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Abstract: One of the main operations in conceptual 3D design is the rearrangement of single and composite 
objects. This paper presents a new conceptual 3D design system that affords easy manipulation of composite 
objects. We discuss several alternative manipulation techniques to separate complex parts off an existing model. 
Then, we present a new way to move such parts in a 3D scene, as well as an algorithm to place parts at arbitrary 
locations. Finally, we present and discuss the results of a user study of these manipulation techniques. 
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1. Introduction 
Easy creation of 3D designs is crucial for many 
application areas, such as architecture, industrial and 
mechanical design, creation of simulations and 
training environments, animation, and entertainment. 

In general, the goal of any design activity is to 
produce a description of an artifact that fulfills a set 
of design problems. The main concern of designers 
is that design problems are often ill-defined, in a 
sense that they are abstract, poorly described, and 
require subjective interpretation. 

To come up with new designs, designers usually 
go through the following stages: analysis of 
problems, conceptual design, embodiment of 
schemes, and the detailing stage (Cross, 2000). 
While the designers are going through this process, 
they progressively reduce the uncertainty of the 
problems by evaluating different solutions. 

It is important to note that the conceptual design 
session has different characteristics from the later 
detailing session. While the detailing session 
requires high quality of a drawing without errors, the 
conceptual session requires a quick visualization to 
allow a designer to evaluate a concept. Designers 
repeatedly generate solutions and in turn identify 
problems in these solutions. As a consequence, 
designers want to visualize a solution with the least 
commitment to detail, and want to be able to quickly 
modify it based on their evaluation. 

Sketching is one way to create conceptual 
designs. Recent research into the use of sketching in 
the design session argues that recognition of 
composite objects is one of the main mental 
operations involved in the design process (e.g. 
Purcell, 1996; Verstijnen, 1998). However, it is 
important to note that while sketching facilitates the 
recognition of composite objects, it does not afford 
the manipulation of such composites. Phrased 
differently, it is extremely important that conceptual 
design systems provide simple ways to modify and 
rearrange arbitrary parts of a scene. 

This paper is about a new kind of conceptual 
design system targeted at the easy creation and 
modification of 3D scenes. A good real-life example 
for a conceptual 3D design system that affords easy 
creation and modification of scenes is LegoTM, and it 
has already been used to prototype 3D models 
(Neale, 2002). Lego has the following properties: 
• It allows to quickly create approximate 3D 

models. However, although approximate, 
practically everybody understands the design 
intent immediately. 

• Only solid blocks exist, and they slide along each 
other, allowing for precise placement. 

• A large variety of block sizes and shapes exist. 
• Blocks connect to each other and form a stable 

3D model. 
• The ability to easily separate any part, modify it, 

and then re-assemble the model is an inherent 
feature. 

• It is easy to learn and fun to use! 



   
All of the above properties are clearly desirable in 
any conceptual 3D design system. 

2. Previous Work 
In previous work on 3D scene manipulation, the 
topic of composite object manipulation has rarely 
been considered. Several research projects used the 
paradigm of sketching to facilitate the easy creation 
of a scene. For recent examples see (Igarashi, 1999; 
Zeleznik, 1996; Pereira, 2000). Incremental 
modification is supported using Constructive Solid 
Geometry (CSG) operations. The only way to 
manipulate groups is via strictly hierarchical 
grouping or lassoing. A hierarchical relationship is 
usually established when one object is placed on 
another, e.g. a cup on a tabletop. Lassoing allows for 
more flexibility and can select groups of arbitrary 
objects. However, the accuracy of a lassoing 
gesture, a quick circling motion, is usually very 
limited. 

Another approach is to create objects by filling 
space with blocks (similar to the idea of “painting in 
3D”). One of the best examples is DDDoolz (Vries, 
2002), an architectural conceptual design tool. 
While providing for easy scene creation, the authors 
also recognized easy scene modification as an 
important issue. In this system, a stroke creates a 
sequence of blocks along the stroke, which allows 
the user to create architectural elements by filling 
the space with blocks. Blocks are grouped together 
if the user assigns them the same color. The authors 
motivate their choice with the fact that different 
colors are used to visualize different architectural 
elements. However, in other application domains 
this may not be appropriate and is unnecessarily 
restrictive. 

