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Pyé-koko di i ka vwe lwen, maché ou ké vwe pli lwen.!

! Creole proverb from Guadeloupe that can be translated: The coconut palm says
it sees far away, walk and you will see far beyond.



Preface of the First Edition

The preface is that part of a book which is written last, placed first, and
read least.

Alfred J. Lotka
Elements of Physical Biology
Baltimore: Williams & Wilkins Company 1925

The purpose of this book is to show how models of complex systems are built
up and to provide the mathematical tools indispensable for studying their
dynamics. This is not, however, a book on the theory of dynamical systems
illustrated with some applications; the focus is on modeling, so, in present-
ing the essential results of dynamical system theory, technical proofs of theo-
rems are omitted, but references for the interested reader are indicated. While
mathematical results on dynamical systems such as differential equations or
recurrence equations abound, this is far from being the case for spatially ex-
tended systems such as automata networks, whose theory is still in its infancy.
Many illustrative examples taken from a variety of disciplines, ranging from
ecology and epidemiology to sociology and seismology, are given.

This is not only an introductory text directed mainly to advanced under-
graduates in most scientific disciplines, but could also serve as a reference book
for graduates and young researchers. The material has been taught to junior
students at the Ecole de Physique et de Chimie in Paris and the University
of Illinois at Chicago. It assumes that the reader has certain fundamental
mathematical skills, such as calculus.

Although there is no universally accepted definition of a complex system,
most researchers would describe a system of connected agents that exhibits
an emergent global behavior not imposed by a central controller, but resulting
from the interactions between the agents, as complex. These agents, may be
insects, birds, people, or companies, and their number may range from one
hundreds to millions.



viii Preface of the First Edition

Finding the emergent global behavior of a large system of interacting
agents using analytical methods is usually hopeless, and researchers there-
fore must rely on computer-based methods. Apart from a few exceptions,
most properties of spatially extended systems have been obtained from the
analysis of numerical simulations.

Although simulations of interacting multiagent systems are thought exper-
iments, the aim is not to study accurate representations of these systems. The
main purpose of a model is to broaden our understanding of general principles
valid for the largest variety of systems. Models have to be as simple as pos-
sible. What makes the study of complex systems fascinating is not the study
of complicated models but the complexity of unsuspected results of numerical
simulations.

As a multidisciplinary discipline, the study of complex systems attracts
researchers from many different horizons who publish in a great variety of
scientific journals. The literature is growing extremely fast, and it would be a
hopeless task to try to attain any kind of comprehensive completeness. This
book only attempts to supply many diverse illustrative examples to exhibit
that common modeling techniques can be used to interpret the behavior of
apparently completely different systems.

After a general introduction followed by an overview of various model-
ing techniques used to explain a specific phenomenon, namely, the observed
coupled oscillations of predator and prey population densities, the book is
divided into two parts. The first part describes models formulated in differen-
tial equations or recurrence equations in which local interactions between the
agents are replaced by uniform long-range ones and whose solutions can only
give the time evolution of spatial averages. Despite the fact that such models
offer rudimentary representations of multiagent systems, they are often able
to give a useful qualitative picture of the system’s behavior. The second part
is devoted to models formulated in terms of automata networks in which the
local character of the interactions between the individual agents is explicitly
taken into account. Chapters of both parts include a few exercises that, as
well as challenging the reader, are meant to complement the material in the
text. Detailed solutions to all exercises are provided.

Nino Boccara



Preface of the Second Edition

In this second edition, I essentially made some additions. I first added a few
extra footnotes to give some details on the main contributors cited in the
text, some more recent references, and a few new exercises also accompanied
by their solutions. Some exercises have been adapted from original publica-
tions, whose reference has always been given. Moreover, I added a framed text
listing all the important points discussed in the chapter just after the chap-
ter title, and a chapter’s summary in which are listed, with their definitions,
all the most important notions and essential results obtained in the chapter,
at the end of the chapter. Finally, at the end of the book before the list of
references, I added a glossary listing the meanings of all the specialized terms
used in the text. Chapter 6, which is dedicated to spatial models, has been
slightly expanded to include a somewhat more realistic agent-based model
than cellular automata models, in which the agents are not constrained to
occupy periodic locations. I supplemented the already rather extensive list of
references with a few more recent ones. The list of references includes either
articles or books to which I am referring to in the text or articles and books
which, I think, could be useful to the reader wishing to go beyond the material
I have presented.

Nino Boccara
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Notations

The essential mathematical notations used in the text are grouped below.

Indicates the end of a proof

Set of real numbers

Set of positive numbers

Set of complex numbers

Set of all integers

Set of integers modulo L

Set of positive integers

Set of nonnegative integers

Set of rational numbers

Empty set

x is an element of the set X

S is a subset of X

Set of elements either in A or in B
Set of elements that are in both A and B

+

sozzhNNamE=EOd

o O R
>oCcnm °
W

A, Complement of set A

A\ B Set of all elements in A that are not in B
AAB Set of elements either in A or in B but not in A and B
|A] Number of elements of set A

{x € M | P(z)} All elements of M that have the property P(x)
a~b a is equivalent to b

a=b a implies b

asb a implies b and conversely

|x] Largest integer less than or equal to «

[x] Smallest integer greater than or equal to x

z Complex conjugate of z

m(A) Lebesgue measure of the set A

f: X—=Y f is a mapping from the set X into the set Y
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frz— f(2)
f (@)
fog

x € R"

spec(A)

ey Tp) X1, T2,

Mapping f takes the point x to the point f(z)

Set of all preimages of x

Composite of mappings f and g, g being applied first

x is an element of the n-dimensional vector space R"

.,y are the components of vector x

Norm of vector x

Dimension of (manifold) S

Closed interval; i.e.,, {z € R |a <z < b}

Open interval; i.e., {r € R | a <z < b}

{reR|a<z<b}

{reR]a<z<b}

Distance between points z and y in a metric space

Neighborhood of x

Time derivative of vector x

Derivative of vector field X at x

Derivative with respect to x of vector field X at (x, p)

Trace of square matrix A

Determinant of square matrix A

Diagonal matrix whose diagonal elements are
Alyeeas An

Block-diagonal matrix whose diagonal blocks are
By,...,By

n X n matrix whose element a;; is the j-component of
the n-dimensional vector a;

Spectrum of linear operator A

There exist two positive constants A and a such that
[f(@)] < Alg(z)| for |z| <a

For any € > 0, there exists § > 0 such that
[f(@)] < elg(z)] for |z <6

f(z) and g(x) have the same asymptotic behavior

lim._o f(z +¢), where e > 0

lim._o f(z +¢), where e <0

a is approximately equal to b

a is less than or approximately equal to b

a is greater than or approximately equal to b

Graph of order N and size M

Adjacency matrix of graph G

Set of vertices of graph G

Set of edges of graph G

Neighborhood of vertex = of a graph

Degree of the vertex x of a graph

In-degree of the vertex x of a digraph

Out-degree of the vertex z of a digraph
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Tt

Notations xvii

Characteristic path length of network N.

