i

6.1

Techniques for Represenfing
User Interaction Designs

DESIGN REPRESENTATION AS A DEVELOPMENT ACTIVITY

Good user interaction designs invariably depend on an ability to understand and
evaluate—and thereby improve—those designs during the development process.
Understanding and evaluating designs depend, in part, on the techniques used to
represent the designs. Design and representation are very closely related. Design
is a creative, mental, problem-solving process; representation is the physical process
of capturing or recording a design. Design representations are the means by which
interaction designs are communicated and documented.

The need for effective design representation techniques is especially important
with new interaction development methods that emphasize iterative refinement
and involve a multiplicity of separate but cooperating roles for producing the interface.
As already discussed (in Chapter 1), these roles include at least the following:
designer, implementer, problem domain expert, evaluator, documentation spe-
cialist, markefer, customer, and user. Theére are also roles for developing the
noninterface parts of an interactive system.

147

448 Techniques for Representing User Interaction Designs '

Fach of these roles has its own, often different, needs for communicating—re-
cording, conveying, reading, and understanding—an interaction design. This
communication need translates into the need for a commeon set of interaction design
representation techniques—the mechanism for completely and unambiguously cap-
turing an interaction design as it evolves through all phases of the life cycle. Our
main interest in design representation here is as a means for designers of the
interaction component of a user interface to communicate their designs among all
developers, and particularly to user interface software designers and
implementers. '

6.2 THE NEED FOR BEHAVIORAL REPRESENTATION

In software engineering, the distinction of design from implementation is an
established principle. Chapter 1 established a similar distinction in user interface
development, motivating the need for a behavioral domain in which to carry out
and discuss the interaction development process, addressing user interaction dis~
tinctly from implementation (software) considerations. This chapter and the next
introduce a design representation technique capable of specifying the behavioral
design of an interactive system—the tasks and the actions a user performs to
accomplish those tasks. Often, communication within a development group is
informal, based mostly on implicit corporate culture. Typically, as Grudin (1991)
claims, “for communicating a design, paper has been the preferred medium and
brevity a preferred style.” This book presents a more formal, tool-supportable
design representation as a record of the design for all development roles.

Most representation techniques currently used for interface software develop-
ment (e.g., state transition diagrams, event-based mechanisms, object orientation)
are constructional—and properly so. Any technique that can be thought of as
describing interaction from the system viewpoint is constructional. For example,
a state transition diagram depicting interaction control flow represents the system
view, looking out at the user and waiting for an input. State transition diagrams
can also show the current system state and how each input takes the system to a
new state. Constructional representation techniques support the designer and
implementer of the interface software, but do not support design of the interaction
part of the interface.

In the behavioral domain, an interaction developer gets away from software
issues and (as discussed in Chapter 5) into the activities that precede software
design, such as task analysis, functional analysis, task allocation, and user model-
ing. Consequently, behavioral representation techniques and supporting tools
tend to be user centered and task oriented.

With the current emphasis on user-centered design, the interaction develop-

Sorme Existing Representation Techniques 149

ment process is driven heavily by user requirements and task analysis. Early
evaluation of designs is based on user- and task-oriented models. In fact, the entire
interaction development life cycle is becoming centered around the evaluation of
users performing tasks. Thus, the user fask has become a common element of in-
terest among developer roles in the behavioral domain. The set of tasks that forms
an interaction design becomes a set of requirements for the design and implemen-
tation of user interface software. A formal representation of interaction designs is,
therefore, needed to convey these requirements.

Behavioral representation techniques are not replacements for constructional
techniques; they just support a different domain. Each behavioral design must be
translated into a constructional design that is the computer system’s view of how
the behavior is to be supported. Behavioral design and representation involve physical
and cognitive user actions and interface feedback—that is, the behavior both of the
user and of the interface as they interact with each other. This is the subject of this
chapter and the next. Before describing this though, we briefly discuss some
related existing representation techniques in the following section. If you are not
interested in this related work, you can skip directly ahead to Section 6.4.

