7.1

More on Using the User

- Action Notation

INTRODUCING TEMPORAL RELATIONS

The UAN was introduced in the previous chapter and now continues, with more
examples and more about how to use the UAN to represent a user interaction
design. In particular, this chapter discusses femporal relations that describe how .
user tasks and user actions are related over time. This chapter gives quite a
different flavor to the UAN than was seen in Chapter 6. There, the UAN was used
to describe low-level details of a design; in this chapter the UAN is used to present
task descriptions at higher levels of abstraction, with emphasis on temporal rela-
tions. We will continue with use of the Calendar Management System example to
illustrate application of the concepts.

* Task descriptions cannot be represented in the UAN without the use of tempo-
ral relations. At a minimum, two simple user actions within a task are temporally
related by being in a sequence—one occurs after the other in time. Chapter 6 in-
cluded several examples of user actions in a sequence, as well as some examples
of iteration, another kind of temporal relation. This chapter explores some addi-

186

More on Using the User Action Notation

tional temporal relations for use in UAN task descriptions, Formal definitions of
the temporal relations are given in Hartson and Gray (1992). Table 7.1 shows a
summary list of the temporal relations discussed in this chapter. Later we describe
how each of these is used in interaction designs. '

The question of temporal aspects enters into the user interaction design process
when the relative timing of tasks is considered. The easiest case for an interaction
designer is often the most constraining for a user. For example, a designer can
easily specify a sequence, but in doing so, the designer is strictly requiring a user
to complete one task before beginning another.

For example, in the Calendar Management System, to add a new appointment,
a user must first access the proper day and time slot on the calendar, then typein
the appointment. The two tasks of accessing and typing are related temporally by
being in a sequence; they cannot both be active at the same time.

However, users often wish to interrupt a task and, while they are thinking of it,
petform another task, later resuming the original one. For example, entering a new
appointment may cause the user to remember a problem with an existing appoint-
ment; perhaps there is some missing information for an existing appointment that
the user had intended to enter. In order not to forget it again, the user wishes
immediately to interrupt the entry of the new appointment and go to the existing
one to add the desired information. Then the user wishes to return to the new
appointment without losing its context. This is a good example of a user need that
might not be anticipated during task analysis unless it is supported by observation
of users performing representative tasks.

A major purpose of asynchronous direct manipulation interaction styles is to
support this kind of interleaved user task behavior. It follows that there is a need
for a behavioral way to represent the designer’s intention to allow interleaving of
tasks by a user. This need is met by the interleauability temporal relation, which is
used to connect these kinds of tasks in UAN task descriptions.

Most design representations and almost all task analysis techniques leave this

TABLE 7.1. TEMPORAL RELATIONS IN THE UAN

Sequence

Tteration
Optionality
Repeating choice
Order independence
Interruptibility
Interleavability
Concurrency
Waiting

54
ibe

285

- Introducing Temporal Relafions 187

question of intertask temporal relationships implicit, if not ambiguous or unde-
fined. Such specifications often lead to arbitrary design on the part of the interface
software designer or implementer. For example, in designing for the task of
adding a new appointment to the calendar, a designer may look to an interface
toolkit for an appropriate widget. It could be reasonable to the designer to use &
preemptive style (modal) dialogue box, requiring the user to enter information for
the current appointment before performing a different task. This, of course, does
not support the needs of a user to go off and work on an existing appointment
while in the midst of creating a new one, as was discussed earlier.

_This iltustrates the danger of doing user interaction design in the constructional
dotnain, letting the design be driven by available widgets rather than by users” task needs.
Unfortunately, much interaction design these days does, in fact, begin with, “What
widget should we use?” A better question might be, “What widget do Ineed to use
to support the behavioral design?” Unfortunately, the choice of available widgets
is limited in many interface toolkits, and coding new ones can be very expensive
in a commercial environment,

If developers do observe users during task analysis, though, they may also see
a user who wishes to create two or more related appointments at once, or to set an
alarm while still creating an appointment. If a user does somehow end up witha
dialogue box, say, for typing in appointment information, good interaction design
suggests that the user should be allowed to close the dialogue box without
completing the associated data entry task for the current appointment, and any
information entered so far should be retained. However, the user would still be left
with the responsibility for temporarily ending (suspending) one task arid starting
the other, and would have to use human working memory to carry information
from one task context to another. In such a case, it would be useful to provide copy
and paste operations for the user to move information from one related ap-
pointment to the other. From the user view, there is a task interruption, but the
design still does not really support it well. Proper evaluation and design iteration
can lead to an even better design, one that allows fully interleaved task perfor-
mance,]