Clustering coefficient of network N.

Diameter of network N.

Binomial number.

Probability that the random variable X is equal to z.

Cumulative distribution function of the random
variable X defined by Fx(z) = P(X < z).

Probability density function of the absolutely
continuous random variable X.

Sequence of random variables (X,,) converges
in distribution to X.
Median of a distribution defined by F(m) = .
Average value of random variable X .
Moment of order r of a random variable X;
ie., m.(X) = (X").
Variance of a random variable X;
ie., 02(X) = mo(X) —m3(X).
Characteristic function of the random variable X.
Normal random variable on mean m and variance o2.
Fourier transform of function f.
Probability density function of stable Lévy
distribution.
Probability density of a Student’s ¢-distribution.

W = {W; | t > 0} Stochastic process.
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Introduction

The essential points of this first chapter are
e The definition of a complex system

e The notion of emergence

e The definition of a model

e The notion of dynamical system

This book is about the dynamics of complex systems. | Roughly speaking,

a system is a collection of interacting elements making up a whole such as, for
instance, a mechanical clock. While many systems may be quite complicated,
they are not necessarily considered to be complex. Today, most authors agree
on the essential properties a system has to possess to be called complex. The
first section is devoted to the description of these properties.

| To interpret the time evolution of a system, scientists build up models,
which are simplified mathematical representations of the system. The exact
purpose of a model and what its essential features should be is explained in
the second section.

The mathematical models that will be discussed in this book are dynami-

cal systems.' | A dynamical system is essentially a set of equations | whose so-

lution describes the evolution, as a function of time, of the state of the system.
There exist different types of dynamical systems. Some of them are defined in
the third section.

! There is an extensive literature on mathematical modeling. The reader may, for
example, consult [11,88,163,233].

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 1
DOI 10.1007/978-1-4419-6562-2_1, (© Springer Science+Business Media, LLC 2010



2 1 Introduction

1.1 What is a Complex System?

Outside the nest, the members of an ant colony accomplish a variety of fas-
cinating tasks, such as foraging and nest maintenance.? Deborah Gordon’s
work [192] on harvester ants® has shed considerable light on the processes by
which members of an ant colony assume various roles.* Outside the nest, ac-
tive ant workers can perform four distinct tasks: foraging, nest maintenance,
patrolling, and midden work. Foragers travel along cleared trails around the
nest to collect mostly seeds and, occasionally, insect parts.® Nest-maintenance
workers modify the nest’s chambers and tunnels and clear sand out of the nest
or vegetation from the mound and trails. Patrollers choose the direction for-
agers will take each day and also respond to damage to the nest or an invasion
by alien ants. Midden workers build and sort the colony’s refuse pile.

Gordon [190,191] has shown that task allocation is a process of continual
adjustment. The number of workers engaged in a specific task is appropriate
to the current condition. When small piles of mixed seeds are placed out-
side the nest mound, away from the foraging trails but in front of scouting
patrollers, early in the morning, active recruitment of foragers takes place.
When toothpicks are placed near the nest entrance, early in the morning at
the beginning of nest-maintenance activity, the number of nest-maintenance
workers increases significantly.

The surprising fact is that task allocation is accomplished without any
central control. The queen does not decide which worker does what. No master
ant could possibly oversee the entire colony and broadcast instructions to the
individual workers. An individual ant can only perceive local information from
the ants nearby through chemical and tactile communication. Each individual
ant processes this partial information to decide which of the many possible
functional roles it should play in the colony.

The cooperative behavior of an ant colony that results from local interac-
tions between its members and not from the existence of a central controller
is referred to as emergent behavior. Emergent properties are defined as large-
scale effects of locally interacting agents that are often surprising and hard to
predict even in the case of simple interactions. Such a definition is not very
satisfying: what might be surprising to someone could be not, so surprising
to someone else.

2 There exist a large number of interesting publications on ants. Here are a few
recent ones: [128,132,215,236].

3 Pogonomyrmez barbatus. They are called harvester ants because they mostly eat
seeds, which they store inside their nests.

4 The interested reader might consult Deborah Gordon’s list of publications at
http://wuw.stanford.edu/ dmgordon/publications.html.

% On foraging theory, see [235].

6 The concept of emergence, which essentially states that the whole might be greater
than the sum of its parts, is not really a new idea, it was already familiar to
Aristotle (384 BC-322-BC).
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A system such as an ant colony, which consists of large populations of
connected agents (that is, collections of interacting elements), is said to be
complez if there exists an emergent global dynamics resulting from the actions
of its parts rather than being imposed by a central controller.

Ant colonies are not the only multiagent systems that exhibit coordinated
behaviors without a centralized control.

Animal groups display a variety of remarkable coordinated behaviors [79,
358]. All the members in a school of fish change direction simultaneously
without any obvious cue; while foraging, birds in a flock alternate feeding
and scanning. No individual in these groups has a sense of the overall orderly
pattern. There is no apparent leader. In a school of fish, the direction of each
member is determined by the average direction of its neighbors [425,436]. In
a flock of birds, each individual chooses to scan for predators if a majority
of its neighbors are eating and chooses to eat if a majority of its neighbors
are already scanning [29]. The existence of sentinels in animal groups engaged
in dangerous activities is a typical example of cooperation. Recent studies
suggest that guarding may be an individual’s optimal activity once its stomach
is full and no other animal is on guard [112].

Self-organized motion in schools of fish, flocks of birds, or herds of ungulate
mammals is not specific to animal groups. Vehicle traffic on a highway exhibits
emergent behaviors, such as the existence of traffic jams that propagate in the
opposite direction of the traffic flow, keeping their structure and characteristic
parameters for a long time [239], or the synchronization of average velocities
in neighboring lanes in congested traffic [240]. Similarly, pedestrian crowds
display self-organized spatiotemporal patterns that are not imposed by any
regulation: on a crowded sidewalk, pedestrians walking in opposite directions
tend to form lanes along which walkers move in the same direction.

A high degree of self-organization is also found in social networks that
can be viewed as graphs.” The collection of scientific articles published in
refereed journals is a directed graph, the vertices being the articles and the
arcs being the links connecting an article to the papers cited in its list of
references. A recent study [381] has shown that the citation distribution —
that is, the number of papers N(z) that have been cited a total of a times —
has a power-law tail, N(z) ~ =% with o &~ 3. Minimally cited papers are
usually referenced by their authors and close associates, while heavily cited
papers become known through collective effects.