{

6.3 SOME EXISTING REPRESENTATION TECHNIQUES

This section first presents some representation techniques that are used in the
constructional development domain and then discusses some that are used in the
behavioral domain,

6.3.1 Constructional Representation Techniques for Sequential Inferaction

In a sequential inferaction style, control moves in a predictable way from one part of

_ the dialogue to another. An example is navigation through a menu network. In
sequential interaction, each user action leads to a predetermined successor menu,
screen, window, or dialogue box.

State transition diagrams have long been used as a graphical representation of
interaction control flow in sequential interaction (e.g., Wasserman & Shewmake,
1985; Jacob, 1986). Nodes represent interface states or screens; arcs represent state
transitions based on inputs. Because the nodes of these diagrams usually do not
represent interface feedback or screen appearance directly, the content of a node,
a representation of what happens within that state, is often described in some other
form, such as an inferface representation language. These are high-level specialized
programming languages with constructs especially for representing interaction
design. :

Techniques for Representing User Inferaction Designs

6.3.2 Constructional Representation Techniques for Asynchronous Interaction

Most interfaces today include both sequential and asynchronous styles. In an
asynchronous interaction style, many tasks are available to a user at one time, and
sequencing within each task is independent of sequencing within other tasks.
Asynchronous interaction can be more difficult to represent than strict sequential
interaction. _

One kind of constructional representation technique especially for asynchro-
nous interaction is event handlers (e.g., Green, 1985). With these, each user action
or input is viewed by the system as an event and is sent to the appropriate event
handler, a software routine associated with a class of events that can cause output,
change the system state, and call computational routines.

Concurrent state diagrams (e.g., Jacob, 1986) are also used as constructional rep-
resentations for control flow in asynchronous interaction. A mutually asynchro-
nous set of state diagrams represents the interface, offering the graphical advan-
tage of a diagrammatic approach but avoiding the complexity of a single large
diagram. Multiple diagrams are active simultaneously, with control being trans-
ferred back and forth among the diagrams, in coroutine fashion.

Another popular method for constructional representation of asynchronous
interaction is based on an object-oriented approach (e.g., Sibert, Hurley, & Bleser,
1988). This is a very good fit to today’s interaction styles because the behavior of
interaction objects is naturally event driven and asynchronous. In addition, high-
level object classes contain default behavior, yet they can be specialized for specific
behavior, However, a drawback is that the object-oriented approach distributes
flow of control, and as a result, it is difficult to understand or trace the sequencing,

Other work has involved specifying inferaction by demonstration (e.g., Peridot—
Myers, 1988). This is a novel and creative approach and is very suitable for
producing rapid prototypes. However, it produces only program code, with no
behavioral representation of the interaction that can be analyzed.

Another approach, the User Interface Development Environment, or UIDE
(Foley, Gibbs, Kim, & Kovacevic, 1988), involves building a knowledge base con- .
sisting of objects, attributes, actions, and pre- and post-conditions on actions that
form a declarative description of an interface. From these descriptions, alternative
interfaces are generated for the same underlying functionality.

6.3.3 Behavioral Representation Techniques for Asynchronous Interaction

The representation techniques discussed so far are all constructional, taking the
system view of an interface—the view of the user interface software designer and
implementer., Stop for a minute and think about how you write down your user

151

Some Existing Representation Techniques

interaction designs. You may describe the interaction objects and widgets and how
they work, but how do you describe what the user does? Do you use just prose
descriptions for this, perhaps with some state diagrams to keep track of major state
changes? And, of course, you use screen pictures. What about behavioral ways of
representing how it all works? This requires a task-oriented. approach because
tasks are how the user sees an interface.

The next section introduces a technique for representing user interaction de-
signs from the behavioral view of the user: the User Action Notation, or UAN. Before
describing this technique, however, we will briefly mention some other techniques
used in the behavioral domain and the intended users of these techniques.

