
Human-Computer Interaction -- INTERACT'03
M. Rauterberg et al. (Eds.)
Published by IOS Press, (c) IFIP, 2003, pp.319-326

Intelligent Manipulation Techniques for Conceptual 3D Design
Ji-Young Oh & Wolfgang Stuerzlinger

Computer Science, York University
Toronto, Ontario, Canada

http://www.cs.yorku.ca/~{jyoh,wolfgang}

Abstract: One of the main operations in conceptual 3D design is the rearrangement of single and composite
objects. This paper presents a new conceptual 3D design system that affords easy manipulation of composite
objects. We discuss several alternative manipulation techniques to separate complex parts off an existing model.
Then, we present a new way to move such parts in a 3D scene, as well as an algorithm to place parts at arbitrary
locations. Finally, we present and discuss the results of a user study of these manipulation techniques.

Keywords: Conceptual 3D Design, Interactive 3D Environment, 3D Manipulation.

1. Introduction
Easy creation of 3D designs is crucial for many
application areas, such as architecture, industrial and
mechanical design, creation of simulations and
training environments, animation, and entertainment.

In general, the goal of any design activity is to
produce a description of an artifact that fulfills a set
of design problems. The main concern of designers
is that design problems are often ill-defined, in a
sense that they are abstract, poorly described, and
require subjective interpretation.

To come up with new designs, designers usually
go through the following stages: analysis of
problems, conceptual design, embodiment of
schemes, and the detailing stage (Cross, 2000).
While the designers are going through this process,
they progressively reduce the uncertainty of the
problems by evaluating different solutions.

It is important to note that the conceptual design
session has different characteristics from the later
detailing session. While the detailing session
requires high quality of a drawing without errors, the
conceptual session requires a quick visualization to
allow a designer to evaluate a concept. Designers
repeatedly generate solutions and in turn identify
problems in these solutions. As a consequence,
designers want to visualize a solution with the least
commitment to detail, and want to be able to quickly
modify it based on their evaluation.

Sketching is one way to create conceptual
designs. Recent research into the use of sketching in
the design session argues that recognition of
composite objects is one of the main mental
operations involved in the design process (e.g.
Purcell, 1996; Verstijnen, 1998). However, it is
important to note that while sketching facilitates the
recognition of composite objects, it does not afford
the manipulation of such composites. Phrased
differently, it is extremely important that conceptual
design systems provide simple ways to modify and
rearrange arbitrary parts of a scene.

This paper is about a new kind of conceptual
design system targeted at the easy creation and
modification of 3D scenes. A good real-life example
for a conceptual 3D design system that affords easy
creation and modification of scenes is LegoTM, and it
has already been used to prototype 3D models
(Neale, 2002). Lego has the following properties:
• It allows to quickly create approximate 3D

models. However, although approximate,
practically everybody understands the design
intent immediately.

• Only solid blocks exist, and they slide along each
other, allowing for precise placement.

• A large variety of block sizes and shapes exist.
• Blocks connect to each other and form a stable

3D model.
• The ability to easily separate any part, modify it,

and then re-assemble the model is an inherent
feature.

• It is easy to learn and fun to use!

All of the above properties are clearly desirable in
any conceptual 3D design system.

2. Previous Work
In previous work on 3D scene manipulation, the
topic of composite object manipulation has rarely
been considered. Several research projects used the
paradigm of sketching to facilitate the easy creation
of a scene. For recent examples see (Igarashi, 1999;
Zeleznik, 1996; Pereira, 2000). Incremental
modification is supported using Constructive Solid
Geometry (CSG) operations. The only way to
manipulate groups is via strictly hierarchical
grouping or lassoing. A hierarchical relationship is
usually established when one object is placed on
another, e.g. a cup on a tabletop. Lassoing allows for
more flexibility and can select groups of arbitrary
objects. However, the accuracy of a lassoing
gesture, a quick circling motion, is usually very
limited.

Another approach is to create objects by filling
space with blocks (similar to the idea of “painting in
3D”). One of the best examples is DDDoolz (Vries,
2002), an architectural conceptual design tool.
While providing for easy scene creation, the authors
also recognized easy scene modification as an
important issue. In this system, a stroke creates a
sequence of blocks along the stroke, which allows
the user to create architectural elements by filling
the space with blocks. Blocks are grouped together
if the user assigns them the same color. The authors
motivate their choice with the fact that different
colors are used to visualize different architectural
elements. However, in other application domains
this may not be appropriate and is unnecessarily
restrictive.