Several researchers also investigated how one 
can quickly assemble and rearrange a 3D scene if a 
library of predefined objects is available. Real-world 
behaviors such as gravity or collision are usually 
simulated to facilitate the task. One of the first was 
the object association system (Bukowski, 1995). 
This system allows populating a building with 
furniture, books, etc. Each object has pre-defined 
constraints that specify how an object can attach and 
move on horizontal or vertical surfaces. The 
constraints are also used to define a hierarchical 
scene graph, which affords composite object 
manipulation. Kitamura et al. (Kitamura, 1998) 
presented a scheme that dynamically generates 
constraints based on collisions with existing 
surfaces. This allows for natural object movement, 
except when many other objects are present in a 
region. The MIVE system (Stuerzlinger, 2002) 

extends this work with dual constraints, which 
afford bi-directional grouping (e.g. for cabinets on a 
wall). Such objects are then automatically grouped 
and can be manipulated as a group. However, dual 
constraints need to be predefined. 

Last, but not least, several researchers 
investigated tangible user interfaces to 3D scene 
construction. Closest to our work is the work on 
geometric construction kits (e.g. Aish 2001). While 
these construction kits naturally allow for composite 
object manipulation their main disadvantage is the 
extremely limited set of primitive objects as most 
implementations offer only a single size and shape 
of block. This clearly limits the expressivity of these 
systems. The other downside of this approach is that 
certain operations, such as copying a model or 
rotating a part of the model by 90 degrees, are very 
time-consuming. 

2.1 Motivation & Contributions 
The goal of our work is to provide a conceptual 3D 
design system with a user interface that shares the 
main properties of Lego. In particular we want to 
support easy modification of composite objects. As 
Lego has many desirable properties we chose to 
emulate Lego insofar as we provide several kinds of 
basic blocks to construct 3D scenes. However, we 
aim to go beyond real Lego and support operations 
that are only possible with a virtual representation, 
such as easy object duplication and object resizing. 
Furthermore, our system allows blocks to attach 
side-by-side, which is also not possible in real Lego. 
No previous approach fulfils all these criteria, as the 
systems are either limited by simple group 
manipulation techniques or by physical constraints. 

The technical contributions of our work are: 
• Group Separation 

We present three new techniques that allow the 
user to separate (almost) arbitrary parts from a 
composite object. 

• Movement 
We present a new technique for the movement of 
arbitrary objects, which provides predictable and 
visually smooth results. 

• Group Placement 
To support the re-attachment of a complex 
composite part to the existing scene we present 
an adaptation of previous work to our system. 

• User Study 
We present the results of a user study, which 
investigates the new group separation, as well as 
the group movement and placement techniques. 

In the following sections, we discuss each of these 
contributions in turn. 



   

3. Group Separation 
In this section, we present two new techniques that 
support separation of objects into complex parts: 
intelligent separation and separation with 
anchoring. The second technique optionally allows 
for two-handed operation and we investigate this 
separately. 

3.1 Intelligent Separation 
In intelligent separation, a user clicks with the left 
mouse button on a block and drags it away to 
separate a part. The initial direction of the mouse 
drag is used to determine which part of the objects is 
being manipulated. Whenever the direction of the 
movement “pushes” a block away, that block is 
considered to be a part of a new group. Blocks 
connected along the moving direction are also added 
to the new group and this allows the formation and 
separation of arbitrary parts. 

To make the separation visually predictable, the 
group of objects that is going to be separated is 
highlighted according to the mouse direction. In 
Figure 1(a), the user starts the selection by clicking 
on a block, in (b)-(e) the mouse is moved in a small 
circle to visualize all possible combinations of 
connected components. Finally, in (f) the user 
separates the component chosen in (e) by moving 
the mouse further than a certain threshold. 

 

 
          (a)                         (b)                         (c) 

 
           (d)                         (e)                            (f) 
Figure 1: Intelligent separation technique. (a) Start of 
separation by clicking on a block, (b)-(e) different drag 
directions form different groups, (f) by dragging further 
away a group of blocks separates. 
 