. The existence of these other behavioral techniques might cause you to wonder
why we are introducing yet another behavioral representation technique. Design
of interactive systems, as with most kinds of design, involves an alternation of
analysis and synthesis activities (Hartson & Hix, 1989). Most of these task-oriented
models were originally oriented toward analysis; that is, they were not intended
to capture a design as it is being created, but rather to build a detailed represen-
tation of an existing design with the purpose of predicting user performance for
evaluating usability. In contrast, the UAN directly supports synthesis. That is, the
UAN addresses the creative mental act of problem solving (i.e., creating new
interaction designs) and the physical act of capturing (i.e., documenting)} a repre-
sentation of the design.

Some existing behavioral techruques that are user-task-oriented include the
Goals, Operators, Methods, and Selection (GOMS) model (Card, Moran, & Newell,
1983), the Command Language Grammar (CLG) (Moran, 1981), the keystroke-
level model (Card & Moran, 1980), the Task Action Grammar (TAG) (Payne &
Green, 1986), and the work by Reisner (1981), and Kieras and Polson (1985).

In practice, most of these techniques can be used to support synthesis, as well
as analysis, but typlcally, they cannot represent the direct association of feedback
and state with user actions. Also, many of these models—the’ GOMS, CLG, and
keystroke, in particular—are models of expert error-free task performance in
contiguous time (without interruption, interleaving of tasks, and without consid-
ering interrelationships of concurrent tasks); these are not suitable assumptions for
the synthesis-oriented aspects of interaction design,

On the other hand, the GOMS model is very important to task analysis for
interaction design. However, although the amount of detail generated in a GOMS
description of interaction allows for thorough analysis, it can be an enormous

‘ undertaking to produce. GOMS and the UAN have similarities, especially at

_ higher levels of abstraction, where tasks are described in terms of subtasks. Given

i this brief description of several other behavioral representation techniques and

their uses, the rest of this chapter and the next chapter discusses the UAN in detail.

152 Techniques for Representing User Interaction Designs

6.4 INTRODUCING THE USER ACTION NOTATION (UAN)

The UAN was created within the Human-Computer Interaction Project at Virginia
Tech (Hartson, Siochi, & Hix, 1990). Our friend and colleague, Antonio Siochi, is
the originator of the UAN. Our project had a contract to develop a software tool,
and Anton, the interaction designer for the tool, grew tired of struggling with the
imprecision and verbosity of prose descriptions of how the interface should be-
have. In addition, our implementers grew tired of reading and trying to under-
stand his prose descriptions. Out of this need arose the behavioral representation
technique we called the User Action Notation, or UAN. Since its creation, many
people, both at Virginia Tech and elsewhere, have contributed to extending and
formalizing the UAN. So far, the UAN has been used by more than 50 interaction
developers and researchers outside Virginia Tech.

"6.4.4 Why Use UAN?

attitudes, and perspectives needed to do design as compared to those needed to

Before describing details of the UAN, it is important to explain why on earth such
a level of detail is needed for an interaction design. Without such an explanation,
it may not seem worth all the effort it will take to produce UAN descriptions.
Much earlier, in Chapter 1 we espoused different roles. for_"cfffe_r_ent activities in the -
user interface development process. We. especially emphamzed the different skllls,
do lmplementatxon of a user mterface The UAN is infended to be written primarily
by someone designing the interaction componeit of an interface, and to be read by all =
developers, particularly those designing and zmplementmg the user znterface software -
‘The UAN reader is, therefore, usually a. software engineer or programmer. . As
discussed in Chapter 1, programmers probably should not be doing interaction -
design unless they are working closely with people who are trained specifically in_
interaction design; if so, then they can use the UAN to record their joint decisions.
In most cases, however, by the time a programmer writes code, design decisions
for the interaction component should ‘already be made in detail, and the program-
mer should simply implement that design. If details are omitted from a design, a —
programmer will have to make some guess about what the de51gner intended or .
will have to find the designer and ask, neither of which is a desirable situation, A .
technique such as the UAN is an appropriate mechanism for recording that desx_gn
precisely, concisely, unambiguously, and in detail, so that decisions about interac—
tion design are not left up to a programmer. B
Another reason is sometimes given as to why the level of detaﬂ offered by the '
UAN isn’t needed. In particular, people may say, “We've all worked together for