These examples should motivate the usefulness of temporal relations in behav-
ioral interaction design representations. First, temporal considerations might be in
a design but cannot be explicit in its representation without temporal relations.
The UAN temporal operators allow an interaction designer to represent explicit
temporal relationships among and within tasks. Second, treatment of temporal
aspects in the previous designs was informal, whereas temporal relations in the
UAN help a designer to think a priori about temporally related issues as part of
the design process.

b
i
|

b

0
} .
R
I

i

188

7.2

7.3

More on Using the User Action Notation

SEQUENCE

Perhaps the simplest temporal relationship between two (or more) tasks is ex-
pressed by a sequence; one task is performed immediately and entirely after the
other. This idea of sequence does not allow any intervening action between two
actions in sequence, an observation that is important later in this chapter, when we
examine the temporal relations of interleaving and interruption.

In the UAN, a temporal sequence is represented by writing the actions as a
spatial sequence horizontally (left to right on the same line} or vertically {top to
bottom, from line to line). Chapter 6 showed examples of both. For example, when
writing

~[file icon] Mwv

on a line, it is a sequence meaning first fo move the cursor to the context of a file
icon and then to depress the mouse button.

COMBINING SMALLER TASKS INTO LARGER ONES

A temporal relation combines pairs, and, more generally, groups of user actions or
tasks into a larger single task. This means that whenever two user actions or tasks
are connected with a temporal relation, a third task is created. For example,

~[file icon]

. and

My
are each single user acﬁons, but when combined in a sequencé,

~[file icon] Mv
they form a third, new task—in this case, the sequence itself. Any task or grouping
of tasks can be enclosed within parentheses. The result is a new task that is

composed of the tasks and temporal relations contained within the parentheses.
For example, if the preceding sequence

~[file icon] Mv

X~
e

]
{

Task Names, Macros, and Levels of Abstraction 189

were enclosed in parentheses, it would create the new task:
{~[file icon] Mw)

This task, in turn, can be connected to another task via another temporal relation.
The parentheses are generally used for clarity; they do not change the meaning of
a task description. ‘

The following definitions summarize the concept of tasks and how tasks can be
combined in the UAN. Several of these terms and symbols are so far mentioned only
in the list of temporal relations in Section 7.1. Bach is explained later in this chapfer.

* The primitive physical actions on devices described so far are tasks. Ex-
amples include all actions, such as ~[icon] , Mv*, and so on.

* IfAisatask, soare (), A*, A", <A>, and {Aa}.

¢ IfaandBaretasks, soarea B,A (t > n) B, AlB, (A|B)*, A&B, A=B,
A<=B, and A| |B. N

By combining smaller tasks into larger ones, a designer can represent the
complete task structure for an entire interaction design. The articulatory detail of
the design appears only at the bottom-most levels.

TASK NAMES, MACROS, AND LEVELS OF ABSTRACTION

By the time you read through all the detail for describing simple tasks in Chapter
6, you may have been wondering, “If every task takes this much effort and detail,
how will T ever get through a whole design?” The answer is that in Chapter 6, you
were operating only at the level of abstraction with the most detail. This lowest
level, where all the physical actions appear, is the articulatory level. The effort a
designer puts into task descriptions at this level is an investment that can be
reused. Most of a design represented in UAN is at higher levels of abstraction,

where this detail is neither necessary nor visible, '
A task description written in the UAN is a set of actions, possibly grouped with

parentheses and interspersed with temporal operators, according to the rules for their
use (defined later in this chapter). Each task thus formed can then be named and
the name used as a reference to that task. A task name used as a reference to a task
is termed a macro fask because the name is used as a substitute for the whole task
description. (Don't allow the analogy to programming macros cause you to forget
that these procedures are performed by the user in the behavioral domain.) The effect
is similar to combining tasks and grouping them with parentheses, as described in
the previous section, except that now the resulting task is named. This name ref-

190

More on Using the User Action Notation

erefice can be used as a user action in another higher level, or containing, task. The
containing task is said to be at a higher level of abstraction because the macro task
is only named there; the details of its description are hidden by abstraction at the
higher level. A good example of macros, showing these levels of abstraction, is
given in the next section, for the task of delete multiple files,which follows
introduction of the concept of choice, or disjunction.