Other social networks, such as the World Wide Web or the casting pat-
tern of movie actors, exhibit a similar emergent behavior [43]. In the World
Wide Web, the vertices are the HTML® documents, and the arcs are the links

" A directed graph (or digraph) G consists of a nonempty set of elements V(G),
called vertices, and a subset E(G) of ordered pairs of distinct elements of V(G),
called directed edges or arcs.

8 Hypertext Markup Language.
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pointing from one document to another. In a movie database, the vertices are
the actors, two of them being connected by an undirected edge if they have
been cast in the same movie.

In October 1987, major indexes of stock market valuation in the United
States declined by 30% or more. An analysis [414] of the time behavior of the
U.S. stock exchange index S&P 500° before the crash identifies precursory
patterns suggesting that the crash may be viewed as a dynamical critical
point. That is, as a function of time ¢, the S&P 500 behaves as (t — t.)%7,
where t is the time in years and ¢. ~ 1987.65. This result shows that the stock
market is a complex system that exhibits self-organizing cooperative effects.

All the examples of complex systems above exhibit some common charac-
teristics:

1. They consist of a large number of interacting agents.

2. They exhibit emergence; that is, a self-organizing collective behavior
difficult to anticipate from the knowledge of the agents’ behavior.

3. Their emergent behavior does not result from the existence of a central
controller.

The appearance of emergent properties is the single most distinguishing
feature of complex systems. Probably, the most famous example of a system
that exhibits emergent properties as a result of simple interacting rules be-
tween its agents is the game of life invented by John H. Conway.'® This game
is played on an (infinite) two-dimensional square lattice. Each cell of the lat-
tice is either on (occupied by a living organism) or off (empty). If a cell is off,
it turns on if exactly three of its eight neighboring cells (four adjacent orthog-
onally and four adjacent diagonally) are on (birth of a new organism). If a cell
is on, it stays on if exactly two or three of its neighboring cells are on (sur-
vival), otherwise it turns off (death from isolation or overpopulation). These
rules are applied simultaneously to all cells. Populations evolving according to
these rules exhibit endless unusual and unexpected changing patterns [174].

“To help people explore and learn about decentralized systems and emer-
gent phenomena,” Mitchell Resnick!' developed an agent-based simulation

9 S&P refers to Standard and Poor’s that defines itself as “the world’s foremost
provider of independent credit ratings, indices, risk evaluation, investment re-
search, and data.” The stock market index S&P 500 comprises 500 American
companies covering about 75% of the American Equity market by capitaliza-
tion. The list of these 500 companies can be found at the Wikipedia web site:
http://en.wikipedia.org/wiki/List_of_S&P_500_companies.

John Horton Conway is a prolific mathematician who is the author of many con-
tributions to recreational mathematics. Born in 1937 in England, he is currently
professor at Princeton University, and has been elected fellow of Royal Society in
1981.

See Mitchell Resnick’s Web page: http://mres.www.media.mit.edu/people/
mres. Resnick’s research is described in his book [383].

10

11



1.1 What is a Complex System? 5

language called StarLogo!? modeling environment. Among the various sam-
ple projects consider, for example, the project inspired by the behavior of
termites gathering wood chips into piles. Each cell of a 100 x 100 square lat-
tice is either empty or occupied by a wood chip or/and a termite. Each termite
starts wandering randomly. If it bumps into a wood chip, it picks the chip up
and continues to wander randomly. When it bumps into another wood chip, it
finds a nearby empty space and puts its wood chip down. With these simple
rules, the wood chips eventually end up in a single pile (Fig.1.1). Although
rather simple, this model is representative of a complex system. It is inter-
esting to notice that while the gathering of all wood chips into a single pile
may, at first sight, look surprising, on reflection it is no wonder. Actually, it is
clear that the number of piles cannot increase, and, since the probability for
any pile to disappear is nonzero, this number has to decrease and ultimately
become equal to one.'3

Fig. 1.1. StarLogo sample project termites. Randomly distributed wood chips (left
figure) eventually end up in a single pile (right figure). Density of wood: 0.25; number
of termites: 75

12 StarLogo is freeware that can be downloaded from the StarLogo Web Page:
http://education.mit.edu/starlogo/. To download the new version called
StarLogo TNG go to http://education.mit.edu/drupal/starlogo-tng. For
a simulation of ants’ emergent behavior using StarLogo, visit http://www.
thepangburns.com/jesse/projects/ant_simulation.php.

Here is a similar mathematical model that can be solved exactly. Consider a
random distribution of N identical balls in B identical boxes, and assume that,
at each time step, a ball is transferred from one box to another, not necessarily
different, with a probability P(n — n %+ 1) of changing by one unit the number
n of balls in a given box depending only on the number n of balls in that box.
Moreover, if this probability is equal to zero for n = 0 (an empty box stays
empty), then it can be shown that the probability for a given box to become
empty is equal to 1 —n/N. Hence, ultimately all balls end up in one unique box.

13



6 1 Introduction

1.2 What is a Model?

A model is a simplified mathematical representation of a system.'* In the
actual system, many features are likely to be important. Not all of them,
however, should be included in the model. Only the few relevant features that
are thought to play an essential role in the interpretation of the observed
phenomena should be retained.!® Models should be distinguished from what
is usually called a simulation. To clarify this distinction, it is probably best
to quote John Maynard Smith [307]:

If, for example, one wished to know how many fur seals can be
culled annually from a population without threatening its future sur-
vival, it would be necessary to have a description of that population,
in its particular environment, which includes as much relevant detail
as possible. At a minimum, one would require age-specific birth and
death rates, and knowledge of how these rates varied with the density
of the population, and with other features of the environment likely
to alter in the future. Such information could be built into a simula-
tion of the population, which could be used to predict the effects of
particular management policies.

The value of such simulations is obvious, but their utility lies
mainly in analyzing particular cases. A theory of ecology must make
statements about ecosystems as a whole, as well as about particular
species at particular times, and it must make statements which are
true for many different species and not for just one. Any actual ecosys-
tem contains far too many species, which interact in far too many
ways, for simulation to be a practical approach. The better a simula-
tion is for its own purposes, by the inclusion of all relevant details, the
more difficult it is to generalize its conclusions to other species. For
the discovery of general ideas in ecology, therefore, different kinds of
mathematical description, which may be called models, are called for.
Whereas a good simulation should include as much detail as possible,
a good model should include as little as possible.

A simple model, if it captures the key elements of a complex system, may
elicit highly relevant questions.
For example, the growth of a population is often modeled by a differential

equation of the form
dN
o = F), (1)

where the time-dependent function N is the number of inhabitants of a given
area. It might seem paradoxical that such a model, which ignores the influence

4 On models in science, see the eponymous article in the Stanford Encyclopedia of
Philosophy at http://plato.stanford.edu/entries/models-science/.
5 On the strategy of model building, consult [17,265].