6.4.2

Infroducing the User Action Notation {(UAN) 153
so long, we don’t need to record this kind of detail. We just know what every one
else is thinking.” Members of a user interface development tearm shouldn’t believe
in mind reading. Moreover, what happens when a new person joins the teamn? It
normally takes someone from three months to a year to become acclimatized to a
new environment, to pick up the vibes from everyone else, and to know what
others are thinking. What happens to that new person (and other team members
with whom the new person has to communicate) in the meantime? User interac-
tion designers should not rely on corporate culture and philosophy as a commu-
nication technique for interaction designs. A structured approach such as the UAN
can maximize the communication bandwidth among development team members
as an interaction design evolves and can minimize misunderstandings and confu-

sion about that design.

Overview of the UAN

The UAN is a user- and task-oriented notation that describes physical (and other)
behavior of the user and interface as they perform a task together. The primary -
abstraction of the UAN is a user task. An interface is represented as a quasi-hier-
archical structure of asynchronous tasks, the sequencing within each task being
independent of that in the others. User actions, corresponding interface feedback,
and state change information are represented at the lowest level. Levels of abstrac-
tion hide these details and are needed to build the task structure. Atall levels, user
actions and tasks are combined with temporal relations such as sequencing, inter-
leaving, and concurrency, to describe allowable time-related user behavior.

The UAN is supplemented with scenarios, showing sequencing among screen
pictures. The need for such detailed scenarios and task descriptions is articulated
by Gould and Lewis (1985): “detailed scenarios [show] exactly how key tasks
would be performed with the new system. It is extremely difficult for anybody,
even its own designers, to understand an interface proposal, without this level of
description.” The UAN is also supplemented with state transition diagrams show-
ing interface state changes resulting from user actions, and with discussion notes
documenting the history and rationale of design decisions so that developers are
not later doomed to repeat those decision processes. In sum, this whole set of
representation techniques—the UAN task descriptions, scenarios, state transition
diagrams, and discussion notes—is needed; a single one is not sufficient.

In teaching use of the UAN to interaction designers, we have found that
teaching “by example” is an effective approach. Therefore, we begin presentation
of the UAN with a simple example, at the lowest level of abstraction, the level of
most detail in the UAN task descriptions. The discussion stays at this low level for

Technigues for Representing User lnteraction Designs

the rest of Chapter 6, to establish notation for describing basic physical user
actions. Then, Chapter 7 shows how you build up levels of abstraction to complete
the whole task structure that comprises an interaction design. i

INTRODUCING A SIMPLE EXAMPLE

Most of the following examples use a setting that is familiar to many of you; the
desktop metaphor used in the Apple Macintosh™, Microsoft Windows™, and
many workstations with a graphical direct manipulation interaction style. The
discussion and the notation are not limited to this interaction style, but given its
popularity and familiarity, it effectively ilfustrates the concepts herein.

Imagine a description in a user manual for the task of selecting a file, described
in proseas =~

Step 1. Move the cursor to the file icon.
Step 2. Depress and immediately release the mouse button.

The UAN description corresponding to these two steps is as follows:
Stép 1. ~[file icon]
Step 2, Mv”

Note that a typewriter-style font is used to denote UAN expressions, in-
cluding task names.

In step 1, the ~ denotes moving the cursor. The destination of the cursor
movement is the context of some object represented in the (]. In this case, the
object is a file icon. So we read step 1 of the UAN as “move the cursor to the context
of the file icon.” Step 2 represents depressing (v) and releasing (*) the mouse
button (M). So we read step 2 of the UAN as “depress and release the mouse
button,” or simply “click the mouse button.”

This task serves as an example for the next few sections, to explain, in detail,
various aspects of the UAN. Our goal is to represent this, and other more complex
user tasks, in a notation that is easy to read and write, but one that is more formal,
clear, precise, and unambiguous than English prose.

Create Your Own Symbols

We tried to make the symbols in the UAN representation technique compact, to
limit the amount of work designers have to do to record large amounts of notation,

6.5

6.6

155

Devices and Primitive User Actions

Terse symbols are more difficult to remember, though, so the symbols must also
be mnemonically suggestive of their function, a trait we call “visually
onomatopoetic,” For example, the tilde (~) represents “move the cursor to,” be-
cause the curvy tilde gives the impression of motion. Similarly, v suggests a down
arrow and © an up arrow.