During a user’s performance of a task, a task name in the User Actions column
is an invocation of a user-performed procedure, serving two purposes (just as
invocations do for procedures in programming). The first purpose is for abstrac-
tion, to hide details of the procedure; the second is for instantiation, to create a task
instance. This abstraction operation can be applied repeatedly to build levels of
abstraction, allowing the entire interaction design to be organized into a quasi-
hierarchical user task structure, Just as in the case of program code, levels of
abstraction are necessary in the UAN, for controlling complexity and to promote
understanding by its readers and writers. :

Because a physical user action is a (primitive) task, and a macro task name can
be used as a user action, we use the terms fask and user action interchangeably.
They have essentially the same properties within a UAN task structure, except that
primitives are not decomposed into more detailed user actions,

Getting back to macros, what else is involved in turning a task description into
a macro? To gain the most benefit from packaging these task descriptions into
macros, they must be general enough to be reusable. For example, the task de-
scription for the select file task from Chapter 6 can be generalized so that it

can be used any time the design calls for a user to select a single object from a set -

of objects having the same mutually exclusive behavior for ordinary selection.
That task description can also be extended to represent selection of lots of different
interaction objects—any file icon, a specific file icon, a command icon, a button,
and so on. This means that the object must be given parameters; that is, file can
be made more general by making it a parameter of the task and calling it cbject
{or object, so that it is clear that it refers to.a specific object, as explained in
Chapter 6). Here is what the UAN description for a generalized selection task
might look like:

TASK: select (cbjectt)

USER ACTICNS - INTERFACE FEEDBACK

~[cbject'] My ohject!
Yobject izobject': object -!

M~

task
t the
n, is
owWs

Task Names, Macros, and Levels of Abstraction 191

As an aside, the second line in the Feedback column describes the mutually
exclusive property of objects that can be selected using this generic selection task.
It says that when one object is highlighted (single selection) via this task, other
selected objects (in this class of objects) become unhighlighted. By omitting this
line, a different behavior can be specified—for example, one that just keeps adding
to the set of highlighted objects as the user clicks on more icons.

When the designer needs to include in a task description the selection of
something, such as an “open” command (using an “Open” button), the macro is
invoked like this:

select (Open button)

This binds Open button as the object during instantiation of the select task.

Note that the Interface State column is not included here. In its more general

form, the select task does not always cause a change in interface state. For

example, selection of a button for a command (e-g., the “open” command) merely
causes the command to be executed. There is no state change associated directly
with this selection, as there is with the selection of a file.

This variability of the Interface State column information means that it must be
factored out of the general form of the select task. Although the Interface State
column was not needed for this task description, it would reappear, as needed, in
association with an invocation of the select task as a step in another task, such
as the following extract of an open file task:

TASK: open file
USER ACTIONS ’ TNTERFACE FEEDBACK INTERFACE STATE

select (file icon') . selected = file

One final issue arising in macro tasks is the treatment of feedback. There are no
strict rules here; designers are advised to do what is most effective in communi-
cating the design. If all else is equal, articulatory feedback is usually limited to the
lowest level and s not included at the macro level. In the preceding example, the
open file task is at a higher level of abstraction than that of the select task.
It therefore does not show highlighting behavior of the file icon, which was already
defined within the select task description. However, in general, it is acceptable

192 More on Using the User Action Notation

to repeat the highlighting behavior in higher-level task descriptions if that will
help to clarify the design. i

Now that you know about macro task descriptions, you have a very important 1
tool for building task structures. For example, you now can take advantage of a ;
characteristic of top-down development, referring to something you want to have ’
happen in your design before you have worked out the details of how it will
happen. For example, you can define a high-level task for adding a new appoint-
ment to the Calendar Management System as a sequence of two other tasks, tasks
that thernselves have not yet been defined:

TASK: add appointment

access appointment

edit appointment

To add an appointment to the calendar, the user must first access the ap-
o pointment (i.e., find day and time slot) and then edit (type, make corrections to)
\ the appointment. Details of the access appointment and edit appointment
Lo tasks, developed later, will tell precisely how these tasks are performed by
a user. -

g 7.5 CHOICE

The choice relation is a disjunction, or logical “OR.” It is used to describe a set of
alternative ways to perform a task, or part of a task, from which a user chooses
exactly one each time the task is performed. Because just one choice is made from'
the set of possibilities, the choice relation really corresponds to an exclusive “OR.”
The choice symbol | represents only the choices offered to the user, not anything
about how the user might make the choice. Extensions to the UAN that include
cognitive user actions, however, are being considered to describe, and help sup-
port in the design, how users make choices and other decisions.

