each of the neighborhoods in the

base. The class of all neighborhoods of x consists of the ancestral closure of

its assigned neighborhood base, that is, of each set which is a superset of

some base neighborhood. As a convergent of x is a sample of all neighbor-

hoods of x, so a neighborhood of x is a sample of all convergents of x.

Thus there is a basic duality between convergents and neighborhoods. The
equivalent set-valued functions/and g replacing closure and interior now are

not idempotent in general, but still cfc = g. Frechet spaces are the most

general neighborhood spaces which give a satisfactory definition of connected-

ness of sets by direct extension of the formalism of the topological definition

of separation of pairs of sets.

What is a distinctive difference between Appert spaces and Frechet spaces

which are not Appert spaces ? In an Appert space the base of open sets may
be assigned without reference to points. In Frechet space each point must be

assigned its neighborhoods, since there is generally no base of open sets.

The reflexivity required in all Frechet spaces (including Appert spaces and

topological spaces) is that each x e E is close to itself, that is, x is an element

of all its neighborhoods and thus {x} is a convergent of x. In what I call

primitive spaces
,
each x has a neighborhood base no set of which contains x.

These spaces are irreflexive. They appear in topology when one deals with the
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limit points of sets. In an isotonic space, each element is assigned a class of

subsets of £ as a neighborhood base with no other restrictions [17]. These

spaces embrace Frechet spaces and primitive spaces.

The most general sort of neighborhood spaces that I have considered admit

two sets, say E and Ev To each x e E there is assigned a class of E
x
which is

a neighborhood base for x. A subset of E x is a convergent of x, provided it

intersects all neighborhoods. Now of what use is such a structure? The

answer is that this context is the natural one for approximations and modeling.

It is appropriate, for example, to language translation.

All these extensions of topological spaces make use of the neighborhood

concept. There are applications (of specific character) of each which are not

embraced in a less general space structure. Now, it might be thought, an

ultimate has been reached. This is not true. Many concepts associated with

topology cannot be best described in any neighborhood space structure,

however general, of the kinds I have mentioned. Among these are the concepts

connectedness of sets and continuity of functions.

The gains made in the generalizations I have mentioned involve greater

applicability, better understanding, and superior notation. Intuitively, what

are neighborhoods ? Suppose that you have an objective : for example, getting

a Ph.D. degree or a Cadillac. The neighborhoods of the objective are the

conditions you must meet to achieve it. Neighborhoods protect objectives

from effortless achievement. When you have met every condition—penetrated

every neighborhood—you have converged
;
you have reached the goal. This

interpretation, available in examples to children, provides a better insight

into neighborhoods than all the topology treatises and textbooks I have seen.

12.4. CONNECTEDNESS OF SETS

The concepts of connections and connectedness in the common language

are very broad indeed, being essentially the same as relationships. In the

earlier part of this century appreciable effort was spent in finding a definition

of connectedness for sets of real numbers. Three men, Riesz, Lennes, and

Hausdorff, seemingly in that order, provided the same definition, which was

accepted and generalized to higher-dimensional spaces and to abstract

spaces. It is reported that G. Cantor earlier suggested a definition which was

more general but included, say, the set of rational numbers as a connected set.

Connectedness provides a most interesting example of inertia. Accepting

the formal definition, many researchers published studies on its consequences,

whereas practically no thought seems to have been given to the sense of the

definition in relationship to applications. In 1959, I defined connectedness of

sets relative to certain binary relations among sets which I named Wallace
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separations after A. D. Wallace [28]. This work was published in 1964 [7],

following a paper on binary relations among sets [4].

Let R be a binary relation in the power set of E. Then R is a separation

provided (X,
Y) e R and Id Xl7 Y id Y

1
implies (Xl9 Yx ) e R, that is, I

define a separation as hereditary. If (X, Y)e R implies that X and Y are

disjoint, then R is exclusive or disjunctive. A symmetric disjunctive separation

is a Wallace separation.

Let R be a Wallace separation. Then a subset A of E is R-connected,

provided A is not the union of a pair of nonempty .R-separated sets. This

definition of connectedness is a major improvement on the topological

definition, which represents a special case. The advantages gained are sim-

plicity, increased applicability, deeper results, and greater insight.

Simplicity is achieved because, in order to specify a Wallace separation,

one need merely specify an exclusive binary relation in the power set of a set.

From this, by using symmetry and the hereditary property, a unique Wallace

separation is determined. Alternatively, from one of the results of my theory,

you may specify which sets you wish to have connected. Then the binary

relation, comprised of every pair of disjoint sets which separate none of the

sets you specified, is a Wallace separation—the maximum Wallace separation

which gives you all the connected sets you specified and as few others as the

theory here can allow.

Connectedness-preserving functions are of interest in topology. I have

given a necessary and sufficient condition for a function to preserve connected-

ness, a result which applies in topology. In this case, having the proper

framework for connectedness of sets led easily to a result which had eluded

prior research efforts. Although topologists deal with certain forms of con-

nectedness, the topological definition is not adequate in topology. For

example, if anyone had defined connectedness of sets in Euclidean spaces,

he might have chosen arc-wise connected sets. Yet, as is shown in [31], arc-

wise connectedness is not achievable in any neighborhood space in Euclidean

spaces of two or more dimensions. Although the topological definition

preserves the form of definition for the real line, it does not preserve the sense

of connectedness. My definition admits the class of arc-wise connected sets

in the plane as a complete class of connected sets.

What can be proved about the more general form of connectedness ? An
amazing number of theorems have been proved. For example, I have given

a necessary and sufficient condition for the union set of a class of connected

sets to be connected. Since the union of any class of connected sets which

have a common element is connected, component decompositions of sets are

readily established. In fact, my definition provides a much better structure

for the discussion of connectedness than the topological definitions since

connectedness is not, basically, a topological property. For example, if we
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agree that each pair of consecutive integers is a connected set, then the con-

secutive strings of integers form connected sets. This connectedness is beyond

the topological definition, but it is of the kind important in numerical analysis,

number theory, logic, and the theory of machines.

Again, it might be thought adequate to let connectedness rest with the

Wallace separations. However, in my 1964 paper [7] I pointed out that

directed forms of connectedness (e.g., causality) and forms of connectedness

resulting from higher-order relations among sets have not as yet been satis-

factorily discussed. Where in mathematics education should connectedness

be discussed ? It is possible to introduce the ideas very early, but at present

there is no curriculum which does connectedness even partial justice.

12.5. CONTINUITY

Like connectedness, continuity of functions is normally considered to be

in the domain of topology or analysis, and, to a remarkably similar extent,

the fundamental notion of continuity is too big for either of these branches of

mathematics. The best way I have discovered of considering continuity is to

regard it as dual to invariance. A function is continuous with respect to what-

ever properties or relations it preserves.

Recently I was amused to hear an objection to my interpretation of con-

tinuity on the grounds that “ continuity is continuity, and you shouldn’t try

to change its meaning.” My interpretation is actually compatible with the

common language interpretations. Let me assume that I have a function and

that I am restricted to topological spaces. Is the function continuous ? If it is

not a constant function, then the answers are yes and no ! All constant func-

tions are continuous in topological spaces, as in any reflexive neighborhood

space. Every function is continuous by proper choice of topologies. Since

continuity in topological space contexts does not separate one function from

another, it has no intrinsic meaning in that regard.

My search for a better understanding of continuity took several years. It

took this long because the extensions of neighborhood spaces that I was

making could not embrace algebraic homomorphisms as continuous func-

tions. Once I recognized that continuity cannot be well described if restricted

to neighborhood spaces, I arrived at the interpretation just given. As for the

interpretation itself, I feel that it makes sense and can be presented early in

mathematics education, having no need for infinite sets. It is important in

systems theories since systems theories try to construct approximately con-

tinuous mappings from real systems to models and from models to real

systems.

There has been an enormous waste of mental energy because of the mis-

interpretation of
64
continuity.” In thousands of places in the literature it is
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proved that a continuous function of a continuous function is continuous.

This result is best proved once, early in mathematics. Although having the

general idea of continuity does not mean technical excellence in one of its

ramifications, it is obvious that mere technical excellence has not produced

the general idea ! A man may specialize in a field much more effectively if he

does so in a context which embraces his specialty. Specialization itself seems

to destroy the ability to see broad patterns and relevance.

Let me give an example. The translation of an article from French to English

is an approximation to the original. If you say that the translation is good,

you have said that the translating was approximately continuous—because it

saved well enough the important stuff. You say that it is good; another says

that it is not. One man’s continuity is another man’s discontinuity ! My
article “ Extended Topology: The continuity Concept,” reprinted from

Mathematics Magazine [9], is included as an appendix of this chapter. For

a more specialized presentation reference [21] will counter any arguments

concerning the mathematical prospects of the new continuity.

Although preserving information or structure is important, it may be

expected that many types of functions are not to be so classified. Thus I think

that neither Lipschitzian functions nor differentiable real functions can be

characterized as types of continuous functions, although I have not proved

this. A number of problems arise because of the new interpretations, for

example, the comparisons made between algebraic homomorphisms and

topological homomorphisms. In topology itself, it seems that limit-point

preserving functions have been neglected. These, in Euclidean spaces, are

weaker than homeomorphisms but much more restrictive than homomor-

phisms.

Among other examples of interpretations of concepts normally limited to

topology, but not best seen therein, are filters [25], compactness, dimension,

perfectness (of sets) [6], and, in fact, the entire area of functional analysis of

set-valued set functions, parts of which I have developed in a series of papers.

12.6. FUNCTIONS

Along with the concept of sets, functions and relations can be used to

provide an organizational basis for the structure of mathematics in terms of

its subareas. Other concepts such as connectedness, continuity, and filters

are not confined to a subarea, but as yet are not treated well in formal educa-

tion. The basic nature of the concept of function is agreed upon by all mathe-

maticians of my acquaintance. Nevertheless, it is treated as a side issue only,

there being to my knowledge no textbook or treatise which does the subject

partial justice. It is my opinion that every such general concept should be

carried along in the educational system, and its applications and ramifica-

tions pointed out.
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There is a superstitition among mathematicians that functions should not

have sets as values
;
as a result, simplifications which might have been made

have not been achieved. Moreover, numbers of interpretations of functions

are otherwise neglected. Concerning the term “function” itself, I have been

told, in a letter from Professor K. O. May, that it got into mathematics

through a misinterpretation of a proper usage of the word by Leibnitz!

For some years it has been clear to me that the suggested synonyms

“transformation” and “mapping” should be replaced by “transformer”

and “mapper.” It was not until I had given a lecture on computer science

in March, 1970, that it suddenly occurred to me that a function is a verb of

a special kind, Thus, if y = /(x), I may diagram the sentence

x\f\y or x\f ,

where x is the subject, / is the verb, and y is the object, direct or indirect.

In speaking I may variously use “x goes into y,” “x determines

j,” “x is mapped into y” “x is labeled y,” “x is represented by j,” or “x
implies y” to indicate the action of the function. Note that all these forms

are in the present tense. A computing machine may also be considered as a

function. A program is put in, and the computer then produces the output.