If you don’t like the symbols presented here for the UAN, you are welcome to
create your own for any part of it. For example, you might prefer to use MOVE. TO
instead of the ~, However, anyone using the UAN for a serious design will write
these expressions often and will probably be glad for the more terse symbols. The
specific syntax of the UAN is not the most important concept here, but rather the
expressive power, the levels of abstraction, and the design detail that can be
obtained using the UAN. In fact, the UAN is an opern nofation in the sense that it can
be adapted to the individual needs, standards, and styles of each development
team. Symbols can be substituted, and as new devices requiring new kinds of user
actions appear, appropriate new symbols should be added to the UAN by a
development team using it.

6.5.2 Primitive .User Actlons -

Because the task of selecting a file is directly made up of physical user actions on
hardware devices (e.g., moving the cursor and clicking the mouse button), the
UAN description of this task will reflect these low-level physical actions. Task
descriptions can also include user actions other than physical ones—for example,
memory, cognitive, perceptual, and decision-making actions {Sharratt, 1990}.
However, they are not discussed here because they are not (yet) formally included
in the UAN. i

The physical user actions are termed primitive because they are not decomposed
into further details. We could go into detail about how cursor movement is
accomplished, for example, by involving kinesthetics and eye-hand coordination.
These pragmatic issues of devices involve important human factors issues. How-
ever, by being abstracted out of the notation, these issues can be settled indepen-
dently and incorporated into the design. This means that, for the present purposes,
these details can be ignored. Other task descriptions are built on top of these
primitives, using levels of increasing abstraction that hide individual physical
actions. In order to identify each of the primitives, the developer must first identify
each device and the physical user actions that apply.

6.6 DEVICES AND PRIMITIVE USER ACTIONS

The UAN symbols discussed here are used to represent devices and user actions
involving devices commonly found in many interaction designs.

156

6.6.1

6.6.2

6.6.3

Techniques for Representing User Inferaction Designs

Cursor Movement

In Step 1 of the example task of selecting a file, the first device mentioned is one
for moving the cursor. Such a device is mentioned only indirectly, not indicating
exactly how the cursor is to be moved. A cursor can be moved by a user in many
different ways, such as by moving a mouse, 2 trackball, a joystick, the cross hairs
on a digitizer, arrow keys, locations on a touch panel, or an eye tracker.

As in the preceding section, some levels of abstraction here may help to keep the
concept of moving the cursor separate from the definition of how a user does it.
This separation of definition from use is important because it allows a user inter-
action designer to change the definition of how a user is to move the cursor
without having to find and change all the places in the design where the cursor can
be moved. This is sometires termed locality of definition, because the definition is
in just one place. The notation for representing a user moving the cursor, then,
must be independent of the way in which it is done. '

Switchlike Devices

Step 2 in the prose task description of the example task involves another device—
namely, the mouse button; the actions are depressing and releasing. This kind of
pushing down and letting up action is used to operate many kinds of switchlike
devices, such as a mouse button (there might be more than one on a mouse), a
keyboard key, a special key (e.g., a “Ctrl”, “Esc”, or “Shift” key), a function key,
a knee switch, a foot pedal, or a “puff-and-sip” tube. We usually use the letter M
to represent the mouse button device, and yout can use your imagination for others.
Pushing down is mnemonically and visually represented with a small arrowhead
pointing down (v), and letting up is represented with an upward arrowhead ().
Thus, depressing the mouse button is Mv, and releasing the mouse button is M*,
Clicking the mouse button is Mv M". Because clicking the mouse button is used
quite often as a single action in itself, a click can be represented with this shorter
idiomatic expression: Mv". ‘

Character String Generators

Another class of devices contains the ones from which user actions result in
character strings. Examples are keyboards and voice-recognition devices. Al-
though keyboards are comprised of keys, individual keys are abstracted out of the
description because the significant feature is the character string that results from
their use, For simplicity, K represents the keyboard as a device. In task descrip-
Hons, there are two kinds of strings, literal and variable.