Several researchers also investigated how one
can quickly assemble and rearrange a 3D scene if a
library of predefined objects is available. Real-world
behaviors such as gravity or collision are usually
simulated to facilitate the task. One of the first was
the object association system (Bukowski, 1995).
This system allows populating a building with
furniture, books, etc. Each object has pre-defined
constraints that specify how an object can attach and
move on horizontal or vertical surfaces. The
constraints are also used to define a hierarchical
scene graph, which affords composite object
manipulation. Kitamura et al. (Kitamura, 1998)
presented a scheme that dynamically generates
constraints based on collisions with existing
surfaces. This allows for natural object movement,
except when many other objects are present in a
region. The MIVE system (Stuerzlinger, 2002)

extends this work with dual constraints, which
afford bi-directional grouping (e.g. for cabinets on a
wall). Such objects are then automatically grouped
and can be manipulated as a group. However, dual
constraints need to be predefined.

Last, but not least, several researchers
investigated tangible user interfaces to 3D scene
construction. Closest to our work is the work on
geometric construction kits (e.g. Aish 2001). While
these construction kits naturally allow for composite
object manipulation their main disadvantage is the
extremely limited set of primitive objects as most
implementations offer only a single size and shape
of block. This clearly limits the expressivity of these
systems. The other downside of this approach is that
certain operations, such as copying a model or
rotating a part of the model by 90 degrees, are very
time-consuming.

2.1 Motivation & Contributions
The goal of our work is to provide a conceptual 3D
design system with a user interface that shares the
main properties of Lego. In particular we want to
support easy modification of composite objects. As
Lego has many desirable properties we chose to
emulate Lego insofar as we provide several kinds of
basic blocks to construct 3D scenes. However, we
aim to go beyond real Lego and support operations
that are only possible with a virtual representation,
such as easy object duplication and object resizing.
Furthermore, our system allows blocks to attach
side-by-side, which is also not possible in real Lego.
No previous approach fulfils all these criteria, as the
systems are either limited by simple group
manipulation techniques or by physical constraints.

The technical contributions of our work are:
• Group Separation

We present three new techniques that allow the
user to separate (almost) arbitrary parts from a
composite object.

• Movement
We present a new technique for the movement of
arbitrary objects, which provides predictable and
visually smooth results.

• Group Placement
To support the re-attachment of a complex
composite part to the existing scene we present
an adaptation of previous work to our system.

• User Study
We present the results of a user study, which
investigates the new group separation, as well as
the group movement and placement techniques.

In the following sections, we discuss each of these
contributions in turn.

3. Group Separation
In this section, we present two new techniques that
support separation of objects into complex parts:
intelligent separation and separation with
anchoring. The second technique optionally allows
for two-handed operation and we investigate this
separately.

3.1 Intelligent Separation
In intelligent separation, a user clicks with the left
mouse button on a block and drags it away to
separate a part. The initial direction of the mouse
drag is used to determine which part of the objects is
being manipulated. Whenever the direction of the
movement “pushes” a block away, that block is
considered to be a part of a new group. Blocks
connected along the moving direction are also added
to the new group and this allows the formation and
separation of arbitrary parts.

To make the separation visually predictable, the
group of objects that is going to be separated is
highlighted according to the mouse direction. In
Figure 1(a), the user starts the selection by clicking
on a block, in (b)-(e) the mouse is moved in a small
circle to visualize all possible combinations of
connected components. Finally, in (f) the user
separates the component chosen in (e) by moving
the mouse further than a certain threshold.

 (a) (b) (c)

 (d) (e) (f)
Figure 1: Intelligent separation technique. (a) Start of
separation by clicking on a block, (b)-(e) different drag
directions form different groups, (f) by dragging further
away a group of blocks separates.

To address the problem of manipulating 3D with
a 2D input device, the manipulations are view
dependant. For this we assume that mouse
movements take place on the axis-aligned plane that
is most orthogonal to the view direction.
Consequently, different movement directions (and
even more alternatives for group separation) can be
obtained by changing the view direction.