1.2 What is a Model? 7

of sex ratios on reproduction, or age structure on mortality, would be of any
help. But many populations have regular sex ratios and, in large populations
near equilibrium, the number of old individuals is a function of the size of
the population. Thus, taking into account these additional features is not as
essential as it seems.'6

To be more specific, in an isolated population (that is, if there is neither
immigration nor emigration), what should be the form of a reasonable function
f? According to Hutchinson'” [228], any equation describing the evolution of
a population should take into account the following:

1. Every living organism must have at least one parent of like kind.
2. In a finite space, due to the limiting effect of the environment, there is an
upper limit to the number of organisms that can occupy that space.

The simplest model satisfying these two requirements is the so-called
logistic model:
dN N
—=rN(1-=]. 1.2
a ( K) (12)

The word “logistic” was coined by Pierre Francois Verhulst'® who used this

equation for the first time in 1838 to discuss population growth.'® His pa-
per [435] did not, at that time, arouse much interest. Verhulst’s equation was
rediscovered about 80 years later by Raymond Pearl and Lowell J. Reed. After
the publication of their paper [361], the logistic model began to be used exten-
sively.?0 Interesting details on Verhulst’s ideas and the beginning of scientific
demography can be found in the first chapter of Hutchinson’s book [228].

In (1.2), the constant r is referred to as the intrinsic rate of increase and
K is called the carrying capacity because it represents the population size

16 For a comprehensive treatment of population models, the interested reader should
consult Robert Schoen’s book [402]. See also [273] which studies how accurate
these models are, and [52], which is available online.

George Evelyn Hutchinson (1903-1991) was an Anglo-American zoologist consid-
ered the father of American limnology, i.e., the study of bodies of freshwater. He
was elected to the Academy of Arts and Sciences in 1949, and to the National
Academy of Science in 1950.

18 Pierre Frangois Verhulst (1804-1849) was educated in Brussels and obtained a
doctorate in number theory from the University of Ghent (Belgium) in 1825. He
is known for having published in 1838 the famous logistic equation, which was
rediscovered in 1920 by the American biologist Raymond Pearl (1879-1940) and
the American biostatistician Lowell J. Reed (1886-1966), who became President
of the John Hopkins University in 1953.

The French word “logistique” had, since 1840, the same meaning as the word
“logistics” in English, but in old French, since 1611, it meant “l’art de compter”;
i.e., the art of counting. See Le Nouveau Petit Robert, dictionnaire alphabétique
et analogique de la langue francaise (Paris : Dictionnaires Le Robert, 2001).

For a critical review of experimental attempts to verify the validity of the logistic
model, see W. Feller [156].
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that the resources of the environment can just maintain (carry) without a
tendency to either increase or decrease. The logistic equation is clearly a very
crude model but, in spite of its obvious limitations,?! it is often a good starting
point.??

The logistic equation contains two parameters. This number can be re-
duced if we express the model in non-dimensional terms. Since r has the
dimension of the inverse of a time and K has the dimension of a number of
individuals, if we put

N
=rt d = —
T=rt and n= 4,
(1.2) becomes
d
L w1 —n). (1.3)
dr

This equation contains no more parameters. That is, if the unit of time is 7!

and the unit of number of inhabitants is K, then the reduced logistic equation
(1.3) is universal; it is system independent.

Equation (1.3) is very simple and can be integrated exactly.?® Most
equations cannot be solved analytically. But, following ideas going back to
Poincaré,?* a geometrical approach, developed essentially during the second
half of the twentieth century, gives, in many cases of interest, a description of
the qualitative behavior of the solutions.

The reduction of equations to a dimensionless form simplifies the mathe-
matics and, usually, leads to some insight even without solving the equation.
Moreover, the value of a dimensionless variable carries more information than
the value of the variable itself.

For simple models such as (1.2), the definition of scaled variables is
straightforward. If the model is not so simple, reduced variables may be de-
fined using a systematic technique. To illustrate this technique, consider the
following model of insect population outbreaks due to Ludwig et al. [284].

Certain insect populations exhibit outbreaks in abundance as they move
from a low-density equilibrium to a high-density equilibrium and back again.
This is the case, for instance, of the spruce budworm (Choristoneura fumifer-
ana), which feeds on the needles of the terminal shoots of spruce, balsam fir,
and other evergreen trees in eastern North America.

In an immature balsam fir and white spruce forest, the quantity of food
for the budworms is low and their rate of recruitment (that is, the amount

2! See, e.g., Chapter 6 of Begon, Harper, and Townsend’s book [46].
22 On the history of the logistic model, see [241].
23 Tts general solution reads:

1
n(r) = ——
() 1+ ae=7’
where a is an integration constant whose value depends upon the initial value

n(0).
24 See Chap. 3.
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by which the population increases during one-time unit) is low. It is then
reasonable to assume that the budworm population is kept at a low-density
equilibrium by its predators (essentially birds). However, as the forest gradu-
ally matures, more food becomes available, the rate of budworm recruitment
increases, and the budworm density grows. Above a certain rate of recruitment
threshold, avian predators can no longer contain the growth of the budworm
density, which jumps to a high-level value. This outbreak of the budworm
density quickly defoliates the mature trees; the forest then reverts to immatu-
rity, the rate of recruitment decreases, and the budworm density jumps back
to a low-level equilibrium.

The budworm can increase its density several hundredfold in a few years.
Therefore, a characteristic time interval for the budworm is of the order of
months. The trees, however, cannot put on foliage at a comparable rate. A
characteristic time interval for trees to completely replace their foliage is of the
order of 7 to 10 years. Moreover, in the absence of the budworm, the life span
of the trees is of the order of 100 years. Therefore, in analyzing the dynamics
of the budworm population, we may assume that the foliage quantity is held
constant.?®

The main limiting features of the budworm population are food supply
and the effects of parasites and predators. In the absence of predation, we
may assume that the budworm density B satisfies the logistic equation

where rg and K p are, respectively, the intrinsic rate of increase of the spruce
budworm and the carrying capacity of the environment.

Predation may be taken into account by subtracting a term p(B) from the
right-hand side of the logistic equation. What conditions should satisfy the
function p?

1. At high prey density, predation usually saturates. Hence, when B becomes
increasingly large, p(B) should approach an upper limit a (a > 0).

2. At low prey density, predation is less effective. Birds are relatively unselec-
tive predators. If a prey becomes less common, they seek food elsewhere.
Hence, when B tends to zero, p(B) should tend to zero faster than B.

A simple form for p(B) that has the properties of saturation at a level a

and vanishes like B2 is )
aB

B)= ——.

p( ) b2 + B2

The positive constant b is a critical budworm density. It determines the scale
of budworm densities at which saturation begins to take place.