6.7

Objects and Their Contexts 157

When using a copy command, for example, it is possible that a user is required
to type the literal string “copy.” This is represented as

K" copy"

On the other hand, some strings typed by users are variable, For example, a user
may be asked to enter his or her name, a string that varies with each user. This
entry of a variable siring is represented as

K {name)

If desired, a regular expression can be used additionally inside the parentheses
to specify the lexical definition of the variable fo be entered by a user, for example,

K{user id = [A-%Z][a-7 0-9]1+)

The [A-Z] means the first character must be alphabetic, and the [A-z 0-~97+
means there must be one or more alphanumeric characters to follow. Again, you
may use your own favorite variation of regular expressions (including prose).

OBJECTS AND THEIR CONTEXTS

So far, the example of selecting a file has covered moving the cursor and depress-
ing and releasing the mouse button. What about the part of the Step 1 prose
description that says “to the file icon?” Well, when a user moves the cursor to an
object, it is often for the purpose of manipulating that object in some way—for
example, to click on it to select it, or it may be to grab it and move it or change its
size or shape. The context of an object is that by which you manipulate the object.
However, because a user can grab and manipulate an interaction object in different
ways for different tasks, the meaning of the context of an object can be task
dependent. In these cases, the difference must be made clear, often through use of
a figure, '

For example, to select a file on a desktop, a user uses the mouse to move the
cursor to the file icon itself. The user of a graphical drawing application can use the
mouse either to move a line segment or to change its length and /or orientation; the
line serves as its own context for moving. However, for stretching or reorienting
in some drawing applications, a user must move the cursor to one of the Jittle
squate grab handles at an endpoint of the line. In this case, if the description of this

task (either in prose or any other representation) simply says to move the cursor
to the line, it would not be precise enough,

158 Techniques for Representing User Interaction Designs

In the case of stretching or reorienting, the handles aid the user in discerning
their function by being indicative of the task. However, this is a human factors
issue, and it would be nice to abstract this issue out of the notation. To this end,
the UAN includes the task-dependent notion of the confext of an object, denoted by
putting square brackets around the name of the object, like this:

[object]

visually indicating a kind of box, to represent context, around the object.
So, :

[file icon]

denotes the context of file icon, which might be the icon itself. On the other
hand,

[line]

represents the context of a line in a line drawing for the task of changing its length,
and it might be a grab handle at one of the line endpoints. The distinction could
be made more clear by using a subscript or some other explicit notation, to refer
specifically to this kind of context:

[line] endpoint

This little bit of abstraction, to keep the concept of grabbing an object separate
from the definition of how a user does it, uses locality of definition, just as was ;
done for moving the cursor at the beginning of Section 6.5. This allows a user =~ ">
interaction designer to change the definition of how a user grabs an object for a i
given task without having to find and change all the places in a design where that
object can be grabbed. ~

This completes the detailed description of all the UAN needed to represent the
user actions of the example file selection task, repeating as a summary:

Step1. ~[file icon]
Step 2. Mv*®

Even this simple example illustrates the brevity, readability, and precision of
the UAN,

6.8

Interface Feedback 159

INTERFACE FEEDBACK

The preceding UAN captured the physical user actions in the example task, but
what about feedback from the system in response o these user actions? Feedback
is certainly patt of interaction design; including it in these representations allows
a more complete description of user and interface behavior as they interact.
Feedback is displayed by the system, but is included in our behavioral description
because it is so directly tied to the user actions and because it represents perceptual
gctions on the part of the user. Thus, it is an important factor in usability of the
system and therefore is important in the behavioral design domain.

There are various kinds of feedback. In the example task of selecting a file, users
generally expect (because this is the way it is done in most designs today) the icon
of the selected file to be highlighted, indicating that the user has selected the file.
Highlighting is the system’s way of getting the user’s attention, exclaiming a state
change in response to the user’s (or maybe the system's) action. It seemed natural
to use an exclamation mark as a visual and mnemonic symbol for highlighting.