Before introducing the cheice symbol to the UAN, let’s review the example task
to delete multiple files from a desktop style interface, given at the end of
Chapter 6. This example of choice also shows how task names as abstractions offer
modularity, consistency, and reusability. To refresh your memory, here is the
delete multiple files task description without use of abstraction:

Choice 190

TASK: delete multiple files

USER INTERFACE INTERFACE CONNECTION TO
ACTICNS FEEDBACK STATE COMPUTATION
(v
{~[file icon'l
My . file icon'-l: file icon'! selected =
selected U file
file icon'!: file icon'-! selected =
selected -~ file
M/\)+
SA)+
~[file icon''!]
Mv
~[trash icon] outline(Vfile icon'!) » ~
trash iconl!
M~ erase(Vfile icon'!) selected = null mark selected
erase{outline(Vfile icon'!}) . files for deletion

trash icon!!

The double line shows where this task of delete multiple files canbe
broken to decompose it into two tasks:

1. - Select files (the top block in the preceding task description)
2. Delete selected files (the bottom three blocks in the task description)

Both these subtasks may be performed often and might appear as part of other
tasks as well. Thus, they are good candidates for making into macros, called,
respectively, select multiple files and delete multiple files.

Here is how the overall task description is stated in terms of names for these
lower-level tasks, which are then defined, exactly as shown, elsewhere:

TASK: delete multiple‘ filen

select multiple files

delete selected files

As an aside, when the name of a task appears as a user action in the description

194 More on Using the User Action Notation

of a given task definition, the named task is sometimes termed a subfask of the
given task. A subtask is just a task; the term is used only when emphasizing the i
hietarchical relationship between two tasks, in cases where one task is defined in
terms of the other. In the preceding example, select muitiple £iles and
delete selected files are subtasks of delete multiple files. ;

Chapter 6 described the task of selecting multiple files using the “Shift” key, as
shown in the top block of the preceding detailed task description. That method -
could be called the shift multiple select task. Multiple file selection can
also be accomplished in (at least) one other way. A user can drag out, on the
desktop, a selection rectangle to enclose or intersect the desired file icons. This
method could be called the drag box multiple select task. Now we can
describe the task of multiple file selection as a choice between two alternative
subtasks. This choice is represented in the UAN by the word OR or by a vertical bar

(Ix

TASK: gelect multiple £files

shift multiple select

| drag box multiple select

This example is further expanded and completed in Section 7.14, when we
discuss representation techniques to complement the UAN. By now, you can see
the advantages of using task macros like this. They make higher-level task descrip-
tions shorter and simpler, hiding details at the lower levels of abstraction. They
also promote and support reuse of task descriptions and consistency across an
interaction design. '

7.6 REPEATING CHOICE

Combining the OR or choice, described in the previous section with the UAN
iteration symbols * and + yields a combination used often enough to have its own
name, the repeating choice. To start with,

{AIBIC)

denotes a single task that is a three-way choice among the user actions or tasks 2,
B, and C. To perform this choice task, a user chooses and performs one of the three
tasks, and that is all that happens. Suppose, however, that the designer wants a

the
the

nd

as
ad
in
e
is

Repeating Choice 195

user to be able to repeat this choice task—that is, to be able to choose a task from
A, B, or C, perform it, choose one again, and so on. This could be the situation at
a high level of design if, for example, 2, B, and C are choices among major system
functions. To represent this in UAN, the designer uses a repeating choice:

(AIBIC)*

The repeating choice is interpreted in the following way. First, the ordinary
choice inside the parentheses means that tasks 2, B, and C are simultaneously and
equally available. The * means, as usual, that the whole phrase inside the paren-
theses (the choice itself) is performed zero or more times. Once a task from the
choice is begun, it is performed to completion (a kind of modality), at which time
the three tasks are equally available again. The cycle continues for as long as one
of the three tasks is selected by a user and performed to completion,

To see how this notation can be used as a compact high-level description for a
choice among major system functions, try it out on the Calendar Management
System. Recalling, from Chapter 5, the five basic functions of the Calendar Man-
agement System, the highest-level task in this system can be defined as a repeating
choice among tasks corresponding to these main user operations:

TASK: manage calendar

(access appeintment

} add appointment

| update appointment

| delete appointment

| establish alarm)*

The use of + here, as opposed to *, illustrates a fine point—to rule out the case

of a user performing the contents of the parentheses zero times, because that is the

same as not performing the manage calendar task at all,

This kind of repeating choice ¢can be implemented as a pull-down menu, for
example. When the system in launched, the user is initially faced with a choice
among these basic functions, When the user makes a choice, that function is carried
to compiletion, and the user returns to the main menu, where the same choice for
all functions is available again.