25 This adiabatic approzimation is familiar to physicists. For a nice discussion of its
validity and its use in solid-state theory, see Weinreich’s book [442].
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The dynamics of the budworm density B is then governed by

dB B aB?
= _gB1- 2 ) - 2 1.4
"5 ( KB> b? + B? (14)

This equation, which is of the general form (1.1), contains four parameters:
rg, Kp, a, and b. Their dimensions are the same as, respectively, t~!, B,
Bt~!, and B. Since the equation relates two variables B and ¢, we have to
define two dimensionless variables

t B
T=— and z =

= 1.5
o Be (1.5)

To reduce (1.4) to a dimensionless form, we have to define the constants to
and By in terms of the parameters rg, Kpg, a, and b. Replacing (1.5) into
(1.4), we obtain

dx
dr

" 1 LL’BO aBotof,EQ
=rptozr | 1 — — )
Bro Kg) b2+ a2B2

To reduce this equation to as simple a form as possible, we may choose either

t():’l’él and BozKB,

or
to=ba"! and By=0b.

The first choice simplifies the logistic part of (1.4), whereas the second one
simplifies the predation part. The corresponding reduced forms of (1.4) are,
respectively,

dx ar?
A g (1.6)
and
dx T x2
a0 e (1)

To study budworm outbreaks as a function of the available foliage per acre
of forest, the second choice is better. To study the influence of the predator
density, however, the first choice is preferable. Both reduced equations contain
two parameters: the scaled upper limit of predation o and the scaled critical
density 3 in the first case and the scaled rate of increase r and the scaled
carrying capacity k in the second case.

It is not very difficult to prove that, if the evolution of a model is governed
by a set of equations containing n parameters that relate variables involving d
independent dimensions, the final reduced equations will contain n — d scaled
parameters.
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1.3 What is a Dynamical System?

The notion of a dynamical system includes the following ingredients: a phase
space S whose elements represent all the possible states of the system?S; time t,
which may be discrete or continuous; and an evolution law (that is, a rule that
allows determination of the state at time ¢ from the knowledge of the states
at all previous times). In most examples, knowing the state at time ¢q allows
determination of the state at any time t > tq.2"

The two models of population growth presented in the previous section
are examples of dynamical systems. In both cases, the phase space is the set
of nonnegative real numbers, and the evolution law is given by the solution of
a nonlinear first-order differential equation of the form (1.1).

The name dynamical system arose, by extension, after the name of the
equations governing the motion of a system of particles. Today, the expression
dynamical system is used as a synonym of nonlinear system of equations.?®

Dynamical systems may be divided into two broad categories. According
to whether the time variable may be considered as continuous or discrete, the
dynamics of a given system is described by differential equations or finite-
difference equations of the form?’

dx .
it X(x), (1.8)
Xt+1 = f(Xt), (19)

where ¢ belongs to the set of nonnegative real numbers R in (1.8) and the
set of nonnegative integers Ny (that is, the union of the set N of positive
integers and {0}) in (1.9). Such equations determine how the state z € S
of the system varies with time.?" To solve (1.8) or (1.9), we need to specify

26 S is also called the state space.

2T STAM (Society for Industrial and Applied Mathematics) organizes a biannual
conference on Applications of Dynamical Systems, whose “scope is to encom-
pass theoretical, computational, and experimental research on dynamical sys-
tems.” The last one took place in Snowbird (Utah) on May 17-21, 20009.
There also exists a System Dynamic Society whose home page can be found
at http://www.systemdynamics.org/.

There exists a huge number of books on dynamical systems. One may, for example,
consult [89,203,213,234,444].

Here, we are considering autonomous systems; that is, we are assuming that the
functions X and f do not depend explicitly on time. A nonautonomous system
may always be written as an autonomous system of higher dimensionality (see
Example 1).

Assuming of course that, for a given initial state, the equations above have
a unique solution. Since we are essentially interested in applications, we will
not discuss problems of existence and uniqueness of solutions. These problems
are important for the mathematician, and nonunicity is certainly an interesting

28

29

30
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the initial state (0) € S. The state of a system at time t represents all the
information characterizing the system at this particular time. Here are some
illustrative examples.

Example 1. The simple pendulum. In the absence of friction, the equation of
motion of a simple pendulum moving in a vertical plane is

2
i—thr%sine:o, (1.10)

where 6 is the displacement angle from the stable equilibrium position, g the
acceleration of gravity, and ¢ the length of the pendulum. If we put

$1=6‘, {EQZé.

Then (1.10) may be written

dr;

at

dzo g .
T —Zsmxl.

This type of transformation is general. Any system of differential equa-
tions of order higher than one can be written as a first-order system of higher
dimensionality.

The state of the pendulum is represented by the ordered pair (z1,2).
Since x1 € [—m,n[ and 22 € R, the phase space X is the cylinder S' x R,
where S” denotes the unit sphere in R™+!. This surface is a two-dimensional
manifold. A manifold is a locally Euclidean space that generalizes the idea of
parametric representation of curves and surfaces in R3.3!

Example 2. Nonlinear oscillators. Models of nonlinear oscillators have been the
source of many important and interesting problems.??> They are described by
second-order differential equations of the form

&+ g(z,x)=0.

While the dynamics of such systems is already nontrivial (see, for instance,
the van der Pol oscillator discussed in Chap. 3, Example 16), the addition of
a periodic forcing term f(t) = f(t + T') yields

i+ g(x, @) = f(t) (1.11)

phenomenon. But for someone interested in applications, nonunicity is an un-
pleasant feature indicating that the model has to be modified, since, according to
experience, a real system has a unique evolution for any realizable initial state.
31 See also Sect. 3.1.
32 Refer, in particular, to [203].
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and can introduce completely new phenomena. If we put

(1.11) may be written

T1 = T2,
T = _g(th?) + f(iEg),
T3 = 1.

Here again, this type of transformation is general. Any nonautonomous
system of differential equations of order higher than one can be written as a
first-order system of higher dimensionality.

The state of the system is represented by the triplet (1,22, 23). If the
period T of the function f is, say 27, the phase space is X = R x R x S'; that
is, a three-dimensional manifold.

Example 3. Age distribution. A one-species population may be characterized
by its density p. Since p should be nonnegative and not greater than 1, the
phase space is the interval [0,1]. The population density is a global variable
that ignores, for instance, age structure. A more precise characterization of the
population should take into account its age distribution. If f(¢, a) da represents
the density of individuals whose age, at time ¢, lies between a and a + da,
then the state of the system is represented by the age distribution function
a — f(t,a). The total population density at time ¢ is

oo
o) = [ fit.0)da
0
and, in this case, the state space is a set of positive integrable functions on R .