Highlighting of a file icon is represented in UAN simply as
file icon!

Similarly, highlighting of any interaction object would be represented as

ocbject name!

Notice that this does not say how highlighting is accomplished or how it Jooks
or sounds (or feels?). Just as was done in representing both cursor movement and
the context of an object, abstraction and locality of definition are used for separat-
ing the definition of the ! symbol from its use. I its definition, highlighting might
be specified to mean reverse video (common for icons of selected objects), but it
can also mean, for example, blinking, a change of color, putting a box around the

object, and/or an audible beep. '
Given the symbols to represent highlighting of the file icon in the file selection

example, where should it be written? It would be nice fo have each indication of
feedback side-by-side with the user action that caused it, so the two can be
associated. But what user action caused the file icon to highlight? Such details are
not always apparent unless we especially look for them. You have surely seen the
following kind of description in the manual for your computer, which is a varia-
tion on the previous description of selecting a file:

1. Move the cursor to the icon,
2. Click the mouse button, and the icon will be hightighted.

160

Techniques for Representing User Interaction Designs

Technically, this seems to say that highlighting occurs after the button is clicked
(ie., depressed and released). That may be an accurate description for some
computers, but on many computers, highlighting occurs when the mouse button

is depressed. You can see how a small difference such as this can be the source of -

imprecisiori in documentation. When this documentation is used to tell an
implementer, for the first time, how a particular interaction feature works, this
imprecision can cause confusion and misinterpretation.

It is, of course, possible to be quite precise with prose descriptions, but people
rarely take the time to write (or to read) lengthy, very precise descriptions. The
UAN has the power to be both precise and concise. In order to associate highlight-
ing feedback with depression of the mouse button, simply break up the v~ that
represents a mouse click, The resulting task description, with feedback, locks like
this:

TASK: select file’ ,

USER ACTIONS ' INTERFACE FEEDBACK
~[file icon'] Mv file icon'!

M~

Note that the UAN task descriptions have been made a bit more structured, by
adding a fask name, and headings for User Actions and Interface Feedback columns,
Also, because the name file iconislike a general variable in mathematics and
can therefore refer to any file icon, a prime has been added to the name, file
icon', to indicate that the name refers to some specific file icon, thereby distin-
guishing this instance of the variable from other general references to the variable
file icon.

As with most Western notations, the UAN is read top to bottom and left to right
within a line, In the first line of this more structured format, highlighting of the file
icon is associated (by being on the same line) with depressing of the mouse, Mv,
with the cursor in the context of the file icon.

The way in which UAN represents that the file icon in the Interface Feedback
column is the same one represented in the User Actions column is because exactly
the same name is used. In mathematics, the name file icon is termed a bound
variable, which means that all occurrences of that variable, within the scope of
binding (here within the whole task description), refer to the same thing. The file
icon to be highlighted is the same file icon over which the mouse button is
clicked. -

There is a little more to know about highlighting. First, the use of highlighting
suggests the need for a way to represent unhighlighting. Removing something,

interface Feedback 161

such as highlighting, can be thought of as similar to subtracting, so the subtraction
sign is the visually mnemonic UAN representation of unhighlighting:

file icon-!

Second, in a single interaction design there might be several different kinds of
highlighting, There might even be more than one kind of highlighting within a
single task description. Suppose a designer wants to design an interface so that file
icons have a different kind of highlighting than, say, ¢ommand icons, The designer

can use
- file icon!
for file icons and

cmd iconl!!

for command icons. Then, ! and | ! are defined elsewhere, again using the concept
of locality of definition. Similarly, the meaning of ! can be specified as different for
each kind of object.