To address the problem of manipulating 3D with 
a 2D input device, the manipulations are view 
dependant. For this we assume that mouse 
movements take place on the axis-aligned plane that 
is most orthogonal to the view direction. 
Consequently, different movement directions (and 
even more alternatives for group separation) can be 
obtained by changing the view direction. 

3.2 Separation with Anchoring 
In initial tests of the intelligent separation technique, 
we found that many first-time users did not find this 
technique easy to learn, as they frequently activated 
it unintentionally. Consequently, we implemented a 
new separation technique that makes the process 
more explicit. Here the user must first specify the 
part that has to remain in place. This step is called 
anchoring (see Figure 2a). Then, in a second step, 
the user selects and drags a part that is to be broken 
off. If no anchor is placed, all objects connected to 
the one under the cursor simply move together. 
While this technique requires an additional 
manipulation step compared to intelligent 
separation, it makes the separation process more 
explicit for the user, which still maintaining the 
benefit of a directionally dependent method. 

In our system the anchoring is activated via the 
middle mouse button, and the separation is activated 
with the left button (Figure 2). As this two-step 
approach can be easily mapped to a two-handed user 
interface we also implemented another version 
where the user holds two mice. An anchor is placed 
with the left button on either device and separation 
is done with the other mouse (Figure 3). 
 

 
    (a)                         (b)                           (c) 

Figure 2: Anchoring with one mouse. (a) A user places an 
anchor visualized by the white rectangle, (b) the users 
clicks and drags rightwards, and once a certain threshold 
is reached a group is separated (c). 
 

 
          (a)                         (b)                           (c) 
Figure 3: Anchoring with two mice. The second mouse 
cursor is visualized with a black circle. See text for 
description. 
 

Here, we first test if there is a plane between the 
two mouse positions that allows for a simple cut 
through the model. If it exists, it is used to separate 
the new part. Otherwise, the dragging direction from 
the second click is used with the algorithm presented 
with the intelligent separation technique.  

 



   

4. Movement 
Since we are using 2D input devices to manipulate 
object in 3D, we have to map 2D inputs to 3D 
positions. Initially, we used Bukowski’s (1995) 
work, which uses the first visible surface behind the 
moving object to determine in which plane an object 
moves. If a collision occurs the colliding surface is 
used for further movement. 

The fundamental problem with this approach is 
that a composite part can be “grabbed” at many 
different places with the mouse cursor. Depending 
on the exact selection position, different results will 
occur if a composite part is moved across another 
part of the model. This makes the system 
unpredictable in situations with detailed object 
geometry. While this did not occur often in our pilot 
tests it was problematic enough that we decided to 
investigate alternative methods. 

According to our observations, users seem to 
consider the entire area of the visual overlap of a 
foreground object and a complex background. The 
users seem to expect that the object moves on the 
foremost surface behind the moving object. 
Consequently, we select the movement plane from 
the object surface that is closest to the viewpoint in 
the region that is occluded by the moving object. 
Figure 4 demonstrates the concept. When the mouse 
cursor is in position (1), surface A is the surfaces 
closest to the viewer among all hidden surfaces. 
Therefore, the object slides on surface A. When 
moving to position (2), the closest surface is B and 
consequently, the object slides on the top of it. In 
our experiments, this results in a visually smooth 
and predictable object motion. For efficiency, we 
perform the computation of the foremost occluded 
surface with the aid of graphics hardware. 

 
Figure 4: Objects slide on the surface that is both 

closest to the viewer and occluded by the object. 

5. Placement 
Once an object is released, it is snapped to the 
nearest surface. If an object is released above the 
background, it continues to float in free space, 
which provides a convenient temporary storage 
space. 

Placing an arbitrary composite object onto an 
arbitrary surface requires that many possibilities 
should be considered as any face may potentially 
snap to any face. To solve this we adapted the 
algorithm from Kitamura (1998). In his work, 
several criteria such as angles between faces, 
movement direction, overlap ratio and face distances 
are used to reduce the number of candidate faces 
that can match each other. Scores are calculated for 
each pair of candidates, and the face pair with the 
highest score is selected as a constraining pair. 