Example 4. Population growth with a time-delay.®® In the logistic model, the
growth rate of a population at any time ¢ depends on the number of indi-
viduals in the system at that time. This assumption is seldom justified, for
reproduction is not an instantaneous process. If we assume that the growth
rate N(t)/N(t) is a decreasing function of the number of individuals at time
t — T, the simplest model is

N(t) = CL—]Z = rN(t) (1 — w> . (1.12)

This logistic model with a time lag is due to Hutchinson [227,228], who was
the first ecologist to consider time-delayed responses.®*

33 On numerical solutions of time-delay equations, consult a selection of papers
presented at the Third International Conference on the Numerical Solutions of
Volterra and Delay Equations [155].

34 On time-delay systems, the interested reader may refer to [346].
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To solve (1.12), we need to know not only the value of an initial population
but also a history function h such that

(Vu € [0,T7) N(—u) = h(u).

If we put
21(t) = N(t), z2(t,u) = N(t —u),

then we have
Oxy _dN(t—u)  Oxo

ot dt Ou’

and we may, therefore, write the logistic equation with a time lag under the
form

d ¢,
= (1),
Oy _ O

o ou’

Here, the state space is two-dimensional. z; is a nonnegative real and u +—
x2(t,u) a nonnegative function defined on the interval [0,T]. The boundary
conditions are x1(0) = h(0) and x2(0,u) = h(u) for all u € [0,T].

In the more general case of a logistic equation of the form

W <1——/Nt—u )du), (1.13)

Q, called the delay kernel, is a positive integrable normalized function on R ;
that is, a function defined for v > 0 such that

/000 Q(u)du=1. (1.14)

Here are two typical illustrative examples of delay kernels found in the liter-
ature®®:

Q1 (u) = %exp(—u/T),

Qa(u) = uexp(—u/T),

T2

Hutchinson’s equation corresponds to the singular kernel Q = 07, where o1
denotes the Dirac distribution at T.°¢ Taking into account (1.14), it is easy to
verify that K is the only nontrivial equilibrium point of (1.13). The parameter
K corresponds, therefore, to the carrying capacity of the standard logistic
model.

35 On delay models in population ecology, consult [122].
36 On distribution theory and its applications to differential and integral equations,
see [58], Chap. 4.
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The history function h : u +— N(—u) is defined on R, and we have

dIl - 1 >

W0 (1- & [t we@an).
0wz _ _Ors

o ou’

with the boundary conditions z1(0) = h(0) and x2(0,u) = h(u) for allu € R,.

Example 5. Random walkers on a lattice. Let Zy, be a one-dimensional finite
lattice of length L with periodic boundary conditions,*” and denote by n(t,1)
the occupation number of site ¢ at time ¢. n(t,4) = 0 if the site is vacant, and
n(t,i) = 1 if the site is occupied by a random walker. The evolution rule of the
system is such that, at each time-step, a random walker selected at random
— that is, the probability for a walker to be selected is uniform — will move
with a probability 1/2 either to the right or to the left neighboring site if this
site is vacant. If the randomly selected site is not vacant, then the walker will
not move. The state of the system at time ¢ is represented by the function
i+ n(t,i), and the phase space is X = {0, 1}2£. An element of such a phase
space is called a configuration.

In most situations of interest, the phase space of a dynamical system pos-
sesses a certain structure that the evolution law respects. In applications,
we are usually interested in lasting rather than transient phenomena and so
in steady states. Therefore, steady solutions of the governing equations of
evolution are of special importance. Consider, for instance, (1.2); its steady
solutions, which are such that

a_,
dt
are
N=0 and N =K.

In this simple case, it is not difficult to verify that, if the initial condition is
N(0) > 0, N(t) tends to K when ¢ tends to infinity. The expression “N(t)
tends to K when ¢ tends to infinity” is meaningful if, and only if, the phase
space X has a topology. Roughly speaking, a topological space is a space in
which the notion of neighborhood has been defined. A simple way to induce a
topology is to define a distance, that is, to each ordered pair of points (21, x2)
in X we should be able to associate a nonnegative number d(z;,x2), said to
be the distance between x; and x4, satisfying the following conditions:

1. d(xl,IQ)ZO@Ilz.IQ,
2. d(xl,xg) = d(IQ,Il),
3. d($1,$3) < d(xl,xg) + d($27$3>.

37 71 denotes the set of integers modulo L. Similarly, Z¢ represents a finite d-
dimensional lattice of volume L? with periodic boundary conditions.
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In the Euclidean space R", the distance is defined by

" 1/2
(1, x2) = (Z(I? - $3)2> :

a=1

If, as in Example 1, X is a manifold, we use a suitable coordinate system to
define the distance.

In Example 3, if we assume that age distribution functions are Lebesgue
integrable,®® then the distance between two functions f; and fo may be de-
fined by

d(fr. f2) = (/OOO (6) f2(5>|Pds>l/p,

where p > 1.
In Example 5, the Hamming distance dp(c1,ce) between two configura-
tions ¢; and cs is defined by

1 L
d(er,e2) = ¢ D i) = na(d)),

=1

where ny (i) and no(i) are, respectively, the occupation numbers of site ¢ in
configurations 1 and 2.

When the evolution of a system is not deterministic, as is the case for the
random walkers of Example 5, it is necessary to introduce the notion of a
random process. Since a random process is a family of measurable mappings
on the space {2 of elementary events in the phase space X, the phase space
has to be measurable.

To summarize the discussion above, we shall assume that, if the evolution
is deterministic, the phase space is a metric space, whereas, if the evolution
is stochastic, the phase space is a measurable metric space.

To conclude this section, we present two examples of dynamical systems
that can be viewed as mathematical recreations.

Example 6. Bulgarian solitaire. Like many other mathematical recreations,
Bulgarian solitaire has been made popular by Martin Gardner [175]. A pack
of N = %n(n + 1) cards is divided into k packs of ny,na,...,n cards, where
ni+mns+---+nx = N. A move consists in taking exactly one card of each pack
and forming a new pack. By repeating this operation a sufficiently large num-
ber of times, any initial configuration eventually converges to a configuration

38 For an elementary presentation of the notion of measure and Lebesgue theory of
integration, see [58], Chap. 1. In applications, this requirement is not restrictive,
but it allows definition of complete metric spaces.
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that consists of n packs of, respectively, 1,2,...,n cards. For instance, if
N = 10 (which corresponds to n = 4), starting from the partition {1,2,7},
we obtain the following sequence:

{1,3,6},{2,3,5},{1,2,3,4}.