3.2 Separation with Anchoring
In initial tests of the intelligent separation technique,
we found that many first-time users did not find this
technique easy to learn, as they frequently activated
it unintentionally. Consequently, we implemented a
new separation technique that makes the process
more explicit. Here the user must first specify the
part that has to remain in place. This step is called
anchoring (see Figure 2a). Then, in a second step,
the user selects and drags a part that is to be broken
off. If no anchor is placed, all objects connected to
the one under the cursor simply move together.
While this technique requires an additional
manipulation step compared to intelligent
separation, it makes the separation process more
explicit for the user, which still maintaining the
benefit of a directionally dependent method.

In our system the anchoring is activated via the
middle mouse button, and the separation is activated
with the left button (Figure 2). As this two-step
approach can be easily mapped to a two-handed user
interface we also implemented another version
where the user holds two mice. An anchor is placed
with the left button on either device and separation
is done with the other mouse (Figure 3).

 (a) (b) (c)

Figure 2: Anchoring with one mouse. (a) A user places an
anchor visualized by the white rectangle, (b) the users
clicks and drags rightwards, and once a certain threshold
is reached a group is separated (c).

 (a) (b) (c)
Figure 3: Anchoring with two mice. The second mouse
cursor is visualized with a black circle. See text for
description.

Here, we first test if there is a plane between the
two mouse positions that allows for a simple cut
through the model. If it exists, it is used to separate
the new part. Otherwise, the dragging direction from
the second click is used with the algorithm presented
with the intelligent separation technique.

4. Movement
Since we are using 2D input devices to manipulate
object in 3D, we have to map 2D inputs to 3D
positions. Initially, we used Bukowski’s (1995)
work, which uses the first visible surface behind the
moving object to determine in which plane an object
moves. If a collision occurs the colliding surface is
used for further movement.

The fundamental problem with this approach is
that a composite part can be “grabbed” at many
different places with the mouse cursor. Depending
on the exact selection position, different results will
occur if a composite part is moved across another
part of the model. This makes the system
unpredictable in situations with detailed object
geometry. While this did not occur often in our pilot
tests it was problematic enough that we decided to
investigate alternative methods.

According to our observations, users seem to
consider the entire area of the visual overlap of a
foreground object and a complex background. The
users seem to expect that the object moves on the
foremost surface behind the moving object.
Consequently, we select the movement plane from
the object surface that is closest to the viewpoint in
the region that is occluded by the moving object.
Figure 4 demonstrates the concept. When the mouse
cursor is in position (1), surface A is the surfaces
closest to the viewer among all hidden surfaces.
Therefore, the object slides on surface A. When
moving to position (2), the closest surface is B and
consequently, the object slides on the top of it. In
our experiments, this results in a visually smooth
and predictable object motion. For efficiency, we
perform the computation of the foremost occluded
surface with the aid of graphics hardware.

Figure 4: Objects slide on the surface that is both

closest to the viewer and occluded by the object.

5. Placement
Once an object is released, it is snapped to the
nearest surface. If an object is released above the
background, it continues to float in free space,
which provides a convenient temporary storage
space.

Placing an arbitrary composite object onto an
arbitrary surface requires that many possibilities
should be considered as any face may potentially
snap to any face. To solve this we adapted the
algorithm from Kitamura (1998). In his work,
several criteria such as angles between faces,
movement direction, overlap ratio and face distances
are used to reduce the number of candidate faces
that can match each other. Scores are calculated for
each pair of candidates, and the face pair with the
highest score is selected as a constraining pair.

In our implementation, we use only the overlap
ratio and the face distance. The overlap ratio
computes the relative overlap of two surfaces that
face each other. For simplicity, we use the distance
along the normal of the current movement plane. We
then construct a candidate set of all blocks whose
overlap ratio is greater than some threshold. The set
is sorted by descending order of overlap ratio and
ascending order of distance as secondary criterion.
The first entry of this set is chosen as it minimizes
object movement and this conforms best to user
expectations.

Figure 5: Object placement is determined by finding the

pair with minimum distance among the ones with
maximum overlap ratio (see text).

Figure 5 illustrates this technique with a side

view. The moving part consists of parts 1-4 and the
static scene consists of blocks 5-8. Each one of the
bottom surfaces of 1, 2, and 4 can attach to each of
top surfaces of 5, 6, and 8. The candidate array will
store only blocks with maximal overlapping ratio
(such as the pairs 1-5, 2-6, and 4-8). Among the
candidates, the pair 4-8 will result in minimal
movement and consequently it will be selected to
snap the two parts together.