A repeating choice is also used in the access app01ntment task definition,
as we begin to decompose this subtask for the manage calendar task:

196

7.7

More on Using the User Action Notation

TASK: access appointment
USER ACTIONS ' INTERFACE STATE

(search

| access month

| access week

| access day) ¥

access time slot view level = time slot

This example shows how easy it is to use temporal relations to represent very
specific combinations of tasks. The access appointment task is a sequence of
two parts: the first part of the sequence is a repeating choice (in the parentheses),
and the second-partis the access time slot task. If a system log were to record
observable user behavior in performing the access appointment task it would
record a series of zero or more instances from among its four subtasks of search,
access month, access week, and access day, ending witha single instance

of the access time slot subtask. This leaves the state of the view level at the

time slot level. ,

Note that because these are higher-level tasks, interface feedback is not de-
scribed here. Rather, it is detailed at lower levels, and so the Interface Feedback
column has been omitted. You could have left that column in the task description
and simply left it empty, if you wished.) -

ORDER INDEPENDENCE

In the use of interactive computer systems, as in the world in general, it is not
uncommon to find situations where a number of tasks are to be performed, but the
order of their performance is immaterial. Such tasks are represented in the UAN
as an order-independent group. In this situation, a user must perform all the actions
of the group, and each one must be completed before another is begun. There is
no constraint on specific ordering among the actions, The UAN symbol to connect
order-independent tasks or user actions is the & {ampersand). An example of
order independence at the articulatory level is seen in the task of entering a
command-X to delete some selected object(s) in many Macintosh™ applications.
This is a combination of the & and X keys, because the & key must be depressed
before the X key, but the order of their release does not matter, the task is defined
in UAN as:

indndasiiaih
-

i

Interruption 197

év Xv (&~ & X*)

f
i
|
E
o TASK: command-X
[

The edit appointment task provides an example of order independence in
the Calendar Management System. Suppose that an appointment object has text
fields for name of person, description of appointment, and location. The task of
editing an appointment breaks down into the set of tasks for editing these smaller
objects, but the order in which they are edited does not matter:

TASK: edit appointment

view level = time slot:

(edit person

& edit description

& edit location)

7.8 INTERRUPTION

There are several ways in which tasks can be interrupted by other tasks, as the
following subsections illustrate.

7.8.1 One Task Interrupting Another

Once a user begins a task, that task does not necessarily remain active until it is
completed. One way that a task can become inactive is due to interruption by
another task. An interruption occurs when the user and system activity of one task
are suspended before that task is completed, and activity of another task is begun
in its place. Task interruption often occurs due to actions initiated by the user, but
it can also be the result of system-initiated actions {e.g., to update a clock or to
announce the arrival of electronic mail).

7.8.2 Interruptibility

Because a design representation is intensional—that is, it describes what can
happen rather that what does happen in any specific instance, there is no symbol
in the UAN for is interrupted by, Rather, there is a temporal operator to denote cases

198

7.8.3

7.9

More on Using the User Action Notation

of interruptibility, situations where interruption can oceur. While order indepen-
dence relaxes the sequentiality constraint, interruptibility goes even further by re-
moving the constraint of one task having to be performed to completion before
beginning another task. Interruptibility allows one task to be interrupted by an-
other and then returned to later for completion.

In UAN, the symbol — denotes that one task can interrupt another, For ex-
amnple, the expression

help — edit document

represents the ability of the user to interrupt the document-editing task with a help
task; literally read from the UAN, help can interrupt edit document. In
practical terms, this means that a user can invoke the help task at any time during
editing, but closure of the help task is required before editing can continue. This
ability to be interrupted naturally suggests the need to develop the notation used
to express exceptions to interruptibility, :

Uninterruptibie Tasks

Sometimes a user interaction designer needs to define exceptions within some
scope of interruptibility. That is, although a particular task is generally interrupt-
ible, there may be a couple of cases when it is important to prevent interruption.
One kind of exception occurs when the user action in question is a primitive, For
example, a designer should not have to think about another task interrupting the
primitive user action of pushing down the mouse button; either the button was
pushed or it was not. Thus, primitive user actions are generally defined as not
interruptible. -