A theory of computers, then, should display details as to how the computer

does this processing. Until I stumbled onto the verb interpretation I was at a

loss as to how to treat the control aspect of the computer. It now becomes

clear that here the imperative and conditional imperative modes of verbs

supply the clue. A control function times the application of other functions,

telling them when to act and on what. The program always forms part of

the control. The sequencing of statements, the imperatives LET, DO, and

GO TO, and the conditional imperative IF . . . THEN explicitly display the

controls which are indeed the essential “thinking” capacity of computers.

I think, then, that by using the concept of functions a theory of computers

may be developed in which control functions at various levels are the essential

feature. The learning aspect of computers amounts to altering controls during

processing.

Let us now return to the verb interpretation. Binary relations are often

written xRy, which is already in sentence diagram format. Although a ternary

relation may be written as xyRz or xRyz
,
this format would not usually be

used. Perhaps xyzR
,
to be read as “(x, y, z) are related,” or yBxz

,
“y is

between x and z,” is, for some uses, better. In any event, it is seen that

higher-order relations do not fit the verb format well if an object is required.

Once one sees that the verb interpretation has merit, several new inter-

pretations arise: “x will become y (at a later time),” “x did determine y”
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“ x should become y” “ x might go into y” “ x ought to go into y” “ x shall

have gone into y” “probably x will go into yf and so on. Thus there is a

range of possibilities which have real-life counterparts and some of which
have mathematical models. Inverse functions correspond to inverted sentence

structure. Thus 66

y is determined by xx and x2
” diagrams to

y|/“ 1
|x1 ,x2 .

Here, I may point out, the inverse function is normally set-valued and,

because of present conventions, is not often a function. However, it is a
function in the strict sense since the formal definitions do not preclude sets

as values.

Why has this interpretation been missed ? I find this question especially

intriguing since, unlike many of my other interpretations, it has been wel-

comed by mathematicians who, after all, “know” what a verb is and what a
function is. It is alarming to realize how effectively training and specialization

inhibit thinking. The separation of mathematics from other aspects of our
activities has been too successful. It hampers education and inhibits under-

standing.

12.7. REMARKS ON FUNCTION THEORY

From an early school age pupils learn about complicated numerical-valued

functions. In fact, they start with functions of two or more variables in arith-

metic; they learn basically complicated formulas concerning areas and angles,

which are peculiar functions of great importance. The trigonometric functions,

logarithms, and exponential functions are of a still higher level of difficulty.

But when will pupils learn about functions as such ? The answer seems to be

nowhere except in complicated situations.

Can a theory of functions be presented which does not involve the difficult

problems of computation ? The answer is yes ! Functions mapping finite sets

into finite sets can be grasped, and research problems yet unsolved can be

posed in this context. For example, let £ be a finite set, with n elements, and
let F be the family of all functions mapping E into itself. Then each function

f in F has associated with it an integer which is the order of the smallest

composition semigroup which contains / (already, we have a new function

associating an integer with each /). One problem is to determine for each n

the maximum such integer.

For n = 10, the answer is 30. That is, any function / which maps a set of

10 elements into itself generates a semigroup {/, /
2

, . .
.

,

f
k
}, where k < 30.

Any permutationf0 , which is, let us say, a cycle on parts of a partition of E
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into 2, 3, 5 element sets, achieves the maximum, 30. The permutations form

a subgroup of F.

It might be assumed that a permutation will always provide a maximal-

length subsemigroup of F. This does not seem, however, to be the case. For

n = 21, my calculations show there is a function which generates a semigroup

of order 421, whereas the maximum for permutations is 420. Moreover, on

the shaky assumption that my calculations are correct, 21 is the smallest

integer for which permutations do not provide a maximum!

Functions on finite sets can serve to illustrate the properties of functions

better than the intricate ones presently used in the schools. Proceeding to

advanced considerations, let me briefly mention aspects of a theory of

periodicity I have generated.

Let F be the family of functions mapping a set E into itself. Let T be the

family of functions mapping E into a set E
t ; I will assume that E 1 has cardinal

equal to that of E to achieve maximum scope. Now a function / in F is a

periodfunction of t in T provided tf(x) = tlx) for x e E. Symbolically tf= t,

or /is a right identity of t, if/ is a period function of t.

Let u(f, x) = {x, fix), . .
. , f"(x), . . .} be the orbit of x under /. Let uif x)

be comprised of all elements y of E, such that uif y) intersects «(/, x). Then

uif, x) is the orbital tree of x under /. Note that y e «(/, x) implies uif x) =

uif y). Hence the sets uif, x) decompose E into minimal sets invariant under

both/ and its inverse,/
-1

.

Theorem 12.1. A necessary and sufficient condition that/be a period function

of t is that t
-1

t(x) 3 uif x). Specifically, t must be constant on uif x) for

each x. Letting e be the identity function in F, the only period function of t

is e, if and only if t is biunique. A constant function t has all functions in F

as period functions. The set Ft
of all period functions of t comprises a sub-

semigroup of F.

This theorem, which I do not prove here, is basic to periodicity consider-

ations, and many more results can be established without introducing

extraneous properties of functions. Since I have seen a treatment of this kind

nowhere, and since it is within reach of many, the question arises as why it is

not presented. The answer is that functions are considered only for their

applications; attempts to grasp their properties have been comparatively

negligible.

12.8. TRANSITIVITY

Relations, in particular binary relations, are half-heartedly recognized as

important in mathematics. In regard to order relations, there have been some

grievous misinterpretations and confusing terminology. For example, one
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textbook on algebra contains a statement to the effect that lattices are too

general to be considered as mathematical objects. Another book dealing with

topology warns the reader not to consider order relations apart from their

applications. This is arrant nonsense. Binary relations that are not transitive

occur everywhere, such as in the graphs of functions. Transitive relations

that are not antisymmetric are as common as comparative adjectives! Strict

order relations by the mumbo jumbo of mathematics, are not order relations

!

This is not true—any transitive relation may be called an order relation.

I now illustrate the uses of transitive relations in defining measure and

approximation spaces. Let £ be a set, and let / map £ into a value space V.

Let R be an order relation in V. Then, if (fx,fy) e R, I say “ x has /-measure

less than or equal to that of y” This is the simplest and best definition of

measure I have been able to generate. It covers most examples of measure

in mathematics which the so-called measure theory does not.

Again let £ be a set, and to each x e £ let v(x) be a set of elements which

are admissible approximants of x. Let V = u {^(x) : x e £}. Then an approxi-

mation list or dictionary is the binary relation in £ x V defined by

L = {(x, y) : x e £, y e v{x)}.

To convert this list into an approximation space, let £(x) be a reflexive order

(i.e., transitive) relation in v{x) for each xe£. The corresponding approxima-

tion space is the ternary relation in £ x V x V:

S = {*, yu y2):x e E, (y r , y2) e T(x)}.

Here (x, y t , y2) e S is interpreted as “y
L

is at least as good an approximant of

x as y2 is.” I have generated a rudimentary theory of approximation based

on this very simple structure, which, incidentally, embraces all topologies.

Approximation and measure are truly big concepts, important to every

systems theorist, for example. There is every reason not to accept as suitable

the trivialization of measure in measure theory or the confinement of approxi-

mation to normed linear spaces.

12.9. PERSPECTIVES

Over the years I have found myself forced to alter my views repeatedly as

new evidence comes to my attention concerning mathematics. For example,

I was once taught that mathematicians, although not free from errors in

making proofs, tended to exhibit excellent taste in the selection of terms.

This I find to be far from the case. True, there are many instances of appro-

priate choices of terms, for example, those derived from Greek and not
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otherwise used. However, the nomenclature of binary operations and of

binary relations, particularly order relations, shows evidence of utter careless-

ness and lack of language sense. “For all” is used when “for each” is

superior. “There exists” is the rather esoteric equivalent of “there is.” The

term “measure” has been so defined in measure theory that it is impossible

to use it properly therein. Anyway, the concept of “measure” is too big for

measure theory

!

The adoption of certain terms, possibly on some valid basis, has often left

out the reason, thus depriving the younger generations of an insight. Such is

the case with “continuity” and “filter” in analysis and topology. Of course,

such choices as “ring” and “field” were poorly motivated.

Disregard of language and irrelevance are shown in the repetition of the

statement “there is a unique empty set.” In my estimate, it is important that

nomenclature does not violate good taste, and it should, when possible, enable

learning to take place rather than consume time with idiosyncrasies. The

structure of mathematics as a system and as a sublanguage is what is missing.

A nomenclature system cannot be well devised in the absence of a structure

displaying the interrelationships of the parts.

Several features of mathematical activity should be raised to the conscious

level. The uses of generalization and skill in it can be taught. The search for

atoms is expressed in mathematics by the search for bases, for generators

of various kinds. Here we always look for the smallest set which, in the presence

of certain operators, will generate the entire set. If no minimum can be

achieved, then other reduction criteria can be used. Every system should be

discussed in terms of how to generate all possibilities. How, for example,

can we generate all continuous functions, all differentiable functions, all

norms, or all topologies ? Wherever possible, the general relevance of concepts

and results should be discussed. Techniques of proofs and of discovery should

be presented. Moreover, the nonapplicability of mathematics should be made

explicitly clear. There is no more deadly aspect of mathematics education than

the continued emphasis on its values and its successes while its shortcomings

are ignored.

In mathematics education, there is an inversion. General principles and

concepts are brushed over, if presented at all, while myriads of technical

details which form no pattern are learned. Yet it is far easier to grasp the

general concept of continuity, as I have presented it, than to be proficient in

any one of the special types. Furthermore, grasp of a pattern should enable

better specialization.

Projective geometry, now relegated to undergraduate or graduate programs,

where it is considered passe, is a good area for the schools since it sheds light

on visual perception. Euclidean geometry is the geometry of the tactile sense,

which is accorded greater reality than the visual in view of optical illusions.
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A stick held in water appears to be bent; our fingers tell us it is straight. We
believe out tactile sense.

Logicians have failed to grasp that there are many interpretations of

implication systems. Thus a function is an implication system—assume x,

f{x) is implied. A differential equation is a continuous logic or implication

system. How can we get any idea of what mathematics is about if we miss

obvious interpretations ?

The emphasis on axiomatics in recent years has been not only helpful,

but harmful as well. In many cases it would be far better to formulate simple

definitions, rather than to freeze a concept in an unwise choice of axioms.

Examples in point are norms, measures, metrics, and topological spaces.

There are important distances, for example, which not only do not satisfy

any of the Frechet axioms but are not even real-valued.

It seems clear, to me at least, that system theorists should not assume that

current mathematics is adequate. Systems theories cannot be general except

in relationship to an earlier, more specialized theory. Why? Consider, for

example, the almost total absence of higher-order operators and relations in

mathematics. Some of these will one day be recognized as important, but no

one can at present forsee which ones. If we claim to embrace them all, we
will be dealing with unoperational generalities. If we exclude them all, sooner

or later some will come to be recognized as very important. There is no reason

to believe that any mathematical structure will enable us to deal with all

future contingencies. Therefore the goal of generality should never be claimed

as accomplished.