In our implementation, we use only the overlap 
ratio and the face distance. The overlap ratio 
computes the relative overlap of two surfaces that 
face each other. For simplicity, we use the distance 
along the normal of the current movement plane. We 
then construct a candidate set of all blocks whose 
overlap ratio is greater than some threshold. The set 
is sorted by descending order of overlap ratio and 
ascending order of distance as secondary criterion. 
The first entry of this set is chosen as it minimizes 
object movement and this conforms best to user 
expectations. 

 
Figure 5: Object placement is determined by finding the 

pair with minimum distance among the ones with 
maximum overlap ratio (see text). 

 
Figure 5 illustrates this technique with a side 

view. The moving part consists of parts 1-4 and the 
static scene consists of blocks 5-8. Each one of the 
bottom surfaces of 1, 2, and 4 can attach to each of 
top surfaces of 5, 6, and 8. The candidate array will 
store only blocks with maximal overlapping ratio 
(such as the pairs 1-5, 2-6, and 4-8). Among the 
candidates, the pair 4-8 will result in minimal 
movement and consequently it will be selected to 
snap the two parts together. 

6. User Tests 

6.1 Test Procedure 
Twelve paid participants (6 females, 6 males, age 
range 18-39, avg. 25.08) out of a pool of graduate 
and undergraduate university students were 
recruited. All of the subjects had experience with 
either 2D authoring tools or 3D games, or both. 



   
 

         
 (a) Initial scene with two towers    (b) Target scene                  (a) Initial 3D floor plan                               (b) Target 3D floor plan 

Figure 7: Merging two 4-layer towers                                 Figure 8: Changing arrangement of 3D floor plan 

None of the participants had previous experience 
with our system. We consider this population to be a 
reasonable set, given that the many designers use 
computers on an everyday basis. 

Practice and evaluation sessions were conducted 
in order. In the first part, subjects learned the general 
operations of the system and practiced simple 3D 
object movement under the instruction of the 
experimenter. After this initial session participants 
were asked to perform two different experimental 
tasks. The first task was merging two 4-layer towers 
(Figure 7), and the second a rearrangement of a 3D 
floor plan (Figure 8). Each participant was asked to 
perform the each task twice under all three 
conditions, intelligent separation, separation with 
anchoring with one mouse, and with two mice. As 
the two tasks are non-trivial and require some 
reflection, we considered the first set of three results 
to be practice, and analyzed only the last three trials 
for each task. To combat learning effects the order 
of conditions was counterbalanced across subjects. 
For all trials, the mouse movement, and actions that 
the subjects performed were logged along with time. 

6.2 Tasks 
In the first task, subjects had to merge two 4-layer 
towers into one (Figure 7). The individual parts of 
the tower are stacked on top of each other in a 
repeated pattern. We hypothesized that a first-time 
user could easily do this task, since there was only a 
simple relationship between objects (one on top of 
the other) and the task was repetitive. The minimum 
number of movements to complete the task was 
fifteen. 

In the second task, participants had to change the 
arrangement of a floor plan by moving walls and 
wall assemblies around (Figure 8). The task is close 
to how a conceptual 3D design system would be 
used in the real world. This task is relatively difficult 
because a user must reflect on the connectivity of 
walls in order to select the correct wall fragments. 
The minimum number of movements was ten. 

6.3 Test Results 
For brevity, we refer to intelligent separation as 
intelligent, separation with anchoring with one 
mouse as anchor, and the two mice variant as 2-
mice. The task of merging 4-layer towers is 4-layer, 
and the rearrangement of the 3D floor plan is floor 
plan. 

6.3.1 Task completion times 
In the 4-layer task, 2-mice is significantly slower 
than intelligent and anchor (F11,2=7.3, p<0.01). In 
the floor plan task, there is no significant difference 
between the techniques (F11,2=1.86, p>0.18). The 
high variation in completion time of intelligent and 
2-mice seems to be the main cause of this. The 
reasons for this are investigated later in this section. 
Nevertheless, it should be noted that with a few 
exceptions, most participants could complete the 
tasks in a reasonable amount of time. 

 
(a) Task time for merging 4-layer towers 

 
Figure 9: (b) Task time for rearranging 3D floor plan 

6.3.2 Decomposition of actions 
To gain an insight into how participants spent their 
time on each task, we decomposed time into the 



   
different action categories. The actions are move, 
anchor, navigate, undo, and visualize group. 
Visualize group means that the user highlights a 
group via directional dragging, but cancels the 
operations before actual separation occurs. 