A second situation where a task instance must be specified as uninterruptible
occurs in preemptive (modal) interface features {Thimbleby, 1990). Certain kinds
of dialogue boxes provide a good example. For example, while using a dialogue
box in task A, a user cannot click in the window of task B to change tasks until the
dialogue box is exited. While in the dialogue box, a user can stll interleave tasks,
but only among tasks available from within the dialogue box. In the UAN, angle
brackets, < and », are used to enclose those parts of a task description that are
uninterruptible by other user actions at any level. For example, <use dialogue
box> denotes that this task cannot be interrupted by any other user task,

INTERLEAVABILITY

Two tasks are interleavable if and only if they can interrupt each other. In practical
terms, this means that a user can do part of one task, skip to another task and do

L T

Eiistllads
———

TR

5 Mtk

o

{epen-
by re-
before
Wy an-

or ex-

help
. In
iring
This
1sed

me

'as
1ot

o o w

Ww

7.10

Concurrency 199

part of it, then return to do more of the first task, and so on. Interleavability is

represented in UAN with the < symbol, as in the following example from a desk-
top publishing application:

edit document text create graphics

As an example from the Calendar Management System, consider the five main
user operations discussed earlier as subtasks of the main task, manage calen-
dar. As areminder, those subtasks are accesg appointment, add appoint-
ment, update appointment, delete appeintment, and establish
alarm. In Section 7.6, these were represented as a repeating choice. A more
asynchronous design would allow an instance of each subtask to be created in

its own window. A user could go back and forth, interleaving the activity
among instances of the subtasks by activating one window after another, say,

by clicking in each window. The UAN task description for this interleaved
design is:

TASK: manage calendar

(access appointment

< add appointment

= update appointment

- deiete appointment

e establish alarm)?

Note once again use of the T to indicate that the entire construct can be
repeated, allowing multiple instances of the same task and/or different tasks at
once.

CONCURRENCY

With interleavability, user actions can be alternated among tasks; with concurrency,
user actions for two or more tasks can occur simultaneously; that is, their physical
actions overlap in time. Concurrency is a temporal relation that has not been
greatly exploited in user interfaces. Nevertheless, there are cases in which it is
possible and, indeed, preferable, for a user to carry out more than one task at the
same time. For example, a user can be perceptually responsive to information on
the display while typing or manipulating the mouse, Buxton has described input
techniques that rely on concurrent use of both hands (Buxton, 1983). Such situa-

200

7.1

More on Using the User Action Notation

tions require the full representational power of the concurrency relation as just
described, ' '

Another kind of concurrency is seen in the actions of two or more users doing
computer-supported cooperative work, or CSCW. These users, using different
workstations, may be able to perform actions simultaneously on shared instances
of application objects, possibly operating through different views,

The UAN symbol to represent a design that allows users to perform tasks
concurrently is a symbol that implies parallelism—namely, | |. For a representa-
tion of the Calendar Management System in the case where periods of activity
among tasks can overlap, the UAN task description becomes:

TASK: manage calendar

{access appointment

Il add appointment

Il update appointment

I1 delete appointment
Il establish alarm)*

INTERVALS AND WAITING

Time intervals are also important in task descriptions, For example, the prose
description for a double click of a mouse button might tell a user to click the mouse
button and immediately click it again. If the designer really wished to be precise,
it requires the expression of a constraint on the time interval between clicks. In
such cases where the time between user actions {e.g., clicks) is significant in a task
description, the timing interval acts as a temporal relation between the actions,
constraining the temporal distance between actions in a sequence. This task can be
represented precisely in the UAN. The complete UAN task description for double
clicking is

Mv® (t<n) Mv*

where f is the time between mouse clicks, and 7 is a numeric value in units of time
(e.g., seconds). Often the value of # can be controlled by the user via a control panel
setting, and an appropriate default setting can be empirically determined by
developers.

Another way a time interval can be used in a UAN description as a temporal

v g i, 1

38 just

doing
‘erent
mces

asks
nita-
vity

Exercises on Using UAN 204

relation between two tasks i to indicate a minimum wait time to cause some kind i
of timeout by the system, A specific instance might be written as

Taskl (t » 5 seconds) fTasgk?

712 SUMMARY OF UAN SYMBOLS

7.13 EXERCISES ON USING UAN

Now that you have been reading about the UAN, as well as seeing examples of it
and doing small exercises for almost two chapters, it’s time for you to try out the

Exercise——High-Level Design Representafion Using UAN

COAL: Touse the UAN to begin developing a behavioral representation of user
tasks in the Calendar Management System’s interaction design produced in
Chapter 5, at the high levels of design.

MINIMUM TIME: About 10 minutes,