APPENDIX. EXTENDED TOPOLOGY: THE CONTINUITY
CONCEPT *

INTRODUCTION

The concept of continuity as defined in topology and analysis has been

extremely useful in discussing invariance of certain set-properties. However,

the forms of the definitions are such as to make it seem that continuity is

fruitfully confined to transformations or functions on spaces with an infinity

of points. We have been developing a system of extended topology which

includes concepts relevant to both finite and infinite spaces.

* Reprinted, with the permission of the author and the publishers, from The Mathematics

Magazine
,
Yol. 36, No. 2, March 1963.
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Applicability to finite spaces is necessary for a system of this kind, to be

basic since we want it to apply to numerical analysis, statisics, computing,

and logic, as well as to language theory in general. Nearly ten years ago we

had decided that any reasonable definition of continuity would necessarily

display the homomorphisms of algebras as particular forms of continuity.

However, we have only recently found a simple and intuitive way of defining

continuity which includes topological and algebraic homomorphisms in the

same framework.

Our feeling about the essential feature of continuity is that continuous

mappings are those which preserve information or orderliness of some kind.

However, this notion is too broad to implement now in some form of theory

if we keep certain theorems from topology. Hence, in this paper we give a

very general definition by standards of the current literature but do not attempt

to carry out even a rudimentary classification of these kinds of continuity.

It is noticable that, while a function or transformation defined to be con-

tinuous maps elements into elements, the invariant properties almost always

refer to sets in the topological treatments. Thus connectedness, compactness,

closedness, or openness are all set properties. It is not necessary or useful

always in dealing with invariance of set properties to consider set-valued

transformations generated by element-valued ones. However, we will, in order

not to deviate too far from custom, consider only such induced set-valued

transformations here.

A Simple Extension of Topological Continuity

LetM be the space with null set N and let Jt be the class of all subsets ofM.

Then a function u which associates with each subset of M a subset of M is

called expansive provided uX 3 X and u(Xx u X2) 3 uX
x
u uX2 always.

These expansive functions form a generalization of the closure functions of

topology since an expansive function u in order to be a Kuratowski closure

function must also be idempotent (u(uX) = uX), additive u{X
1
u X2)

=

uXl u uX2 and satisfy uN = N. We have shown that much of the basic

structure of topology is better considered for expansive functions than for the

Kuratowski closure functions.

Now suppose M1 is another space and v is an expansive function in Mv

Then if t: M -+ is a function mapping M into Mx
this mapping induces a

mapping from Jt into Jtx ,
the class of all subsets ofMu by defining tX =

{tp: p e X}. We follow custom and use the same symbol t for the set-to-set

transformation as for the original element-to-element one. Now if u is an

expansive function in M, then t is said to be (w, v)-continuous provided

t(uX) £ v(tX) for all X in Jt or, more shortly, provided tu c vt. In ordinary

terms, if u and v are closure functions, then t is (w, ^-continuous provided
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the transform of the closure of X is contained in the closure of the transform

of X. The reader may verify that this definition coincides with that of topology

and hence of real or complex functions.

An ordered pair (X1 ,
X2) of subsets ofM is said to be separated with respect

to an expansive function u in M provided uX
1
n X2

= N; i.e., provided

uX
± and X2 have no elements in common. This may be better read “ X2 is

separated from X
l
X

Theorem 12.1A. A necessary and sufficient condition that t: M M
x
be (u, v)-

continuous, where u and v are expansive functions, is that if Xl9 X2 e Jt and

(Xu X2) is not separated with respect to u then (tXl9 tX2) is not separated

with respect to v.

Remark. This theorem is proved in [3]. However, its proof follows from

the definitions given and the reader may have the pleasure of verifying the

conclusion himself. This is a basic theorem on several counts. It gives an image

of a continuous mapping as one which does not separate ordered pairs of sets

not separated in its domain. The theorem would not hold if we had blindly

followed custom and required (X
1 ,
X2) to be considered separated provided

uX
t
n X2

= N = X
l
n uX2 and it also would not then hold for general

topology. Moreover, since separations of ordered set pairs are commonly
in use which do not depend in this fashion on expansive or closure functions,

we now have a springboard for generalization.

What is a Separation

Let us consider pairs (X
1 ,
X2) of sets from M. What sort of consideration

might lead us to say X2 is separated from X
l ? Certainly we will not require that

X2 separated from X t
will imply Xt is separated from X2 ,

since many applica-

tions may be expected to be asymmetric. Shall we require X
x
n X2

= N1
No ! For, X

x
and X2 might have a common part considered trivial from some

standpoint. By this reasoning and examples we were led to conclude that the

only property we would use was that if (Xl9 X2) are separated and X1
3 X3 ,

X2 2 X4 then (X3 ,
X4) are separated. Thus we have a tentative picture of a

separation as a hereditary binary relation in M
;

i.e., a separation is a set

of ordered pairs of sets satisfying the above hereditary property.

But, wait! Could not there be something desirable added if we did not

consider simply pairs of sets but also triples, quadruples, or sequences of sets

as separated ? It became clear that this also was reasonable and that for certain

applications pairs of sets would not do. Hence we now may think of a separa-

tion as a hereditary subset of a sort of vector space in which each vector has

sets as components. To be explicit let us assume S is a set of ordered ennuples,

{(X1 ,
X2 , ..., Xn)} of subsets of M which is hereditary. Then the set of
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ennuples which are not separated form an ancestral subset of the space of all

ordered ennuples and this we call as associated or the association dual to S.

Let A be an ennary association for M, and B an ennary association for Mx
.

Then t is (A, B)-continuous provided tA E B; i.e., (Xl9 . .
. ,

e A implies

(tX
x , . .

. ,
tXn) e B. A continuous mapping is association preserving !

To see that this definition is not foolish we now indicate its application to

the characterization of homomorphisms. Let t map M into and suppose

there is a binary operation • defined in M and a binary operation ° defined in

Mv Then t is a homomorphism (multiplication-preserving) provided t(p 1
• p2)

= (tp
x )

o
(tp2 ) for all pu p 2 e M.

We let A be the minimal ternary association inM including all triples of the

form (p l9 p2 ,Pi ' Pi), where we use Pi,p2 ,Pi ' Pi as one-point sets. Note that

the triples mentioned form the graph of the binary operation. Now for pur-

poses of our interpretation (Xu Xl9 X3 ) e A provided there exists Pi,p2 ,

p 3 e M such that p t
e X

t ,
i = 1, 2, 3 and p 3 = p x

• p2 . Similarly let B be the

minimal ternary association in M
x
such that B contains all triples of the

form (ql9 q2 ,q 1 ° q2) for all q i .q2 eM1 .

Theorem 12.2A. With A and B as defined above, t: M -+ Mx
is a homomorph-

ism if and only if t is (A, J3)-continuous.

Proof. First suppose t is a homomorphism and (Xu X2 ,
X3)eA\ then

there is (pu p2 , p 2) e A, where p 3 =Pi'P2 and p t
eXi9 i= 1, 2, 3. Then

(tPu tp 2 ,
tp 3) = (tpu tp2 , tpi o tp2) e B and hence tA g B if Ms a homo-

morphism.

Next, suppose t is (A, £)-continuous. Then (j>i,p 2 ,Pi • p2)e A for each

pi, p2 e M and hence (tpu tp 2 ,
t(p

1
• p2)) e B. But tp t9 tp2 ,

and t(p t
• p2) are

elements in Mt
and hence necessarily t(p t

• p 2)
= tp

x
° tp 2 by definition of B.

Hence t is a homomorphism. Q.E.D.

The point of this theorem is not so much that the result is obtained as it is

that we have now demonstrated a common framework including all the form

preserving maps called homomorphisms in mathematics. Why should the

simple binary relation-preserving map require triples, whereas topology

with its infinities requires ordered pairs? It is because we assume that the

binary operation is not necessarily commulative that we must use triples. If the

binary operations • and ° had been commutative, then we could have defined

A as the binary association generated by all pairs ({pu p2),Pi 'Pi) and B

correspondingly. However, it is more convenient in general to use the triples.

In order to preserve several functions in one mapping we may put all their

graphs in ordered ennuples of sets. Thus, if * and + are two binary operations

we may generate an association by using quadruples (pl9 p 2 , p 1 + p 2 , p t
• p2)

as a base: we may include ordinary topological continuity by considering,

say, (pi,p2 , Pi + Pi ’ Pi ’ Pi ’ P) as a base for an association where peuX
for u a topological closure function.
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Suppose M is the set of real numbers and Px,p2 , . • ... is a convergent

sequence. Then we may use (p0 , p l9 . .
. , pn , . . .) as a base for an association

where /?0 *s either one of the p t
for / ^ 1 or p0 is a limit point of {/?„}. How-

ever, this is equivalent to basing a binary association on (p0 ,
S), where S is

the set of numbers in a convergent sequence and p0 e uS where u is the closure

function. Hence, the topological definitions of continuity require only ordered

pairs of sets. Here {(/?0 , 5)} may be considered as the graph of the real-number

topology.

Association-preserving maps, however, cover a much wider range of

applications than is indicated by using graphs or multiple graphs. We may
generate associations from any relations among sets involving a fixed number

of sets (finite or infinite). Thus for the real numbers we might define

(Xl9 X2) g A provided uX
1
n uX2 A N where u is the closure function. Map-

pings of the real numbers into themselves which are (A, A)-continuous are of

interest to study. One property they have is that every set X dense in a con-

nected subset of the real numbers maps into a set dense in a connected subset.

Properties of Continuous Transformations

This new form of the definition of continuity is so recent that we have not

begun the necessary classifications of separations or their dual associations.

However, one important property of continuous mappings is mentioned as

stated in the following theorem.

Theorem 12.3A. Let A, B, C, respectively, be ennary associations for spaces

M, Mu and M2 . Then if t i : M is (A, ^-continuous and t2 :
-> M2

is (B ,
C)-continuous, the composite transformation t2 tx : M ->M2 is (A, C)-

continuous. In particular, if t: M ^M is an (A, ^-continuous mapping, then

t
k

\ M-+M is (A ,
^-continuous for each integer k ^ 2.

Proof. We have txA g J3, t2 B g C whence t2 (tiA) ^t2 B g C and t2 tx is

(A, C)-continuous. Note that t2 is inclusion-preserving and hence txA g B
implies t2 t

x g t2 B. Q.E.D.

It will be noted that the proof consumes very little space although the

theorem applies for all the usual homomorphisms, algebraic or topological.

Among the problems of classification which we mentioned are those related

to descriptions of minimal bases for associations. When, for example, can

continuity at a point be defined so that a transformation continuous at each

point is continuous? We have shown that certain binary separations are

characterized by means of the Wallace functions which, in a appropriate

circumstances, become topological closure functions. There are now the

problems of extending this work to functions of several set-variables. Concepts

of connectedness of sets depending on triples of sets and so on are now also
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seen to be useful to consider. We have completely characterized connectedness-

preserving transformations as a form of association-preserving continuity

for topological spaces.

CONCLUSION

The definition of continuity we have given here has the satisfactory feeling

of being more intuitive than the topological definition—a continuous mapping

separates no associated sets. That the definition applies to finite spaces is

quite clear and very important. Thus we may say that two people are not

separated provided they have at least one grandparent in common. Then it

is feasible and sensible to speak of continuity in people-to-people transforma-

tions.