The more experienced you are with interaction design, the more you become
aware of all the details and hidden complexity. This awareness will lead you to
more complete design descriptions. For example, feedback in the preceding task
description s still not complete. In the desktop metaphor on some computers,
ordinary selection of files (and, therefore, highlighting of file icons) is mutually
exclusive. Unless a designer does something specifically to allow multiple selec-
tion {discussed in a later example), a user can select only one file at a time. Maybe
this example task technically should be named, select one icon and dese-
lect all others. Torefer to “all others” in UAN, use the unijversal quantifier,
v, from predicate calculus; literally it means “¢or all.” For example, the expression

¥ (file icon)

ofer to “all others,” when “others” means

might be used to refer to all fileicons. Tor
being selected, is denoted by the UAN

all file icons other than the one that is
expression

Vfile icon # file ilcon':

which means “for all file icons except {not equal to) the specific one being se-

lected.”

162

Techniques for Representing User Interaction Designs

Next, the designer has to say what should happen with all these other file icons
when the specific one is selected by a user. In this case the designer wants them
to unhighlight. This is represented in UAN as follows:

Vfile icon # file icon': file icon-!

Literally, this means “for all file icons except the selected one, unhighlight

them,” 7
When this is added into the task description, it yields a more precise represen-
tation of feedback behavior.

TASK: select file

USER ACTIONS INTERFACE FEEDBACK

~[file icon'] Mv file icon'!
¥file icon # file icon': file icon-!

i

This description of feedback in the UAN is more detailed, complete, and precise
than the prose description, which said only, “¢click the mouse button, and the icon
will be highlighted.” '

There is an alternative approach, however, to representing this mutually exclu-
sive behavior—the unhighlighting of file icons other than the one selected—that
you should consider for your interaction design representations, Some developers
feel that this added detail (e.g., for unhighlighting all icons except the selected one)
is not properly part of the mainline user task behavior. Thus, when it is included
directly in a task description, it can detract from clarity and readability. The case
could be made that this mutual exclusion under single icon selection is more

~ properly expressed as a property of the whole set of file icons. In this case, it is

better represented with a separate technique, perhaps as a declaration of an
attribute of the set of objects that are file icons. It is possible to augment the UAN
with declarative definitions of interaction objects and types, such as these:

file icen is an element of a set of type FI.

FI is mutually exclusive under single selection.

Another alternative, which works best with computer-based tool support, is to
have two or more different views of task descriptions—one for mainline descrip-

tions and one with all the ancillary details. Before pursuing this approach of
including ancillary detail in task descriptions, you should realize that it is possible

Interface Feedback 163

to get trapped into including detatls that really have little to do with the user task
being described. For example, suppose that the containing window in which a file
icon is being selected is not active. In some interaction designs, depressing the
mouse button over the icon will activate the containing window, and a second
mouse click is required to select the icon. In other designs, a single click will both
activate the containing window and select the icon. In this situation, these extrane-
ous concerns can be sorted out by, for example, requiring the containing window
to be active as a condition of viability (discussed in Section 6.10) for the selection
task. This has the effect of constraining a user to activate an inactive window
before selecting a file icon in it. This constraint may or may not be appropriate for
a particular design.

For the sake of clarity and simplicity, this discussion leaves out ancillary details
from task descriptions in cases where they dor’t add any useful information
concerning the design. When writing out a design (e.g., in UAN), you should use
your own judgment to determine the appropriate level of detail, to give
implementers sufficient unambiguous information without burying them with
extraneous description.

That's enough for now about highlighting. There ate other kinds of feedback,
though. For example, how do you represent moving a box on the screen, as it is
dragged by a user? For this, the UAN symbol is an arrow that is intended to show
that the box follows the cursor as it moves:

box > ~

Don’t mistake this > for the mathematical “greater than” symbol; when com-
bined with the ~ symbol, it means “follows the cursor.”

Also consider the cagse of “rubber-banding,” where an object is stretched out by
[grabbing part of it and pulling it with the cursor. This might be used, for example,
to change the size or shape of a box on the screen. After a user has moved to a
corner of, say, a box and grabbed it with the cursor, the UAN represents the
rubber-banding action with two arrowlike symbols written close together, as the
box corner follows the cursor: '

box corner >> -~

Even more detailed symbols can be used as an interaction design calls for them.

For example, suppose that as feedback for the task of creating a new file icon, the

- system is to display that file icon at some specific location, {x',y "), on the screen.
¥ This could be represented in a UAN task description as

@({x',y') display(new file icon)