One noticeable result for the 2-mice condition is 
that users assigned practically exclusive roles to 
their hands. Usually, the left hand is used only for 
anchoring while the right performs all other actions 
(see Table 2). To simplify further analysis, we 
merged the data for left-hand and right-hand actions. 
 

4-Layer Floor plan  
Left Right Left Right  

Move 0 18.5 0.17 16.25 
Anchor 16.83 0 11.25 0 
Navigate 0.17 3.58 0.42 11.58 
All other 2.83 3.42 1.58 5 

Table 2: Average number of actions by each hand with 2-
mice condition.  
 

Most of actions performed are move, anchoring, 
and navigation (Figure 10). If we compare 
intelligent and anchor, users made significantly more 
errors with intelligent and also utilized the visualize 
group action significantly more often. In the floor 
plan task, there is a significant correlation of 
completion time and the number of navigation 
actions in both the intelligent (0.96) and 2-mice 
condition (0.73), but not in the anchor condition 
(0.2). 

 
(a) Average number of actions in 4-layer task 

 
(b) Average number of actions in floor plan task 

Figure 10: Average number of actions for each task 
6.3.3 Number of move operations 
In the 4-layer task, the number of move operations is 
not different (F11,2 = 1.75, p >0.1 ). However, in the 

floor plan task, intelligent required significantly 
more operations than anchor (F11,2 = 3.56, p<0.05). 

In many instances, participants took longer with 
intelligent than with anchor. Usually, this is due to 
an erroneous activation of the intelligent technique, 
which then results in a sequence of corrective 
actions. This did not occur with anchor. However, in 
the floor plan task under the intelligent condition 
subject #2 and #11 were able to finish the task with 
an (almost) optimal number of move operations, 
which shows that some participants were able to 
utilize this technique fully, as their task times were 
also minimal (see Figure 9(b)). 

 
(a) Number of move operations in 4-layer task 

 
Figure 11: (b) Number of move operations by subjects in 

floor plan task. 
 

6.3.4 Select time before a movement 
To investigate how long it took users to select a 
group to separate, we decomposed the sequence of 
actions for a move operation (Table 4). We call the 
period that is shown in italic in Table 4, select time. 
We hypothesize that the select time would allow us 
to gain an insight into the complexity of selecting 
the right object, which is a mixture of cognitive 
processing as well as motor action. 

We computed the average select time by dividing 
the select time with the number select actions for 
each subject. For both tasks, the effects of the 
average select time are strongly significant (4-layer: 
F11,2=28.69, p<<0.01; floor plan: F11,2=28.31, 
p<<0.01). Also, all three techniques are different for 
both tasks. For the 4 layer task, the average select 
time for intelligent is 0.8 s, for anchor 1.21 s, and for 
2-mice 1.55 s. In the floor plan task, the average 
select time for intelligent is 1.52 s, for anchor 1.86 s, 
for 2-mice 2.55 s. 



   
The select time for intelligent is significantly 

lower than that of anchor and 2-mice. This is 
surprising, given that the motor action for these is 
practically identical (moving the cursor over an 
object). Furthermore, it seems that participants took 
less time to reflect on their choice of drag direction 
for intelligent. The higher select time for 2-mice is 
most probably due to the fact that not many people 
are trained to use a mouse with the left hand. 
  
Intelligent Move right hand onto block to move – drag 

in a direction. 
Anchor Move right hand onto the anchoring block – 

click to anchor – move right hand onto the 
block to move – drag. 

2-mice Move left hand onto the anchoring block – 
click to anchor – move right hand onto the 
block to move – drag. 

Table 4: Mouse and keyboard commands. 
  
6.3.5 Qualitative results and observations 
After finishing all the tasks, participants rated each 
technique according to a Likert scale (1:worst, 
7:excellent). The average preference for intelligent 
is 5.33, for anchor 5.5, and for 2-mice 4.08. The 
difference is not significant ( F11,2=2.92, p >0.05). 