The insight into the notion of continuity arising from our definitions should

not be considered ultimate. We are developing the concepts which go with

uniform continuity, Lipschitz conditions, etc., which have a different flavor.

Moreover, as we have suggested, there seems no necessity for restricting the

transformations involved to those induced by element-to-element mappings

and this restriction will have to be dropped to characterize closedness-

preserving transformations. An ordinary continuous transformation has the

property that the inverse image of closed sets is closed. Now the inverse of

a transformation is normally set-valued and it is separation-preserving when

the transformation is association-preserving. Perhaps we shall want to con-

sider separation-preserving maps under some other heading than continuity,

but it is clear that they are dual to association-preserving ones.

The papers most relevant to an understanding of this aspect of extended

topology at this time are [1], [2], [3]. These contain references to other works.

Reports containing these and the yet-unpublished [3] are available at the

Numerical Analysis Department, University of Wisconsin.

Finally it now seems possible to extend the Erlanger Program of Felix

Klein to many more systems than the geometries he discussed. Invariance

and continuity are essentially dual concepts, and we have taken a step here

in the direction of demonstrating it.
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PROBLEMS

Let F be the family of all functions / mapping the power set 2
E of a set E

into itself. F inherits from the set algebra and inclusion relation in 2E a

corresponding algebra and order relation. Thus, fug and /g g mean, by

definition, the function (/ u g)(A) = f(A) u f(A) and the inclusion f(A) g;

g(A) for all subsets A of E. Thus F is a composition semigroup with an iden-

tity element e and with the complement function c.

A function / is called a closure function
,
provided that it is enlarging

[f{A) ii A always\, inclusion-preserving or isotonic [A ^ B implies f(A) g=f(B)],

and idempotent
[f(f(A)) = f{A)]. A function g is an interior function provided

it is shrinking [g{A) A always], isotonic, and idempotent. (Hammer [5]).

12.1. Prove that the maximum order of a composition semigroup generated

by a closure function/ and an interior function g is 6. (Hammer [4])

12.2. The dual of a function / in F is cfc. If/is a closure function, g = cfc is

an interior function. Prove that the smallest semigroup under composition

containing c and a closure function /has at most 14 distinct elements.

12.3. Generalize the concepts of closure and interior to functions mapping a

partially ordered set E into itself. Show that the theorem in Problem 12.1

holds in this case. What would be analogous to the complement function here ?

Apply to real-valued functions defined on the real line. (Hammer [4])

12.4. A function ug F is a primitive function, provided that

u(A) = u {(fnc)A:B^Aj.

If v is cue, where u is a primitive function, prove that

v(A) = n {(/ u c)B:B^A}.

Prove that the dual of a primitive function is a primitive function.

12.5. Let (/, g) be a dual pair of isotonic functions in F. A set A is called a

convergent of x, provided xe f(A). A set B is called a neighborhood of x,

provided x e g(B). Note that the class of all convergents of a point x is ances-

trally closed, and so is the class of all neighborhoods of x. Prove that A is a

convergent of x if and only if A n Y ^ 0 for every neighborhood Y of x,

and that B is a neighborhood of x if and only if X n B # 0 for every con-

vergent X of x. (Hammer and Gastl [17])

12.6. A base class of an ancestrally closed class {6 of subsets of E is a subclass

of ^ which has ^ as its ancestral closure.

To each x e E let V0 (x) be a class of subsets of E, no one of which contains

x. Let F0(x) be a neighborhood base for x. Let #(x) be the class of all

convergents of x, that is, A e%?(x) if and only ifA n Y ^ 0 for each Y e F0 (x).



430 Preston C. Hammer 12

Let V(x) be the class of all neighborhoods of X, that is, V(x) is the ancestral

closure of V0(x). Letfi g e Fbe defined by xe f(A), provided A is a convergent

of x and x g g(B), and provided B is a neighborhood of x.

Prove that/and g form a dual pair of primitive functions. Hint : Prove that

there exists a convergent base ^0(x) for each x, no set of which contains x.

Then prove that an isotonic function u is primitive if and only if x g u(A)

implies x g u(A — {x}).

12 .7 . Hammer first defined primitive functions to provide the “natural”

first order, or primary limit points, relative to an arbitrary function u in F.

Let u g F. Prove that the function u0 ,
defined by

u0(A )
= u (u n c)B: B g T),

is a primitive function.

12 .8 . Let F
1
be the subfamily of F composed of all closure functions in F.

Prove that the intersection function of each subfamily of F1
is a function in

Fv Hence prove that, if u is any function in F, there exists a unique minimal

closure function containing u. Dually, using interior functions, prove that

there exists a unique maximal interior function contained in u.

12 .9 . A function fe F is domain finite provided

f(A) = u {/(E): B g A, B a finite set}.

Note that every domain finite function is isotonic. Prove that a function

fe F is domain finite if and only if / u a(Aa)
= u af(Aa) for every class of

sets {AJ linearly ordered by inclusion. Ascending chain conditions are

naturally assumed!

12 .10 . The domain finite function / generated by an arbitrary function u for

F is defined by

f(A) = u {u(B): B g A, B a finite set}.

If u is a closure function, prove that / is a closure function.

12 .11 . Iff is a domain finite function and g = cfc, prove that there exists for

each x g E a unique minimal convergent base and a unique minimal neigh-

borhood base. Note that the dual g of a domain finite function t is not

domain finite in general but satisfies the identity

g(A )
= n {g(B): B g A, cB is finite}.

All closures under Unitary operations of algebras are domain finite functions.

12 .12 . A union base class of sets for an isotonic function fe F is a class

of subsets of E, such that

f(A) = u {f(B): Eg A, Be tf}.
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Prove that each domain finite function / has a unique minimal base class,

composed of finite sets.

12.13. Define two operators, E and A, mapping F into itself as follows:

(Xf)A = u{f(B):BeA};
(Af)A =fAncu {fB : B a A} (note proper inclusion).

Prove that E/ is the minimum isotonic superfunction of/ and that E is a

universally additive closure operator, that is, E/^/ always, E(u /))
= u (/f),

E(E/) = E(/).

Prove that a necessary and sufficient condition that EA/=/ (i.e., that E
is inverse to A) is that xefA implies the existence of a minimal subset B of

A such that x efB. In particular, for every domain finite functionf EAf= /.

(Hammer [15])

12.14. Let £ be a real linear vector space, and let f(A) be the minimum
convex set containing A. Then / is a closure function as described above.

Show that/ is domain finite. What is the order of the semigroup under com-

position generated by complement c and /? (One of my students reported he

could prove that 10 was the number for any space of finite dimensions n > 1.

Note that 14, the maximum possible number, may not be achieved, but that

the number is necessarily even.) A number of similar problems can be gener-

ated: closure under multiplication in the positive integers, closure under the

greatest common divisor or lowest common multiplier operations in the

positive integers, closure under subtraction in the set of all integers, and so on.

12.15. Let e be the identity function, let/ and g, respectively, be closure and

interior functions, let r be a contractive (isotonic, shrinking) function, and

let s be an expansive function (isotonic, enlarging) in F. Prove that e u rf

is a closure function, and that e n sg is an interior function. Consequently,

e u gf is a closure function, and e n fg is an interior function.

(Hammer [4]).

12.16. Let /be the Kuratowski closure function for a metric space, and let

g = cfc. A pair (A, B) of sets is separated provided f(A) n B = 0 = A n f(B).

Prove that the maximum function u mapping 2
E
into itself such that

{LI, B): fA n B = 0 = A nf(B)} = {(.A , B):fA n u(B) = 0 = u(A) n/B}

is u = e u gf. (Note that u is shown in Problem 12.15 to be a closure function,

but not a Kuratowski closure function.) (Hammer [7])

12.17. A Wallace separation in £ is a symmetric binary relation R which is

disjunctive [A n B = 0, if (A, B) e R] and hereditary [A, B) e R and A 3 A 0 ,

B ii B0 implies (A 0 ,
B0) e R]. For a given Wallace separation R, a set C is

£-connected provided that C e A u B and (A, B) e R implies C s A or

C g B. Show that there exists a unique maximal Wallace separation R*



432 Preston C. Hammer 12

which has the same class of connected sets as R. Hence give a necessary and

sufficient condition for a function on E to another set to preserve connected-

ness. (Hammer [7])

12 .18 . Does there exist a finest topology on the real line (i.e., with a maximal

collection of open sets) which has the usual connected sets as connected ?

(Unsolved.) (Hammer and Singletary [27])
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Epilogue. The Past’s Future:

Estimating Trends by Systems Theory

C. WEST CHURCHMAN

Space Sciences Laboratory and Schools of Business Administration
,

University of California at Berkeley

This epilogue is an attempt to apply a type of systems theory to inquiry

and, specifically, to inquiring systems [1] whose purpose is to predict the

future or, in the terminology of this volume, to estimate trends. Hence this

epilogue contains a philosophical discussion of the methodology of trend

estimation, of which trends in general systems theory constitute a special case.

We can begin with a general system question: What is the relationship

between a component of an inquiring system which describes the past and

a component of one that forecasts the future? Common sense provides a

rather ready answer to the question of the role of the future in attempts to

describe the past; the future has no role. That is to say, the past describer

need not concern himself with forecasting. Perhaps one might want to go so

far as to say that the past describer must necessarily keep himself free of

forecasts, lest they bias his descriptions.

Built into this common-sense reply to the question, however, is a precon-

ception. Many of us have come to recognize how treacherous common-sense

preconceptions can become, especially as they burrow like ticks into the living

flesh of a scientific discipline. A student of mine has been conducting what he

calls “black-box experiments.” The subject has a black box whose “theory”

he is supposed to describe. He gets his information by putting four numbers

into the box and then observing the four-digit output. In one of the black

boxes the output is the time of day. It takes many of the subjects quite a bit

of effort to realize that there is no relationship between what they are putting

in and what is coming out, because “ time of day ” is not one of their precon-

ceptions for such a black box. This situation is illustrative of the kind of fix

into which our preconceptions can get us. Professors often tell their students

to “write down all of their preconceptions,” but this piece of advice may

be of little value, because if one could write down his inmost preconceptions

434
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then they would not be “ inmost.” In a way, it is the broad task of philosophy

to shatter the old tablets, so to speak. As Nietzsche said, “All the secrets of

your foundation must come to light; when you are uprooted and broken in

the sun, your lie will be separable from your truth” [5].

Suppose we begin with the common-sense preconception just mentioned:

the preconception of a mind “ bound to the past.” For such a mind the past

is sure; it is a “fact,” a firm foundation, value free. The future, however, is

unknown, uncertain, vague, treacherous, threatening, and, if you wish,

value-loaded. In the past-bound view, we all know how we have lived. But

what can we know of life in the future or life after death?

Two historical examples will suffice. David Hume in his famous Treatise [4]

argues that the future is now known in the sense that direct experience is

known. Indeed, from Hume’s point of view, the kind of knowledge that arises

from experience and memory is totally different from the kind of knowledge

that is entailed in forecasting. Hume believes that it is natural for people to

try to forecast. Anyone having seen a flash expects that the noise of an explo-

sion will occur, or having seen the heat on the stove anticipates that it will

cause a sensation of warmth. But this, says Hume, is expectation based on
habit, and is totally different from the kind of knowledge which we acquire

from observation. If we were to plot a chart in which the ordinate shows

certainty and the abscissa time, then up to the moment of the time of the

experience there is no certainty at all. At the time of the experience, there is

a sense impression, and if it is intense enough, considerable certainty is

attached to it. After this point in time, says Hume, there will be a decay of

certainty as memory enters in and begins to distort what has been directly

observed.