Numbers N of the form %n(n + 1) are known as triangular numbers. Then,
what happens if the number of cards is not triangular? Since the number of
partitions of a finite integer is finite, any initial partition leads into a cycle of

partitions. For example, if N = 8, starting from {8}, we obtain the sequence:
{77 1}7 {67 2}7 {57 27 1}7 {47 37 1}7 {37 37 2}7 {37 27 27 1}7 {4? 27 17 1}7 {47 37 1}'

For any positive integer N, the convergence toward a cycle, which is of length
1 if N is triangular, has been proved by J. Brandt [87] (see also [2]). In the
case of a triangular number, it has been shown that the number of moves
before the final configuration is reached is at most equal to n(n —1) [149,229].

The Bulgarian solitaire is a time-discrete dynamical system. The phase
space consists of all the partitions of the number N.

Remark 1. If instead of taking exactly one card of each pack and to form a new pack,
we take one card of each pack with a probability p < 1, we play the so-called random
Bulgarian solitaire which has been studied, in particular, by Serguei Popov [378].

A similar game studied by A. Bouchet is owari, a popular board game in
Africa. It is made of holes arranged in a circular way and containing pebbles.
A move consists in scooping a hole and distributing its pebbles one by one
into the subsequent holes.?”

Example 7. The original Collatz problem.’® Many iteration problems are sim-
ple to state but often intractably hard to solve. Probably, the most famous
one is the so-called 3x + 1 problem, also known as the Collatz conjecture,
which asserts that, starting from any positive integer n, repeated iteration of
the function f defined by

n, if n is even,

1
HOER S
(n) % 3n+1), ifnisodd,

39 See  http://www.rpi.edu/ eglash/isgem.dir/texts.dir/Owaril.pdf and
http://wuw.rpi.edu/ eglash/isgem.dir/texts.dir/OwariII.pdf.

10 Named after the German mathematician Lothar Collatz (1910-1990) who made
the conjecture in 1937, that remains unsolved. See [288].
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always returns 1.*! In what follows, we shall present a less known conjecture
that, like the 3z + 1 problem, has not been solved. Consider the function f
defined, for all positive integers, by

%n, ifn=0 mod 3,
fn)=q3n—%, ifn=1 mod 3,
§n+%7 if n=2 mod 3.
Its inverse f~! is defined by
%n, ifn=0 mod 2,
fn)=<323n+1, ifn=1 mod4,
%n—i if n=3 mod 4.

f, which is bijective, is a permutation of the natural numbers [258]. If we
consider the first natural numbers, we obtain the following permutation:

123456789
1325749116/

While some cycles are finite, e.g., (3,2,3) or (5,7,9,6,4,5), it has been con-
jectured that there exist infinite cycles. For instance, none of the 200,000
successive iterates of 8 is equal to 8. This is also the case for 14 and 16. For
this particular dynamical system, the phase space is the set N of all positive
integers, and the evolution rule is reversible.

Exercises

Exercise 1.1 As usual (see Page 58), we shall call infective an infected individual
who can transmit the disease by contact and susceptible an infected individual
who can catch the disease by contact from an infective. Let us assume that the
infectives, in an outbreak of a given common disease such as a cold, can be
partitioned into generations as follows: generation zero consists of the introduc-
tory cases, that is, the initial infectives, generation one consists of susceptibles
who have been infected by generation zero infectives; generation two consists of
susceptibles infected by the infectives of generation one, and so on.

41 In 1972, Conway [115] defined a family of problems which are a natural general-
ization of the Collatz problem, and showed that there exist, in this family, prob-
lems that are undecidable (see also Kurtz and Simon paper at: http://people.
cs.uchicago.edu/~simon/RES/collatz.pdf).
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Consider now household of n individuals which, at time t, consists of I; in-
fectives and S, susceptibles, and denote let q; be the probability that a given
susceptible escapes infection when exposed to the i infectives of any generation.
Assuming that susceptibles imake infectious contacts independently of each other,
and each remaining susceptible has the same probability of being infected by ex-
posure to the infectives of a given generation, let denote q; the probability that
a given susceptible escapes infection when exposed to the I, infectives of gener-
ation t. (1) Find the probability that, at time t + 1, the number of susceptibles is
equal to x knowing that at time t the number of susceptibles and infectives, were
respectively, equal to s and i. (2) Assuming that infectives become removed, by
acquiring immunity for the remaining duration of the outbreak, find the proba-
bility that in a household of a couple with three children, at generation zero, one
member of the family was infected, at generation one two members are infected,
at generation two there is only one infected and at generation three no more
individuals are infected. Such a chain will be denoted 1-2-1-0. (3) Find all the
probabilities for all the chains in the case of a household of 5 individuals.. This
exercise is adapted from [44].

Exercise 1.2 Consider a growing population with S(t) susceptibles and 1(t) in-
fectives at time t > 0, where S(0)+I(0) = N. If the infection parameter is equal
to 1 and if \ denotes the growth parameter, the equations which determine the
temporal evolution of S and I of this simple epidemic model are

ds

5 = —SI+S,
I

= ST+ AL
o = ST+

Find the solution of this system. This exercise is adapted from [173].

Exercise 1.3 Performing a few numerical experiments, characterize the proper-
ties of the sequence of iterates of the map f : x — x> +0.25 as a function of the
initial value of .

Solutions

Solution 1.1 (1) Taking into account the assumptions of the model, the prob-
ability that, at time t 4+ 1, the number of susceptible individuals is equal to x
knowing that at time t the number of susceptible and infective individuals are,
respectively, equal to s and i, is given by

. § S—x T
P(Sip1=2z|Si =51 =1) = <x)pi q;

wherep; =1—¢q;, and x =0,1,...,s.
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(2) The probability to observe a chain 1-2-1-0 is

P(1-2-1-0) =
P(Sy =2Sog=4,1; = 1)P(S2 = 1|8, = 2,1} = 2)P(S3 = 1|S; = 1,1, = 1)

4 2 1
(5ot (3 )b (1) et = 120t

(3) In the case of a household of 5 individuals,when there is only one infective at
generation zero, the probabilities are given in the following table.

Chain probabilities for households of size 5

one initial case two initial cases three initial cases
chain probability chain probability chain probability
1-0 qt 2-0 ] 3-0 @

1-1-0  4¢¥p1 || 221-0  3qopaqi || 310 2g3psqa
1-1-1-0  12q{p] ||2-1-1-0 6gopapr || 3-I-1  2g3psp:
1-1-1-1 24¢9p} ||2-1-1-1 6gspaqipt | 3-2 P3
1-1-1-2 12q?p‘1l 2-1-2 3q§p2p%
1-1-2-0 12qu%p2 2-2-0 3q§p§
1-1-2-1 12q‘11p‘;’p2 2-2-1 3qap2
1-1-3 4q1p‘{‘ 2-3 p%
1-2-0  64ipigs
1-2-1-0 12q%p%q2p2
1-2-1-1 12q%p?q2p2
1-2-2 6qipip3
1-3-0  4qipigs
1-3-1  4qipips
1-4 p‘l1

Solution 1.2 (1) Adding the two differential equations, we obtain

(S +1)

S =AS ).