Many subjects commented that anchor is more 
explicit and predictable for the first-time user, but 
intelligent is more natural to use. There was also a 
noticeably change of opinion after the tasks. Most of 
the users showed strong preference for intelligent 
after finishing the 4-layer task, but after the more 
challenging floor plan task, many withdrew their 
preference towards the technique. In the 4-layer task 
there is only one object relationship, one on top of 
another. Consequently, the task did not require much 
attention on how to separate a particular group. 
However, in the floor plan task, the connectivity 
relationship between objects is more complex and 
participants had to experiment with different 
dragging directions. This is reflected in the larger 
number of mistakes with this condition. 

Some of the participants said explicitly that they 
liked that objects moved on the closest visible 
surface. None of the participants commented on the 
placement, so we can assume that this method works 
well. However, some participants found it non-
intuitive that the viewpoint has to be changed to 
place an object onto an invisible surface. Some 
participants used the space in the air as a temporary 
place when the working plane was too crowded, or 
when they couldn’t immediately find the right place 
for an object. 

6.4 Discussion 
One finding of this user study is that even first-time 
users can successfully complete some conceptual 3D 
design tasks, such as rearrangement, with the 
presented techniques. The intelligent separation 
technique performs well when the task is easy. For 
more difficult tasks (such as the floor plan scenario) 
separation with anchoring seem to be a better 
alternative. 

The select time of for intelligent separation is the 
lowest regardless of the task. This contradicts our 
expectations, as we assumed that the select time of 
intelligent to be longer than that of the other 
techniques, since a user had to reflect on the 
dragging direction before the action. Participants 
seemed to use this technique with a trial and error 
approach. Conversely, with separation with 
anchoring participants spent more time to reflect on 
how to separate. The explicit two steps, selecting the 
object to remain, and then the ‘moving’ group of 
objects seem to force the users to think more.  

Also, intelligent separation clearly is more 
susceptible to mistakes. In the floor plan task, only 
two users finished task without real errors. Some 
participants needed lengthy corrections to fix a small 
error. This can happen, as intelligent separation will 
break off parts with every selection. 

For the 2-mice condition all participants used 
their left hand for anchoring exclusively, and had 
difficulty in moving the cursor with the left hand. 
This is clearly not a good alternative for first-time 
users. 

Last, but not least, several participants asked if 
they could get this system to perform creative work! 
This is very encouraging, as this is only a prototype 
that is limited in several aspects. 

7. Conclusion & Future Work 
In this work, we presented a novel approach for easy 
modification of a conceptual 3D design. We 
presented new techniques to select and separate 
arbitrary object parts, to move them around and to 
place them. Phrased differently, this work provides 
some initial solutions to fill some important gaps in 
the functionality of a conceptual 3D design system. 

Furthermore, we presented the results of our user 
study, which shows that the proposed techniques are 
useable for first-time users. The anchoring technique 
seems to be most promising for easy-to-use systems, 
although the intelligent separation technique may be 
a better choice for higher-end systems. 

For future work we will extend the set of blocks 
available in the system. The real problem here is not 
the addition of new geometries, but that we have to 



   
implement a simple, yet efficient way to select from 
a large palette of object shapes. We are currently 
investigating this. Also, we intend to incorporate at 
least a rudimentary sketching interface into the 
system. 
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Appendix A: User Interface 
The user interface of the Virtual Lego system consists of 
the main 3D scene view and a menu at the right side. The 
menu offers a color and object selection palette, an undo 
button, and a recycle bin (see Figure A1). Users can select 
a shape from the palette and place it by clicking into the 
3D view, or by dragging the shape from the palette to the 
view. 

 
Figure A1: The Virtual Lego interface 

Table A1 shows an overview of the commands in the 
system. Depending on the particular sequence of mouse 
movements and button presses different actions are taken. 
A threshold on the movement distance is used to 
distinguish between clicks and drag operations. 
 

Input command Function Realization  
Left button click Add, 

recolor 
On release 

Left button drag Move Move on drag, 
Snap on release 

Left button drag 
with shift key 

Cloning Object cloned on 
shift-press 

Any drag started in 
background 

Navigation During drag 

Right button drag Resize During drag 

Drag and drop to 
recycle bin 

Delete On release 

Middle button click 
(only in one mouse 
anchor mode) 

Anchor Realized only if 
move follows 

Table A1: Mouse and keyboard commands. 
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