A second example comes from the story of historical method in the

nineteenth century, when von Ranke made the distinction between “ official”

records in which one can obtain objectivity, and the “subjective” accounts

of eye witnesses and other individuals. Von Ranke was arguing that the

historian’s job is to sift out the subjective accounts that have no real objectivity

and to devote his time to assimilating and accurately recording historical

events as they are written down in various kinds of records. The similarity

between von Ranke’s philosophy and the one that many accountants hold

seems notable. The operating statement and the balance sheet are frequently

regarded as the results of the official records of the company, carefully

examined by the accountant
;
they are not based on subjective impressions

of managers and other individuals.

In order to look carefully at the common-sense preconception that the

future plays no role in the past, suppose that we write out four propositions

for consideration. In order to do this we need to say something about systems

and especially their components. In system science, a system is conceived as
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a set of components which play the role of serving the basic purposes of the

whole system. In designing such systems, the systems scientist has to pay due

regard to the way in which the effectiveness of one component is related to

that of another.

In the simplest case, we say that one component, A, is “separable” from

another component, B, if the effectiveness of A does not depend in any way
on the effectiveness of B. If we could write down the relationship in mathe-

matical terms, we would say that A’s effectiveness is measured by variables

which are causally independent of the activities occurring in B. The concept

of separability is often expressed by saying that the separability of the total

system can be represented in a linear form, that is, as a linear function of the

effectiveness of each of the components. In this regard it should be noted that

one could not arrive at such a judgment of linearity without having taken a

look at the larger system and made some judgment about it. Hence even in

the case where the systems scientist arrives at a linear function some non-

linearities have probably crept into his considerations. For example, if two

workers are engaged in digging a ditch, it may happen that the effectiveness

of one worker is largely independent of the effectiveness of the other. Even
in this simple case, however, one might suspect that pure separability does

not occur. Indeed, it is safe to say that pure separability never occurs in

social systems.

Now let us look at a system the purpose of which is to tell as nearly as

possible the accurate story of what has happened, as well as what will happen.

In such a system we can identify two components, one of which devotes itself

primarily to telling as accurately as possible what has happened (or is

happening), and the other to telling what will happen.

The four propositions that we will consider are the following:

1 . The activity of estimating what has happened in the past is separablefrom
the activity of estimating what will happen in the future. An abbreviated form
of this proposition might be “Past reckoning is separable from future

reckoning.”

2. Future reckoning is separable from past reckoning.

3. Any specific activity of estimating what has happened in the past can be

evaluated along an effectiveness scale ranging from zero or a negative number
to some maximum positive number. In other words, this proposition states

that it is possible to describe what has happened in the past and to do so

with more or less effectiveness. The proposition does not state that one can

describe the past with complete accuracy
;
it states only that there are a worse

method and a better method of describing the past. A brief version of this

statement would be “ Knowledge of the past is possible.”
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4. Knowledge of the future is possible. Here, as in proposition 2, I have

used the abbreviated form.

Now we can bring in a logician to consider our four propositions; he will

tell us that, if these are meaningful statements, then each can be either accepted

or denied, and that the result of such acceptances and denials are sixteen

possible positions. Thus one can accept all four of the propositions, or accept

the first three and deny the fourth, etc. However, there is a consideration

which reduces the list of possible opinions which these four propositions

express. Suppose, for example, that you believe proposition 4 to be false,

that is, you do not believe that knowledge of the future is possible. In the

way in which I have expressed the meaning of proposition 4, your denial

amounts to saying that any activity engaged in trying to study the future will

be absolutely ineffective. Hence you believe that no effectiveness measure is

associated with such an activity. If now we look at proposition 2, which in

its complete form says that the activity of estimating what will happen in

the future is separable from the activity of estimating what will happen in

the past, we see that the proposition is largely meaningless if one has already

accepted the idea that knowledge of the future is not possible. What the

logician suggests at this point is a “vacuous” stipulation regarding the

concept of separability, that is, a kind of arbitrary decision as to what is to

be done when an activity has no effectiveness measure associated with it.

The arbitrary decision made here will be that, if one argues that an activity

has no effectiveness with respect to the total system, then one arbitrarily

states that such an activity is nonseparable from all other activities. The

situation is very much like the one pertaining to the so-called null class in

Boolean algebra, where the logician has to decide whether a class that has

no members belongs or does not belong to other classes. In extensional

logic, it has been customary to say that the null class belongs to all classes;

this rule produces certain conveniences in the calculus.

If we make our arbitrary stipulation, it therefore follows that if one denies

proposition 4 he will also deny proposition 2. In other words, if he accepts

proposition 2 he is committed to accepting proposition 4. This means that

one cannot under the arbitrary stipulation consistently accept proposition 2

and deny proposition 4. Similarly, one cannot accept proposition 1 and

deny 3.

One final minor point rules out two other possibilities, a position which

asserts that knowledge of the past is possible (accepts proposition 3) but is

nonseparable from knowledge of the future (denies 1), and goes on to say

that knowledge of the future is impossible (denies 4), would be a ridiculous

position to take. A similar remark can be made for the “dual” of this, in

which past and future are interchanged.
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What remains are seven consistent proposals as follows (we use the conven-

tion that a prime after the number represents the denial of the proposition):

1, 2, 3, 4: “Separated past and future.”

1, 2', 3, 4: “ Forecasting from the past.”

1', 2, 3, 4: “Past reckoning from the future.”

1, 2', 3, 4': “Past but no future reckoning.”

1', 2, 3', 4: “Future but no past reckoning.”

1', 2', 3, 4: “Integrated past and future.”

F, 2', 3', 4': “Skepticism.”

With appropriate apologies for this logical exercise, suppose that we now
examine these seven consistent statements, or rather all of them except the

last. I assume that for general systems theorists there can be no real interest

in skepticism, because if one were to adopt it, the whole activity of systems

theory would become a kind of sardonic joke—and we are not joking!

In this examination, as I hinted at the beginning, I should like to take

both an epistemological and a strategic look at the propositions. By a

“strategic” look, I mean that a practitioner might agree, for example, that

the future can be predicted, but assert that it is none of his business to predict

it.

At the outset I mentioned what I thought would be a common preconcep-

tion, namely, that one can tell the past but cannot tell the future, or, strategic-

ally, it is none of his business to tell the future. This is expressed in the fourth

of the list of positions, which I have dubbed “ Past but no future reckoning.”

It is a series of propositions that has often been accepted by strong positivists,

or by individuals in disciplines like history who have felt that man can know
what his past has been like but is completely incapable of predicting the

future even approximately. We will see as we progress in the discussion that

this particular piece of common sense has many shades of meaning.

The opposite of the common-sense position is the one I have called “ Future

but no past reckoning.” This says that one can tell very well what is going to

happen but cannot tell what did happen. For example, a man whose wife

has just told him that she is going to divorce him and marry the iceman

believes that he can predict what will happen, but does not have any idea

what did happen. However, no discipline of science that 1 know of would

accept this combination of assertions and denials. The past has always been

such a fundamental part of scientific inquiry that to deny the possibility of

saying anything sensible about it would seem to aim at the very heart of the

scientific method itself.

The position that I want to argue most strongly for, and which is the

“ deadly enemy ” of the common-sense preconception, however, is the one
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called “Integrated past and future.” This position, too, has many different

shades of meaning, depending on how the future enters into the determination

of the past. I want to give its strongest possible meaning, and for this purpose

I shall turn to operations research—specifically, inventory control.

An accountant with a strong empiricist bias will make a distinction between

a “report” and “physical fact.” He illustrates this in the case of inventory

by saying that the report contains the items described by numbers, whereas

the physical facts are the items actually in inventory that can be observed.

From this illustration one might infer, as did Hume in the discussion above,

that the direct observation of the physical condition of inventory is more

reliable than the report, the report representing Hume’s “decay in memory.”

But the question that faces the operations researcher is the meaning of

“reliable.” His task is to assist the decision maker in controlling inventory;

he will do this by trying to decide on the optimal amounts to be ordered into

inventory at various points of time.

Now what are the appropriate data that the operations researcher should

use in making his study in order to assist the decision maker? An obvious

reply to this question, a reply that is contained in many operations research

textbooks, is that the operations researcher should examine past invoices.

The student is told to make a frequency chart, using certain intervals of time,

such as, a day, a week, or a month. This provides the basis of his inferring

the probability distribution of demand on inventory. He is also cautioned to

observe trends in time, for example, seasonal fluctuations, or gradually rising

or falling sales demand, and to extrapolate into the future on the basis of

these trends.

These recommendations to the operations research student in fact are

based on what I have labeled “ Forecasting from the past,” that is, they are

based on the assumption that past reckoning is independent of future reckon-

ing but not vice versa. A moment’s reflection, however, shows the weakness

of this position. Suppose, for example, that there is a seasonal fluctuation of

demand. Then it may be very sensible during the off-season to reduce prices

and increase advertising in order to smooth the demand curve. If this were

done, then obviously the use of very careful statistical analysis of past data

and an extrapolation of seasonal fluctuations into the future would be largely

irrelevant because a new kind of demand system would have been created. In

the language of systems theory, it is quite obvious that the demand system is

not separable from the inventory system. If one does use past demand and

carries out the kinds of extrapolations mentioned above, he is making a very

strong systemic judgment, namely, that nothing can be changed about the

demand system, for example, because the managers are reluctant to make
such changes or else because the customers are fixed in their patterns of

purchasing.
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The same remarks apply to the determination of cost by operations

researchers. Obviously in the case of inventory it is necessary to determine

the cost of holding items in inventory. This cost is an opportunity cost. It is

an inference as to how a dollar released from inventory could best be spent

in some other activity of the firm. Opportunity costs are what some philo-

sophers of science call “ counterfactual conditionals” [3]. The counterfactual

conditional has the form, “If X were to occur, then Y would occur.” In the

case of the cost of holding inventory, for example, the counterfactual con-

ditional is “ If inventory were to be reduced by such and such an amount,

then the released funds could optimally be used to yield P percent return.”

It is to be noted that the demand on inventory is also an “ opportunity de-

mand”; that is, it is based on a counterfactual conditional of the form,

“ If such and such were to be done to the demand system, then the demand

function would be so and so.”

What is it that the operations researcher observes in order to provide

information for decision-making purposes? In other words, what does one

observe in order to verify a counterfactual conditional? At first glance, the

problem seems impossible to solve; how can I observe anything in order to

judge what would happen (but never does) ? This is why Goodman calls these

conditionals “ counterfactual.” Their premises never “ in fact ” occur in nature.

Hence it begins to appear as though operations researchers must be spinning

their wheels.

But the situation is not hopeless. If one were willing to make a judgment

about the future of the whole system, then on the basis of this judgment he

would be justified in using a certain kind of data. Suppose, for example, that

one makes a judgment that nothing can be changed about the demand system.