Hence
S(t) + I(t) = N exp(At).

from which we obtain the equation which determine S(t):

ds

i —S(Nexp(At) — 5) + AS.
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IfU = Sexp(At), we have

— =-UN-U
" ( )
Now setting
(exp(At) — 1)
T= ,
A
that is, 4
d—z = exp(\t),
we obtain iU
—=-UN-U
dr ( )

whose solution is
NS(0)exp(—NT)

T N—-S(0)(1 —exp(—N7))

U(t)
So, finally
S(t) = exp(M)u(t)
N(0) exp (/\t — N (exp(Mt) — 1))
N - S(O)(l ~exp ( — N (exp(Mt) — 1))) '

In absence of growth, i.e., A\ =0, we would have found

~ NS(0)exp(—Nt)
S(t) = N — S(0) exp(—Nt)

Knowing S(t), we easily obtain I(t) given by I(t) = N — S(t).

Solution 1.3 A few preliminary numerical experiments to determine the succes-
sive iterates of the map f : x — 2% + 0.25 give the following results:

1. Starting from 1, the first ten iterates are: {1,1.25,1.8125,3.53516, 12.7473,
162.744,26486.,7.01508 x 10%,4.92113x 1017, 2.42176 x 103°, 5.8649x 107°},
which clearly shows that the sequence tends to infinity.

2. Starting from 0.7, the first ten iterates are: {0.7,0.74,0.7976,0.886166,
1.03529,1.32182,1.99722, 4.23889, 18.2182, 332.153, 110326}, the sequence
still tends to infinity but more slowly.

3. Starting from 0.4, the first twenty iterates are: {0.4,0.41,0.4181,0.424808,
0.430462,0.435297,0.439484,0.443146,0.446378, 0.449254, 0.451829,
0.454149, 0.456251, 0.458165,0.459916, 0.461522,0.463003, 0.464372,
0.465641, 0.466822, 0.467922}, which seems to converge to a finite value
close to 0.5.
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4. Starting from 0.5, the first ten iterates are: {0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5}, that is xx = 0.5 is a fixed point, and the previous sequence
starting from 0.4 was converging slowly to this value.

5. Starting from 0.25, the first twenty iterates are: {0.25,0.3125,0.347656,
0.370865,0.387541,0.400188,0.41015,0.418223, 0.424911, 0.430549,
0.435373,0.439549, 0.443204, 0.446429, 0.449299, 0.45187, 0.454186,
0.456285,0.458196, 0.459944, 0.461548}, the sequence is here again converg-
ing slowly most probably to 0.5.

6. Starting from 0.1, the first twenty iterates are: {0.1,0.26,0.3176,0.35087,
0.37311,0.389211,0.401485,0.41119, 0.419077, 0.425626, 0.431157,
0.435897, 0.440006, 0.443605, 0.446786, 0.449617,0.452156, 0.454445,
0.45652,0.458411,0.46014}, as above, the sequence is slowly converging
most probably to 0.5.

Since 22 +0.25 is invariant under the transformation x — —zx, it is not necessary
to choose negative initial values that will give identical results. Moreover, it is
clear that x* = 0.5 is the only fixed point of the map f since 0.5 is a double root
of the quadratic equation x? + 0.25 = x. Finally, x® + 0.25 going to infinity as
|| increases, it is also clear that for initial values of |x| > 0.5, the sequence of
iterates will go to infinity. On the contrary, for all initial values |z| < 0.5, except
x = 0, the sequence of iterates converges to x* = 0.5.
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Summary

The essential concepts presented in this chapter are the following notions:

A | complex system |consists of a large number of connected agents that, as

a whole, exhibits a coordinated behavior without any centralized control.
That is, a complex system exhibits properties that do not obviously follow
from the properties of the individual agents. These properties are said to
be “emergent” (see below).

A | dynamical system | includes the following ingredients: a phase space or

state space whose elements represent the possible states of the system,
time, which may be either discrete or continuous; and an evolution law
which is a rule that allows determination of the state at time ¢ from the
knowledge of the states at all previous times.

| Emergent properties | are large-scale effects of a system of locally interact-

ing agents that are often surprising and hard to predict. The appearance
of emergent properties is the essential feature of complex systems.

A M of a system is a simplified mathematical representation of this
system, which should be as simple as possible but, however, being able to
capture the key elements of the system allowing to elicit highly relevant
questions.
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How to Build Up a Model

The essential points of this chapter are

e The Lotka—Volterra predator—prey model

e The notion of limit cycle

e How to build up models that exhibit cyclic population variations

e The notions of intraspecific competition, predator’s functional
response, and predator’s numerical response

e The logistic and the time-delay logistic models

Nature offers a puzzling variety of interactions between species. Predation
is one of them.! According to the way predators feed on their prey, various
categories of predators may be distinguished [46,423]. Parasites, such as tape-
worms or tuberculosis bacteria, live throughout a major period of their life
in a single host. Their attack is harmful but rarely lethal in the short term.
Grazers, such as sheep or biting flies that feed on the blood of mammals, also
consume only parts of their prey without causing immediate death. However,
unlike parasites, they attack large numbers of prey during their lifetime. True
predators, such as wolves or plankton-eating aquatic animals, also attack many
preys during their lifetime, but unlike grazers, they quickly kill their prey.

Our purpose in this chapter is to build up models to study the effects
of true predation® on the population dynamics of the predator and its prey.
More precisely, among the various patterns of predator—prey abundance, we
focus on two-species systems in which it appears that predator and prey pop-
ulations exhibit coupled density oscillations. To give an idea of the variety of

! On the origin of predation, see [49].
2 A true predator is the one which kills and eats another organism.
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dynamical systems used in modeling, we describe different models of predator—
prey systems. On the origins and evolution of predator—prey theory, see [51]
and [158].

2.1 Lotka—Volterra Model

The simplest two-species predator—prey model has been proposed inde-
pendently by Lotka [281]% and Volterra [437].* Volterra was stimulated
to study the predator—prey problem by his future son-in-law, Umberto
D’Ancona (1896-1964) (see [125]), who, analyzing market statistics of the
Adriatic fisheries, found that, during the First World War, certain predacious
species increased when fishing was severely limited.” A year before, Alfred
James Lotka (1880-1949) had come up with an almost identical solution to
the predator—prey problem. His method was very general, and, probably be-
cause of that, his book did not receive the attention it deserved.® This model
assumes that, in the absence of predators, the prey population, denoted by
H for “herbivore,” grows exponentially, whereas, in the absence of prey,
predators starve to death and their population, denoted by P, declines expo-
nentially. As a result of the i