6. User Tests

6.1 Test Procedure
Twelve paid participants (6 females, 6 males, age
range 18-39, avg. 25.08) out of a pool of graduate
and undergraduate university students were
recruited. All of the subjects had experience with
either 2D authoring tools or 3D games, or both.

 (a) Initial scene with two towers (b) Target scene (a) Initial 3D floor plan (b) Target 3D floor plan

Figure 7: Merging two 4-layer towers Figure 8: Changing arrangement of 3D floor plan

None of the participants had previous experience
with our system. We consider this population to be a
reasonable set, given that the many designers use
computers on an everyday basis.

Practice and evaluation sessions were conducted
in order. In the first part, subjects learned the general
operations of the system and practiced simple 3D
object movement under the instruction of the
experimenter. After this initial session participants
were asked to perform two different experimental
tasks. The first task was merging two 4-layer towers
(Figure 7), and the second a rearrangement of a 3D
floor plan (Figure 8). Each participant was asked to
perform the each task twice under all three
conditions, intelligent separation, separation with
anchoring with one mouse, and with two mice. As
the two tasks are non-trivial and require some
reflection, we considered the first set of three results
to be practice, and analyzed only the last three trials
for each task. To combat learning effects the order
of conditions was counterbalanced across subjects.
For all trials, the mouse movement, and actions that
the subjects performed were logged along with time.

6.2 Tasks
In the first task, subjects had to merge two 4-layer
towers into one (Figure 7). The individual parts of
the tower are stacked on top of each other in a
repeated pattern. We hypothesized that a first-time
user could easily do this task, since there was only a
simple relationship between objects (one on top of
the other) and the task was repetitive. The minimum
number of movements to complete the task was
fifteen.

In the second task, participants had to change the
arrangement of a floor plan by moving walls and
wall assemblies around (Figure 8). The task is close
to how a conceptual 3D design system would be
used in the real world. This task is relatively difficult
because a user must reflect on the connectivity of
walls in order to select the correct wall fragments.
The minimum number of movements was ten.

6.3 Test Results
For brevity, we refer to intelligent separation as
intelligent, separation with anchoring with one
mouse as anchor, and the two mice variant as 2-
mice. The task of merging 4-layer towers is 4-layer,
and the rearrangement of the 3D floor plan is floor
plan.

6.3.1 Task completion times
In the 4-layer task, 2-mice is significantly slower
than intelligent and anchor (F11,2=7.3, p<0.01). In
the floor plan task, there is no significant difference
between the techniques (F11,2=1.86, p>0.18). The
high variation in completion time of intelligent and
2-mice seems to be the main cause of this. The
reasons for this are investigated later in this section.
Nevertheless, it should be noted that with a few
exceptions, most participants could complete the
tasks in a reasonable amount of time.

(a) Task time for merging 4-layer towers

Figure 9: (b) Task time for rearranging 3D floor plan

6.3.2 Decomposition of actions
To gain an insight into how participants spent their
time on each task, we decomposed time into the

different action categories. The actions are move,
anchor, navigate, undo, and visualize group.
Visualize group means that the user highlights a
group via directional dragging, but cancels the
operations before actual separation occurs.

One noticeable result for the 2-mice condition is
that users assigned practically exclusive roles to
their hands. Usually, the left hand is used only for
anchoring while the right performs all other actions
(see Table 2). To simplify further analysis, we
merged the data for left-hand and right-hand actions.

4-Layer Floor plan
Left Right Left Right

Move 0 18.5 0.17 16.25
Anchor 16.83 0 11.25 0
Navigate 0.17 3.58 0.42 11.58
All other 2.83 3.42 1.58 5

Table 2: Average number of actions by each hand with 2-
mice condition.

Most of actions performed are move, anchoring,
and navigation (Figure 10). If we compare
intelligent and anchor, users made significantly more
errors with intelligent and also utilized the visualize
group action significantly more often. In the floor
plan task, there is a significant correlation of
completion time and the number of navigation
actions in both the intelligent (0.96) and 2-mice
condition (0.73), but not in the anchor condition
(0.2).

(a) Average number of actions in 4-layer task

(b) Average number of actions in floor plan task

Figure 10: Average number of actions for each task
6.3.3 Number of move operations
In the 4-layer task, the number of move operations is
not different (F11,2 = 1.75, p >0.1). However, in the

floor plan task, intelligent required significantly
more operations than anchor (F11,2 = 3.56, p<0.05).