Then, on the basis of this judgment and the additional judgment that the

system will exist in essentially the same environment as it has in the past,

one would be justified in taking past invoices and performing the exercise

specified above, that is, extrapolating into the future and using these extra-

polations as the basis for calculating optimal inventory policy. In other words,

if a strong judgment about the future is made, a certain kind of data bank

based on past observation can be said to be “authorized.” If no judgment

about the future seems sensible to make, then the operations researcher must

regard the problem as intractable.

We see that information for decision making is really a compound of at

least two kinds of activities : the one concerned with authorizing a certain set

of data for use on the analysis, and the other with the collection of the data

itself. But the authorization procedure is essentially a forecast about the future,

because it makes a judgment about the characteristics that a system will or

would have. It is in fact much more than a simple forecast, because it must
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be a model which permits one to say what would happen if certain things

were to occur. In this regard the systemic judgment is much more like a set

of differential equations in physics, where the boundary conditions can be

changed and one can infer which events would occur under these changes.

It is clear that the authorization of a data bank is “future reckoning.” We
can now understand how past reckoning is inseparable from future reckon-

ing, because we need to make very strong and effective judgments about the

future in order to be able to use the past effectively. I might add that the reverse

is also clear; that is to say, effective reckoning of the past is essential, because

effective judgments about the future of the system must somehow draw on

past experience. Hence future reckoning is nonseparable from past reckoning,

and vice versa. From these remarks we can conclude that the operations

researcher must adopt the position that I have labeled “ Integrated past and

future.”

What relevance has all of this discussion for the system theorist? We have

all seen a great deal of interest in developing systems which forceast tech-

nologies, wars, population, etc. Some of these systems merely try to predict

without relevance to the utility of the predictions made. Others, however,

are obviously designed to aid the decision maker. I would say that the dis-

tinction between the two positions is essentially the strategic question of

whether or not the forecaster should be involved in what I have called authori-

zation of data banks, that is, whether he should be involved in the very difficult

problem of making adequate systemic judgments. One might adopt the posi-

tion that the forecaster essentially gathers and analyzes the data, and the

authorization is made by the managers or by the legal system. This position

would argue for a separability of the information system from the decision-

making system, whereby the forecaster does one kind ofjob and the managers

or lawyers do the other kind. I think that position is undoubtedly weak in

terms of system design. But the real issue depends, so to speak, on the ambition

of “futurists.” Do they wish to become involved in authorizing data banks

and hence in making strong systemic judgments ?

I have argued elsewhere [2] that information becomes measurement if the

information is widely usable in a variety of contexts. I should guess that

most people are engaged in forecasting their results in terms of the user and

his characteristics, and are seeking to make forecasting a measurement

process. If so, then I would infer that they are strongly involved in considera-

tions of the authorization of data banks based on strong systemic judgments.

In concluding, I should like to make several remarks of a general nature

about the “Integrated past and future” position. We are going through an

age in which we are reconsidering many of our traditional human values.

From the point of view of science of the last century, precision, rigor, and
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clarity were desiderata. The scientist, it was believed, should become clear

and precise about his position, and his position should be an essentially

consistent one. These values led scientists to regard descriptions of the past

in terms of the “ quality of the reports.” Reports should be specific, concrete,

and unobjectionable. We note, however, in terms of our earlier discussion,

that the quality of being clear and precise may be at variance with the quality

of best serving the user. What does the reader think when he reads about a

certain trend in general systems theory? If he is sensible he will wonder,
“ What other trends might there have been ? ” Perhaps he will sense something

sinister in the glittering facades of a new trend. He is indeed raising the

counterfactual question again. And the answer to his question must be based

on a strong systemic judgment which, I believe, will inevitably be ambiguous,

not clear and precise, and certainly not unobjectionable. We live in a world

in which we have to make strong systemic judgments in order to reach our

decisions, but if we are honest we will see that we will forever fail to find

an unobjectionable basis for these systemic judgments that authorize the use

of certain data banks.

The quality of a report, therefore, has changed in terms of a new set of

values. On the positive side, this new set of values represents a willingness to

be as honest as possible about the basis of our decision making. Along with

this willingness goes, by necessity, the need to accept ambiguity, vagueness,

and incomplete consensus as essential qualities of our “good” reports.

I should like to, close with a very general philosophical opinion about

which 1 hope there will be considerable debate, for debate is the essence of

everything that I have discussed in terms of systemic judgments. I realize

that we have been developing a culture which pays more and more respect

to the future—to what will be or should be in 1984, 2000, or 10,000. But in

this epilogue I have really been putting in a plea for our respect to the past,

to what it was and might have been. It is quite disrespectful for us to assume

that the past was simple and easy to describe. What was it like to be alive in

the year 1800? No number of historical data could possibly probe the depth

and complexity of such a question. The past is as deep an uncertainty and

ambiguity as is the future.

Although I appreciate the demand for forecasting to limit and define its

task, I also appreciate the need for it to expand its horizons in a systemic

manner. Forecasting needs to ally itself with those who are devoting their

lives to the worship of the past—the historians, anthropologists, novelists,

poets, and the like. There was a time when basic science regarded itself as

one form of the adoration of God. The ritual of this form ofworshipping God
by worshipping the past entails also the enormous and heroic task of telling

the future.
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PROBLEMS

1. Which would be a more difficult problem to solve:

(a) what it was like to be alive in the year 1900 in New York City, or

(b) what it will be like to be alive in the year 2000 in New York City.

Explain the methods you would use in each case and justify them.

2 . It is sometimes said that general systems theory is an “emerging force”

in our society. Explain how you would formulate a hypothesis in this state-

ment and how you would test its validity.

3. The word “general” in “general systems theory” could describe either

“systems” or “theory.” In other words, “general systems theory” could

mean a theory of general systems or a general theory of systems. Explain what

the difference is in these two interpretations.

4 . Does general systems theory include a theory of morality? A theory of

theology? If so, what is the evidence for these theories? If not, how can

general systems theory claim to be general ?
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Digital analog simulator, 233
Digraph, 63
Dionysius the Aeropagite, 22
Directed, characteristics, 221
coupling, 221
graph, 63

Discourse de la Mdthode, Descartes’, 23
Discrete, mathematics, 233
resolution level, 232, 233
semigroup system, 286, 288
system, 15, 232, 273, 279, 284-286, 308,

309, 322
topology, 308, 315

Disjunction of subsystems, 282
Disjunctive separation, symmetric, 415
Distance, 310
Distinction, Aristotelian, 43
DNA, 101, 151, 155, 157,368
Dobzhansky, T., 357, 358, 360, 363
Doctrine, Aristotelian, 22
Driesch, H. A. E., 24
Dual function, 282, 283, 330, 412
Duality theorem, 283
Dual systems, 282, 283
Dynamic control, 165
system, 50, 81, 258, 259, 306, 307
theory, 49

Dynamical, equation, 306
polysystem, 307
system, theory of, 26, 27, 33

Dynamics, topological, 272

Eckman, D. P., 9
Ecological, management system, 288
pyramid, 156
system, 55

Economics, 13, 28, 305, 312
Economy, national, 268
Eddington, A. S., 122
Education, 268, 293, 416, 422, 423
general systems, 248
system, 11, 12

Effective, computability, 343, 369, 371
explanation, 341, 343

Effectively, calculable function, 371
communicable theory, 343

Effectiveness, measure of, 289, 291, 292
Eigenvalue, 51
Einstein, A., 201
Electric circuit, 47
Element, 8, 215, 216, 244, 245, 257
identity, 429
universal, 4

Elementary length, 313, 314
topology, 314, 315

Empire as a concept, 150

Empirical theory, general, 28
Empiricism, 190, 197
Endogamous connections, 69
Energy conversion, 155
Engineering, 6, 8, 10, 11, 35, 125, 288, 305
system, 9, 11, 231, 271, 288, 289, 292,

293
English, language, 395
grammar, 395

Enlarging function, 429
Entropy, 60, 82, 90
rate of, 58, 59

Enumeration technique, Godel’s, 378, 386
Enumeration theorem, Kleene’s, 381
Environment, 60, 123, 136, 218, 244
of object, 212
physical, 189
social, 189, 291
of system, 53

Epistemological, analysis, 189
logical process, model of, 191
process, 189, 196

Epistemology, 188, 190, 196, 200, 252
system, 37, 79

Equation, Boolean, 5

difference, 267
differential, 2, 7, 26, 32-34, 42, 47, 50-52,

54, 57, 232, 233, 253, 257, 267, 268,
270, 273,284,306,423

dynamical, 306
partial evolution, 363-365
Volterra, 26, 34

Equifinality, 26, 53, 54, 119
Equilibrium state, 33, 53
Equivalence, class, 2

representant of, 2, 3

relation, 2
topological, 306

Erdos, P., 67
Erikson, E. H., 153, 170
Essential game, 74

traits of systems, 304
Euclidean, geometry, 422
plane, 308
space, 415, 417

Event, 307
space, 307

Evolution, 24, 163, 357, 365
of behavior, 366
biological, 341, 363
equation, partial, 363-365
partially programmed, 368
by production, 363
by reproduction, 363
of structure, 366
theory of, 23, 28, 62, 362

Evolutionary, process, 8, 157, 365
system, 10, 321, 341, 357

Exclusion, competitive, 159
Existence, 130
Exogamous connections, 69
Expansive subset, 424
Experiential hierarchy, 153
Experiment, black box, 434
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Monte Carlo, 157
Explanation, effective, 341, 343
hypothesis, 345-347, 350, 352
p-, 344, 350
permanent scientific, 368
relatively effective, 343

Explicability, 341, 343
Explicatory power of a theory, 10, 350, 352
Exponential growth, 158
Extended topological concepts, 11, 328, 329
External, description, 31, 33
quantity, 214, 216, 219

Fairleigh Dickinson University, 248
Family as a social unit, 150
Fast adaptation, 151
Fechner, G., 22
Feedback, 30, 220, 221
negative, 157
positive, 158, 171

Feedforward, 200
Field, 313,421,422
Filter, 417, 421, 422
Finality, 26
Finite domain function, 430
Finite-state, automaton, 208, 308
machine, 7, 8, 75
machines, theory of, 15

Finite system, 11, 245
First order, predicate calculus, 397
theory, 349

Fisher, R. A., 79
Formalizability, 341, 348, 369
Formal, system, 342, 369
theory, 3, 344, 348, 395-397, 400

Formalization, 253
Formalizing experimental findings, model

of, 348
Formula, well-formed, 395
Forrester, J. W., 172
FORTRAN, 234, 235
Framework, general systems, 267
Frechet, axioms, 423
space, 413

French structuralism, 35
Freud, S., 153, 164
Fromm, E., 146, 177
Function, 417-419
additive, 424
auxiliary, 320
characteristic, 376
closure, 328, 329,427,429
computable, 347, 370
connectedness-preserving, 415
constant, 420
continuous, 7, 306, 309
control, 418
coupling, 278-280
domain finite, 430
dual, 330,412
effectively calculable, 371
enlarging, 429
idempotent, 424
identity, 431

induced, 330
inclusion-preserving, 429
input, 273, 330
interior, 429
inverse, 419
isotonic, 429, 430
Kuratowski closure, 424, 431
linear, 261
Lipschitzian, 409, 417
Lyapunov, 32, 33, 262, 263
minimal closure, 430
outcome, 256
output, 275, 321
pair-decoding, 383
pair-encoding, 383
partially computable, 370, 375, 379-381
partial recursive, 362, 365, 373-375, 389-

392
performance, 256
period, 420
primitive recursive, 373, 374
process, 256
production, 387
projection, 373
recursive, 345, 347, 353, 364, 373, 384-

386, 392
regular, 373
set-valued set, 417
shortest form, 353
state-transition, 259, 262, 275, 278, 320
successor, 363, 373
theory of, 419
threshold, 67
time, class of, 15
total, 370
utility, 312
Wallace, 427
welfare, 73

Functional, 316
analysis, 417
system, 305, 307, 315

Functionalism, American, in sociology, 35
Functor, 254
Future, reckoning, 436, 438, 441
values of quantities, 214

Fuzzy, set, 4, 9
system, 10

Galilean, conception, 22
mechanics, 43

Galilei, G., 23
Game, 162
constant-sum, 70, 72
cooperative, 72
essential, 74
human, 162
inessential, 74
non-constant-sum, 71, 72, 73
n-person, 73
theory, 30, 35, 42, 62, 69, 70, 72, 162
three-person constant-sum, 74

GASP II simulator, 235
Gastl, G., 429
General, empirical theory, 28
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methodology, 207
time system, 15, 257

Generalist, specialized, 1

2

Generalized, circuit, theory of, 2, 252
closure space, 305
specialist, 13
system theory, 208
topological structure, 1

1

General system, 1, 2, 212, 224, 254, 319-

323, 333
education, 248
framework, 267
methodology, 3, 8, 10, 221, 232, 237,

248
profession, 11, 13
programming language, 248
synthesis, 9
theory, 1, 3, 6, 10, 25-30, 38, 44, 73, 74,

79, 98, 99, 105, 138, 206-211, 224,
225, 247, 248, 252, 253, 267, 272,
304, 305, 342, 343, 352, 368, 434,
438,442

implementor, 289
Genetic adaptation, long term, 151
Geometry, 410
Euclidean, 422
projective, 422

GEST, 289
Gestalt, mathematics, 26
theory of perception, 24, 313

Goal seeking, 252, 253
approach, 255, 256
procedure, 256
process, 7, 255
specification, 7

system, 193, 257
Godel, K., 263, 264
Godel, enumeration technique, 378, 386
incompleteness theorem, 401
mapping, 263
number, 378

Goodkin, H., 289
Goodman, N., 440
Goodness as a criterion, 1 24
Governing and governed systems, theory of,

252
Graph, 63, 64
bichromatic, 69
chronological, 15, 110, 112
connected, 63
directed, 63
randomly constructed, 64, 66, 67, 69
theory, 30,42,62,63
undirected, 63

Gray, W., 34
Group, 411
theory, 349
topological, 272

Groupoid, 411
Growth, 155, 158, 172
exponential, 158
curve, 158

Halt instruction, 369

Hammer, P. C., 3, 4, 11, 322, 323, 328, 329,
333, 334,408,429-432

Hammer, closure axioms, 329
operator, 329
topological space, 323, 328

Hand, Justice Learned, 102
H-Appert space, 305, 331, 333, 334, 412,

413
Hardin, G., 162
Harmonic oscillator, 47
Harsanyi, J. C., 73
Hausdorff, F., 414
H-closure operator, 329, 330, 332, 333
Health delivery system, 288
Hegel, G. W. F., 22
Henderson, I. F., 359
Henry, P., 138
Heraclitus, 115
Hereditary relation, 425
Heredity, 358
Hierarchical, general system, 242
society, 183
structure, 145-147, 183
system, 148, 182, 252, 264, 266

Hierarchy, 147
experiential, 153
human, 148
interwoven, 155
intra-cellular, 148, 150
management, 152
of monads, 22
natural, 148
trophic, 154

Higher-order relation, 418
Hille, E., 272
Homeostasis, 53
Homeostat, 81
Homme machine of Lamettrie, 23
Homology, logical, 26, 27
Homomorphic, image, 283, 284, 292
model, 3

Homomorphism, 3, 8, 283, 284, 426
algebraic, 416, 417, 424
topological, 417, 424

Homo sapiens, 366
Human, body, 150
game, 162
hierarchy, 148
knowledge, organization of, 268
memory, 170

Hume, D., 197,435,439
Hurwicz, L., 314
Hybrid system, 7

Hypothesis, Church, 371
explanation, 345-347, 350, 352
learning-programming, 356
order-randomness, 354
Turing, 371,375

Hypothetic, coupling, 216
structure, 215

Idealism, 36, 190
Idempotent function, 424
Identification, 131-136
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Identifier, 130
Identifying variable, 130-132
Identity, 130, 131
element, 429
function, 431
right, 420

Image, homomorphic, 283, 284, 292
Immediate effects, diagram of, 131
Imperative mode, 418
Implementable system, 284
Implementor, general systems theory, 289
Inclusion-preserving function, 429
Incomplete system, 264
Inconsistent, system, 264
theory, 397

Independent, quantity, 218
variable, 113

Indeterminability, law of, 122
Induced function, 330
Inductive approach, 8
Inessential game, 74
Infeld, L., 201
Inference, rules of, 396
Infinite system, 223, 224, 240, 241
Information, 30, 61, 80, 84, 191, 200, 410,

440, 441
accumulation of, 157
n-variable, 82
processing, 181, 253
semantic, 347, 348
syntactic, 10, 348, 349
syntactic, amount of, 402
theory, 30, 35, 191, 198, 200, 272
transmission, 181

Information-poor, society, 146
Information processing system, 189
Information-rich society, 146, 181
Initial, condition, 5

1

state, 118
Input, 255, 316
acceptable, 263
alphabet, 273, 319
function, 273
functions, admissible set of, 274, 324,

325,329
port, 275, 276
quantity, 221
sequence, 121
trajectory, 322

Input-output, approach, 255
relationship, 257, 272
representation, 252
specification, 7, 257, 289, 291

Inquiring system, 434
Instantaneous, program, 216

state, 216
valued of quantities, 214

Intelligence, amplifier, 105
artificial, 248

Interaction, 6, 37, 79, 83-85
amount of, 6
balance principle, 266

Interface, man-machine, 291
Interior, 309

function, 429
Interministic strategy, 355
Internal, description, 3

1

knowledge reference set, 1 93
quantity, 216
state, 50, 216

Interwoven hierarchy, 155
Intra-cellular hierarchy, 148, 150
Intrinsic values of being, 153
Inverse function, 419
Invariance, 115
of pattern, 201

Investigator of a system, 215
Irreversible thermodynamics, 26, 29
Islam, S., 334
Isomorphic system, 46, 283
Isomorphism, 8, 29, 208, 225, 283
between graphs, 63, 64
mathematical, 2, 3, 48, 63, 74

Isotonic, function, 429, 430
space, 414

Kant, I., 193
K-closure operator, 328
Kindler, E., 3

Kindship, 311
Kleene, S. C., 372
Kleene, enumeration theorem, 381
normal form, 379
projection theorem, 361, 383
recursion theorem, 361, 391, 392

Klein, F., 428
Klir, G. J., 1, 15, 31, 205, 208, 212, 218,

231, 238, 248, 368
Klir, approach, 210, 237
paradigm, 217, 238
theory, 223

Knowledge, 157, 196, 197
process, 188
reference set, internal, 193
sociology of, 195

Known behavior, 215
Koch, R., 4
Kohler, W., 26
Krohn, J. L., 272, 292
Krohn-Rhodes theory, 292
Kuhn, T. S., 25, 30, 36, 157, 188
Kuratowski closure, axioms, 323, 325, 326,

328, 334
function, 424, 431
operator, 325, 326, 330

Lamettrie, homme machine of, 23
Language, 195, 198, 199
context-free, 208
natural, 12, 399
regular, 208
scientific, common, 342, 343
simulation, 238, 272
theory, 3, 199, 208
translation, 414, 417

Laplace, P. S., 101
Large-scale system, 254, 264, 268
Lattice, 421
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1

Law of interminability, 122
Leach, E. R., 311
Leadership as a social concept, 173, 178
LEANS simulator, 234, 235
Learning, 158, 356
mechanism, 356
system, 10, 341

Learning-programming hypothesis, 356
Least safe capacity, 82-86, 94, 95
Lee, C. Y., 361
Leibnitz, G. W.,418
Length, elementary, 313, 314
Lennes, N. J., 414
Lewin, K., 313
limit, Bremermann, 4, 5, 6
quantal, 84

line, of behavior, 15, 109, 110
Linear, function, 261
system, 237, 260, 307
time-invariant system, 308
vector space, 412, 431

Linguistics, 200
Linnd’s Systema Naturae, 341
Lipschitzian function, 409, 417
List, approximation, 421
Local behavior, 215
Locke, J., 197
Lofgren, L., 6, 10, 15, 340
Logic, 198, 199,416
mathematical, 10, 251, 342, 343, 361,

369
variable, 4, 6

Logical, atomism, 190, 198, 199
basis, 10, 342, 349-351
homology, 26, 27
positivism, 37

Long-term genetic adaptation, 151
Lotka, A. J., 26
Lyapunov function, 32, 33, 262, 263

Maccia, E. S., 31
Maccia, G. S., 31
Mach, E., 197
Machine, 369
Descartes’ animal, 23
Descartes’ bSte, 23
finite-state, 7, 8, 75
homme, of Lamettrie, 23
Mealy, 7, 75
Moore, 7

nonreproductive, 367
real, Ashby, 14
reproductive, 367
theory, 15, 208,416
Turing, 7, 288, 344, 359, 361, 363, 364,

366, 372, 374, 376-380, 386, 388-

392,395,398,399
Mackay, M. D., 195
Maintainability, 289
Manageable complexity, 4
Management, 13
hierarchy, 152

Mandelbrot, B., 48

Man-machine interface, 291
Man-made system, 352
Mapper, 418
Mapping, 418
association preserving, 426
continuous, 416, 426
Godel, 263

Markov process, 218
Marx, K., 22
Mask, 232
Masking technique, 23

1

Maslow A., 153, 174, 175, 179
Mathematical, isomorphism, 2, 3, 48, 63, 74

logic, 10, 251, 342-343, 361, 369
model, 11,49, 56,57, 267, 289
structure, 253
system, 46, 57
systems theory, 29, 30, 209, 253, 272,

273, 287, 305, 307
Mathematics, 3, 8, 30, 105, 232, 233, 252,

255, 268, 293, 408-411, 417, 421,
422

continuous, 232
discrete, 233
gestalt, 26

Mathesis universalis, 22
Matriarchal society, 147, 183
Matrix, payoff, 70
Maximal conjunctive resolution, 283
Maximum principle, Pontryagin, 309
May, K. 0.,418
Mayr, E., 362
McCulloch, W. S., 34, 272
McLuhan, H. M., 175
Mead, G. H., 193, 195
Mealy machine, 7, 75
Measure, 421
of effectiveness, 289, 291, 292
probability, 291