In many instances, participants took longer with
intelligent than with anchor. Usually, this is due to
an erroneous activation of the intelligent technique,
which then results in a sequence of corrective
actions. This did not occur with anchor. However, in
the floor plan task under the intelligent condition
subject #2 and #11 were able to finish the task with
an (almost) optimal number of move operations,
which shows that some participants were able to
utilize this technique fully, as their task times were
also minimal (see Figure 9(b)).

(a) Number of move operations in 4-layer task

Figure 11: (b) Number of move operations by subjects in

floor plan task.

6.3.4 Select time before a movement
To investigate how long it took users to select a
group to separate, we decomposed the sequence of
actions for a move operation (Table 4). We call the
period that is shown in italic in Table 4, select time.
We hypothesize that the select time would allow us
to gain an insight into the complexity of selecting
the right object, which is a mixture of cognitive
processing as well as motor action.

We computed the average select time by dividing
the select time with the number select actions for
each subject. For both tasks, the effects of the
average select time are strongly significant (4-layer:
F11,2=28.69, p<<0.01; floor plan: F11,2=28.31,
p<<0.01). Also, all three techniques are different for
both tasks. For the 4 layer task, the average select
time for intelligent is 0.8 s, for anchor 1.21 s, and for
2-mice 1.55 s. In the floor plan task, the average
select time for intelligent is 1.52 s, for anchor 1.86 s,
for 2-mice 2.55 s.

The select time for intelligent is significantly

lower than that of anchor and 2-mice. This is
surprising, given that the motor action for these is
practically identical (moving the cursor over an
object). Furthermore, it seems that participants took
less time to reflect on their choice of drag direction
for intelligent. The higher select time for 2-mice is
most probably due to the fact that not many people
are trained to use a mouse with the left hand.

Intelligent Move right hand onto block to move – drag

in a direction.
Anchor Move right hand onto the anchoring block –

click to anchor – move right hand onto the
block to move – drag.

2-mice Move left hand onto the anchoring block –
click to anchor – move right hand onto the
block to move – drag.

Table 4: Mouse and keyboard commands.

6.3.5 Qualitative results and observations
After finishing all the tasks, participants rated each
technique according to a Likert scale (1:worst,
7:excellent). The average preference for intelligent
is 5.33, for anchor 5.5, and for 2-mice 4.08. The
difference is not significant (F11,2=2.92, p >0.05).

Many subjects commented that anchor is more
explicit and predictable for the first-time user, but
intelligent is more natural to use. There was also a
noticeably change of opinion after the tasks. Most of
the users showed strong preference for intelligent
after finishing the 4-layer task, but after the more
challenging floor plan task, many withdrew their
preference towards the technique. In the 4-layer task
there is only one object relationship, one on top of
another. Consequently, the task did not require much
attention on how to separate a particular group.
However, in the floor plan task, the connectivity
relationship between objects is more complex and
participants had to experiment with different
dragging directions. This is reflected in the larger
number of mistakes with this condition.

Some of the participants said explicitly that they
liked that objects moved on the closest visible
surface. None of the participants commented on the
placement, so we can assume that this method works
well. However, some participants found it non-
intuitive that the viewpoint has to be changed to
place an object onto an invisible surface. Some
participants used the space in the air as a temporary
place when the working plane was too crowded, or
when they couldn’t immediately find the right place
for an object.

6.4 Discussion
One finding of this user study is that even first-time
users can successfully complete some conceptual 3D
design tasks, such as rearrangement, with the
presented techniques. The intelligent separation
technique performs well when the task is easy. For
more difficult tasks (such as the floor plan scenario)
separation with anchoring seem to be a better
alternative.

The select time of for intelligent separation is the
lowest regardless of the task. This contradicts our
expectations, as we assumed that the select time of
intelligent to be longer than that of the other
techniques, since a user had to reflect on the
dragging direction before the action. Participants
seemed to use this technique with a trial and error
approach. Conversely, with separation with
anchoring participants spent more time to reflect on
how to separate. The explicit two steps, selecting the
object to remain, and then the ‘moving’ group of
objects seem to force the users to think more.

Also, intelligent separation clearly is more
susceptible to mistakes. In the floor plan task, only
two users finished task without real errors. Some
participants needed lengthy corrections to fix a small
error. This can happen, as intelligent separation will
break off parts with every selection.

For the 2-mice condition all participants used
their left hand for anchoring exclusively, and had
difficulty in moving the cursor with the left hand.
This is clearly not a good alternative for first-time
users.