Mechanics, 100, 101, 103
Galilean, 43
Newtonian, 43
statistical, 30, 48
wave, 30

Mechanism, learning, 356
tape-adding, 359

Medieval physics, 43
Memory, 50
human, 170

Memoryless system, 23

1

Mendeleev periodic system, 34

1

Mesarovic, M. D., 7, 9, 15, 31, 147, 251,
319

Mesarovic, approach, 7, 8, 319
theory, 3, 9

Metalanguage, 15, 343
Metamathematical problems, 7, 263
Metatheory, 10, 14
Method, classical, 1, 80
deductive, 9
inductive, 9
Newtonian, 1

Methodology, 15, 207
design, 291
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general, 207
general systems, 3, 8, 10, 221, 232, 237,

248
specific, 207
system, 11, 231, 238
of systems engineering, 288

Metric, 310
space, 335

Microprocess, 188
Milsum, J. H., 10, 14, 145
Minimalization, 372, 374
Minimax, strategy, 71
theorem, Von Neumann, 72

Mixed strategy, 71, 355
Mode, conditional imperative, 418
imperative, 418

Model, 14, 31, 212
abstract, 11, 206, 225, 410
building process, 267
of epistemological process, 191
homomorphic, 3

mathematical, 11, 48, 56, 57, 69, 267,
289

statistically optimum, 291
stimulus-response, 194
theory, 342
Wymore, 11, 334

Modeling, 8, 414
Modern, control theory, 272
epistemology of systems, 37, 79
science, 80
systems theory, 199
theory of information and communication,

191
theory of knowledge, 191

Module, universal, 4, 5, 6
Modus ponens, 397, 398
Monads, hierarchy of, 22
Monte Carlo experiment, 157
Moore machine, 7

Morality theory, 443
Morphogenetic, process, 196, 200
system, 189

Morphostatic system, 189
Motion, 308
Multilevel system, 252, 266
Muscle cell, 149
Mutant, 358
Myhill, J., 365

Nash, J. F., 73
National economy, 268
Natural hierarchy, 148
language, 12, 399
sciences, 8, 10, 11, 305, 341
selection, 23
state, 259
state space, 259
subspace, 330
system, 341
topology, 314, 323

Negative feedback, 157
Neighborhood, 11, 262, 308, 317, 414
base, 412, 414

structure, 243, 244
Nervous system, 27, 149, 193
Network theory, 30
Neumann, J. von, 127, 355, 360, 361
Neuron, 149
Neurophysiology, 200
Neutral system, 218
Newton, I., 78, 102-104
Newtonian, mechanics, 43
method, 1

paradigm, 24
Nicholas of Cusa, 22
Nietzche, F., 435
Noise, 90, 191
Nonanticipatory system, 320
Non-constant-sum game, 71, 72
Nonreproductive machine, 367
Norling, R. A., 289
Normal form, Kleene, 379
n-person game, 73
n-productive object, 359
n-tolerance automaton, 309
n-variable information, 82
Number, Godel, 378
theory, 416

Numerical analysis, 292
Nyquist theorem, 79

Object, 14, 36, 37, 212, 214, 223, 254, 319
decision, 256
environment of, 212
n-productive, 359
reproductive, 359
physical, 15
system, 215
value, 256

Objective control, 264
Observable cell, 243
Observation, 125
Observed, features, 254
quantity, 214

Ontological analysis, 190
Ontology, 190
system, 36

Open-loop, control, 168
reflex system, 169

Open, set, 412
system, 27, 30, 53, 54, 106, 115, 193

Operating optimization, 167, 168
Operation, convex hull, 412
Operations research, 27

1

Operator, Hammer closure, 329
H-closure, 329, 330, 332, 333
K-closure, 328, 329
Kuratowski closure, 325, 326, 330

Optimality, 307
Optimal, control problem, 309
solution, 307
trajectory, 307

Optimization, 179, 305, 307, 309, 333
operating, 167, 168
process, 179

Orbital tree, 420
Orchard, R. A., 7, 8, 10, 205
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Order, 341,352
relation, 421

Order-randomness hypothesis, 354
Oren, T., 282, 289
Organ, as a biological unit, 149
Organism, 149
Organismic biology, 25
Organization, 24, 28, 155, 191, 215
of human knowledge, 26 8

Organ system, 149
Oscillation, relaxation, 173
Oscillator, harmonic, 47
Outcome function, 256
Output, 255, 316
alphabet, 319
function, 275, 321
quantity, 221
trajectory, 289, 322
undesirable, 263, 264

Pair-encoding function, 383
Paradox, Aristotelian, 25
Paradigm, Klir, 217, 238
Parental unit, 358
Parsons, T., 125
Partial evolution equation, 363-365
Particle physics, 30
Past, of bounded input, 316
determined system, 259
reckoning, 436, 438, 441
values of quantities, 214

Patriarchal society, 147, 183
Pattern, 191
invariance of, 201

Payoff matrix, 70
Peano axiomatization of arithmetic, 402
Perception, 36, 37, 43, 189, 313
Performance function, 256
Period function, 420
Perkins, L. S., 68
Permanent, behavior, 215, 219, 234
Peterson, A., 368
Peterson, L., 368
p-explanation, 344, 350
Phenomenalism, 36 , 190
Phenomenology, 190
Philosophy, 21,43, 252
of science, 200
system, 36, 38

Physical, environment, 189
object, 15

Physically realizable system, 315, 317
Physics, 38, 62, 99,313
medieval, 43
particle, 30
theoretical, 315

Physiological, behavior, 291
system

Piaget, J., 35, 194, 195
Pitts, W., 272
Plane, Euclidean, 308
Platt, J., 180
PL/I, 237, 238
Point of view, 213

analytical, 43
Political science, 13
Polynomial system, 308, 318
Polysystem, dynamical, 307
Pontryagin, L. S., 272, 274
Pontryagin maximum principle, 309
Popper, K., 350, 351,355
Port, input, 275, 276
Positive feedback, 158, 171
Positivism, 190

logical, 3 7

Potential, topological, 315
Potentially infinite tape, 359, 369
Power of a theory, deductive, 400
explicatory, 10, 350, 351
predictive, 10, 351

Preconception, common-sense, 435
Predicate, calculus, first order, 398
computable, 377, 381, 382
recursive, 377
semicomputable, 380-382, 385
Turing machine, 377,378

Predictive power of a theory, 10, 351
Preprogramming, 168, 169
Price, D. J. de Solla, 172
Primary traits of systems, 8, 219, 223, 238,

239
Primitive, recursion, 372
recursive function, 374
space, 413

Principal quantity, 214, 215, 218
Principle, balance, 266
of equifinality, 53
Pontryagin, maximum, 309
of superposition, 80
Von Mises, 355

Probabilistic

system, 9, 10, 49
complex, 231
simple, 231

Probability measure, 291
Problem, black box, 23

1

decision, 398
metamathematical, 7, 263
optimal control, 309
recursively unsolvable, 398
reduction, 358, 367

Procedure, goal-seeking, 256
system, 239, 245

Process, controlled, 264
dialectic, 22
epistemological, 189, 190, 196
evolutionary, 8, 157, 365
of formalizing experimental findings, 348
function, 256
goal-seeking, 7, 255
knowledge, 188
Markov, 218
model building, 267
morphogenetic, 196, 200
optimization, 179
sociocultural, 193
stochastic, 272, 287, 290
symbolic, 195, 197
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tradeoff, 179
Processing of information, 181, 253
Produceability, 289
Production function, 387
Productive, object, n-, 359

set of integers, 387
Product topology, 306, 312
Profession, general systems, 11, 13, 15
Program, 15, 50, 134, 216
complete, 216
diagnosing, 357
instantaneous, 216

Programming, language for general systems,
248

theory, of, 237
Projection, 109
function, 373
theorem, Kleene, 361, 383

Projective geometry, 422
Proof in a formal theory, 396
Provable well-formed formula, 396
Psychiatry, 1, 28, 34
Psycholinguistic, 200
Psychological behavior, 291
Psychology, 1, 6, 13, 24, 29, 137, 200, 252,

305
social, 200, 313

Pure strategy, 72
Pushdown automaton, 208
Pyramid, ecological, 156

Quantal limit, 84
Quantity, 14, 212
dependent, 218
external, 214, 216, 219
independent, 218
input, 221
internal, 216
onserved, 214
output, 221
principal, 214, 215, 218

Randomly constructed graph, 64, 66, 67, 69
Randomness, 352, 355
Random sequence, 355
Ranke, L. von, 435
Rapoport, A., 3, 42, 100, 105
Rate of entropy, 58, 59
Rationality, collective, 72
Real, behavior, 215
coupling, 216
machine, Ashby, 14
structure, 215
system, 14, 36
time, 273

Receptor, 149
Recipes, coupling, 276, 278, 280
Reckoning, future, 436, 438, 441
past, 436, 438, 441

Recursion, primitive, 372
Recursion theorem, Kleene, 361, 391, 392
Recursive, function, 343, 345, 347, 364,

373,384-386,395
partial, 362, 365, 373-375, 389-392

primitive, 373, 374
theory of, 240, 248

Recursive, predicate, 377
set, 386-388, 394

Recursively enumerable set, 385-388, 394
Recursively unsolvable problem, 398, 400
Recursive reducibility, strong, 393, 400
Reducibility, strong, recursive, 400
Reduction problem, 358, 367
Reflexive space, 413
Regular, function, 373
language, 208

Regulation, 134, 135, 137
theory of, 88

Relation, 46, 417
binary, 418, 421
causal, 231
equivalence, 2

hereditary, 425
higher-order, 418
homomorphic, 3

order, 421
ternary, 418, 421
time-invariant, 15, 212-214
transitive, 421

Relationship, input-output, 257, 272
Relatively effective explanation, 343
Relatively permanent behavior, 215
Relaxation oscillation, 173
Reliability, 289
Religion, 177
Renyi, A., 67
Representant, of an equivalence class, 2, 3

Representation, decision-making, 252
input-output, 252
state, 258, 259

Reproduction, 155, 357, 359
differential, 24

Reproductive, machine, 367
object, 359
system, 10

Research, operations, 271
Resolution, maximal conjunctive, 283
Resolution level, 8, 15, 219

discrete, 232, 233
space-time, 14, 212

Response, 255
Resultant of a couple, 277, 278, 280, 281,

289
Revolution, scientific, 22
r-formal theory, 344, 346, 350, 396, 398,

400, 402
Rhodes, K., 272, 292
Richardson, L. F., 54
Riesz, F., 414
Right identity, 420
Ring, 421, 422
Rio, S. T., 328, 330, 332
RNA, 151, 155
Rogers, H., 389, 393, 401
Rogers, W., 98
Rosenblueth, A., 101
Rosser, J. B., 264
Rules of inference, 396
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Sapir, E., 195
Scarse resources, 159
Science, 6, 80, 99
behavioral, 11, 34, 35, 305
classical, 25, 29, 36
computer, 11, 272, 305, 308
easy, 105
hard, 105
life, 10
modern, 80
natural, 8,10,11,305,341
philosophy of, 200
political, 13
of simplification, 102, 105
social, 1,6, 8, 10, 11,28, 29,305
system, 11, 29
unification of, 30
of wholes, 79

Scientific, explanation, permanent, 368
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