Last, but not least, several participants asked if
they could get this system to perform creative work!
This is very encouraging, as this is only a prototype
that is limited in several aspects.

7. Conclusion & Future Work
In this work, we presented a novel approach for easy
modification of a conceptual 3D design. We
presented new techniques to select and separate
arbitrary object parts, to move them around and to
place them. Phrased differently, this work provides
some initial solutions to fill some important gaps in
the functionality of a conceptual 3D design system.

Furthermore, we presented the results of our user
study, which shows that the proposed techniques are
useable for first-time users. The anchoring technique
seems to be most promising for easy-to-use systems,
although the intelligent separation technique may be
a better choice for higher-end systems.

For future work we will extend the set of blocks
available in the system. The real problem here is not
the addition of new geometries, but that we have to

implement a simple, yet efficient way to select from
a large palette of object shapes. We are currently
investigating this. Also, we intend to incorporate at
least a rudimentary sketching interface into the
system.

References

Aish, R., Frankel, J., Frazer, J., Patera, A. & Marks, J.,
(2001), Panel: Computational construction kits for
geometric modeling and design, SI3D’01, 125-128.

Bukowski, R. & Sequin, C. (1995), Object associations: a
simple and practical approach to virtual 3D
manipulation, SI3D’95, 131-138.

Cross, N. (2000), Engineering design methods: Strategies
for product design, Wiley, 3rd ed.

Igarashi, T., Matsuoka, S. & Tanaka, H. (1999), Teddy: A
sketching interface for 3D freeform design,
SIGGRAPH'99, 409-416.

Kitamura, Y., Yee, A. & Kishino, F. (1998), A
sophisticated manipulation aid in a virtual
environment using dynamic constraints among
object faces. PRESENCE, 7 (5), 460-477.

Neale, H., Cobb, S. & Wilson, J. (2002), A front-ended
approach to the user-centered design of VEs, IEEE
VR’02, 191-198.

Pereira J., Jorge J., Branco V. & Nunes F. (2000),
Towards calligraphic interfaces: Sketching 3D
scenes with gestures and context icons, WSCG2000.

Purcell, A. T. & Gero, J. S. (1998), Drawings and the
design process: A review of protocol studies in
design and other disciplines and related research in
cognitive psychology, Design Studies, 19 (4), 389-
430.

Stuerzlinger, W. & Smith, G. (2002), Efficient
manipulation of object groups in virtual
environments, IEEE VR 2002, 251-258.

Verstijnen, I., van Leeuwen, C., Goldschmidt, G., Hamel,
R. & Hennessey, J. (1998), Sketching and creative
discovery, Design Studies, 19 (4), 519-546.

de Vries, B. & Achten, H.H. (2002), DDDoolz: Designing
with modular masses, Design Studies, 23 (6), 515-
531

Zeleznik, R.C., Herndon, K. & Hughes, J.F. (1996),
SKETCH: An interface for sketching 3D scenes,
SIGGRAPH'96.

Appendix A: User Interface
The user interface of the Virtual Lego system consists of
the main 3D scene view and a menu at the right side. The
menu offers a color and object selection palette, an undo
button, and a recycle bin (see Figure A1). Users can select
a shape from the palette and place it by clicking into the
3D view, or by dragging the shape from the palette to the
view.

Figure A1: The Virtual Lego interface

Table A1 shows an overview of the commands in the
system. Depending on the particular sequence of mouse
movements and button presses different actions are taken.
A threshold on the movement distance is used to
distinguish between clicks and drag operations.

Input command Function Realization
Left button click Add,

recolor
On release

Left button drag Move Move on drag,
Snap on release

Left button drag
with shift key

Cloning Object cloned on
shift-press

Any drag started in
background

Navigation During drag

Right button drag Resize During drag

Drag and drop to
recycle bin

Delete On release

Middle button click
(only in one mouse
anchor mode)

Anchor Realized only if
move follows

Table A1: Mouse and keyboard commands.

	Introduction
	Previous Work
	Motivation & Contributions

	Group Separation
	Intelligent Separation
	Separation with Anchoring

	Movement
	Placement
	User Tests
	Test Procedure
	Tasks
	Test Results
	Task completion times
	Decomposition of actions
	Number of move operations
	Select time before a movement
	Qualitative results and observations

	Discussion

	Conclusion & Future Work
	Appendix A: User Interface

